bioRxiv preprint doi: https://doi.org/10.1101/2020.09.21.307280; this version posted September 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1	Dorsal raphe nuclei to anterior cingulate cortex 5-HTergic neural circuit is implicated
2	in consolation-like behaviors and sociability in mandarin voles
3	
4	Lai-Fu Li ^{1,2,*} , Li-Zi Zhang ^{1,*} , Zhi-Xiong He ¹ , Wei Yuan ^{1,3} , Huan Ma ¹ , Yu-Feng Xun ¹ ,
5	Wen-Juan Hou ¹ , Yi-Tong Li ¹ , Zi-Jian Lv ¹ , Rui Jia ¹ , Fa-Dao Tai ^{1,#}
6	
7	¹ Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University,
8	Xi'an, 710062, China
9	² College of Life Sciences, Nanyang Normal University, Nanyang, 473061, China
10	³ Provincial Key Laboratory of Acupuncture and Medications, Shaanxi University of Chinese
11	Medicine, Xianyang 712046, China
12	
13	Running title: DR \rightarrow ACC 5-HTergic neural circuit modulate consolation
14	
15	*The first two authors contributed equally to this article.

- 16 *Corresponding authors: Fa-Dao Tai, PhD, Professor, College of Life Sciences, Shaanxi
- 17 Normal University, Xi'an, 710062, China, E-mail: taifadao@snnu.edu.cn

18 ABSTRACT

19	Consolation is a common empathetic response in humans and some social animals, but
20	the neural mechanisms underlying this behavior are not well characterized. Here, by
21	using socially monogamous mandarin voles, we found that optogenetic or chemogenetic
22	inhibition of 5-HTergic neurons in the dorsal raphe nuclei (DR) or optogenetic inhibition
23	of 5-HT terminals in the anterior cingulate cortex (ACC) significantly decreased the
24	allogrooming time in the consolation test and reduced sociability in the three-chamber
25	test. Fiber photometry results showed that the release of 5-HT within the ACC and the
26	activity of DR neurons were significantly increased when allogrooming and social
27	approaching occurred. Finally, we found that the activation of 5-HT1A receptors in the
28	ACC was sufficient to reverse consolation and sociability deficits induced by the
29	chemogenetic inhibition of 5-HTergic neurons in the DR. Our study provided first direct
30	evidence that DR \rightarrow ACC 5-HTergic neural circuit is implicated in consolation-like
31	behaviors and sociability in mandarin voles.
32	
33	Keywords: Consolation; Empathy; Anterior cingulate cortex; Dorsal raphe nuclei;

- **y i i y i**
- 34 Serotonin; Fiber photometry

35 INTRODUCTION

36	Consolation behavior, which is referred to as increased in affiliative contact toward a
37	distressed individual by an uninvolved bystander, is an important component of the
38	social capabilities of humans (de Waal & Preston, 2017; Field, Diego, & Hernandez-Reif,
39	2009). Impaired consolation or empathy has been frequently observed in many
40	psychiatric diseases, such as depression, autism, and schizophrenia (Young, Parsons,
41	Stein, & Kringelbach, 2015). As a higher level of empathy-like behavior, consolation has
42	long been assumed to exist in species possessing complex cognitive functions, such as
43	humans, apes, dolphins and elephants (de Waal & Preston, 2017; Perez-Manrique &
44	Gomila, 2018); but recent studies have indicated that it also exists in some socially-lived
45	rodents, such as prairie voles (Burkett et al., 2016), mandarin voles (L. F. Li, Yuan, He,
46	Wang, et al., 2019) and rats (Knapska, Mikosz, Werka, & Maren, 2010).
47	Currently, studies of the neural mechanisms underlying consolation and other
48	empathy-like behaviors primarily focus on oxytocin systems (Burkett et al., 2016; L. F. Li,
49	Yuan, He, Wang, et al., 2019). However, as a complex social behavior, consolation may
50	require the coordinated actions of numerous neuromodulators and neurotransmitters.
51	5-HT is an evolutionarily ancient neurotransmitter that has long been implicated in a
52	variety of emotional disorders (Faye et al., 2020; Garcia-Garcia et al., 2018; Meneses &
53	Liy-Salmeron, 2012). According to recent studies, 5-HT transmission is also involved in a
54	series of social behaviors such as social interaction (Walsh et al., 2018), social reward and
55	aggression (Dolen, Darvishzadeh, Huang, & Malenka, 2013). Regarding empathy, a
56	recent study revealed an association between the salivary 5-HT levels and the empathic
57	abilities of people (Matsunaga et al., 2017); a polymorphism in the promoter region of the
58	serotonin transporter gene has been linked to individual differences in empathy (Gyurak
59	et al., 2013); MDMA (±3,4-methylenedioxymethamphetamine, better known as the
60	recreational drug "ecstasy"), which is well known to stimulate a feeling of closeness and
61	empathy in its users (Carlyle et al., 2019), had been confirmed to robustly increase the

62 release of 5-HT in an activity-independent manner (Heifets & Malenka, 2016). In animal 63 studies, Kim, et al. found that microinjection of 5-HT into the anterior cingulate cortex 64 (ACC) impaired vicarious fear and altered the regularity of neural oscillations in mice 65 (Kim et al., 2014). Our recent study indicated that 5-HT1A receptors within the ACC are 66 involved in consolation deficits induced by chronic social defeat stress in mandarin voles 67 (L. F. Li, Yuan, He, Ma, et al., 2019). However, to our knowledge, direct evidence for an 68 association between 5-HT and consolation has yet to be obtained. 69 Dorsal raphe nuclei (DR) are a main source of 5-HT neurons and provide 70% of 70 5-HTergic projections in the forebrain (Fu et al., 2010; Luo, Zhou, & Liu, 2015). DR 71 5-HTergic neurons form dense, broad and bidirectional neural connections with a broad range of forebrain and limbic structures, including the ACC (Celada, Puig, & Artigas, 72 73 2013; Charnay & Leger, 2010), which is a central hub for various types of empathy-like 74 behaviors. Therefore, direct modulation of the DR \rightarrow ACC 5-HTegic circuit to investigate 75 its function role in consolation-like behaviors is interesting and meaningful. 76 The released 5-HT binds to pre- and postsynaptic receptors. To date, at least 14 77 different 5-HT receptor subtypes have been identified in the brain (Artigas, 2013). 78 Among which, 5HT1AR and 5HT2AR are the two main subtypes that are expressed at 79 high levels in the prefrontal cortex (Carhart-Harris & Nutt, 2017; Santana & Artigas, 80 2017). The distribution, signaling pathways and functions of these two receptors are 81 substantially different, and both receptors play critical roles in modulating cortical 82 activity and neural oscillations (Celada et al., 2013). Previous studies had indicated that 83 5HT2AR gene single nucleotide polymorphisms are associated with empathy-related 84 social communication abilities (Gong, Liu, Blue, Li, & Zhou, 2015), and a 5HT2AR 85 agonist increases emotional empathic ability (Dolder, Grunblatt, Muller, Borgwardt, & 86 Liechti, 2017). However, in animal studies by Kim, et al., blockade of serotonin receptors 87 in the ACC did not affect the observational fear response in mice (Kim et al., 2014). 88 Clearly, the specific functions of 5HT1AR and 5HT2AR in empathy-like behaviors still

89 require further examination.

90	The mandarin vole (<i>Microtus mandarinus</i>) is a socially monogamous rodent that is
91	widely distributed across China (He et al., 2019). As shown in our previous studies, this
92	species is capable of displaying consolation-like behaviors upon exposure to a distressed
93	partner (L. F. Li, Yuan, He, Ma, et al., 2019; L. F. Li, Yuan, He, Wang, et al., 2019). In the
94	present study, we first investigated the function of DR \rightarrow ACC 5-HTegic circuits in
95	consolation-like behaviors using optogenetic and chemogenetic approaches. To provide
96	more direct evidence, we then monitored ACC 5-HT release and DR neuron activities
97	during this behavior by using in vivo fiber photometry. Finally, we used chemogenetics
98	plus pharmacological approaches investigated which types of 5-HT receptor in the ACC
99	are involved in consolation-like behaviors in Mandarin Voles. In order to investigate any
100	potential sex differences during these processes, both male and female subjects were
101	involved in our study.

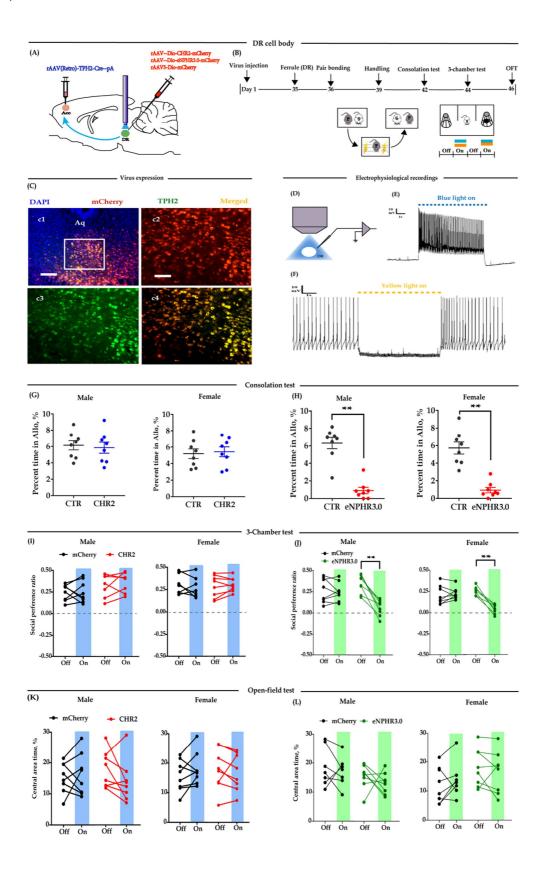
102 **RESULTS**

103 Optogenetic inhibition of DR 5-HT neurons in the DR→ACC neural circuit impaired 104 consolation and reduced sociability

105 We first determined the 5-HTergic projection relationship between the DR and ACC in

106 Mandarin Voles. For this experiment, the retrograde tracer CTB was injected into the

- 107 ACC, followed by immunofluorescence staining of the DR sections with TPH2, a marker
- 108 of 5-HTergic neurons. A substantial number of TPH2+ neurons colocalized with CTB,


109 indicating the presence of DR→ACC 5-HTergic projections (Figure 1–figure supplement

- 110 1). We then used a novel dual-virus optogenetics approach to explore the function of
- 111 DR→ACC 5-HTergic circuit in consolation-like behaviors and sociability, where
- 112 double-floxed AAV-DIO-ChR2-mCherry (DIO-ChR2) or AAV-DIO-eNpHR3.0-mCherry
- 113 (DIO-eNpHR3.0) were injected into the DR and retro-AAVs containing TPH2 promoter
- 114 and Cre element (rAAV(Retro)-TPH2-Cre) were injected into the ACC (Figure 1A). This

115	virus strategy ensures that opsins (excitatory CHR2 or inhibitory eNpHR3.0) mainly
116	expressed within the DR \rightarrow ACC 5-HTergic circuit. Immunohistochemical staining
117	showed that more than 75% of mCherry-labeled neurons expressed TPH2 in both male
118	and female voles, and more than 80% of TPH2+ cells coexpressed mCherry (Figure
119	1 – figure supplement 2). In the electrophysiological study, we found that the DR
120	neurons reliably responded to pulses of 473 (activation)/593 (inhibition) nm light stimuli
121	(Figure 1D-E). These results indicate the availability of this virus strategy.
122	To test whether modulation of DR 5-HT neuron activity alters consolation and
123	sociability, five weeks after the virus injection, optic fibres were implanted above the DR
124	(Figure 1A-B). In CHR2-expressing animals, activation of 5-HTergic neurons in the DR
125	did not significantly affect allogrooming time in the consolation test (Figure 1G),
126	sociability in the 3-chamber test (Figure 1I) and time spent in central area in the
127	open-field test (Figure 1K) in both male and female voles. However, in the
128	eNPHR3.0-expressing animals, optogenetic inhibition of 5-HTergic neurons in the DR
129	significantly reduced the time spent in allogrooming towards a shocked partner (Figure
130	1H), which may indicate an impairment in consolation (Male: $t_{(14)} = 11.128$; Female: $t_{(14)} = t_{(14)} = 11.128$; Female: $t_{(14)} = t_{(14)} = t$
131	6.327; all <i>P</i> < 0.01). The treatment also significantly reduced the chasing time ($t_{(14)}$ = 8.662,
132	8.078, male ahead, all $P < 0.01$; Figure 1 – figure supplement 3B), but did not significantly
133	affect the self-grooming time ($t_{(14)} = 0.470, 1.118, P = 0.645, 0.282$; male ahead; Figure
134	1-figure supplement 3D). Furthermore, in the 3-chamber test, two-way ANOVA
135	showed that 'light stimulation' exerted significantly effects on sociability in both male
136	and female voles ($F_{(1,28)}$ = 12.286, 10.838; all $P < 0.01$; male ahead). Optogenetic inhibition
137	of DR 5-HT neurons reduced the social preference ratio in the eNPHR3.0-expressing
138	voles (off <i>vs.</i> on; all $P < 0.01$; Figure 1J right bars), but had no effect on control voles (off
139	<i>vs.</i> on; all $P > 0.05$ Figure 1J left bars). In the 5-min open-field test, the treatments ('virus'
140	and 'light') did not significantly alter the time spent in central area (Figure 1L) and the
141	total distance traveled (Figure 1 – figure supplement 3F). In the following experiment, we

142 found the photoinhibitory effect disappeared within 24 h (Figure 1 – figure supplement

143 4).

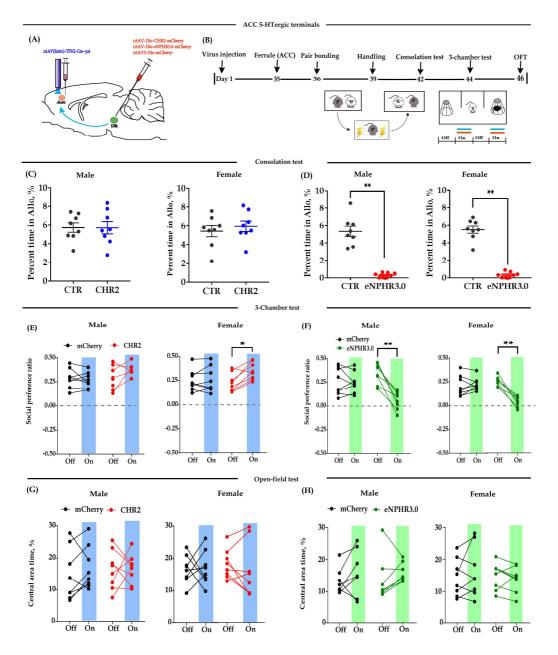
144

145 Figure 1. Optogenetic bidirectional modulation of 5-HT neuron in the DR in the

146 **DR→ACC neural circuit.** (A): Schematic of optogenetic manipulation; (B): timeline of

- 147 experiments; (C): immunohistological image showing virus expression in the DR (c1) and
- 148 amplified images in the left box showing the mCherry, TPH2 and the colocalization of the
- 149 two ('c2-c4, × 200); (D): electrophysiological recordings model; (E & F): representative
- 150 traces from electrophysiological recordings showing photostimulation (E) and
- 151 photoinhibition of a 5-HT neuron (F); (G-L): quantification of allogrooming time in the
- 152 consolation test (G & H); social preference ratio in the three-chamber test (I & J) and time
- 153 spent in the central area in the open-field test (K & L) during optogenetic modulations.
- 154 Data are presented as mean \pm SE, n = 7-8 in each group, **P < 0.01. For G-H, two-tailed
- 155 independent *t* tests; for I-L, two-way ANOVA with Bonferroni *pos-hoc* test. ACC: anterior
- 156 cingulate cortex; CTR: control; DR: dorsal raphe nucleus; TPH2: tryptophan hydroxylase

157 2.


158 Optogenetic inhibition of ACC 5-HT terminals in the DR→ACC neural circuit

159 similarly impaired consolation and reduced sociability


- 160 The modulation of 5-HT neurons may affect other neurons in the DR, and thus confound
- 161 behavioral performance. In subsequent experiments, we placed optic fibers in the ACC
- 162 and investigated whether the direct modulation of 5-HT terminals in this region would
- 163 exert the same effects (Figure 2A). Similarly, optogenetic activation of DR-ACC 5-HT
- 164 terminals did not significantly alter the behavioral performance in the consolation test,
- 165 except that CHR2-expressing females spent more time chasing after their shocked
- 166 partners (Figure 2 figure supplement 1A; $t_{(14)}$ = 2.458; P = 0.028). In the 3-chamber test, a
- 167 significant interaction of 'light × virus' was observed in females ($F_{(1,28)} = 4.646$, P = 0.04),
- 168 and the *post hoc* comparison showed that optogenetic activation of 5-HT terminals in the
- 169 ACC increased the social preference ratio in CHR2-expressing females but had no effect
- 170 on control females (off *vs.* on, *P* = 0.012; Figure 2E, right bars), but had no effect on female
- 171 control (off *vs.* on, P = 0.725, Figure 2E, left bars).

172 Optogenetic inhibition of DR-ACC 5-HT terminals significantly reduced the time

- 173 spent in allogrooming (Figure 2D) and chasing the shocked partners in the consolation
- 174 test (male: $t_{(14)}$ = 8.441, 7.201; female: $t_{(14)}$ = 12.174, 8.695; all *P* < 0.01; allogrooming time
- 175 ahead; Figure 2– figure supplement 1B), but had also no effect on selfgrooming time ($t_{(14)}$
- 176 = 0.438, 0.654; *P* = 0.799, 0.506; males ahead; Figure 2–figure supplement 1D). Similarly,
- 177 the inhibitory effect disappeared within 24 h (Figure 2–figure supplement 2). In the
- 178 3-chamber test, two-way ANOVA showed a significant effect of 'light stimulation' on
- 179 sociability in both male and female voles ($F_{(1,28)} = 9.8$, 36.7; all P < 0.01; male ahead).
- 180 Optogenetic inhibition of DR-ACC 5-HT terminals significantly reduced the social
- 181 preference ratio in the eNPHR3.0-expressing animals (Figure 2F, all *P* < 0.01; off *vs*. on).
- 182 Similarly, behavioral performance in the open-field test was unaffected by the
- 183 manipulation of 5-HT terminals in both CHR2- and eNPHR3.0-expressing animals
- 184 (Figure 2G, H; Figure 2–figure supplement 1E, F).

187 **in the DR→ACC neural circuit.** (A): Schematic of optogenetic manipulation; (B):

188 timeline of experiments; (C-H): quantification of time spent in allogrooming in the

189 consolation test (C & D), sociability in the three-chamber test (E & F) and time spent in

- 190 the central area in the open-field test (G & H) during optogenetic modulations. Data are
- 191 presented as mean \pm SE, n = 7-8 in each group, *P < 0.05, **P < 0.01. For C-D, two-tailed
- 192 independent *t* tests; for E-H two-way ANOVA with Bonferroni *pos-hoc* test. ACC:
- 193 anterior cingulate cortex; DR: dorsal raphe nucleus; CTR: control.

194 Chemogenetic inhibition of DR 5-HT neurons in the DR→ACC neural circuit

195 impaired consolation and reduced sociability

196	To confirm above optogen	netic results over a long	ger time frame, we used	l a chemogenetic
	1 0	(0 ,	0

- 197 approach to selectively express 'Gq-DREADD' or 'Gi-DREADD' in the DR 5-HT neurons
- 198 by injecting AAV-DIO-hM4Dq-mCherry (Gq-DREADD) or AAV-DIO-hM4Di-mCherry

199 (Gi-DREADD) into the DR and rAAV(Retro)-TPH2-Cre into the ACC (Figure 3A).

- 200 Immunohistochemical staining revealed that more than 65% TPH2 labeled neurons were
- 201 infected by mCherry virus and more than 60% TPH2+ cells co-expressed mCherry
- 202 (Figure 3 figure supplement 1). To determine whether the ligand CNO can activate or
- 203 inhibit DR 5-HT neurons, whole-cell current-clamp recordings were performed. The

204 results showed that addition of 10 μ M CNO remarkably increased the number of action

205 potentials in the Gq-DREADD-transfected neurons (Figure 3D). In contrast, CNO caused

206 a significantly decrease in the number of spikes (Figure 3E) and increased the spike

- 207 rheobase during current step injections in Gi-DREADD-transfected neurons (Figure 3F).
- 208 These results indicate the specificity and applicability of this virus strategy.

209 In subsequent behavioral studies, we found chemogenetic inhibition of DR 5-HT

neurons significantly reduced the allogrooming time of both sexes ($t_{(6)} = 5.0$, $t_{(7)} = 4.2$, all

211 P < 0.01 vs. vehicle control, male ahead; Figure 3G), but did not affect the chasing and

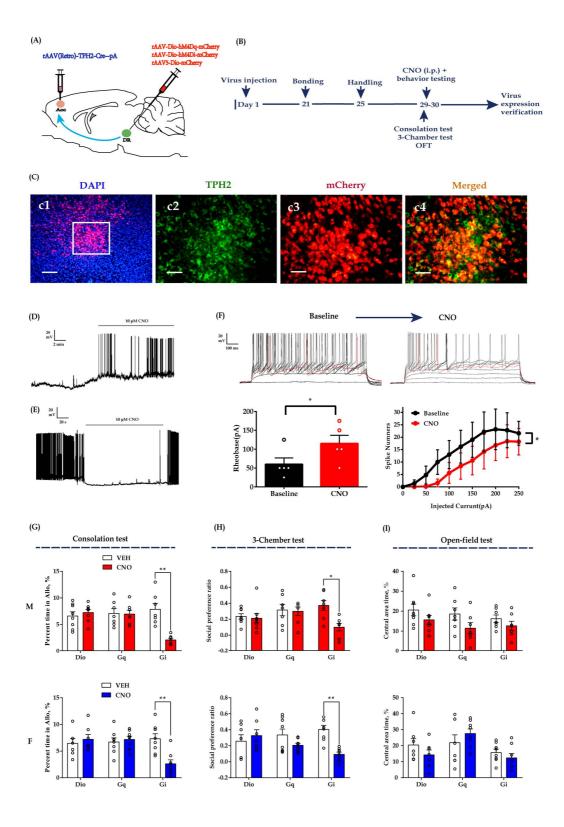
self-grooming times (Figure 3 – figure supplement 2A&B) in the consolation test.

213 Similarly, CNO-treated Gi-DREADD-expressing voles showed reduced sociability in the

214 3-chamber test ($t_{(6)} = 2.8$, P < 0.05; $t_{(7)} = 6.1$, P < 0.01; male ahead; Figure 3H). The CNO

215 treatment did not exert significant effects on behavioral performance and distance

traveled in the open-field test (Figure 3I; Figure 3– figure supplement 2C).


217 Based on the results of the chemogenetic and optogenetic experiments described

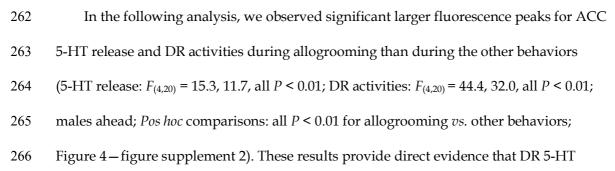
218 above, inhibition of DR→ACC 5-HTergic circuit activity is sufficient to impair

219 consolation and social abilities.

220

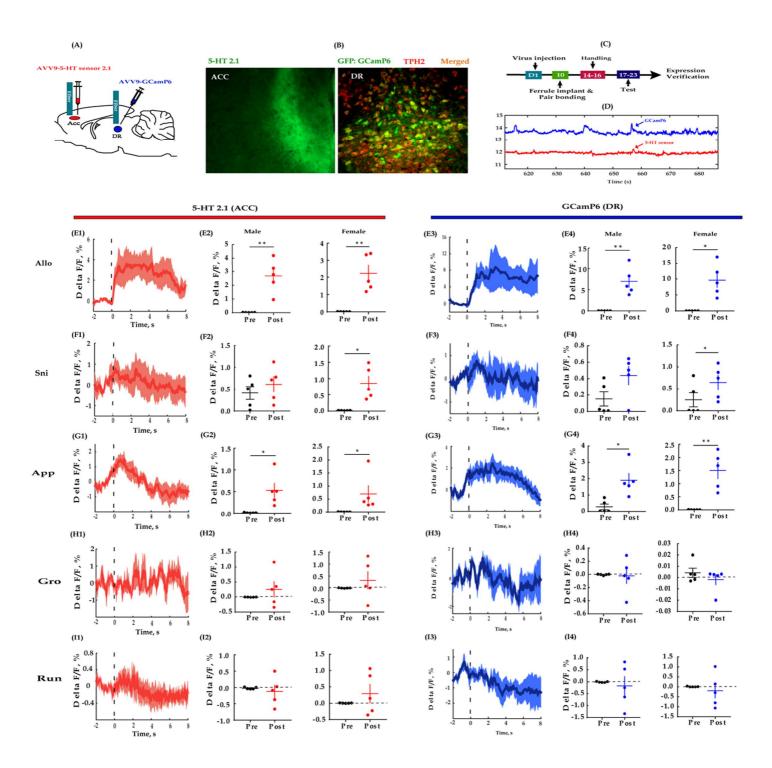
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.21.307280; this version posted September 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

226 Figure 3. Chemogenetic modulation of DR 5-HT neuron activities in the DR→ACC


227 **neural circuit.** (A): Schematic of chemogenetical manipulations; (B): timeline of

- 228 experiments; (C): immunohistological image showing virus expression in the DR (c1) and
- amplified images in the left white box showing the mCherry, TPH2 and the colocalization
- of the two (c2-c4, × 200); (D): representative trace from a Gq-DREADD neuron; (E):
- 231 representative trace from a Gi-DREADD-transfected neuron; (F): quantification of spike
- 232 rheobase and spike numbers under current step injections in Gi-DREADD-transfected
- neurons (n = 5 neurons, *P < 0.05); (G-I): quantification of allogrooming time in the
- 234 consolation test (G); social preference ratio in the three-chamber test (H) and time spent
- 235 in the central area in the open-field test (I) in male (upper panels) and female (down
- panels) voles. Data are presented as mean \pm SE, *n* = 7–8 in each group, **P* < 0.05, ***P* <
- 237 0.01 compared with vehicle control. For F, two-tailed independent *t* tests; for G-I, paired *t*
- 238 test. ACC: anterior cingulate cortex; DR: dorsal raphe nucleus; TPH2: tryptophan
- 239 hydroxylase 2; M: male; F: female.

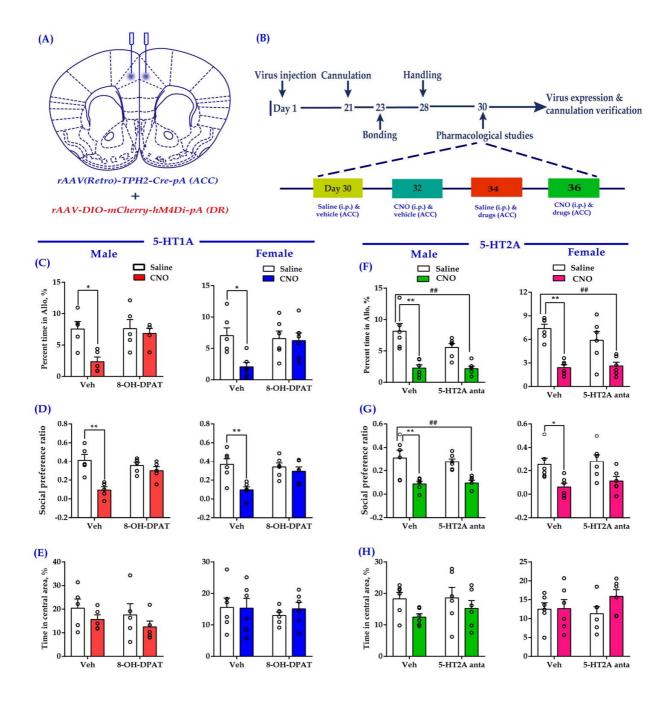
240


Allogrooming and social approach were associated with increased DR neuron activity and ACC 5-HT release

243 To further establish the potential relevance of DR→ACC 5-HTergic circuit in consolation 244 like behaviors, we then injected AAV-GCaMP6 into the DR and AAV-5HT2.1 into the 245 ACC at the same time. Ten days latter, fibers were implanted above the injection sites. 246 We then used multi-channel fiber photometry to simultaneously record DR fluorescent 247 calcium transients and ACC 5-HT release in the consolation behavior test (Figure 4A). 248 Immunohistochemical staining revealed that more than 60% GFP neurons co-expressed 249 TPH2 in the DR (Figure 4–figure supplement 1) and the traces of 5-HT and calcium 250 signals correlated well during the record (Figure 4D), suggesting that this strategy was 251 feasible and effective. During the behavioral test, we found the release of 5-HT and the activity of DR 252 253 neurons were significantly increased when allogrooming (5-HT release: $t_{(4)} = -4.9, -4.7, P$ 254 < 0.01; DR activities: $t_{(4)} = -4.7$, *P* < 0.01, $t_{(4)} = -4.2$, *P* < 0.05; males ahead; Figure 4E) and 255 social approaching occurred (5-HT release: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activities: $t_{(4)} = -3.1, -3.3, P < 0.05$; DR activ 256 -3.0, P < 0.05, $t_{(4)} = -4.6$, P < 0.01; Figure 4G). An increase in fluorescence during sniffing 257 was only observed in females (5-HT release: $t_{(4)} = -3.8$, P < 0.05, Figure 4F2; DR calcium 258 activities: $t_{(4)} = -3.7$, P < 0.05, Figure 4F4). We did not observe significant changes in 259 fluorescence in both the ACC and DR during self-grooming (Figure 4H) and running 260 (Figure 4I), suggesting that the increases in fluorescence were not due to movement 261 artifacts.

267 systems are involved in consolation-like behaviors and some social behaviors in

268 mandarin voles.


269	Figure 4. Multichannel fiber photometry simultaneously recording of 5-HT release in
270	the ACC and DR neuron activities during the consolation test. (A): Schematic diagrams
271	depicting the virus injection and recording sites; (B): histology showing the expression of
272	5-HT sensor in the ACC (left) and co-localization of GCaMP6 ⁺ neurons (green) with
273	TPH2 ⁺ neurons (red) in the DR (right, scale bar = 200 μ m); (C): experimental timeline for
274	photometry experiments; (D): representative fluorescence changes of GCaMP6 (blue line)
275	and 5-HT sensor (red line) during photometry recordings; (E1-I1): representative
276	peri-event plot of 5-HT fluorescence signals aligned to onsets of various behavior (for all
277	peri-event plots, the red line denotes the mean signals of 4-6 bouts of behaviors, whereas
278	the red shaded region denotes the SE); (E2-I2): quantification of change in 5-HT
279	fluorescence signals in the ACC before and after the events ($n = 5$); (E3-I3): representative
280	peri-event plot of calcium signals aligned to onsets of various behavioral events (for all
281	peri-event plots, the blue line denotes the mean signals of 4-6 bouts of behaviors,
282	whereas the blue shaded region denotes the SE); (E2-I2): quantification of change in
283	calcium signals (GCaMP6 fluorescence) in the DR before and after the events. Data are
284	presented as mean \pm SE, $n = 5$ in each group, $*P < 0.05$, $**P < 0.01$; paired t test for E-I.
285	ACC: anterior cingulate cortex; DR: dorsal raphe nucleus; TPH2: tryptophan hydroxylase
286	2; Allo: allogrooming; Sni: sniffing; App: approaching; Gro: selfgrooming; Run: running.

Serotonin in the ACC mediated consolation-like behaviors through 5-HT1A receptors

287

288 The most abundant 5-HT receptors expressed in the mPFC are 5-HT1AR and 5-HT2AR 289 (Carhart-Harris & Nutt, 2017). 5-HT1A receptors are generally considered inhibitory, 290 whereas 5-HT2A receptors are excitatory (Puig & Gulledge, 2011). To examine which 291 kind of receptor mediated consolation-like behaviors within the ACC, we therefore 292 infused a 5-HT1AR receptor agonist (8-OH-DPAT) or a 5-HT2AR antagonist (MDL 293 100907) into the ACC along with chemogenetic inhibition of DR 5-HT neurons before 294 conducting behavioral assays (Figure 5A & B). The behavioral analysis indicated a 295 significant 'drug treatment' effect on allogrooming and sociability (allogrooming: $F_{(3,19)} =$ 296 5.3, P = 0.01, $F_{(3,23)} = 4.2$, P < 0.05; social preference ratio: $F_{(3,19)} = 9.0$, $F_{(3,19)} = 6.4$, all P < 0.05297 0.01; males ahead). Not surprisingly, CNO elicited deficits in allogrooming and 298 sociability (Figure 5C-G, left two bars). Pretreatment with 8-OH-DPAT reversed the 299 dysfunctions to the normal level (all P > 0.05 for '8-OH-DPAT+CNO' vs. 'vehicle+saline' 300 pos hoc comparisons; Figure 5C-D), whereas MDL 100907 did not exert a similar effect (all 301 P < 0.01, for '8-OH-DPAT+CNO' vs. 'vehicle+saline' pos hoc comparisons except social preference ratio in female voles but also show such trend ($0.25 \pm 0.14 vs. 0.11 \pm 0.09$, P = 302 303 0.098; Figure 5F, G). The microinjected drugs and viruses did not alter the time spent in 304 the central area and mobility in the open-field test (Figure 5E-H, Figure 5 – figure 305 supplement 2).

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.21.307280; this version posted September 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

307	Figure 5. Intra-ACC injection of a 5-HT1AR agonist rescued sociability deficits
308	induced by chemogenetic inhibition of DR 5-HT neurons in the DR $ ightarrow$ ACC neural
309	circuit. (A): Schematic representation of ACC infusion sites and virus strategy; (B):
310	timeline of experimental design; (C-E): effect of a 5-HT1AR agonist 8-OH-DPAT on
311	allogrooming time in the consolation test (C), social preference ratio in the three-chamber
312	test (D), and time spent in the central area in the open-field test (E) in male (left panels)
313	and female (right panels) voles; (F-H): effect of a 5-HT2AR antagonist (MDL 100907) on
314	allogrooming time in the consolation test (F), social preference ratio in the three-chamber
315	test (G) and time spent in the central area in the open-field test (H) in male (left panels)
316	and female (right panels) voles. Data are presented as mean \pm SE, <i>n</i> = 5–6 in each group;
317	for C-H one-way ANOVA with Bonferroni <i>pos-hoc</i> test. $*P < 0.05$, $**P < 0.01$ compared
318	with 'vehicle + saline' vs. 'vehicle + CNO'; $^{\#P}$ < 0.01, '5-HT2AR antagonist + CNO' vs.
319	'vehicle + saline'. Anta: antangonist; ACC: anterior cingulate cortex; DR: dorsal raphe

320 nucleus.

321 DISCUSSION

322	In the present study, we demonstrated a crucial role for the DR \rightarrow ACC 5-HTergic neural
323	circuit in the regulation of consolation-like behaviors and sociability in mandarin voles
324	for the first time. Our major findings are listed below. First, inhibition of DR 5-HT
325	neurons or their terminals in the ACC decreased allogrooming behavior and reduced
326	sociability. Second, DR neuron activity and ACC 5-HT release increased during
327	allogrooming and social approaching. Third, direct activation of ACC 5-HT1A receptors
328	was sufficient to ameliorate deficits in consolation and sociability induced by the
329	chemogenetic inhibition of DR 5-HT neurons.
330	We found that optogenetic activation DR 5-HT neurons (Figure 1) or ACC 5-HT
331	terminals (Figure 2) did not elicit corresponding increases in allogrooming and
332	sociability. Chemogenetic activation of DR 5-HT neurons produced similar results
333	(Figure 3). One possible explanation is that various 5-HT receptors expressed in the ACC
334	and some have opposite functional effects (Puig & Gulledge, 2011; Tian, Yamanaka,
335	Bernabucci, Zhao, & Zhuo, 2017). For example, 5-HT1AR coupled to the Gi family of G
336	proteins induces the hyperpolarization of pyramidal neurons, whereas 5-HT2AR coupled
337	to Gq proteins induces depolarization in the same neurons (Carhart-Harris & Nutt, 2017).
338	In addition, these two types of receptors are expressed in both pyramidal and
339	GABAergic neurons of the mPFC (Santana, Bortolozzi, Serrats, Mengod, & Artigas, 2004).
340	Therefore, the net behavioral effects of 5-HT release must result from the comprehensive
341	effects of all these receptors. However, in a previous study by Kim, et al., the directly
342	administration of 5-HT into the ACC impaired observational fear learning, which is an
343	empathy-like behavior (Kim et al., 2014). This inconsistency will require further
344	investigations, and species differences (mice vs. voles), methodological differences
345	(pharmacology vs . optogenetics and chemogenetics) or the use of different behavioral
346	indicators (consolation vs. emotional contagion) may be the main explanations for the

20

347 discrepancy. Furthermore, optogenetic or chemogenetic activation of DR 5-HT neurons is 348 also distinct from pharmacological intervention with MDMA, which robustly induces 349 5-HT releases in the whole brain and enhances closeness and empathy in its users in 350 human studies (Carlyle et al., 2019; Heifets & Malenka, 2016). Nevertheless, at least some 351 effects of activation were visible. For example, optogenetic activation of ACC 5-HT 352 terminals increased sociability in CHR2-expressing females. Clearly, effects of activation 353 of the DR→ACC 5-HTergic neural circuit on sociability and empathy-like behaviors still 354 require further in-depth study. 355 In contrast to activation manipulations, we found inhibition of the DR \rightarrow ACC 356 5-HTergic neural circuit significantly decreased intimate behaviors (allogrooming and 357 chasing) toward their distressed partners and reduced sociability (Figures 1-3). 358 Consistent with our results, Walsh et al found that optogenetic inhibition of DR 5-HT 359 neurons reduced social interactions in the three-chamber test (Walsh et al., 2018). 360 However, we still do not know whether the reduced consolation is due to the overall 361 decrease in sociability induced by the current paradigm. Another open question is how 362 this process occurs, namely, what are the neural mechanisms underlying this process? 363 The neocortical excitatory/inhibitory (E/I) balance hypothesis may help address this 364 question. The hypothesis indicated that an increase in the cortical cellular E/I balance, for 365 example through increased activity in excitatory neurons or reduction in inhibitory 366 neuron function, is the common etiology and final pathway for some psychiatric diseases, 367 such as autism and schizophrenia (Bozzi, Provenzano, & Casarosa, 2018; Vattikuti & 368 Chow, 2010). This hypothesis has recently been verified in mice, as optogenetic excitation 369 of glutamatergic neurons in the mPFC elicited a profound impairment in sociability, 370 while compensatory excitation of inhibitory neurons in this region partially rescued 371 social deficits caused by an increase in the E/I balance (Yizhar et al., 2011). 5-HT tends to 372 inhibit prefrontal pyramidal activity (Puig & Gulledge, 2011; Tian et al., 2017). For 373 example, according to Puig et al., electrical stimulation of the DR inhibits approximately

374 two-thirds of pyramidal neurons in the mPFC (Puig, Artigas, & Celada, 2005). Therefore, 375 a reasonable hypothesis is that inhibition of the DR \rightarrow ACC 5-HTergic neural circuit may 376 increase the E/I balance, which ultimately leads to abnormal social behaviors in 377 mandarin voles. Clearly, this hypothesis should be verified in electrophysiological 378 studies in the future. 379 Our results show that neither activation nor inhibition DR→ACC 5-HTergic neural 380 circuit exerted any significant effect on some control behaviors (Figure 1-figure 381 supplement 3; Figure 2-figure supplement 1; Figure 3-figure supplement 2), i.e., 382 self-grooming in the consolation test or behavioral performance in the open-field test, 383 consistent with pervious studies (for self-grooming please refer to (Correia et al., 2017); 384 for open-field test please refer to (Walsh et al., 2018)). However, inconsistent results have

also been reported. For example, Ohmura, et al found that optogenetic activation of 5-HT

386 neurons in the median raphe nucleus enhanced anxiety-like behaviors in mice (Ohmura,

Tanaka, Tsunematsu, Yamanaka, & Yoshioka, 2014); in the study by Correia, et al, the activation of 5-HTergic neurons in the DR affected behavior in the open-field test, but not anxiety (Correia et al., 2017). Different stimulation protocols or manipulatings of different groups of 5-HT neurons may account for the discrepancies.

391 Our results obtained using *in vivo* multichannel fiber photometry indicated that an 392 increase in DR neuron activity during allogrooming and social approach (Figure 4-E4 393 and G4). This result is consistent with previous studies showing that increases in the 394 activity of 5-HTergic neurons in the DR during nonaggressive social interactions (Y. Li et 395 al., 2016; Walsh et al., 2018). Furthermore, using the highly sensitive 5-HT fluorescent 396 sensors developed by Wan et al (Chaki, 2017), we provided the first evidence that 397 allogrooming and social approach elicited robust 5-HT release in the ACC (Figure 4-E1 398 and G1). Notably, 5-HT and calcium signals correlated well with each other during the 399 recording period (Figure 4D), providing additional evidence that the DR \rightarrow ACC 400 5-HTergic neural circuit is implicated in consolation-like behaviors and sociability.

22

401 However, self-grooming and chasing did not induce 5-HT release within the ACC

402 (Figure 4–H2, I2). This finding may indicate the behavioral relevance of the 5-HT sensors

403 used in our study to some extent. Clearly, additional evidence is needed to confirm the

404 effectiveness of 5-HT sensors in future studies.

427

405 Although both 5-HT1AR and 5-HT2AR are expressed at high levels in the mPFC and 406 work together to modulate cortical network activity (Celada et al., 2013), we found only 407 the 5-HT1AR receptor agonist reversed the consolation and sociability deficits induced 408 by chemogenetic inhibition of 5-HTergic neurons in the DR (Figure 5). This result is 409 consistent with our previous finding that the administration of WAY-100635 (a 5-HT1AR 410 antagonist) into the ACC attenuated consolation and sociability in mandarin voles (L. F. 411 Li, Yuan, He, Ma, et al., 2019). The 5-HT1AR within the mPFC has frequently been 412 reported to exert antidepressant and anxiolytic effects (Artigas, 2013; Fukumoto et al., 413 2020; Fukumoto, Iijima, & Chaki, 2014; Wang et al., 2019), but our findings clearly 414 indicate that this type of 5-HT receptor within the ACC is also involved in regulating 415 some social behaviors. Clearly, this effect should be verified in many other species in 416 future studies. The administration of the 5-HT2AR antagonist into the ACC did not exert 417 an obvious effect on the social deficits induced by the chemogenetic inhibition of DR 418 5-HT neurons (Figure 5F-H). Thus, 5-HT2AR within the ACC may not play a major role 419 in consolation and sociability. However, this conclusion should be interpreted very 420 cautiously because 5-HT2AR expression within the mPFC shows clearly rostral-to-caudal 421 gradients in mice (Weber & Andrade, 2010) and we were unable to determine its 422 functional role in this dimension in the present study. Furthermore, the effects of 5-HT in 423 the ACC on consolation and sociability probably involve other subtypes of 5-HT 424 receptors, such as 5-HT1BR and 5-HT3R, which require further examination. 425 In conclusion, our findings establish the importance of the DR→ACC 5-HTergic 426 neural circuit in consolation-like behaviors and sociability in mandarin voles.

Considering the widespread innervation of 5-HT terminals and abundant distribution of

428 5-HT receptors in the whole brain, detailed knowledge of cellular and circuit

- 429 mechanisms of the 5-HTergic system, will not only improve our understanding of its
- 430 complicated features and functions but also have implications for the development of
- 431 novel therapies for the treatment of prevalent neuropsychiatric disorders, such as
- 432 depression, autism, and schizophrenia. Additionally, although both male and female
- 433 subjects were included in this study, sexually dimorphic effects were rarely observed.
- 434 This finding may provide additional evidence of cooperative evolution to adapt to
- 435 environmental challenges, particularly in species that adapt monogamous relationships
- 436 and require cooperative breeding.

437 METHODS AND MATERIALS

438 Key Resources Table

Reagent type	Source	Identifier	Additional information
Antibodies			
Anti-TPH2 goat polyclonal	Abcam	ab121013	1/500
antibody			
Donkey anti-goat	Jackson	705-545-147	1/300
secondary antibody			
conjugated with Dylight			
488			
Donkey anti-goat	Jackson	705-025-003	1/300
secondary antibody			
conjugated with TRITC			
DAPI	Boster	AR1177	Original fluid
Drugs and compounds		l	1
8-OH-DPAT	Sigma	H8520	Injection site : ACC;
			volume: 200 nL/side;
			concentration: 1.5 mg/mL
MDL 100907	Tocris	Cat#4173	Injection site : ACC;
	Bioscience		volume: 200 nL/side;
			concentration: 1 mg/mL

CNO	BrainVTA	Cat#	1 mg/kg, i.p.
		CNO-02	
Cholera Toxin Subunit B	Thermo	Cat#C34777	Injection site : ACC ;
(CTB)594	Fisher		volume : 400 nL/side ;
			expression time : 10 days
Optogenetic virus			
rAAV(Retro)-TPH2-Cre-W	BrainVTA	R-396-K1811	Injection site : ACC ;
PRE-pA		27	volume : 300 nL/side ;
-			expression time : 5 wks
rAAV-Ef1a-DIO-ChR2-mC	BrainVTA	9-2-K190827	Injection site : DR;
herry-WPRE-pA			volume : 500 nL ;
			expression time : 5 wks
rAAV-Ef1a-DIO-eNpHR3.0	BrainVTA	rAAV9-7-5-1	Injection site : DR;
-mCherry-WPRE-pA			volume : 500 nL ;
			expression time : 5 wks
rAAV-Ef1a-DIO-mCherry-	BrainVTA	9-13-K19043	Injection site : DR;
WPRE-pA		0	volume : 500 nL ;
			expression time : 5 wks
Chemogenetic virus			
rAAV(Retro)-TPH2-Cre-W	BrainVTA	R-396-K1811	Injection site : ACC ;
PRE-pA		27	volume : 300 nL/side ;
			expression time : 5 wks
rAAV-Ef1a-DIO-hM4Di(Gi	BrainVTA	9-43-K19052	Injection site : DR;
)-mCherry-WPRE-pA		1	volume : 500 nL ;
			expression time : 5 wks
rAAV-Ef1a-DIO-hM4Dq(G	BrainVTA	9-42-K19053	Injection site : DR;
q)-mCherry-WPRE-pA		0	volume : 500 nL ;
			expression time : 5 wks
Fiber photometry virus			
rAAV-hSyn-5HT2.1-WPRE-	BrainVTA	9-1826-K190	Injection site : ACC ;
hGHpA (5-HT sensor)		620	volume : 400 Nl ;
			expression time : 3 wks
rAAV-hSyn-GCamp6m-W	BrainVTA	rAAV9-148-	Injection site : DR;
PRE-PA		1-1	volume : 500 nL ;
			expression time : 5 wks

439 Animals

440	The mandarin voles used in this study were laboratory bred strains (F2-F3) whose
441	ancestors derived from a wild population from Lingbao city (Henan, China). The voles
442	were weaned on postnatal day 21, socially housed in same-sex in each polycarbonate
443	cage (44×22×16 cm) and housed on a 12-h light/dark cycle with food and water ad
444	libitum. Voles used for experiments were about 70-90 days old at the time. All breeding,
445	housing, and experimental procedures were in accordance with Chinese guidelines for
446	the care and use of laboratory animals and were approved by the Animal Care and Use
447	Committee of Shaanxi Normal University.

448 Stereotaxic surgery and virus infusions

449 The kind of virus, total injection volumes and the expression time were listed in Key

450 Resources Table. For surgery, voles (about 50 days) were anesthetized with 1.5%-3.0%

451 isoflurane and placed in a stereotaxic instrument. Next, thirty-three gauge syringe

452 needles (Hamilton) were used for virus delivery. The injection rates were set at 50

453 nL/min. After each injection, the needle was left in the brain for 5 min before being

454 slowly withdrawn in order to prevent the virus from leaking out. The bregma

455 coordinates for the virus injection were as follows: ACC: A/P: 1.6, M/L: 0.5, D/V: 1.6;

456 DR: AP: -4.5; DV: -3.3, ML: +1.2, with a 20 angle toward the midline in the coronal plane.

457 Microinjection and drugs

458 The 5-HT1AR agonist 8-OH-DPAT was prepared in saline with a final concentration of

459 1.5 mg/mL. The 5-HT2AR antagonist MDL 100907 was prepared in 0.01 M PBS (adjust

- 460 PH value with 0.1 M HCl to 6.4) with a final concentration of 1 mg/mL. All the
- 461 microinjections were administered 30 min before the behavioral test. The speed of
- 462 injection was 0.1 μ L/min, and the total injection volume were 0.2 μ L per side for all the
- 463 drugs. The injector tips remained in situ for another 2 min for drug diffusions. The dose

464 and timing of drug administration were chosen based on previous studies with

465 8-OH-DPAT (Cooper, McIntvre, & Huhman, 2008; L. F. Li, Yuan, He, Ma, et al., 2019) and

466 MDL 100907 (Ishii, Ohara, Tobler, Tsutsui, & Iijima, 2015; Pockros, Pentkowski, Swinford,

467 & Neisewander, 2011), which adjusted according to preliminary studies. In chemogenetic

- 468 studies, CNO (1 mg/kg) was dissolved in saline and delivered intraperitoneally 30 min
- 469 before the behavioral test.

470 **Optogenetic studies**

471 For optogenetic activation, ferrules were connected (by patch cords) to a 473 nm laser

472 diode through a FC/PC adaptor and a fibre optic rotary joint. The output parameters

473 were: 10 ms, 20 Hz, 8 s on and 2 s off cycle, \sim 10 mW for terminal stimulation, \sim 5 mW

474 for somatic stimulation. For optogenetic inhibition, ferrules were connected to a 593 nm

475 laser diode. The output parameters were: 10 ms, 20 Hz, constant, \sim 10 mW for both

terminal and somatic inhibition. The optogenetic stimulation parameters were chosen

477 and slightly modified based on previous studies (Garcia-Garcia et al., 2018; Walsh et al.,

478 2018; Zhao et al., 2011).

479 **Behavioral assays**

480 Generally, all the behavioral experiments were performed under dim light during the

481 dark phase of the light-dark cycle. For optogenetic and fibre photometry studies, all

482 subjects were allowed to habituate to patch cords for at least three days and allowed 30

483 min acclimation to the connection before the experiment started. The lasting effects of the

484 laser were measured 24 h after the stimulation. In all tests, all groups of experimental

485 mice were randomly selected and the observers were blinded to the treatments.

486 <u>Consolation test</u>

487 The consolation test was performed as previously described (Burkett et al., 2016). Briefly,

488 five days before the experiment, age-matched adult male and female voles were

489	cohoused together to promote the formation of a pair bond (Yu et al., 2012). On the
490	testing day, the subjects' partners were gently transferred in a cup to a sound-proof
491	electric shock chamber and then subjected to 10 rounds of light foot shocks (3 s, 0.8 mA, 2
492	min intertrial intervals). At the same time, the test voles were left undisturbed in their
493	home cages. After the separation, the pairs were reunited, and the behavior of the
494	subjects was recorded using a video camera for 10 minutes in the test room. The digital
495	videos were viewed and quantified using J Watcher software
496	(http://www.jwatcher.ucla.edu/). According to previous studies (Burkett et al., 2016; Li
497	et al., 2019), allogrooming is designated as behavioral indicators of consolation, which
498	defined as head contact with the body or head of their partner, accompanied by a
499	rhythmic head movement.
500	For optogenetic tests, the consolation test was designed as a between-subjects test in
501	which both groups (mCherry or opsin) received laser stimulation.
502	Three-chamber test
302	<u>Intee-chamber test</u>
503	The three-chamber test was used to assess the sociability of a subject (Horie et al., 2019;
504	Walsh et al., 2018). The apparatus consisted of a rectangular box with three separate
505	chambers ($20 \times 40 \times 20$ cm each). One side of each chamber contained a circular metal
506	wire cage (stimulus animal cage, 11 cm high and 9 cm in diameter). One day before the
507	test, all subjects were habituated to the arena for 5 min and age- and sex-matched voles
508	(stimulus voles) also habituated to the wire cages for 5 min. On the testing day, the test
509	vole was placed in the center chamber and a stimulus vole was randomly placed into one
510	of the wire cages. After 2 min, the partitioning walls between the chambers were

511	removed and the test voles were allowed to explore freely for a 10 min session. The time
512	spent exploring each chamber was automatically recorded using a video tracking system
513	(Shanghai Xinruan, China). Sociability was calculated as follows: (time spent in the
514	stimulus vole side – time spent in the empty side)/(time spent in the stimulus vole side +
515	time spent in the empty side).
516	For optogenetic tests, voles received four epochs of light beginning with a light OFF
517	baseline epoch (OFF-ON-OFF-ON). Each epoch lasted for 5 min and the total duration
518	was 20 min.
519	Open-filed test
520	The anxiety level and locomotor function of the subjects were assessed by using the
521	open-field test (Flanigan et al., 2020; Walsh et al., 2018). Briefly, a square open field (50
522	cm \times 50 cm \times 25 cm) was virtually subdivided into 16 even square. The four central
523	squares were designated as central area. At the beginning of the test, the test vole was
524	placed into the center area facing away from the experimenter. Behavior was recorded
525	for 5 min. Outcome measures were distance traveled, frequency entries and time spent in
526	the central area.
527	For optogenetic tests, voles were tested twice in the same day in both light-off and
528	light-on conditions with at least 2 h between sessions (within-subjects design).
529	Multi-channel fibre photometry
530	The multi-channel fiber photometry recording set-up (ThinkerTech, Nanjing, China) was
531	generated and used as previously described (Feng et al., 2019; Yuan et al., 2019). Briefly,
532	the emission light was generated by a 480 LED, reflected with a dichroic mirror and

533 delivered to the brain in order to excite the GCaMP6m and 5-HT sensor. The emission 534 light passed through another band pass filter, into a CMOS detector (Thorlabs, Inc. 535 DCC3240M) and finally recorded by a Labview program (TDMSViewer, ThinkerTech, 536 Nanjing, China). 537 On the test day, voles were mildly anesthetized with isoflurane and connected to a 538 muti-mode optic fiber patch cord (ThinkerTech Nanjing Bioscience®, NA: 0.37, OD: 200 539 µm) which the other end connected to fiber photometry apparatus. After 30 min 540 habituation, the voles were subjected to consolation test and the behavioral recording 541 consisted of allogrooming, sniffing, approaching, self-grooming and running. 542 Fiber photometry signals were processed with custom-written MATLAB software. 543 Briefly, all the data were segmented based on the behavioral events and baseline phase. 544 The change in fluorescence $(\Delta F/F)$ was calculated as (F-F0)/F0, where F0 represents the 545 baseline fluorescence signal averaged over a 10 s-long control time window. We first 546 segmented the data based on the behavioral events. Then, we calculated the average 547 5-HT and calcium signals in both the pre- and postphases. The response elicited during a 548 behavior was calculated as the average $\Delta F/F$ during all trials of a particular behavior. 549 The peak response during a behavior was calculated as the maximum $\Delta F/F$ during the 550 behavior minus F0.

551 In vitro electrophysiological recordings

552 To verify the optogenetic and chemogenetic manipulations, we performed in vitro

553 whole-cell patch-clamp recordings from DR neurons. Neurons expressing ChR2,

554 eNpHR3.0, hM3Dq and hM4Di were visually identified by fluorescence of mCherry. The

- voles were an esthetized with isoflurane. Brains were quickly dissected and $300\,\mu\text{m}$
- 556 coronal slices containing the DRN were prepared in a chamber filled with ACSF (32-34 $^{\circ}$ C)
- using vibratome (Campden 7000 smz). The recordings were obtained using a Multiclamp
- 558 700B amplifier, filtered at 5 kHz and sampled at 10 kHz with Digidata 1440A. Clampex

30

559 10.5 was used for analysis.

560	Current-clamp recordings were performed to measure evoked action potentials. For
561	photoactivation and photoinhibition, the light protocols used during behavioral tests
562	were delivered through a 200 μm optical fiber close to recorded neurons. For CNO
563	activation, spontaneous firing of action potentials in the cell was recorded in current
564	clamp mode at -60 mV. After 5 min of recording, the slices were perfused with 10 μM
565	CNO. The total recording time for each cell was 10 min. For CNO inhibition, we applied
566	currents in steps of 25 pA, ranging from 0 pA to 250 pA. Neurons were allowed to
567	recover for 10 min then perfused with 10 μ M CNO. The same current procedure was
568	performed. Afterwards, the CNO was removed by washes with ASCF and cells were
569	recorded for another 10 min.
570	Data analysis
571	All data are represented as mean ± SEM. All data were assessed for normality using a

572 one-sample Kolmogorov-Smirnov test, and Levene's test was used to confirm

573 homogeneity of variance. Unless other indicated, two-tailed independent *t* tests or paired

574 *t* tests were used for single value comparisons. ANOVA was used to perform group

575 comparisons with multiple measurements. Bonferroni corrections were conducted for

576 multiple comparisons when appropriate. Data are considered to be statistically

577 significant if *P* < 0.05.

578 ACKNOWLEDGMENTS AND DISCLOSURES

- 579 This research was supported by the National Natural Science Foundation of China
- 580 (31970424, 31670421, 31372213 and 31772473), the Natural Science Basic Research Plan in
- 581 Shaanxin Province of China (2018JM3032) and the Fundamental Research Funds for
- 582 Central University (GK201903059). We thank Yu-Ying Yang, Xin Zhang and Yi-Xin Feng
- 583 for assistance in conducting experiments and caring for voles. The authors declare no
- 584 conflict of interest.
- 585

586 AUTHOR CONTRIBUTIONS

- 587 Prof. F.D.T. designed the study; L.F.L. conducted the majorities of experiments and wrote
- 588 the original draft; L.Z.Z participated in the electrophysiological experiment; Z.X.H. and
- 589 R.J. discussed the results and provided constructive comments; H.M., Y.F.X, W.Y., J.Z.,
- 590 W.J.H., Z.J.L. and L.Y.T. participated in the behavior study and helped to collect and
- analyze the data. All authors contributed to and have approved the final manuscript.

592 References

593	Artigas, F. (2013). Serotonin receptors involved in antidepressant effects. <i>Pharmacol Ther</i> ,
594	137(1), 119-131. doi: 10.1016/j.pharmthera.2012.09.006
595	Bozzi, Y., Provenzano, G., & Casarosa, S. (2018). Neurobiological bases of
596	autism-epilepsy comorbidity: a focus on excitation/inhibition imbalance. Eur J
597	<i>Neurosci,</i> 47(6), 534-548. doi: 10.1111/ejn.13595
598	Burkett, J. P., Andari, E., Johnson, Z. V., Curry, D. C., de Waal, F. B., & Young, L. J. (2016).
599	Oxytocin-dependent consolation behavior in rodents. Science, 351(6271), 375-378.
600	doi: 10.1126/science.aac4785
601	Carhart-Harris, R. L., & Nutt, D. J. (2017). Serotonin and brain function: a tale of two
602	receptors. J Psychopharmacol, 31(9), 1091-1120. doi: 10.1177/0269881117725915
603	Carlyle, M., Stevens, T., Fawaz, L., Marsh, B., Kosmider, S., & Morgan, C. J. (2019).
604	Greater empathy in MDMA users. J Psychopharmacol, 33(3), 295-304. doi:
605	10.1177/0269881119826594
606	Celada, P., Puig, M. V., & Artigas, F. (2013). Serotonin modulation of cortical neurons and
607	networks. Front Integr Neurosci, 7, 25. doi: 10.3389/fnint.2013.00025
608	Charnay, Y., & Leger, L. (2010). Brain serotonergic circuitries. Dialogues Clin Neurosci,
609	12(4), 471-487.
610	Cooper, M. A., McIntyre, K. E., & Huhman, K. L. (2008). Activation of 5-HT1A
611	autoreceptors in the dorsal raphe nucleus reduces the behavioral consequences of
612	social defeat. Psychoneuroendocrinology, 33(9), 1236-1247. doi:
613	10.1016/j.psyneuen.2008.06.009

614	Correia, P. A., Lottem, E., Banerjee, D., Machado, A. S., Carey, M. R., & Mainen, Z. F.
615	(2017). Transient inhibition and long-term facilitation of locomotion by phasic
616	optogenetic activation of serotonin neurons. <i>Elife, 6</i> . doi: 10.7554/eLife.20975
617	de Waal, F. B. M., & Preston, S. D. (2017). Mammalian empathy: behavioural
618	manifestations and neural basis. <i>Nat Rev Neurosci, 18</i> (8), 498-509. doi:
619	10.1038/nrn.2017.72
620	Dolder, P. C., Grunblatt, E., Muller, F., Borgwardt, S. J., & Liechti, M. E. (2017). A Single
621	Dose of LSD Does Not Alter Gene Expression of the Serotonin 2A Receptor Gene
622	(HTR2A) or Early Growth Response Genes (EGR1-3) in Healthy Subjects. Front
623	<i>Pharmacol, 8,</i> 423. doi: 10.3389/fphar.2017.00423
624	Dolen, G., Darvishzadeh, A., Huang, K. W., & Malenka, R. C. (2013). Social reward
625	requires coordinated activity of nucleus accumbens oxytocin and serotonin.
626	<i>Nature, 501</i> (7466), 179-184. doi: 10.1038/nature12518
627	Faye, C., Hen, R., Guiard, B. P., Denny, C. A., Gardier, A. M., Mendez-David, I., & David,
628	D. J. (2020). Rapid Anxiolytic Effects of RS67333, a Serotonin Type 4 Receptor
629	Agonist, and Diazepam, a Benzodiazepine, Are Mediated by Projections From
630	the Prefrontal Cortex to the Dorsal Raphe Nucleus. <i>Biol Psychiatry</i> , 87(6), 514-525.
631	doi: 10.1016/j.biopsych.2019.08.009
632	Feng, J., Zhang, C., Lischinsky, J. E., Jing, M., Zhou, J., Wang, H., Li, Y. (2019). A
633	Genetically Encoded Fluorescent Sensor for Rapid and Specific In Vivo Detection
634	of Norepinephrine. Neuron, 102(4), 745-761 e748. doi:
635	10.1016/j.neuron.2019.02.037

636	Field, T., Diego, M., & Hernandez-Reif, M. (2009). Depressed mothers' infants are less
637	responsive to faces and voices. <i>Infant Behav Dev</i> , 32(3), 239-244. doi:
638	10.1016/j.infbeh.2009.03.005
639	Flanigan, M. E., Aleyasin, H., Li, L., Burnett, C. J., Chan, K. L., LeClair, K. B., Russo, S.
640	J. (2020). Orexin signaling in GABAergic lateral habenula neurons modulates
641	aggressive behavior in male mice. Nat Neurosci. doi: 10.1038/s41593-020-0617-7
642	Fu, W., Le Maitre, E., Fabre, V., Bernard, J. F., David Xu, Z. Q., & Hokfelt, T. (2010).
643	Chemical neuroanatomy of the dorsal raphe nucleus and adjacent structures of
644	the mouse brain. J Comp Neurol, 518(17), 3464-3494. doi: 10.1002/cne.22407
645	Fukumoto, K., Fogaça, M. V., Liu, R. J., Duman, C. H., Li, X. Y., Chaki, S., & Duman, R. S.
646	(2020). Medial PFC AMPA receptor and BDNF signaling are required for the
647	rapid and sustained antidepressant-like effects of 5-HT(1A) receptor stimulation.
648	Neuropsychopharmacology, 45(10), 1725-1734. doi: 10.1038/s41386-020-0705-0
649	Fukumoto, K., Iijima, M., & Chaki, S. (2014). Serotonin-1A receptor stimulation mediates
650	effects of a metabotropic glutamate 2/3 receptor antagonist,
651	2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid
652	(LY341495), and an N-methyl-D-aspartate receptor antagonist, ketamine, in the
653	novelty-suppressed feeding test. Psychopharmacology (Berl), 231(11), 2291-2298. doi:
654	10.1007/s00213-013-3378-0
655	Garcia-Garcia, A. L., Canetta, S., Stujenske, J. M., Burghardt, N. S., Ansorge, M. S.,
656	Dranovsky, A., & Leonardo, E. D. (2018). Serotonin inputs to the dorsal BNST
657	modulate anxiety in a 5-HT1A receptor-dependent manner. Mol Psychiatry, 23(10),

658 1990-1997. doi: 10.1038/mp.2017.165

659	Gong, P., Liu, J., Blue, P. R., Li, S., & Zhou, X. (2015). Serotonin receptor gene (HTR2A)
660	T102C polymorphism modulates individuals' perspective taking ability and
661	autistic-like traits. Front Hum Neurosci, 9, 575. doi: 10.3389/fnhum.2015.00575
662	Gyurak, Anett, Haase, Claudia M., Sze, Jocelyn, Goodkind, Madeleine S., Coppola,
663	Giovanni, Lane, Jessica, Levenson, Robert W. (2013). The effect of the
664	serotonin transporter polymorphism (5-HTTLPR) on empathic and self-conscious
665	emotional reactivity. <i>Emotion, 13</i> (1), 25-35. doi: 10.1037/a0029616
666	He, Z., Young, L., Ma, X. M., Guo, Q., Wang, L., Yang, Y., Tai, F. (2019). Increased
667	anxiety and decreased sociability induced by paternal deprivation involve the
668	PVN-PrL OTergic pathway. <i>Elife, 8</i> . doi: 10.7554/eLife.44026
669	Heifets, B. D., & Malenka, R. C. (2016). MDMA as a Probe and Treatment for Social
670	Behaviors. Cell, 166(2), 269-272. doi: 10.1016/j.cell.2016.06.045
671	Horie, K., Inoue, K., Suzuki, S., Adachi, S., Yada, S., Hirayama, T., Nishimori, K.
672	(2019). Oxytocin receptor knockout prairie voles generated by CRISPR/Cas9
673	editing show reduced preference for social novelty and exaggerated repetitive
674	behaviors. <i>Horm Behav, 111,</i> 60-69. doi: 10.1016/j.yhbeh.2018.10.011
675	Ishii, H., Ohara, S., Tobler, P. N., Tsutsui, K., & Iijima, T. (2015). Dopaminergic and
676	serotonergic modulation of anterior insular and orbitofrontal cortex function in
677	risky decision making. Neurosci Res, 92, 53-61. doi: 10.1016/j.neures.2014.11.009
678	Kim, B. S., Lee, J., Bang, M., Seo, B. A., Khalid, A., Jung, M. W., & Jeon, D. (2014).
679	Differential regulation of observational fear and neural oscillations by serotonin

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.21.307280; this version posted September 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

680 and dopamine in the mouse anterior	cingulate cortex.	. Psychopharmacology (B	lerl),
--	-------------------	-------------------------	--------

- 681 231(22), 4371-4381. doi: 10.1007/s00213-014-3581-7
- 682 Knapska, E., Mikosz, M., Werka, T., & Maren, S. (2010). Social modulation of learning in
- 683 rats. Learn Mem, 17(1), 35-42. doi: 10.1101/lm.1670910
- 684 Li, L. F., Yuan, W., He, Z. X., Ma, H., Xun, Y. F., Meng, L. R., ... Tai, F. D. (2019). Reduced
- 685 consolation behaviors in physically stressed mandarin voles: involvement of
- 686 oxytocin, dopamine D2 and serotonin 1A receptors within the anterior cingulate

687 cortex. Int J Neuropsychopharmacol. doi: 10.1093/ijnp/pyz060

- 688 Li, L. F., Yuan, W., He, Z. X., Wang, L. M., Jing, X. Y., Zhang, J., . . . Tai, F. D. (2019).
- 689 Involvement of oxytocin and GABA in consolation behavior elicited by socially
- 690 defeated individuals in mandarin voles. *Psychoneuroendocrinology*, 103, 14-24. doi:
- 691 10.1016/j.psyneuen.2018.12.238
- 692 Li, Y., Zhong, W., Wang, D., Feng, Q., Liu, Z., Zhou, J., . . . Luo, M. (2016). Serotonin
- 693 neurons in the dorsal raphe nucleus encode reward signals. *Nat Commun, 7,* 10503.
 694 doi: 10.1038/ncomms10503
- Luo, M., Zhou, J., & Liu, Z. (2015). Reward processing by the dorsal raphe nucleus: 5-HT
 and beyond. *Learn Mem*, 22(9), 452-460. doi: 10.1101/lm.037317.114
- 697 Matsunaga, M., Ishii, K., Ohtsubo, Y., Noguchi, Y., Ochi, M., & Yamasue, H. (2017).
- 698 Association between salivary serotonin and the social sharing of happiness. *PLoS*
- 699 *One,* 12(7), e0180391. doi: 10.1371/journal.pone.0180391
- 700 Meneses, A., & Liy-Salmeron, G. (2012). Serotonin and emotion, learning and memory.
- 701 *Rev Neurosci, 23*(5-6), 543-553. doi: 10.1515/revneuro-2012-0060

702	Ohmura,	Υ.,	, Tanaka,	К.	F.,	Tsunematsu,	Т.,	, Yamanaka,	Α.,	, &	Yoshioka, l	M.	(2014)).
-----	---------	-----	-----------	----	-----	-------------	-----	-------------	-----	-----	-------------	----	--------	----

- 703 Optogenetic activation of serotonergic neurons enhances anxiety-like behaviour
- in mice. Int J Neuropsychopharmacol, 17(11), 1777-1783. doi:
- 705 10.1017/s1461145714000637
- 706 Perez-Manrique, A., & Gomila, A. (2018). The comparative study of empathy:
- 707 sympathetic concern and empathic perspective-taking in non-human animals.
- 708 Biol Rev Camb Philos Soc, 93(1), 248-269. doi: 10.1111/brv.12342
- 709 Pockros, L. A., Pentkowski, N. S., Swinford, S. E., & Neisewander, J. L. (2011). Blockade
- 710 of 5-HT2A receptors in the medial prefrontal cortex attenuates reinstatement of
- 711 cue-elicited cocaine-seeking behavior in rats. *Psychopharmacology (Berl), 213*(2-3),
- 712 307-320. doi: 10.1007/s00213-010-2071-9
- 713 Puig, M. V., Artigas, F., & Celada, P. (2005). Modulation of the activity of pyramidal
- 714 neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of
- 715 serotonin and GABA. Cereb Cortex, 15(1), 1-14. doi: 10.1093/cercor/bhh104
- 716 Puig, M. V., & Gulledge, A. T. (2011). Serotonin and prefrontal cortex function: neurons,

717 networks, and circuits. *Mol Neurobiol*, 44(3), 449-464. doi:

- 718 10.1007/s12035-011-8214-0
- 719 Santana, N., & Artigas, F. (2017). Laminar and Cellular Distribution of Monoamine
- 720 Receptors in Rat Medial Prefrontal Cortex. Front Neuroanat, 11, 87. doi:
- 721 10.3389/fnana.2017.00087
- Santana, N., Bortolozzi, A., Serrats, J., Mengod, G., & Artigas, F. (2004). Expression of
- serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.21.307280; this version posted September 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

724 the rat	prefrontal cortex.	Cereb Cortex,	14(10), 1100-1109. doi:
-------------	--------------------	---------------	-------------------------

725 10.1093/cercor/bhh070

- 726 Tian, Z., Yamanaka, M., Bernabucci, M., Zhao, M. G., & Zhuo, M. (2017). Characterization
- 727 of serotonin-induced inhibition of excitatory synaptic transmission in the anterior
- 728 cingulate cortex. *Mol Brain*, 10(1), 21. doi: 10.1186/s13041-017-0303-1
- 729 Vattikuti, S., & Chow, C. C. (2010). A computational model for cerebral cortical
- 730 dysfunction in autism spectrum disorders. *Biol Psychiatry*, 67(7), 672-678. doi:
- 731 10.1016/j.biopsych.2009.09.008
- 732 Walsh, J. J., Christoffel, D. J., Heifets, B. D., Ben-Dor, G. A., Selimbeyoglu, A., Hung, L.
- W., . . . Malenka, R. C. (2018). 5-HT release in nucleus accumbens rescues social
 deficits in mouse autism model. *Nature*, 560(7720), 589-594. doi:
- 735 10.1038/s41586-018-0416-4
- 736 Wan JX, Peng WL, Li XL, Qian TG, Song K, Zeng JZ, et al. A genetically encoded GRAB
- sensor for measuring serotonin dynamics in vivo. *Biorxiv*. 2020; 38:569-580;

738 posted February 25, 2020; doi: 10.1101/2020.02.24.962282.

- 739 Wang, L., Zhu, Z., Hou, W., Zhang, X., He, Z., Yuan, W., ... Tai, F. (2019). Serotonin
- 740 Signaling Trough Prelimbic 5-HT1A Receptors Modulates CSDS-Induced
- 741
 Behavioral Changes in Adult Female Voles. Int J Neuropsychopharmacol, 22(3),
- 742 208-220. doi: 10.1093/ijnp/pyy093
- 743 Weber, E. T., & Andrade, R. (2010). Htr2a Gene and 5-HT(2A) Receptor Expression in the
- 744 Cerebral Cortex Studied Using Genetically Modified Mice. *Front Neurosci, 4.* doi:
- 745 10.3389/fnins.2010.00036

746	Yizhar, C)., Fenno, L	. E.,	Prigge,	М.,	Schneider,	F., J	Davidson,	T. I.,	O'Shea,	D.	I.,
		.,,_	•,		,				- • • • • •	,		<i></i>

- 747 Deisseroth, K. (2011). Neocortical excitation/inhibition balance in information
- 748 processing and social dysfunction. *Nature*, 477(7363), 171-178. doi:
- 749 10.1038/nature10360
- 750 Young, K. S., Parsons, C. E., Stein, A., & Kringelbach, M. L. (2015). Motion and emotion:
- 751 depression reduces psychomotor performance and alters affective movements in
- 752 caregiving interactions. *Front Behav Neurosci, 9, 26. doi: 10.3389/fnbeh.2015.00026*
- 753 Yu, P., An, S., Tai, F., Zhang, X., He, F., Wang, J., ... Wu, R. (2012). The effects of neonatal
- 754 paternal deprivation on pair bonding, NAcc dopamine receptor mRNA
- 755 expression and serum corticosterone in mandarin voles. *Horm Behav*, 61(5),
- 756 669-677. doi: 10.1016/j.yhbeh.2012.02.028
- 757 Yuan, Y., Wu, W., Chen, M., Cai, F., Fan, C., Shen, W., ... Hu, J. (2019). Reward Inhibits
- 758 Paraventricular CRH Neurons to Relieve Stress. *Curr Biol, 29*(7), 1243-1251 e1244.
- 759 doi: 10.1016/j.cub.2019.02.048
- 760 Zhao, S., Ting, J. T., Atallah, H. E., Qiu, L., Tan, J., Gloss, B., ... Feng, G. (2011). Cell
- 761 type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of
- neural circuitry function. *Nat Methods*, 8(9), 745-752. doi: 10.1038/nmeth.1668