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Abstract  

Kidney disease development is poorly understood due to the complex cellular 

interactions of more than 25 different cell types, each with specialized functions. 

Here, we used single cell RNA-sequencing to resolve cell type-specific and cell 

fraction changes in kidney disease.  

Whole kidney RNA-sequencing results were strongly influenced by cell fraction 

changes, but minimally informative to detect cell type-specific gene expression 

changes. Cell type-specific differential expression analysis identified proximal tubule 

cells (PT cells) as the key vulnerable cell type in diseased kidneys. Through 

unbiased cell trajectory analyses, we show that PT cell differentiation state is altered 

in disease state. Lipid metabolism (fatty acid oxidation and oxidative phosphorylation) 

in PT cells showed the strongest and reproducible association with PT cells state. 

The coupling of cell state and metabolism is established by nuclear receptors such 

as PPARA and ESRRA that not only control cellular metabolism but also the 

expression of PT cell-specific genes in mice and patient samples. 

 

 

 

 

 

 

Keywords 

Singe cell RNA-sequencing, single cell ATAC sequencing, kidney, fibrosis, organoids, 

fatty acid oxidation, PPARA, ESRRA, proximal tubule cells, chronic kidney disease 

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 21, 2020. ; https://doi.org/10.1101/2020.09.21.307231doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.307231


3 
 

Introduction 

Kidney disease is a major health issue in modern society. Chronic kidney disease 

(CKD) is the tenth leading cause of death worldwide with a steadily increasing 

incidence affecting eight hundred million people world-wide (Levin et al., 2017). The 

large number of people affected by CKD is of concern, first, because some will 

progress to end-stage renal disease (ESRD), severely affecting quality of life. In 

addition, CKD even in its earliest stages greatly increases the risk of premature 

death mostly from cardiovascular disease. Finally, it is a massive personal and 

societal economic burden (Breyer and Susztak, 2016; Kovesdy et al., 2013). 

The kidney is a size-selective filter (glomerulus) connected to a long tubule segment 

where electrolytes and nutrients are reabsorbed and additional toxic molecules are 

eliminated. Renal tubule cells contain massive amounts of Na/K-ATPase on their 

basal surface to create an electrochemical sodium gradient to reabsorb a large 

amount and diverse substances via solute carriers that are present on the apical 

surface of epithelial cells. More than 70% of the 180 liters of the daily primary filtrate 

is reclaimed by the proximal tubules. Proximal tubule cells (PT cells) contain one of 

the highest density of mitochondria in the body. Previously, we and others have 

shown that PT cells preferentially use fatty acids and mitochondrial oxidative 

phosphorylation (OX-PHOS) to generate energy for solute transport (Kang et al., 

2015; Portilla et al., 2006; Wei et al., 2014).  

Kidney function (estimated glomerular filtration rate; eGFR) has a strong heritable 

component (Pattaro et al., 2016; Wuttke et al., 2019). Recent unbiased genetic 

studies (genome wide association analysis; GWAS) identified sequence variations in 

the genome that are significantly enriched in affected individuals. Integration of the 

GWAS and functional genomic studies highlighted that genes that are associated 

with kidney function are enriched for proximal tubule-specific expression, indicating a 

critical role for PT cells in kidney function establishment (Hellwege et al., 2019; Park 

et al., 2018; Qiu et al., 2018).  

In addition to genetic hits, PT cells are highly susceptible to toxic and hypoxic injury, 

representing the primary cause of acute kidney injury (AKI) (Bonventre and Yang, 

2011; Liu et al., 2014; Nangaku and Eckardt, 2007). Structural analysis of mouse 
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and human kidney samples with AKI show proximal tubule necrosis, apoptosis and 

loss of PT cell brush border. PT cells injury observed in AKI probably has the fastest 

effect on kidney function (eGFR). Such a severe toxic or hypoxic injury to PT cells 

can reduce eGFR from 100cc/min to 0cc/min within hours. CKD, which is defined by 

more than 40% decline in GFR for more than 3 months, is characterized by PT cell 

atrophy almost independent of disease etiology. PT cell atrophy strongly correlates 

with other structural damage such as fibrosis and glomerulosclerosis as well as with 

kidney function in CKD (Gurley et al., 2010; Kang et al., 2015; Li et al., 2012; Liu et 

al., 2014; Reidy et al., 2014).  

To date, several approaches have been proposed to explore molecular pathways 

that drive structural and functional changes in AKI and CKD. Comprehensive 

genome-wide kidney tissue transcriptomics analysis has been used to define the 

molecular hallmarks of this complex process both in patient samples and mouse 

models (Beckerman et al., 2017; Qiu et al., 2018; Woroniecka et al., 2011). These 

studies highlighted a correlation between a large number of transcripts and kidney 

fibrosis. Cellular metabolism, such as genes in lipid metabolism, fatty acid oxidation 

(FAO) and OX-PHOS showed strong correlation with disease state both in human 

and mouse CKD models (Chung et al., 2019; Kang et al., 2015). Pharmacological or 

genetic approaches that enhance FAO and mitochondrial biogenesis improved 

kidney function, however, the exact mechanism is not fully understood (Gomez et al., 

2015; Lakhia et al., 2018; Li et al., 2018; Tran et al., 2011). Some studies indicate a 

key role of Nicotinamide adenine dinucleotide (NAD) donors in proximal tubule 

health and metabolism and suggest that improving mitochondrial function will lead to 

better NAD/NADH balance (Tran et al., 2016). Mitochondrial defects can lead to the 

leakage of the mitochondrial DNA into the cytoplasm resulting in the activation of the 

cGAS/STING innate immune system pathway, cytokine release and influx of immune 

cells and downstream fibrosis development (Chung et al., 2019).  

Single cell RNA-sequencing analysis is transforming our understanding of complex 

diseases. It can generate an unbiased catalogue of gene expression for every single 

cell in the body. In our previous study, we demonstrated the power of single cell 

transcriptomics. We identified 21 distinct cell types including 3 novel cells in the 

kidney. Furthermore, we defined the plastic nature of the kidney’s collecting duct, by 
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showing that principal and intercalated cells can interconvert via a novel intermediate 

cell type (Park et al., 2018). At the same time, we defined cell identity genes that can 

stably and reproducibly classify key kidney cell types in mice and humans (Chen et 

al., 2017; Wu et al., 2018a; Young et al., 2018). 

To unravel the molecular mechanism of kidney disease, here we analyzed the 

transcriptome of different CKD mouse models, human kidney samples as well as 

human organoids. Prior studies mostly relied on single nuclear sequencing. However, 

single nuclear sequencing suffers from severe immune cell drop-out, so these 

studies did not properly capture the immune cell diversity (Lake et al., 2019; Wu et 

al., 2019). We show that bulk RNA sequencing data mostly represents a read-out of 

increased cell diversity in disease state and it is a poor estimate of cell type-specific 

gene expression changes. We identify several PT cell subgroups and using a variety 

of cell trajectory analyses, we show an alteration in PT cells differentiation. Single 

cell epigenetics and transcriptomics indicate the critical role of HNF4, HNF1b 

(hepatocyte nuclear factor 4 and 1b), PPARA (peroxisomal proliferation-activated 

receptor alpha) and ESRRA (estrogen related receptor alpha) in defining PT cells 

identity. Using mouse knock-outs and human kidney transcriptomics data we 

demonstrate a novel role for ESRRA in linking energy metabolism, proximal tubule 

differentiation and kidney function.  

 

Results 

Single cell landscape in healthy and fibrotic kidneys 

To unravel cellular changes associated with kidney fibrosis, first we analyzed the 

transcriptome of 65,077 individual cells from 6 mouse control kidneys and 2 folic 

acid-induced fibrotic kidneys (folic acid nephropathy: FAN) (Fig 1a). This is a well- 

established kidney disease model presenting both with structural damage (fibrosis) 

and functional changes (eGFR) (Kang et al., 2015). As before, we observed that PT 

cells represented the majority of cell types in the dataset. To accurately cluster 

smaller cell populations, we first focused non-PT cells (Fig 1b). Our unbiased 

clustering identified 30 cell populations. On the basis of marker gene expression, we 
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identified kidney epithelial, immune and endothelial cells (Fig 1c and Fig S1a, Table 
S1). Gene sets previously used to define cell types (cell identity genes) showed a 

conserved expression in disease state (Fig S1b). On the other hand, we found that 

immune cell diversity was significantly increased in the FAN mice. We identified a 

large number of kidney-resident innate and adaptive immune cell types; these 

included granulocytes, macrophages, dendritic cells (DCs) and basophils. DCs were 

further subclustered into DC 11b+ (Cd209a and Cd11b), DC 11b- (Cd24a and 

Clec9a) and plasmacytoid DC clusters (Siglech and Cd300c) (Fig 1d, e). A large 

number of lymphoid cells were also identified, including B cells, T cells, and natural 

killer cells. T lymphocytes were subclustered into CD4+ T, Treg, gamma delta T, 

NKT, and CD8+ effector cells (Fig 1f, g). Overall, our data indicated significant 

changes in cell heterogeneity in kidney fibrosis, especially in recruitment of innate 

and adaptive immune cells. At the same time, globally, the expression of key cell 

type-specific (cell identity) genes of native kidney cells remained mostly stable.  

 

Bulk RNA-sequencing strongly reflects cell fraction changes  

To better understand changes in cell heterogeneity, we also performed RNA-

sequencing of whole kidney (bulk tissue) samples, as single cell sequencing suffers 

from uneven cell drop-out. Differential expression analysis of bulk RNA-seq data 

indicated changes in expression of more than 4,000 genes (2,776 with higher and 

1,361 with lower expression, using FDR of 0.05 and fold change 2) (Fig 2a). Gene 

ontology analysis broadly highlighted two key pathways. We found that expression of 

genes associated with the immune system and inflammation were higher in the FAN 

model (Fig 2a). Analysis of genes showing the highest differential expression in the 

bulk dataset indicated that most such genes were exclusively expressed by immune 

cells (Fig 2b). Genes whose levels were lower in the FAN model were enriched for 

metabolic processes, such as lipid metabolism, FAO and OX-PHOS (Fig 2a). Genes 

with lower expression in the FAN model showed high enrichment in PT cells (Fig 2b), 

suggesting a strong role for PT cells and immune cells driving transcriptional 

changes in bulk RNA sequencing data. In addition, we observed that highly 

expressed and top differentially expressed genes including Lyz2, Cd52 and Tyrobp 
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in the bulk RNAseq data showed similar expression patterns in control and FAN 

samples on a single cell level (Fig S2a), suggesting that the majority of genes 

showing higher expression in disease were related to immune cell proportion 

changes rather than cell specific changes. 

Along those lines, we next determined cell proportion changes using single cell and 

bulk RNA sequencing data. We found marked differences in cell proportion, such as 

a distinct increase in myeloid and lymphoid cell proportion (e.g. macrophages, 

granulocytes, Tregs and CD8 effector cells), while the proportion of tubule epithelial 

cells (such as proximal and distal tubule) was lower in the single cell data of the FAN 

model (Fig 2c). On the other hand, consistent with prior observations, podocytes 

proportion did not show clear changes in the FAN model (Fig 2c). As the single cell 

analysis suffers from uneven cell drop-out, we also performed in silico deconvolution 

of bulk RNASeq data implemented in the CellCODE package (Chikina et al., 2015). 

We deconvoluted bulk RNAseq data from 3 control mice and 3 FAN kidney samples. 

This analysis yielded results broadly consistent with the single cell RNA sequencing 

data (Fig 2d), such as higher immune cell fractions and lower epithelial cell fractions. 

Finally, cell proportion changes in epithelial and immune cells were confirmed by 

histological analysis (Fig 2e).  

To further understand the contribution of cell type-specific and cell fraction changes 

in bulk RNAseq results, we directly compared single cell with bulk data. After 

adjusting the data to the observed cell fraction changes, the number of genes 

showing differential expression were markedly reduced. Among the 4,137 

differentially expressed genes in bulk data, only 14, 2, 902 and 753 genes remained 

significant after adjustment by proximal convoluted tubule (PCT), proximal straight 

tubule (PST), myeloid or lymphoid cell fractions (Fig S2b).  

To unravel cell type-specific gene expression changes in the FAN model, we 

performed differential expression analysis in all identified cell types. Keeping in mind 

the limitation of this analysis, such as the complete confounding of the disease state 

and possible batch effect, we found that myeloid cells such as macrophages showed 

a large number of differentially expressed genes, which were in agreement with their 

known plastic phenotype (Fig 2f). We found that amongst the tubule cells, PT cells 
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showed the largest number of differentially expressed genes (Fig 2f, Table S2). 
Many genes showed lower expression levels in diseased PT cells. Genes with lower 

expression included solute carrier (cell differentiation-related genes) such as Slc5a2 

and Slc13a3 as well as genes involved in FAO and OX-PHOS (Acsm1, Acsm2, 

Cpt1a, Acox3) (Fig 2g).  

Even though PT cells represented a large portion of the bulk dataset, only a small 

fraction of differentially expressed genes observed in PT cells were observed in the 

bulk RNaseq data (Fig 2h) and correlation between PT cell-specific differentially 

expressed genes in single cell and bulk data was weak. Less than 10% of PT cell-

specific differentially expressed genes showed direction-consistent and observable 

changes in the bulk gene expression data (Fig 2i).   

In summary, we found that bulk RNA sequencing provides a strong read-out for cell 

heterogeneity changes observed in disease state, such as loss of epithelial cells and 

increase in immune cell proportions and diversity. We found significant differences in 

the number of differentially expressed transcripts amongst different cell types. Of the 

various kidney cells, proximal tubules showed marked differences in their gene 

expression in disease. 

 

Altered differentiation drives proximal tubule response in fibrosis  

To better understand cell state changes in PT cells, we performed sub-clustering and 

cell trajectory analysis of healthy and diseased samples. In healthy controls, we 

identified several sub-types of PT cells, including PST cells expressing Slc22a30, 

and several subgroups of PCT expressing Slc5a2 and Slc5a12 (Fig 3a, Table S3). 

The introduction of RNA velocity in single cells has opened up new ways of studying 

cellular differentiation (La Manno et al., 2018). The proposed framework obtains 

velocity vectors using the deviation of the observed ratio of spliced and unspliced 

mRNA from an inferred steady state (La Manno et al., 2018), the time derivative of 

the gene expression state. RNA velocity is a high-dimensional vector that predicts 

the future state of individual cells on a timescale of hours. Our analysis indicated that 

in control kidneys, PT cells are differentiated into 2 major cell types; PCT and PST 
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segments (Fig 3b, c). Interestingly, the analysis highlighted that PT cells originated 

from a common precursor-like cell, expressing higher levels of Med28 and Cycs (Fig 
3d). Importantly, our analysis also suggested that PT cell differentiation did not 

necessitate cell proliferation, as we did not observe changes in the expression of 

proliferation markers (Fig 3d). 

PT cells from FAN samples further subclustered into 9 groups. Using anchor genes 

to identify key cell types such as PCT and PST segments, we were able to recognize 

more heterogeneous cell populations, including proliferating cells, immune marker 

(Cd74) expressing cells, transitional cells and precursor cells expressing higher 

Igfbp7 (Fig 3e, Table S4). In diseased tissue, we also identified a prominent 

proliferating (Ki67 positive) cell population and it appeared that cells entered and 

exited this Ki67 positive state. This data is consistent with a facultative progenitor 

model in kidney tubule cells (Angelotti et al., 2012; Humphreys et al., 2011; Kang et 

al., 2016) (Fig 3f). Interestingly, we identified a cell population expressing Notch2 

and Lgr4, previously identified as progenitor and transit amplifying cells in the kidney 

and other organs (de Lau et al., 2011; Kang et al., 2016; Zhang et al., 2019). We 

observed that PCT cells co-expressed PST markers, suggesting that under disease 

conditions PCT cells may suffer transcriptomic changes impacting on their 

phenotypical identification. Similar to our observation in control samples (Fig 3b), 

FAN samples showed a differentiation trajectory toward PCT and PST segments 

(Fig 3g, h). However, FAN samples followed a less organized differentiation path 

than healthy PT cells (Fig 3g), including more than one path leading from precursors 

to differentiated cells. On the other hand, we failed to observe a clear reversal of 

differentiation of cells already expressing terminal differentiation markers such as 

Slc5a2 or Slc22a30, indicating that a failure of differentiation rather than 

dedifferentiation is the reason for their cell-state changes.  

In summary, through RNAvelocity analysis, we highlighted a sequential single 

differentiation path from precursor to differentiated cells in healthy kidneys. A more 

complex differentiation path was observed in disease state that included enhanced 

cell proliferation.  
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Differentiation defects in the fibrotic proximal tubule track with changes in 
lipid metabolism 

Next, we opted to take advantage of continuous cell trajectory analysis using the 

Monocle package by combining all samples under healthy and disease states 

(Trapnell et al., 2014). Initial exploration showed a clear branching of PT cells into 

PCT and PST segments (Fig 4a, b and S3a), which was mostly consistent with the 

RNA velocity analysis and the underlying biology. To identify genes whose 

expression changed along the trajectory we first performed trajectory analysis for the 

PST segment, as this segment is highly susceptible to injury (Fig 4c, d and S3b). 

Cells from control and disease kidneys seemed to follow a similar linear trajectory 

towards PST segment differentiation (no major branching). However, upon 

comparing the cell proportions along the trajectory map, we observed that FAN 

samples were significantly depleted from terminally differentiated PT cells (two 

sample proportion test, between cells in red and blue circles, p-value < 2.2e-16) (Fig 
4c, e). Trajectory analysis of PCT segment cells showed similar results (absence of 

terminally differentiated cells in FAN) (Fig S3c, d). This data is consistent with prior 

observations indicating loss of terminally differentiated cells in FAN samples (Fig 3g). 

When we interrogated genes and pathways that underlie PT cell differentiation state, 

we found that genes associated with terminal differentiation such as those with ion 

transport function correlated (increased) along the cell trajectory (Fig 4f). In addition 

to ion transport, lipid metabolism showed positive correlation with cellular 

differentiation (Fig 4f-h and Fig S3e). Moreover, we observed induction of FAO 

genes along the differentiation path from precursor to PT cells in control and FAN 

samples (Fig 4i-l). 

To validate our findings, observed in the FAN model, we also generated scRNAseq 

data from the unilateral ureteral obstruction (UUO) model of kidney fibrosis. We 

compared the UUO and the FAN model cell trajectories. Continuous cell trajectory 

analysis showed selective lack of terminally differentiated PT cells in UUO kidneys, 

recapitulating the results obtained from the FAN model (Fig S3f-h). In addition, when 

examining pathways associated with differentiation of PT cells along the cell 

trajectory, we found enrichment for FAO, OX-PHOS and ion transport (Fig S3i, j). 
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There was a strong (>50%) overlap of gene expression along the respective 

differentiation trajectories in the UUO and FAN models (Fig S3k). 

Partial epithelial mesenchymal transition (EMT) has been used to describe the 

aberrantly differentiated PT cells (Zeisberg and Duffield, 2010). Although we 

interrogated our datasets for classic EMT markers in PT cells, we failed to observe 

significant expression of Zeb, Twist and Snai in the different PT cell subclusters (Fig 
S3l). Of note, we also failed to observe cells with classic senescence markers 

(SASP; senescence associated secretory phenotype) (Fig S3l).  

In summary, cell trajectory analysis, using Monocle, indicated FAO and OX-PHOS 

were key variable genes along the PT cell differentiation path. Disease state is 

characterized by excess of poorly differentiated cells, likely as a result of failure of 

maturation.  

  

FAO and OX-PHOS promote differentiation of cultured PT cells 

To define a causal relationship between FAO and OX-PHOS and proximal tubule 

differentiation, we cultured mouse proximal tubule cells in vitro. It is known that PT 

cells cultured in vitro rapidly loose expression of terminal differentiation markers, 

such as key solute carriers (Kang et al., 2015). First, we isolated Lotus 

tetragonolobus lectin (LTL)+ PT cells from kidneys of 4 weeks old wild type mice and 

cultured in presence or absence of fenofibrate for 7 days. LTL labels proximal tubule 

brush border. Fenofibrate is a well-known specific agonist of PPARA, a key 

transcriptional regulator of cellular FAO and OX-PHOS genes (Chung et al., 2018; 

Hajarnis et al., 2017; Kang et al., 2015). We observed that the expression of genes 

involved in FAO including Ppargc1a, Ppara, Acox1, Acox2, Cpt1a, and Cpt2 as well 

as the protein expression levels of OX-PHOS markers increased in cells treated with 

fenofibrate (Fig S4a, b). PPARA agonist treatment lead to increase in the mRNA 

levels of PT cell markers, including Atp11a, Acot12, Adipor2, Pck1, Slc16a11, 

Slc27a2, and Slc22a30. (Fig S4c).  
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In order to assess the impact of FAO and OX-PHOS in PT cell differentiation, we 

isolated LTL+ cells from control and Pax8rtTA+TRE-Ppargc1a mice. This genetic 

model allows for the induction of Ppargc1a expression by doxycycline treatment. 

Following induction of Ppargc1a, we detected increases in the mRNA expression 

levels of genes involved in FAO, mitochondrial biogenesis and OX-PHOS (Fig S4d, 
e). Furthermore, expression of PT cell differentiation markers was higher in 

Ppargc1a expressing cells (Fig S4f). We also examined the effect of two different 

culture conditions previously reported to sustain glycolytic and OX-PHOS 

bioenergetic metabolism in tubular epithelial cells; EGM and REGM culture media, 

respectively (Garreta et al., 2019). When LTL+ cells were cultured in REGM media 

for 7 days, they showed increased expression of genes associated with FAO as well 

as increase in the protein expression levels of OX-PHOS markers (Fig S4g, h). 

Concomitantly, REGM-cultured cells showed an increase in mRNA levels of PT cell 

differentiation markers compared to the EGM condition (Fig S4i). In summary, our 

observations suggest that PPARA, FAO and OX-PHOS are important drivers of PT 

cell differentiation state in vitro. 

 

OX-PHOS drives proximal tubule differentiation in kidney organoids  

To distinguish whether lipid metabolism and OX-PHOS only enhance PT cell solute 

carrier genes expression or they are true drivers of PT cells maturation, we tested 

the role of FAO and OX-PHOS in developing kidney organoids. We have recently 

shown through the application of soluble factors, emulating early steps of renal fate 

specification and differentiation in human pluripotent stem cells (hPSCs), that we 

were able to generate three-dimensional (3D) culture systems that recapitulate 

architectural and functional features of the human developing kidney; so-called 

kidney organoids. We generated hPSCs-kidney organoids in free-floating conditions 

by assembling nephron progenitor cells (NPCs) derived from hPSCs (Fig 5a). Bulk 

gene expression analysis of differentiating organoids indicated an increase in 

expression of Ppargc1a on days 16 and 21. The increase in Ppargc1a expression in 

organoids correlated with the expression of PT cell markers such as Slc27a2, Slc3a1, 

Slc5a12 (Fig 5b). As bulk RNA expression data cannot provide a faithful read-out for 

proximal tubule differentiation, we performed unbiased scRNAseq analysis (Fig 5c). 
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Clustering analysis based on cell type-specific marker gene expression indicated 

that in addition to mesenchymal clusters we could also identify a variety of kidney 

cell types resembling those of collecting duct, actively cycling cells, endothelial cells, 

podocytes, loop of Henle and PT cells (Fig 5c, d). Next, we specifically examined 

the differentiation trajectory of organoid PT cells. Cells differentiated from a Six1 

positive progenitor, gradually lost Six1 expression and gained PT cell marker Slc3a1 

expression (Fig 5e). Next, we analyzed genes whose expression changed along this 

trajectory. Similarly, we found that expression of differentiation markers such as 

solute carriers increased along the trajectory and that their expression strongly 

correlated with genes in FAO, including Ppara (Fig 5f). Finally, to confirm that FAO 

is a driver of cellular differentiation, we cultured kidney organoids in glycolytic (EGM) 

or OX-PHOS promoting (REGM) media. We found an increase in expression of 

Ppargc1a and lipid metabolic genes such as Acox2, Acot12, Cpt1a when organoids 

were cultured in OX-PHOS promoting media for 4 days (Fig 5g). These results 

parallel our in vitro observations of cultured PT cells from mice (Fig S4). We further 

assessed levels of mitochondrial OX-PHOS proteins in organoids exposed to both 

REGM and EGM culture media (Fig 5h and S5a, b). Concomitantly to these 

metabolic changes, we observed that an OX-PHOS promoting medium lead to an 

increase in the expression of PT cell markers such as Slc34a1, Slc27a2, Slc5a12, 

Slc6a19 and Slc3a1 compared to a glycolytic-promoting regime (Fig 5g). In addition, 

organoids exhibited a visibly higher number of proximal tubules as observed by 

immunofluorescence (IF) analysis for LTL (Fig 5i, j). In summary, using the in vitro 

organoid differentiation system, we observed that FAO and OX-PHOS represent key 

drivers of proximal tubule differentiation state.  

 

ESRRA and PPARA drive proximal tubule differentiation in mouse models 

In order to define the key transcriptional regulatory organization of PT cells, we 

analyzed mouse kidney single cell open chromatin data (scATACseq) (Cao et al., 

2018). Using computation motif search algorithm, we identified that the highest 

enriched and open binding motifs were HNF4, HNF1B, PPARA and ESRRA in PCT 

and PST cells (Fig 6a). Our single cell gene expression analysis confirmed transcript 

enrichment for these 4 transcription factors in PT cells (Fig 6b). The PPARA target 
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genes were defined when PCT- or PST-specific open chromatin regions contain 

PPARA binding motifs and were localized to promoters (transcription start site ± 

5kb) or gene body regions (Fig S6a-d). To validate the role of PPARA in driving PT 

cells differentiation in vivo, we exposed mice to fenofibrate (a PPARA agonist) daily 

and then induced kidney injury by FAN. Mice were sacrificed 7 days after folic acid 

injection, when significant kidney injury was present. Previously, we have shown that 

fenofibrate treatment prevented the decrease of genes associated with FAO and 

improved mitochondrial bioenergetics in mice (Kang et al., 2015). The mRNA 

expression levels of PT cell (PST) markers; Atp11a, Acot12, Slc22a30, Slc34a1, 

Slc27a2, and Slc7a13, and PT cell (PCT) markers; Slc5a2, Slc5a12, Slc6a19, 

Slc13a1, and Slc3a1 were higher in fenofibrate treated FAN mice compared to non-

treated FAN animals (Fig 6c). Along those lines, we have previously shown that 

fenofibrate also ameliorates kidney fibrosis development in the FAN model (Kang et 

al., 2015).  

Gene set enrichment analysis showed higher expression of ESRRA-bound genes 

(Table S5) in differentiated PST and PCT cells (Fig 6d and S6e), including genes 

associated with kidney development, lipid metabolism and epithelial transport (Fig 
6e and S6f).  

To experimentally confirm the role of ESRRA in proximal tubule differentiation in 

disease development, we took advantage of Esrra knock-out mice (Fig 6f). At 

baseline, these animals showed lower levels of Cpt2, Lpl and Acox2 (Fig 6g) 
expression in their kidneys, confirming the key role of ESRRA in FAO. Expression of 

PT cell markers such as Slc6a13 and Slc22a1 was also lower in Esrra knock-out 

mice (Fig 6g), confirming the role of Esrra in driving terminal differentiation state of 

PT cell. To define the role of Esrra in kidney disease, we challenged Esrra knock-out 

mice with FAN. Esrra mRNA expression levels were lower in mouse kidney disease 

models, such as UUO-injury and FAN (Fig 6h and S6g). We observed that Esrra 

knock-out mice showed increased susceptibility to FA-induced kidney injury 

compared to wild type littermates as detected by histological analysis (Fig 6i). Levels 

of pro-fibrotic markers such as Col1a1 and Col3a1 were higher in FA-treated Esrra 

knock-out mice and animals showed higher levels of collagen accumulation on Sirius 
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red stain (Fig 6h and S6h). In summary, unbiased analysis indicated the key role of 

Hnf4a, Hnf1b, Ppara and Esrra signature in defining the PT cell regulatory network. 

We found that the nuclear receptor ESRRA is not only a major regulator of FAO, but 

also as a major driver of PT cell differentiation and its protective role in PT following 

injury by directly binding and controlling solute carrier expression. 

 

ESRRA driven lipid metabolism correlates with kidney disease severity in 
patient samples 

Finally, we wanted to ascertain whether ESRRA-driven lipid metabolism and PT cell 

differentiation that appears to drive disease development in mouse kidney disease 

models can also be recapitulated in patients with CKD. We analyzed 91 

microdissected human kidney tubule samples obtained from healthy subjects and 

from patients with diabetic and hypertensive kidney disease. First, we examined the 

expression of genes involved in FAO and we found a group of genes, which strongly 

correlated with kidney fibrosis (Fig 7a). These genes included Adipor2, Ppara, 

Acsm2a, Acsm3, Apoe, for which we had previously demonstrated an increase along 

the proximal tubule differentiation trajectory (Fig 4J). Correlation analysis revealed 

that the expression of lipid metabolism genes showed strong positive correlation with 

the expression of PT cell differentiation markers, whereas it negatively associated 

with fibrosis (Fig 7b). In silico deconvolution of bulk transcriptome data from 91 

human samples showed that PCT and PST cell proportions were decreased in 

fibrotic tissues (Fig 7c). Next, we assessed the effect of cell proportion changes on 

gene expression changes observed in bulk gene profiling data (Fig S7a). Expression 

of a total of 1,980 genes significantly correlated with fibrosis scores in 91 human 

kidney samples analyzed by linear regression using age, gender, race and diabetes 

and hypertension status as covariates (FDR < 0.05). Next, we performed in silico 

deconvolution analysis of the data using Cellcode. Adjusting the model to the 4 cell 

lineages (PCT, PST, myeloid and lymphoid cells) reduced the number of 

differentially expressed genes (DEGs) from 1,980 to 22 genes, indicating the key 

role of cell heterogeneity driving bulk gene expression changes (Fig S7a).  
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Lastly, we examined the expression of ESRRA and its target genes in 

microdissected human kidneys. Expression of ESRRA was lower in disease samples 

and strongly correlated both with eGFR and kidney fibrosis (Fig S7b). Protein 

expression of ESRRA was mostly localized to the nuclei of proximal tubules and it 

was markedly lower in human CKD samples (Fig S7c). Expression of ESRRA in 

human kidney tubule samples correlated with lipid metabolism and proximal tubule 

markers as well as with membrane transporter genes that are ESRRA targets (Fig 
7d). These results confirm the relationship between proximal tubule (differentiation) 

state and metabolism via ESRRA and PPARA. 

 

Discussion 

Here we present a comprehensive analysis using mouse single cell RNA and open 

chromatin analysis, cultured cells, mouse knock-out models, patient samples and 

patient-derived organoids to demonstrate that PT cells exist in different differentiation 

states. Cellular metabolism is a key determinant of PT cell state. Coupling of 

metabolism and differentiation is determined by HNF1B, HNF4, PPARA and ESRRA 

that occupy and regulate not only metabolic but also cell type differentiation state 

gene signatures. 

Previous bulk RNA-sequencing identified important gene expression changes in 

mouse and human kidney samples associated with kidney fibrosis. Here we show 

that gene expression changes observed in bulk RNAseq analysis mostly reflected 

cell heterogeneity of diseased mouse and human kidney samples. Adjusting the list 

of DEGs for cell heterogeneity massively reduced the number of identified DEGs. 

For example, proximal tubule-specific genes had lower expression levels in bulk 

RNA-seq analysis, however, many of these genes showed no clear change on a 

single cell level. Genes that showed higher expression in disease samples were 

mostly genes exclusively expressed in immune cells, however, they did not show 

marked changes in the single cell data when control and disease samples were 

compared. There was a marked increase in cell diversity of healthy and diseased 

samples, mostly related to the increase in the diversity of immune cells. On the other 

hand, cell type markers identified by single cell RNASeq analysis of healthy mouse 
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kidney samples showed no major changes in disease state. Overall, these 

observations indicate that while bulk RNAseq analysis can powerfully define cell 

fraction changes in disease tissue samples it is a poor read-out for cell type-specific 

gene expression changes, signifying the critical importance of single cell analysis to 

understand cell type-specific gene expression. 

Here we provide a high-resolution comprehensive analysis of cell type-specific 

changes in mouse kidney fibrosis models, including 16 different immune cells. These 

results will require further validation as batch and biological variation are 

compounded in these analyses. We identified different PT cell subtypes in healthy 

and disease states. In addition to the known PCT and PST segments, we also 

identified precursor-like cells. Cell heterogeneity was significantly higher in diseased 

PT cells such that we identified proliferating cells, immune marker expressing cells 

and transitional cells (such as PCT and PST double cells), and PT cell and LOH 

double cells. Future studies will determine the role of these cells in disease 

development. Important to note that these cell populations represented a continuum 

between the established PCT and PST cells rather than true discrete groups. The 

stability of cell type-specific markers provided an excellent opportunity to use 

trajectory analysis to understand changes that drive the alteration in cell state or 

differentiation. Using trajectory and clustering methods we identified cell state 

differences amongst PT cells. We identified precursor cells that expressed high 

levels of Igfbp7, but lower levels of differentiated PT cell markers. IGFBP7 is one of 

the best-known biomarkers of AKI (Kashani et al., 2013; Moledina and Parikh, 2018). 

Further studies shall examine the connection between kidney and urinary IGFBP7 

expression levels and renal injury as well as outcome, but we hypothesize that 

IGFBP7 expression might be linked to increased cell renewal.  

We identified an altered differentiation path in disease, but it seems that a large 

number of cells still followed the path observed in healthy kidneys. We found that in 

disease kidneys fewer cells were in the terminal differentiation state both in the FAN 

and UUO kidney fibrosis models. Consistent with prior reports, Wnt expression 

correlated with cell differentiation in one but not in the second kidney fibrosis model 

(Edeling et al., 2016; He et al., 2009; Kato et al., 2011; Rinkevich et al., 2014). On 

the other hand, changes in lipid metabolism FAO and OX-PHOS were consistent in 
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both models. This might be consistent with earlier reports that such developmental 

pathways regulate metabolic changes in diseased kidneys (Huang et al., 2018). 

Overall, our results indicate that in the kidney PT cells exist in different states where 

higher expression of cell function genes (SLCs) strongly correlates with higher 

expression of FAO and OX-PHOS genes. Biologically, coupling of metabolism and 

cell state makes perfect sense as it harmoniously couples energy production and 

utilization with cellular function.  

Coupling of cell state and metabolism have been best demonstrated in the field of 

immunometabolism. For example, after activation, T cells differentiate into different 

effector lineages or regulatory cells. Effector T cells exhibit high glycolysis, whereas 

regulatory cells have higher FAO and mTORC1 activation, which in turn drives 

effector differentiation while suppressing regulatory generation (Angelin et al., 2017; 

Delgoffe et al., 2009; Michalek et al., 2011). Dysregulated metabolism contributes to 

disease development, as T cells from systemic lupus erythematosus patients exhibit 

increased glycolysis and OX-PHOS, whereas increased fatty acid biosynthesis and 

reduced ROS levels are associated with rheumatoid arthritis (Shen et al., 2017; 

Yang et al., 2013; Yin et al., 2015). In animal models, interfering with cellular 

metabolism can ameliorate autoimmune pathology. Dimethyl fumarate, a European 

Medicines Agency-approved medicine for multiple sclerosis and psoriasis, inhibits 

the glycolytic enzyme GAPDH in macrophages and T cells (Kornberg et al., 2018). 

Thus, aerobic glycolysis is a therapeutic target in human autoimmune diseases. 

Recently, SLC5A2 (sodium glucose cotransporter 2) inhibitors have shown 

remarkable success in improving kidney function decline, however, the exact 

mechanism of action remains poorly understood (Cherney et al., 2014; Takagi et al., 

2018). As sodium-aided glucose transport is a high energy-requiring process, it is 

possible that reducing the cellular energy requirement is critical for its mechanism of 

action.  

Single cell analysis has provided a critical insight into factors that alter PT cell state.  

Our results for the first time define the key role of several nuclear receptors, such as 

PPARA, ESRRA in driving PT cell differentiation. ESRRA is a critical transcription 

factor that regulated mitochondrial biogenesis and FAO. Single cell ATACseq and 

RNAseq data indicate that ESRRA binds to PT cell-specific genes and thereby 
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directly regulates cellular differentiation. ESRRA target gene expression shows 

consistent changes in PT cell differentiation in vivo in mice and in patients. In 

addition to ESRRA we have also identified the potential role of HNF4, HNF1B and 

PPARA. Here we showed the key role of PPARA in driving cell state. It is likely that 

PT cells identity and state are driven by the four key transcription factors as well as 

others (Zhao et al., 2018). Augmenting FAO and OX-PHOS in the setting of disease 

(such as via fenofibrate administration), appears to drive cell differentiation state and 

ameliorate disease. On the other hand, deletion of Esrra is deleterious in the setting 

of kidney injury. Previous studies showed that genetic deletion of Esrrg in the kidney 

leads to severe renal structural changes such as cyst formation and functional defect 

(Zhao et al., 2018).   

Using human kidney organoids, we show that FAO and OX-PHOS directly drive 

differentiation of PT cells. It has been difficult to induce PT cell differentiation in 

cultured organoids (Combes et al., 2019; Wu et al., 2018b). The identification of a 

core transcriptional regulatory network and the key role of metabolism regulating cell 

identity can now be used to develop new protocols. It seems that induction of Ppara 

and Esrra could be highly beneficial for PT cell lineage induction. 

In summary, we show the continuum of PT cell states in health and disease and the 

key role of metabolism driving PT cell state. The coupling of cell differentiation state 

and metabolism is established by PPARA and ESRRA that not only regulate the 

expression of cellular metabolism but also the expression of key cell type–specific 

genes. As the PT cell state is mostly controlled by nuclear receptor, the work opens 

new opportunities to manipulate PT cells by nuclear receptor selective agonists.  

 

Limitations of Study 

There are several limitations of our study such as future studies shall carefully 

examine changes observed in non-PT cells in the context of kidney fibrosis and in 

patients with kidney disease. It is simply beyond the scope our current project to 

perform follow-up studies on the large number of genes identified by single cell 

analysis. Future studies shall also define whether the observed differentiation path 
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can be narrowed to a specific gene involved in PT cell FAO and OX-PHOS that 

could be pharmacologically or metabolically targeted. 
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STAR METHODS 

KEY RESOURCES TABLE  

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
Primary antibodies for Immunoblots   
Anti-COX IV antibody Abcam Cat#Ab16056 
Total OXPHOS Rodent WB Antibody Cocktail Abcam Cat#ab110413 
GAPDH CST(14C10) Cat#2118 
PGC1a Calbiochem Cat#KP9803 
SLC6a13 Invitrogen  Cat#PA5-68331 
Anti-α-Tubulin Sigma Cat# T9026 
Secondary antibodies for Immunoblots 
Anti-mouse IgG, HRP-linked Antibody CST Cat#CS 7076S 
Anti-rabbit IgG, HRP-linked Antibody CST Cat# CS 7074S 
Antibodies for Immunohistochemistry (IHC)   
ESRRa Santa Cruz 

Biotechnology 
Cat#sc-32971 

Antibodies for Immunofluorescence (IF)   
LTL Vector laboratories  Cat#FL-1321-2 
PODXL Thermofischer Cat# 39-3800 
IRDye®680RD LI-COR Cat# 926-68070 
Antibodies for FACS   
LTL Vector laboratories  Cat#FL-1321-2 
Biological Samples   
Human kidney samples Chung et al., 2019 N/A 
Chemicals, Peptides, and Recombinant Proteins 
MitoTracker Green Life Technology Cat#M7514 
Collagenase IV Life Technologies Cat#17104019 
Trypan blue solution Sigma Cat#T8154 
Protease inhibitor cocktail Roche Cat#1183615300

1 
Fenofibrate Sigma CAS#49562-28-9 
Doxycycline Clontech NC0424034 
RPMI 1640 Gibco  Cat#21875-034 
EGM media Lonza CC-3162 
REGM media Lonza CC-4127 
RIPA buffer Cell signaling Cat#9806 
SYBR Green PCR Master Mix Applied Biosystem Cat#KK4605 
Fluoromount-G  Southern Biotech Cat# 0100-01 
Critical Commercial Assays 
BCA Protein Assay Kit Thermo Scientific Cat#23225 
Multi Tissue dissociation kit  Miltenyi Cat#130-110-201 
Anti-Biotin microbeads Miltenyi Cat#130-090-485 
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cDNA Reverse Transcription Kit Applied 
Biosystems 

Cat#4368813 

Rneasy Mini Kit Qiagen Cat#74106 
Deposited Data 
scATAC seq data (Cao et al., 2018) GSE117089 
Experimental Models: Organisms/Strains 
ESRRA Knock-out Dr. Vincent 

Giguère Research 
Lab 

McGill University 

Oligonucleotides 
Primers for qPCR, see Table S6 This paper N/A 
Software and Algorithms 
ImageJ NIH https://imagej.nih

.gov/ij 
Prism 5 Graphpad 

Software 
https://www.grap
hpad.com/scientif
ic-software/prism 

Image Studio Lite Version 5.2 software LICOR https://www.licor.
com/bio/image-
studio-lite/d5 

FlowJo Software FlowJo N/A 
Cell Ranger 2.0 10x Genomics https://support.10

xgenomics.com/s
ingle-cell-gene-
expression/softw
are/downloads/la
test 

Seurat R package 2.3.4 open source https://satijalab.o
rg/seurat/ 

DoubletFinder open source https://github.co
m/chris-
mcginnis-
ucsf/DoubletFind
er 

STAR-2.4.1d open source https://github.co
m/alexdobin/STA
R 

HTSeq-0.6.1 open source https://htseq.read
thedocs.io/en/rel
ease_0.11.1/hist
ory.html#version-
0-6-1 

DESeq2 1.10.1 open source https://bioconduc
tor.org/packages/
release/bioc/html
/DESeq2.html 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 21, 2020. ; https://doi.org/10.1101/2020.09.21.307231doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.307231


23 
 

  

Lead Contact and Materials Availability 

Raw data files and data matrix is being uploaded onto GEO and accession number 

will be provided when it becomes available. Furthermore, the data will be available 

via an interactive web browser at www.susztaklab.org. Further information and 

requests for resources and reagents should be directed to and will be fulfilled by the 

lead contact: Katalin Susztak. Email: ksusztak@pennmedicine.upenn.edu 

 

Experimental Model and Subject Details 
 
Preparation of single cell suspension 
Euthanized mice were perfused with chilled 1x PBS via the left ventricle. Kidneys 

were harvested, minced into approximately 1 mm3 cubes and digested using Multi 

Tissue dissociation kit (Miltenyi, 130-110-201). The tissue was homogenized using 

21G and 26 1/2G syringes. Up to 0.25g of the tissue was digested with 50ul of 

Enzyme D, 25ul of Enzyme R and 6.75ul of Enzyme A in 1 ml of RPMI and 

incubated for 30mins at 37°C. Reaction was deactivated by 10% FBS. The solution 

was then passed through a 40µm cell strainer. After centrifugation at 1,000 RPM for 

5mins, cell pellet was incubated with 1ml of RBC lysis buffer on ice for 3mins. Cell 

number and viability were analyzed using Countess AutoCounter (Invitrogen, 

C10227). This method generated single cell suspension with greater than 80% 

viability. 

 

CellCODE open source https://github.co
m/mchikina/CellC
ODE/ 

Velocyto open source https://github.co
m/velocyto-
team/velocyto.R 

Monocle2 2.4.0 open source http://cole-
trapnell-
lab.github.io/mon
ocle-release/ 

Other 
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Single cell RNA sequencing 
Single cell RNA sequencing was performed as described in our previous study (Park 

et al., 2018). Briefly, the single cell suspension was loaded onto a well of a 10x 

Chromium Single Cell instrument (10x Genomics). Barcoding and cDNA synthesis 

were performed according to the manufacturer's instructions. Qualitative analysis 

was performed using the Agilent Bioanalyzer High Sensitivity assay. The cDNA 

libraries were constructed using the 10x ChromiumTM Single cell 3’ Library Kit 

according to the manufacturer’s original protocol. Libraries were sequenced on an 

Illumina HiSeq or NextSeq 2x150 paired-end kits using the following read length: 

26bp Read1 for cell barcode and UMI, 8bp I7 index for sample index and 98bp 

Read2 for transcript. 

 

Alignment and generation of data matrix 
Cell Ranger 2.0 (http://10xgenomics.com) was used to process Chromium single cell 

3’ RNA-seq output. First, “cellranger count” aligned the Read2 to the mouse 

reference genome (mm10) and exons of protein coding genes (Ensembl GTFs 

GRCm38.p4). Sequencing reads that were marked by multiple mapping were 

removed by adjusting the cellranger to unique mapping (marked MM:i:1 in the bam 

files). Third, the fastq files extracted from bam files of the first run were used again 

for “cellranger count” to generate data matrix. Finally, the output files for 6 normal 

and 2 FAN samples were aggregated into on gene-cell matrix using “cellranger aggr” 

with read depth normalization by total number of mapped reads. 

 

Data quality control, preprocessing and dimension reduction 
Seurat R package (version 2.3.4) was used for data QC, preprocessing and 

dimension reduction analysis. Once the gene-cell data matrix was generated, poor 

quality cells were excluded, such as cells with <200 or >3,000 expressed genes. 

Genes that were expressed in less than 10 cells, mitochondrial genes, ribosomal 

protein genes and HLA genes, that were reported to induce unwanted batch effects, 

were removed for further analysis (Smillie et al., 2019). Cells were also discarded if 

their mitochondrial gene percentages were over 50%. The data were natural log 

transformed and normalized for scaling the sequencing depth to a total of 1e4 

molecules per cell, followed by regressing-out the number of UMI and genes. Batch 
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effect was corrected by using removeBatchEffect function of edgeR. The expression 

values after batch correction were only used for PCA, t-Distributed Stochastic 

Neighbor Embedding (tSNE) visualization and clustering, and the original expression 

values before batch correction were used for all downstream analyses such as 

identification of marker genes and differentially expressed genes. For the dimension 

reduction, highly variable genes across the single cells were identified using 0.0125 

low cutoff and 0.3 high cutoff. PCA was performed using the variable genes as input 

and top 20 PCs were used for initial tSNE projection. 

 
Removal of doublet-like cells 
Doublet-like cells were identified using DoubletFinder which is a computational 

doublet detection tool with following parameters: proportion.artificial=0.25 and 

proportion.NN=0.01(McGinnis et al., 2019). Then, the number of expected doublets 

were calculated for each sample based on expected rates of doublets, which are 

provided by 10x Genomics. After removing the doublet-like cells, all steps including 

normalization, regressing out variables, batch effect removal, and dimension 

reduction were performed again. 

 

Cell clustering analysis 

Density-based spatial clustering algorithm, DBSCAN, was used to identify cell 

clusters on the tSNE plot with the eps value 0.4. Clusters were removed if their 

number of cells was less than 20. Proximal tubule clusters expressing a proximal 

tubule marker, Slc27a2, were separated from the rest of cell clusters in order to 

identify subgroups. PCA and UMAP (Uniform Manifold Approximation and Projection) 

were performed only for the remaining cells. DBSCAN was used to identify cell 

clusters on the UMAP plot with initial setting for the eps value 0.5. Each of the 

resulting clusters was subjected to sub-clustering by a shared nearest neighbor 

(SNN) modularity optimization-based clustering algorithm, which is implemented in 

Seurat package. Resolution 0.5 was used for sub-clustering of the clusters except T 

lymphocytes which required higher resolution (0.7) to identify T lymphocyte 

subgroups. Post-hoc differential expression analysis was performed for every pair of 

sub-clusters. Sub-clusters were merged when they had 15 or less than 15 (10 

differential genes for T lymphocytes) differentially expressed genes (average 
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expression difference > 1 natural log with an FDR corrected p<0.01). This clustering 

analysis resulted in 30 cell clusters. PT cell clusters were also subjected to sub-

clustering. With same procedure used for other clusters, PT cells from control and 

FAN samples were subclustered into 5 and 9 sub-cell types, respectively. 

 

Identification of marker genes and differentially expressed genes 
Conserved marker genes between control and UUO samples were identified using 

FindConservedMakers function of Seurat with default options. Average expression 

difference >0.5 natural log and FDR corrected p value <0.01 were applied. Cell type-

specific differentially expressed genes were identified using MAST, which is 

implemented in Seurat package with log fold change threshold=0.2, minimum 

percent of cells expressing the genes=0.05 and adjusted p value<0.05. 

 
Mouse bulk RNA sequencing analysis 
Total RNAs were isolated using the RNeasy mini kit (Qiagen). Sequencing libraries 

were constructed using the Illumina TruSeq RNA Preparation Kit. High-throughput 

sequencing was performed using Illumina HiSeq4000 with 100bp single-end 

according to the manufacturer’s instruction. Adaptor and lower-quality bases were 

trimmed with Trim-galore. Reads were aligned to the Gencode mouse genome 

(GRCm38) using STAR-2.4.1d. The aligned reads were mapped to the genes 

(GRCm38, version 7 Ensembl 82) using HTSeq-0.6.1. Differentially expressed genes 

between control and disease groups were identified using DESeq2 version 1.10.1. 

To examined the enrichment of the differentially expressed genes in single cell 

clusters, a z-score of normalized expression value was first obtained for every single 

cell. Then, we calculated the mean z-scores for individual cells in the same cluster, 

resulting in 30 values for each gene. The z-scores were visualized by heatmap 

showing the enrichment patterns of the genes across the cell types.  
 
Estimation of cell proportions 
From single cell datasets, the numbers of cells in each cluster were enumerated and 

normalized by total number of cells for each condition (6 control and 2 disease 

samples). Since a number of PT cells in FAN samples showed higher expression of 

apoptosis markers, we removed cells that express Bax, Bad or Dap from all samples. 
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Deconvolution of bulk RNA sequencing data was performed to validate the cell 

proportion changes that were detected in single cell data. CellCODE package was 

used for deconvolution using 30 cell type-specific marker genes (Chikina et al., 

2015).   

 
Cell trajectory analysis 
RNA Velocity: To calculate RNA velocity, Velocyto.R package was used as 

instructed (La Manno et al., 2018). We used Velocyto to impute the single-cell 

trajectory/directionality using the spliced and the unspliced reads. Resulting loom 

files were merged and loaded into R following the instructions. Furthermore, RNA 

velocity was estimated using gene-relative model with k-nearest neighbor cell 

pooling (k = 25). To visualize RNA velocity, we performed Principle Component 

Analysis and used the top 20 principle components to calculate UMAP embedding. 

The parameter n was set at 200, when visualizing RNA velocity on the UMAP 

embedding. 

Monocle2: To construct single cell pseudotime trajectory and to identify genes that 

change as the cells undergo transition, Monocle2 (version 2.4.0) algorithm was 

applied to the cells from proximal tubules and proliferating proximal tubules (Trapnell 

et al., 2014). To show the cell trajectory from the small cell population (proliferating 

proximal tubules) to predominant cell type (proximal tubules), 6,000 randomly 

selected PT cells and proliferating proximal tubules were used for Monocle analysis. 

Genes for cell ordering were selected if they were expressed in ≥ 10 cells, their 

mean expression value was ≥ 0.05 and dispersion empirical value was ≥ 2. Highly 

variable genes along the pseudotime were identified using differential GeneTest 

function of Monocle2 with q-value < 0.01. The trajectory analysis was also performed 

for precursors and PST cells from the control and FAN samples separately. DAVID 

GO term analysis was performed for the highly variable genes along the control and 

FAN trajectory, and then genes in the lipid metabolism GO term were visualized by 

heatmap. 

 
Single cell ATAC sequencing analysis 
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Data matrix for PCT and PST cells-specific open chromatin regions was downloaded 

(Cao et al., 2018). HOMER package was used to identify known transcription factor 

binding motifs that are highly enriched in the PCT and PST-specific open chromatin 

regions. GSEA package was used to determine the enrichment patterns of ESRRA 

binding genes in differentiated PT cells and to identify core enrichment genes. 

 

Human bulk gene profiling data analysis 
Kidney samples were collected from nephrectomies. Samples were permanently 

deidentified and clinical information was collected by an honest broker, therefore the 

study was deemed exempt by the institutional review board (IRB) of the University of 

Pennsylvania. Kidney tissues from 91 human patients were collected from the 

unaffected portion of surgical nephrectomies. The collected kidney was immersed in 

RNAlater and stored at -80°C. Tubule compartments were manually microdissected 

from the tissue and subjected to RNA isolation. The rest of tissue was used for 

histopathological analysis. Gene expression analysis was performed using 

Affymetrix U133A arrays (E-MTAB-2502). Raw expression levels of microarray data 

sets were normalized using the RMA algorithm and log transformed. The identified 

marker genes were used as an input for CellCODE deconvolution analysis to 

estimate the cell proportion changes in human patient kidney samples. To assess 

the effect of cell proportions changes on the correlation between gene expression 

and fibrosis score, we implemented linear regression models using age, gender, 

race and diabetes and hypertension status as covariates with and without cell 

proportions of PCT, PST, myeloid and lymphoid cells. 

 
Mice 
Animal studies were approved by the Institutional Animal Care and Use Committee 

(IACUC) of the University of Pennsylvania. Mice were housed in the Institute 

pathogen free animal house (12 h dark/light cycle) and fed with standard mouse diet 

and water ad libitum. 5- to 8-week-old male C57BL/6 wild type mice were used in the 

study. One day before the FA injection, PPARA agonist fenofibrate (50mg/kg for 3 

days and 100mg/kg for 5 days) was administered by oral gavage. Mice were injected 

with folic acid (FA) (250 mg/kg once, dissolved in 300 mM NaHCO3) intraperitoneally 
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and sacrificed on day 7. For the unilateral ureteral obstruction (UUO) model, mice 

underwent ligation of the left ureter and were sacrificed on day 7. 

 

Histological Analysis 
Kidneys samples were fixed in 10% neutral formalin and paraffin-embedded sections 

were stained Periodic acid Schiff (PAS) to analyze the histology of samples. Sirius-

red staining (Boekel Scientific, #147122) was performed to determine the degree of 

fibrosis. 

 

Kidney organoid and Cell culture 
Isolation and culture of LTL+ PT cells 
Primary mouse proximal tubule epithelial cells were isolated from kidneys of 4 weeks 

old wild type mice or Pax8rtTA+TRE-Ppargc1a mice, and LTL+ cells fractions were 

purified from single cell suspension of PT cells by using biotinylated lotus 

tetragonolobus lectin antibody (LTL) (L-132; Vector Laboratories) and anti-biotin 

microbeads (MACS Miltenyi Biotec). LTL+ cells were grown in primary cell culture 

media (RPMI 1640 supplemented with 10% FBS, 20 ng ml−1 EGF, 20 ng ml−1 

bFGF and 1% penicillin-streptomycin). 
 

Kidney organoids differentiation 
hPSCs were grown on vitronectin coated plates (1001-015, Life Technologies). Cells 

were incubated in 0.5mM EDTA (Merck) at 37°C for 3 minutes for disaggregation. To 

avoid the separation of the stem cells clusters, cells were then carefully collected into 

12ml supplemented Essential 8 Basal medium. For cell counting, 1mL cell 

suspension was centrifuged for 4 minutes at 1800 rpm and the pellet was 

resuspended in 200μl of AccummaxTM (StemCell Technologies) to obtain single 

cells. Cells were incubated in AccumaxTM at 37°C for 3 minutes and next, 800μL of 

FBS were added to stop the disaggregation. After cell counting (Countess ® 

Automated Cell Counter), 100,000 cells/well were plated on a 24 multi-well plate 

coated with 5μl/ml vitronectin. Cells were incubated in supplemented Essential 8 

Basal medium at 37°C overnight. The next day (day 0), the differentiation was 

initiated by treating the cells with 8μM CHIR (Merck) in Advanced RPMI 1640 basal 

medium (ThermoFisher) supplemented with 1% Penicillin-Streptomycin and 1% of 
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GlutaMAXTM (ThermoFisher) for 3 days and changing the medium every day. On 

day 3, CHIR treatment was removed and cells were cultured in 200ng·ml-1 FGF9 

(Peprotech), 1μg·ml-1 heparin (Merck) and 10ng·ml-1 activin A (Act A) (Vitro) in 

supplemented Advanced RPMI for 1 day. On day 4, spheroid organoids were 

generated. Cells were rinsed twice with PBS, collected by using supplemented 

Advanced RPMI and plated at 100,000 cells/well on a V-shape 96 multi-well plate. 

They were treated with 5μM CHIR, 200ng·ml-1 FGF9 and 1μg·ml-1 Heparin in 

supplemented Advanced RPMI. Organoids were incubated for 1hour at 37°C, CHIR 

induction was removed and they were incubated in 200ng·ml-1 FGF9 and 1μg·ml-1 

Heparin in supplemented Advanced RPMI for 7 days with medium change every 

other day. From day 11, factors were eliminated, and cells were incubated only in 

supplemented Advanced RPMI for 5 days, medium was changed every other day. 

 

Mitotracker Green FM Flow Cytometric Analysis  
Developing kidney organoids on day 14 of differentiation were cultured in EGM or 

REGM media for 4 additional days. In order to assess mitochondrial mass, organoids 

were stained with MitoTracker Green FM (100 nM), a mitochondrial specific 

fluorescent dye at 37°C for 30 min. After incubation, kidney organoids were washed 

twice with PBS and disaggregated into single cell suspension using AccumaxTM for 

10 minutes followed by Trypsin-EDTA 0.25% (ThermoFisher) incubation for at least 

10 minutes at 37°C. Once cells dissociated, FACS buffer (PBS supplemented with 5% 

of FBS) was added to cease the trypsin activity and samples were centrifuged for 5 

minutes at 1800rpm. After removing the supernatant, the pellet was resuspended in 

300μl of FACS buffer and the suspension was filtered into FACS tubes. Nuclei were 

stained with DAPI (ThermoFisher). Cells were counted using FACS Aria Fusion 

Instrument (BD Biosciences). FlowJo software version 10 was used for data analysis. 

 

Protein extraction and western blot analysis in kidney organoids 
Protein was extracted from kidney organoids cultured in EGM or REGM media for 4 

days using RIPA buffer (Thermofisher) supplemented with complete protease 

inhibitor cocktail (Thermofisher), and centrifuged at 13,000 g for 15 mins at 4°C. The 

supernatant was collected, and protein concentration was measured using a 

bicinchoninic acid (BCA) protein quantification kit (Thermo Scientific). For western 
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blot analyses, 25 ug of protein were separated in 10% sodium dodecyl sulphate-

polyacrylamide gel (SDS-PAGE) and blotted onto nitrocellulose membranes. 

Membranes were blocked at room temperature for 1 hour with TBS 1X- 5% BSA. 

Membranes were then incubated in primary antibody (dilution 1:1000) Total OX-

PHOS cocktail (Abcam) overnight at 4°C. The membranes were then washed with 

PBST (PBS1X + 0.05% Tween20; Merck) for 5 minutes three times and incubated 

with anti-mouse secondary antibody (dilution 1:10,000) (IRDye®680RD Goat anti-

Mouse; LI-COR). After washing with PBST for 5 minutes twice and with PBS for 5 

minutes once, membrane-bound antibodies were detected by fluorescence with the 

Odyssey ® Fc Imaging System. Alpha-tubulin (1:5000; Sigma) was used as a 

loading control for normalization and quantification. Images were analyzed with 

Image Studio Lite Version 5.2 software. 

 

Immunofluorescence 
Kidney organoids were cultured in EGM or REGM media were transferred to 96 well 

plates. Fixation was performed with paraformaldehide 4% (ThermoFisher) for 20 

minutes followed by 10 minutes washing in three changes PBS. Kidney organoids 

were incubated in Streptavidin/Biotin Blocking Kit (Vector Laboratories) and TBS – 1% 

triton + 6% donkey serum for 2 h at room temperature. Podocalyxin (PODXL) and 

LTL antibodies were diluted in TBS – 0.5% Triton + 1% BSA. Kidney organoids were 

then treated overnight at 4°C with primary antibodies. The next day, organoids were 

washed with TBS-0.5% triton + 1% BSA for 5 minutes three times and incubated with 

secondary antibody diluted in TBS – 0.5% Triton + 1% BSA at room temperature for 

2 hours. Subsequently, organoids were washed with TBS twice for 5 minutes and 

nuclei were stained with DAPI (Dilution 1:5000) for 10 minutes. Organoids were 

collected with special wide-end tips, and placed on slides and mounted with 

Fluoromount-G (Southern Biotech). Confocal images were acquired using Leice SP5 

microscope and LTL positive cells were analyzed using Image J. 

 

qRT-PCR 
RNA was isolated from cells, kidney organoids and kidneys tissue using Trizol 

(Invitrogen). 2µg RNA was reverse transcribed using the cDNA archival kit (Life 

Technology), and qRT-PCR was run in the ViiA 7 System (Life Technology) machine 
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using SYBRGreen Master Mix (Applied Biosystem) and gene-specific primers. The 

data were normalized and analyzed using the ∆∆Ct method. The primers sequences 

used are shown in Table S6. 

 

Western Blot 
Cells were lysed in radioimmunoprecipitation assay buffer (RIPA; Cell Signaling 

Technology) and protein was quantified by BCA method (Thermo Fisher Scientific). 

rotein samples (10 to 30 μg) were separated by SDS-PAGE and then transferred to 

PVDF membranes. After blocking, for 30 min with 5% milk in TBST and three times 

washing, membranes were incubated overnight with primary antibody in TBST (see 

KST). After three washes for 5 min, membranes were incubated for 45 min at RT to 

1 hour with secondary HRP-conjugated antibody (1:20,000) in TBS-T. The signal 

was developed with Immobilon forte western HRP substrate (Milipore) and measured 

using Odyssey®Fc Imaging System (LICOR) equipment and software. The following 

antibodies were used in this study are listed in key resource table. 

 

Quantification and Statistical Analysis 
Student t-test was used to analyze differences between two groups, and One-way or 

Two-way ANOVA was used to analyze intergroup differences. P-values less than 

0.05 were considered statistically significant. The analysis was performed using 

GraphPad Prism 5 (GraphPad software). Densitometry results of western blotting 

were quantified using ImageJ software. For single cell data analysis, statistical 

details are provided in designated method section.  

 

Supplementary Tables 
Table S1. List of single cell cluster markers 

Table S2. List of differential expressed genes in control and FAN mice samples  

Table S3. List of PT subclusters markers in control samples 

Table S4. List of PT subclusters markers in FAN samples 

Table S5. List of ESRRA target genes in PT cells. 

Table S6. List of primers used in this study 
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Figure Legends 
Figure 1. The cellular diversity of disease kidney samples.  
(A) Experimental procedure. Whole kidney tissue from 6 control and 2 FAN mice 

were digested and sequenced using 10xGenomics protocol. We analyzed the 

transcriptome of 65,077 individual cells.  

(B) UMAP showing 30 distinct cell types identified by unsupervised clustering. 

Assigned cell types are summarized in right panel. GEC: glomerular endothelial cells, 

Endo: endothelial, Podo: podocyte, PT: proximal tubule, DLOH: descending loop of 

Henle, ALOH: ascending loop of Henle, DCT: distal convoluted tubule, CNT: 

connecting tubule, CD-PC: collecting duct principal cell, A-IC: alpha intercalated cell, 

B-IC: beta intercalated cell, CD-Trans: collecting duct transitional cell, Granul: 

granulocyte, Macro: macrophage, DC 11b+: CD11b+ dendritic cell, pDC: 

plasmacytoid DC, Baso: Basophile B: B lymphocyte, Tgd: gamma delta T cell, NK: 

natural killer cell. 

(C) Expression patterns of marker genes identified in control and FAN samples.  

(D) Heatmap showing expression pattern of myeloid lineage markers.  

(E) Gene expression feature plots of myeloid lineage cells demonstrated by UMAP 

plots.  

(F) Heatmap showing expression pattern of lymphoid lineage markers.  

(G) Gene expression feature plots of lymphoid lineage cells demonstrated by UMAP 

plots. 

 

Figure 2. Molecular and cellular changes in kidney fibrosis.  
(A) Differentially expressed genes (DEGs) in whole kidneys of control and FAN mice. 

Volcano plot, the x-axis indicates log2 fold change and Y-axis indicates statistical 

significance adjusted p –log10. Gene ontology analysis of genes showing higher (red) 

and lower (blue) in FAN kidneys. 

(B) Cell type-specific expression of top DEGs identified in bulk RNAseq analysis in 

the single cell dataset. Mean expression values of the genes were calculated in each 

cluster. The color scheme is based on z-score distribution.  

(C) Cell proportion changes in control and FAN kidneys revealed by single cell RNA-

sequencing. * indicates significant changes by proportion test. 
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(D) Cell proportion changes revealed by in silico deconvolution of bulk RNA 

sequencing data.  

(E) Periodic acid–Schiff staining of kidney sections from control and FAN samples.  

(F) The numbers of cell type-specific differentially expressed genes identified in 

control FAN kidneys in the 31 cell clusters.  

(G) Volcano plot for differentially expressed genes (DEGs) between control and FAN 

proximal tubules identified in the single cell data. X-axis is log2 fold change and Y-

axis is statistical significance adjusted p –log10. 

(H) Venn diagrams showing the overlaps between the identified differentially 

expressed genes in PT cell by scRNAseq data and bulk RNAseq data. 

(I) Scatter plot showing the correlation of DEG identified in PT cell and bulk data. X-

axis shows the fold change expression in PT cells in the single cell data, Y-axis 

shows the fold change expression in whole kidney (bulk) samples. 

 
Figure 3. Heterogeneous proximal tubule cell populations in fibrotic kidneys  
(A) Sub-clustering of PT cells into 5 sub-population in control kidneys. Feature plots 

showing expression of key PCT (Slc5a12) and PST (Slc22a30) segment markers.  

(B) RNA velocity analysis of control PT cells. Each dot is one cell and each arrow 

represent the time derivative of the gene expression state. 

(C) Feature plots showing expression of key PCT (Slc5a12) and PST (Slc22a30) 

segment markers.  

(D) Violin plots showing the expression patterns of markers across the PT cell 

subclusters in control. The y-axis shows the log-scale normalized read count  

(E) Sub-clustering of PT cells into 9 sub-population in FAN kidneys. Expression 

patterns of the markers are shown in the UMAP plot. Feature plots showing 

expression of key PCT (Slc5a12) and PST (Slc22a30), Igfbp7 (precursor) and Cd74 

(immune) PT cell state markers.  

(F) Violin plots showing the expression patterns of markers across the PT cell sub-

clusters in FAN. The y axis shows the log-scale normalized read count. 

(G) RNA velocity analysis of FAN PT cells. Each dot is one cell and each arrow 

represent the time derivative of the gene expression state. 

(H) Feature plots showing expression of key PCT (Slc5a12) and PST (Slc22a30) and 

proliferating (MKi67) PT cell markers.  
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Figure 4. Cell trajectory analysis identifies differentiation defect in proximal 
tubule in fibrosis  
(A) Trajectory analysis of PT cells (including proliferating cells) using Monocle, 

including all control and FAN samples.  

(B) Feature plots showing expression levels of key cell state markers (Mki67; 

proliferating cell, Slc5a2:PCT, Slc13a3:PST) on the cell trajectory.  

(C) Cell trajectory analysis narrowed for PST cluster (cells under red circle in panel 

a). Batches 1-8 are shown in different colors, batches 1-6 were from healthy kidneys, 

while batches 7-8 were from FAN samples.  

(D) Feature plots showing expression levels of key cell state markers (Mki67; 

proliferating cell, Slc22a30:PST, Slc13a3:PST) on the cell trajectory. Expression 

levels of the PT cell and proliferation markers along the cell trajectory.  

(E) Distributions of cells along the pseudo-time trajectory. Note the shift of Normal 

(yellow) and FAN samples (blue).  

(F) Functional annotation (gene ontology) analysis of genes showing changes along 

the trajectory (cells highlighted by red and blue circles on panel C).  

(G) Average expression levels of the highly variable genes that are involved in lipid 

metabolism along the cell trajectory.  

(H) Feature plots showing expression levels of the lipid metabolism genes (Acsm3, 

Mogat1, Ppara) along the cell trajectory.  

(I) Cell trajectory analysis for PST and precursor clusters identified in control kidneys 

(Fig 3A).  

(J) Heatmap showing the expression changes of highly variable FAO genes along 

the cell trajectory in control kidneys.  

(K) Cell trajectory analysis for PST and precursor clusters identified in FAN samples 

(Fig 3E).  

(L) Heatmap showing the expression changes of highly variable FAO genes along 

the cell trajectory in FAN samples. 

 

Figure 5. Fatty acid oxidation and OX-PHOS drives proximal tubule 
differentiation in human kidney organoid.  
(A) Experimental scheme for the generation of kidney organoid  
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(B) Expression changes (bulk organoids) of Ppargc1a, Slc3a1, Slc5a12 and Slc27a2 

on day 4, 8, 12, 16 and 20 of organoid differentiation.  

(C) Single cell RNA-Sequencing analysis of human kidney organoid. UMAP showing 

9 distinct cell types identified by unsupervised clustering. Mesench: mesenchymal 

cells, CD: collecting duct, Endo: endothelial cells, cycling: cell cycling cells, Podo: 

podocytes, LOH: loop of Henle and PT: proximal tubule. 

(D) Feature plots of key cell type markers (DES, COL21A1, GATA3; mesenchyme, 

Nphs1; podocytes, Slc3a1;PT cell, Slc12a1;LOH, PCNA, Ccna2;proliferating cells, 

Pecam1;endothelial cells).  

(E) Expression Six1(nephron progenitor marker), Mki67 (proliferation maker) and 

Slc3a1 (PT cell marker) along the differentiation trajectory. 

(F) Heatmap showing the expression changes of highly variable genes involved in 

FAO identified (Fig 4j, l) along the organoid cell differentiation trajectory.  

(G) Expression level of FAO genes (Ppargc1a, Acox2, and Cpt1a), and PT cell 

markers (Atp11a, Acot12, Slc27a2, Slc34a1, Slc3a1, Slc5a12, and Slc6a19) in 

kidney organoids cultured in EGM and REGM media.  

(H) Quantification of changes in the protein expression of the mitochondrial 

respiratory complexes in organoids cultured in EGM or REGM.  

(I) Representative immunofluorescence staining of LTL (PT cell marker, green) and 

Podocalyxin (PODXL, podocyte marker, red) in kidney organoids cultured in EGM 

and REGM. 

(J) Quantification of LTL positive cells in kidney organoids cultured in EGM or REGM. 

Y-axis represent relative fluorescence by LTL expression. 

 
Figure 6. ESRRA and PPARA drive proximal tubule differentiation state and 
protect from kidney disease 
(A) Top transcription factor binding motifs significantly enriched in PT cell-specific 

open chromatin regions that are identified from mouse single cell ATAC-sequencing. 

P-values and percent of target sequences among all open chromatin regions are 

shown in the table.  

(B) Expression of selected transcription factors in mouse kidney single cell dataset. 

Mean expression values of genes were calculated in each cluster. The color scheme 

is based on z-score distribution.  
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(C) Expression levels of PST markers (Atp11a, Acot12, Slc27a2, Slc22a30, Slc34a1, 

and Slc7a13) and PCT markers (Slc5a2, Slc5a12, Slc6a19, Slc13a1, and Slc3a1) in 

kidneys of control (WT), FAN, fenofibrate treated, and fenofibrate treated FAN mice. 

(n=3 in each group). * P < 0.05, ** P < 0.01, *** P< 0.001 vs. WT. #P < 0.01 vs. FAN 

mice. 

(D) Gene Set Enrichment Analysis (GSEA) enrichment plot of ESRRA target genes 

along PST cell differentiation.  

(E) Heatmap showing the expression changes of ESRRA targets of PST 

differentiation (ordered from Fig4c) grouped by functional annotation (kidney 

development, transmembrane transport and lipid metabolism). 

(F) Relative gene expression of Esrra measured by qRT-PCR in kidneys of wild type, 

Esrra knock-out mice, sham or FAN treated mice.  

(G) Relative gene expression of selected metabolic (Ppara, Ppargc1a, Cpt2, Lpl, and 

Acox2) and cell type-specific genes (Slc6a13 and Slc22a1) measured by qRT-PCR 

in kidneys of wild type and Esrra knock-out mice. * P < 0.05, ** P < 0.01, *** P< 

0.001 vs. WT. 

(H) Relative gene expression of fibrosis markers (Fn, Col1a1, and Col3a1) in wild 

type, Esrra knock-out mice, sham or FAN treated kidneys (n= 4, 4, 6 and 8 

respectively). * P < 0.05, ** P < 0.01, *** P< 0.001 vs. WT. 

(I) Representative images of periodic acid–Schiff (PAS)-stained kidney section, of 

wild type, Esrra knock-out mice, sham or FAN treated. Scale bar = 20 μm. 

 

 

  

Figure 7. ESRRA driven metabolic changes correlate with kidney disease 
severity in patient samples 
(A) Relative expression levels of the highly variable lipid metabolism genes that were 

identified along the mouse PT cell differentiation trajectory (Fig 4) in 91 

microdissected human tubules. The human samples are ordered based on the 

degree of fibrosis.  

(B) Heatmap showing Pearson’s correlation coefficient between lipid metabolism 

genes, PT cell markers and fibrosis markers in the human samples (yellow positive 

correlation, purple negative correlation, intensity indicates the strength of correlation).  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 21, 2020. ; https://doi.org/10.1101/2020.09.21.307231doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.307231


39 
 

(C) Heatmap showing the relative cell fraction changes, calculated by in silico 

deconvolution (Cellcode) of the 91 human RNA profiling data. The human samples 

are ordered based on fibrosis scores.  

(D) Heatmap showing correlation coefficients between lipid metabolism genes, PT 

cell markers and transmembrane transport genes that contain ESRRA binding motifs 

in their promoter or gene body and fibrosis markers in the human samples (yellow 

positive correlation, purple negative correlation, intensity indicates the strength of 

correlation). 
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Supplemental figures 
Figure S1. Single cell landscape of kidney fibrosis identifies changes in cell 
heterogeneity in innate and adaptive immune cells  

(A) UMAP shows 30 distinct cell types identified by unsupervised clustering. 

Assigned cell types are summarized in right panel. GEC: glomerular endothelial cells, 

Endo: endothelial, Podo: podocyte, PT: proximal tubule, DLOH: descending loop of 

Henle, ALOH: ascending loop of Henle, DCT: distal convoluted tubule, CNT: 

connecting tubule, CD-PC: collecting duct principal cell, A-IC: alpha intercalated cell, 

B-IC: beta intercalated cell, CD-Trans: collecting duct transitional cell, Granul: 

granulocyte, Macro: macrophage, DC 11b+: CD11b+ dendritic cell, pDC: 

plasmacytoid DC, Baso: Basophile B: B lymphocyte, Tgd: gamma delta T cell, NK: 

natural killer cell. Feature plots for selected cell type markers. 

(B) Expression of cell type identity markers identified in control samples (Park et al. 

2018) in control (red) and FAN kidneys (blue). Color intensity indicates expression 

level, circle size correlates with % of positive cells. 

 
Figure S2. Comparison of single and bulk expression data in FAN kidneys 
(A) Half violin plots (control: gray and FAN: red) showing the expression the top 

differentially expressed genes in bulk RNAseq across the single cell clusters. The y 

axis shows the log-scale normalized read count.  

(B) X axis demonstrates -log(10)FDR adjusted by cell proportions (PCT, PST, 

myeloid or lymphoid cells), y axis -log(10) FDR in unadjusted bulk RNAseq data. 

Gray shows genes without significant change in expression, red shows significant 

differences before, blue after cell proportion adjustment. 

 
Figure S3. Cell trajectory analysis of fibrotic proximal tubule.  

(A) Cell trajectory analysis for PT cells (including proliferating PT cells) in control and 

FAN samples. On the right, feature plots showing the expression of the indicated 

markers along the cell trajectory.  

(B) On the left, cell trajectory analysis of PST cells (cells in red circle of Fig S3A) and 

proliferating clusters in control and FAN samples. On the right expression levels of 

the Atp11a and Slc22a30 (PST) markers along the cell trajectory. 
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(C) Monocle-based cell trajectory (from 8 different batches) along PCT differentiation 

trajectory. Batches 1-6 are healthy and 7 and 8 are from FAN kidneys. On the right, 

feature plots of proliferating (Mki67) and PCT segment markers (Slc5a2, Slc6a19) 

along the cell trajectory.  

(D) Distributions of cells along the pseudo-time trajectory of PCT. Note the shift 

between normal (Blue) and FAN samples (Yellow).  

(E) Functional annotation analysis of genes showing lower expression in less 

differentiated cells (red circle in Fig S3C) compared with fully differentiated PCT 

segment cells (blue circle in Fig S3C).  

(F) Cell trajectory analysis of PT cell and proliferating PT cell in control and UUO 

samples. On the right expression levels of the indicated markers on the cell 

trajectory.  

(G) Distribution of PT cell and PST clusters cells are shown on the monocle cell 

trajectory. The 8 different batches are colored. Batches 7 and 8 correspond to UUO 

data sets. On the right Expression levels of the indicated markers on the cell 

trajectory.  

(H) Distributions of cells along the pseudo-time trajectory. Note the shift of normal 

(Blue) and UUO samples (Yellow).  

(I) Average expression levels of the highly variable genes that are involved in lipid 

metabolism on the cell trajectory. 

(J) Functional annotation analysis of genes showing lower expression in less 

differentiated cells (red circle in Fig S3G) compared with fully differentiated PST 

segment cells (blue circle in Fig S3G).  

(K) Venn diagrams showing overlaps between differentially expressed genes in 

differentiated vs de-differentiated PT cells in FAN and UUO. 

(L) Violin plots showing the expression of EMT and SASP markers across the PT cell 

sub-clusters in FAN kidneys. The y axis shows the log-scale normalized read count.  

 

Figure S4. FAO and OX-PHOS promotes differentiation of cultured PT cells 

(A) Relative mRNA expression of the FAO markers (Ppargc1a, Ppara, Acox1, Acox2, 

Cpt1, and Cpt2) in LTL+ PT cells cultured in presence or absence of fenofibrate (1µM) 

for 7 days. * P < 0.05, ** P < 0.01, *** P< 0.001 vs. untreated. 
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(B) Western blot LTL+ PT cells cultured in presence or absence of fenofibrate (1µM) 

for7 days showing expression mitochondrial OX-PHOS complexes, COX IV, PGC1A, 

and SLC6A13. GAPDH was used as internal loading control. 

(C) PT cell markers (Atp11a, Acot12, Adipor2, Pck1, Slc16a11, Slc27a2, and 

Slc22a30) in LTL+ PT cells cultured in presence or absence of fenofibrate (1µM) for 7 

days. * P < 0.05, ** P < 0.01, *** P< 0.001 vs. untreated. 

(D) Relative mRNA expression levels of the FAO markers (Ppargc1a, Ppara, Acox1, 

Acox2, Cpt1, and Cpt2) in LTL+ PT cells from Pax8rtTA+TRE-Ppargc1a treated with 

doxycycline (Dox) 1µg/ml or sham. * P < 0.05, ** P < 0.01, *** P< 0.001 vs. untreated. 

(E) Representative Western blot of mitochondrial OX-PHOS complex, COX IV, 

PGC1A, SLC6A13, and GAPDH in Pax8rtA+TRE-Ppargc1a LTL+ PT cells in the 

presence or absence of Dox (1µg/ml). 

(F) PT cell markers (Atp11a, Acot12, Adipor2, Pck1, Slc16a11, Slc27a2, and 

Slc22a30) in LTL+ PT cells from Pax8rtTA+TRE-Ppargc1a treated with doxycycline 

(Dox) 1µg/ml or sham. * P < 0.05, ** P < 0.01, *** P< 0.001 vs. untreated. 

(G) Relative mRNA expression level of the FAO markers (Ppargc1a, Ppara, Acox1, 

Acox2, Cpt1, and Cpt2) in isolated PT cells under EGM and REGM culture regimes 

for 7 days. * P < 0.05, ** P < 0.01, *** P< 0.001 vs. EGM. 

(H) Representative Western Blot of mitochondrial OX-PHOS, COX IV, PGC1A, 

SLC6A13, and GAPDH in isolated LTL+ PT cells cultured in EGM or REGM media, 

GAPDH was used as loading control.  

(I) PT cell markers (Atp11a, Acot12, Adipor2, Pck1, Slc16a11, Slc27a2, and 

Slc22a30) in isolated PT cells under EGM and REGM culture regimes. * P < 0.05, ** 

P < 0.01, *** P< 0.001 vs. EGM. 

 
Figure S5. Fatty acid oxidation and OX-PHOS drives proximal tubule 
differentiation in human kidney organoid  

(A) On the left, schematics of kidney organoids cultured in EGM or REGM. 

Disaggregated cells were stained with Mitotracker green and analyzed by flow 

cytometry.  

(B) Representative Western blot mitochondrial OX-PHOS proteins and beta tubulin 

as loading control of kidney organoids cultured in EGM or REGM for 4 days.  
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Figure S6. ESRRA and PPARA binding dynamics along PT cell differentiation.  

(A) Gene Set Enrichment Analysis (GSEA) enrichment plot of PPARA target genes 

along PCT cell differentiation.  

(B) Heatmap showing the expression changes of kidney development, 

transmembrane transport and lipid metabolism genes that are targets of PPARA 

along the cell trajectory. 

(C) Gene Set Enrichment Analysis (GSEA) enrichment plot of PPARA target genes 

along PST cell differentiation.  

(D) Heatmap showing expression changes of kidney development, transmembrane 

transport and lipid metabolism genes that are targets of PPARA along the PST cell 

trajectory. 

(E) Gene Set Enrichment Analysis (GSEA) enrichment plot of ESRRA target genes 

along PST cell differentiation.  

(F) Heatmap showing the expression changes of kidney development, 

transmembrane transport and lipid metabolism genes that are targets of ESRRA 

along the cell trajectory. 

(G) Esrra mRNA expression changes in sham and UUO mouse kidneys. *** P< 

0.001 vs. sham. 

(H) Picrosirius red staining of kidney sections from WT, ESRRa knock-out, FAN and 

ESRRa KO+ FAN mice. Scale bar=20µm. 

 
Figure S7. ESRRA expression changes in kidney fibrosis  

(A) The number of DEGs significantly reduced after adjusting for cell fraction 

changes. X-axis represents significance of the correlation before the adjustment. Y-

axis represents significance of the correlation after the adjustment by cell proportions.  

(B) ESRRA expression in 784 microdissected human kidney tissue samples CTL 

(control) HTN (hypertension), DM (diabetes), DKD (diabetic kidney disease) and 

CKD (chronic kidney disease). Correlation between Esrra transcript level and eGFR 

or fibrosis in microdissected human kidney tissue samples. 

(C) Representative immunostaining for ESRRA in healthy and CKD stage 5 human 

kidney samples. Scale bar= 10µm. 
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Figure S7

Healthy CKD stage 5
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