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Abstract:  Biochemical networks are often characterised by tremendous complexity – both in terms 
of the sheer number of interacting molecules (“nodes”) and in terms of the varied and incompletely 
understood interactions among these molecules (“interconnections” or “edges”).  Strikingly, the 
vast and intricate networks of interacting proteins that exist within each living cell have the 
capacity to perform remarkably robustly, and reproducibly, despite significant variations in 
concentrations of the interacting components from one cell to the next, and despite mutability 
over time of biochemical parameters.  Here we consider the ubiquitously observed and 
fundamentally important signalling response known as Robust Perfect Adaptation (RPA).  We have 
recently shown that all RPA-capable networks, even the most complex ones, must satisfy an 
extremely rigid set of design principles, and are modular, being decomposable into just two types 
of network building-blocks – Opposer modules, and Balancer modules.  Here we present an 
overview of the design principles that characterize all RPA-capable network topologies through a 
detailed examination of a collection of simple examples.  We also introduce a diagrammatic 
method for studying the potential of a network to exhibit RPA, which may be applied without a 
detailed knowledge of the complex mathematical principles governing RPA. 
 
Key words:  Robust Perfect Adaptation, Complexity, Chemical Reaction Networks, Robustness, 
Network Topology. 
 
 
1. Introduction 
The co-existence of both complexity and robustness in the self-organising, self-regulating networks 
arising in nature represents an extraordinary paradox [1-3].  Indeed, since robustness in the face of 
changing and unpredictable environments is one of the most fundamental requirements for any 
living system, this raises a deep question about nature’s most basic design principles:  How must 
biological complexity be organised to accommodate the exacting demands of robust performance?   
 
In this chapter we consider this question in the light of the keystone biological function known as 
Robust Perfect Adaptation (RPA).  RPA is the process whereby a system resets selected internal 
components to their respective pre-stimulus baseline levels (or “set-points”) following a 
disturbance or altered input, with no need for fine-tuning of system parameters [4-6]. The capacity 
for RPA is widely considered to be an essential characteristic of all evolvable and self-regulating 
systems [5].  It has been ubiquitously observed in biology at all levels of organisation, from 
intracellular networks comprising genes, metabolites and/or proteins, to signalling networks at the 
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whole-organism level, including calcium or hormone regulation, vision, olfaction, touch, and 
embryonic morphogenesis [7-14].   Dysregulation of RPA is also thought to play a central role in 
human disease, since maladaptation – the establishing of harmful, disease-promoting RPA set-
points – is thought to be a signalling feature underpinning disorders such as drug addiction, chronic 
pain, cancer progression, and metabolic syndrome (e.g. obesity, high blood pressure and insulin 
resistance) [15-20]. 
 
Early theoretical work in the RPA field focussed on a number of relatively simple RPA-capable 
network designs, which have attracted widespread attention from the scientific community and 
have been analysed extensively.  Ma et al. [21], for instance, determined that for networks 
comprising just three interacting nodes, all network arrangements capable of exhibiting RPA to a 
persistent change in network input can be divided into two well-defined classes – negative 
feedback loop with buffer node (NFBLB), and incoherent feedforward loop with proportioner node 
(IFLPN).  A highly influential four-node RPA-motif, proposed independently of the work of Ma et al., 
is the antithetic integral control model [22,23].  Recent work has also considered simple RPA-motifs 
in models that account for dilution of cellular constituents during the cell’s growth phase in order 
to extend the applicability of existing RPA theory in synthetic biology settings [24,25]. 
 
While the study of these small and very specific RPA-promoting network designs has given rise to 
many important applications of RPA theory in the synthetic biology field [23,25], such simple 
models are ill equipped to provide insight into the highly complex network designs through which 
RPA may be realized in nature – that is, in complex self-organising, self-regulating and highly 
mutable systems such as cellular signal transduction networks.   It is clear that complex biosystems 
differ in fundamental ways from engineering control systems, and are comprised of elements that 
must serve both as the transmitted signals and their own controllers. Unlike their designed 
counterparts in engineering control systems, bionetworks do not have the luxury of employing 
specially-designed, dedicated components whose purpose is to sense or control biochemical 
signals.    Moreover, these vast and intricate biosystems are typically called upon to solve a large 
number of “cognitive problems” in parallel – processing and interpreting a high-dimensional space 
of biochemical and mechanical stimuli, and making decisions as to appropriate systems-level 
responses.  In this context, signalling proteins that play a regulatory role (reduplicating a model of 
the dynamic structure of the input signal) in a feedback path, can also simultaneously play a 
transmissive role (in a “route” leading from input node to output node).  Such ambiguous roles for 
signalling componentry may not be needed, and may not even be appropriate, in an engineering 
design context.  
 
An understanding of how RPA could be implemented in complex bionetworks amid such strenuous 
cognitive demands requires access to a “complete” design space for all possible RPA-capable 
network topologies.  We recently developed a new mathematical approach to solve this general 
“RPA problem” [5], and as a consequence, the full set of all possible RPA-capable network 
configurations is now known – for any sized network, for any degree of complexity (network size 
and interconnectedness), for any network “type” (e.g. protein network, gene regulatory network, 
intercellular communication network, neuronal network) and any adaptive time-scale.  In 
particular, we have demonstrated two classes of network topologies – the Opposer Module and the 
Balancer Module - that can truly be considered topological basis elements, along with a general 
way to combine those elements, so as to span the complete solution space to the RPA problem.   
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From this general RPA framework, it has now been established conclusively that RPA-capable 
networks must be modular.  The Opposer Module is a rich and potentially complex generalization 
of the negative feedback integral control that has been well-known to control engineers since the 
1970s [5,26,27].  The Balancer Module, on the other hand, generalizes the simple incoherent 
feedforward motif that occurs repeatedly in bacterial transcription networks.   It is now clear that 
the NFBLB motif identified by Ma et al [21] is a special case of an Opposer Module, while the IFFLP 
motif [21] is the smallest possible Balancer Module that incorporates an independent “balancer 
node”.  The antithetic integral control motif [22] is also a simple Opposer Module.   RPA basis 
modules may be far more complex that these well-studied examples, as we shall see in this chapter, 
and may be interconnected in well-defined ways to construct arbitrarily large RPA-capable 
networks [5]. 
  
The goal of this chapter is to present the essence of general RPA theory through the discussion and 
analysis of a selection of examples.  Each example is chosen to highlight one or more of the 
essential design principles that characterise general RPA networks.  In each case, we illustrate the 
use of a diagrammatic method which captures the mathematical content of the “RPA Equation” – 
the fundamental algebraic condition which must be satisfied by all RPA-capable networks – thus 
providing a tool for exploring the deep principles of RPA without detailed mathematical knowledge 
of the underlying theory.  It is our hope that this diagrammatic method will offer an accessible 
overview of RPA theory to mathematicians and non-mathematicians alike, and will stimulate broad 
scientific interest in this vital topic in biocomplexity theory.  
 
 
2.   The Mathematics of RPA 
In the interests of a self-contained presentation, we begin with a brief overview of mathematical 
RPA theory to provide a backdrop for the examples we explore in Section 4.  In Section 2.1 we 
present a brief discussion of some of the earliest known models of RPA networks, which were 
almost entirely limited to just three or four interacting elements.  In Section 2.2, we discuss the 
topological framework [5] that allows more general RPA-capable topologies to be identified, in 
networks that contain arbitrarily large numbers of interacting elements and interconnections.  
Readers with limited interest in the mathematical details of RPA in a general network setting may 
omit this section, and can proceed to the more pragmatic discussion in Sections 3 and 4 without 
loss of continuity.   Section 3 will be devoted to the development of a diagrammatic representation 
of the “RPA Equation” – the defining algebraic constraint that must be satisfied by all RPA-capable 
networks.  We will employ this diagrammatic method to represent the flow of biochemical 
information in our example networks later in Section 4, illustrating the essential RPA-promoting 
mechanisms at play in each case. 
 
2.1  Early Models of RPA in Biology 
Early approaches to studying RPA may be grouped into three overarching methodologies [28]: 
  

1. Development of models corresponding to well-known adaptive systems in biology.  One of 
the best known cases of this strategy is the Barkai-Leibler model of bacterial chemotaxis [4].   
Barkai and Leibler’s work on chemotaxis in E-Coli has exerted a strong and long-lasting 
influence on RPA theory for many reasons.  It was the first study to show, for a specific 
molecular signalling network, that RPA could be a systems-level property, independent of 
parameter fine-tuning.  In fact, the use of the word robustness to describe the 
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independence of the adaptive performance from system parameters may be traced back to 
this seminal work.  But the signalling events that regulate bacterial chemotaxis, the subject 
of Barkai and Leibler’s work, are somewhat unusual in that the functionality (in this case, 
RPA of tumbling frequency) can be captured by only a very small number of signalling 
molecules.  This has reinforced the notion of “motif” in signalling networks – the concept 
that particular network functionalities such as RPA may be engendered at the level of a 
relatively small functional unit within a larger network. 
 

2. Ad-hoc modelling.  Modelling of small systems of interactions, generally from a nonlinear 
dynamics perspective [29], has also made significant contributions to early RPA models, 
often drawing on the possibility of strong parallels between biochemical network structures 
and engineering design principles.  This perspective has produced, among other functional 
response units, the “sniffer” motif, which is simple two-component RPA model.  This 
modelling framework has also suggested a two-component feedback model for RPA 
(homeostasis) that relies on an embedded ultrasensitive response element [29], thereby 
highlighting the deep relationship between ultrasensitivity and RPA.  The antithetical 
integral control motif [22, 23] is a more recent example of a small motif structure that 
produces RPA.  This motif has been genetically engineered as a synthetic controller in living 
cells, and has been applied to growth-rate control in E-coli [23]. 
 
 

3. Computational searches.    Comprehensive computational searching strategies consider RPA 
from the point of view of an inverse problem:  Given that the output of the network must 
return to the same fixed baseline value, irrespective of the input magnitude, what is the 
space of all possible motifs that could achieve this?  This approach is not about asking which 
solutions are actually observed in particular organisms or signalling contexts, or even about 
which solutions might be ‘best’;  it is purely a matter of delineating the complete space of 
biochemically plausible ways to implement the required function.   The computational 
demands of this approach severely restrict the network sizes that can be investigated by this 
method, and often impose a level of ‘coarse-graining’ of the parameter space to be 
sampled.  The most comprehensive computational search for solutions to the RPA problem 
at the present time remains the study by Ma et al. [21], which was limited to small networks 
of just three nodes.  This influential study revealed that for three-node networks, just two 
types of motif are capable of exhibiting RPA. 

 
Schematic representations of the main classes of small RPA motifs described above are depicted in 
Figure 1. 
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Figure 1:  Schematic representations of early RPA models.  (A) Barkai-Leibler model of bacterial 
chemotaxis [4]; (B) Negative feedback loop with buffer node (NFLBN) identified by Ma et al. [21]; (C) 
Incoherent feedforward loop with proportioner node (IFLPN) identified by Ma et al. [21];  (D) 
‘Sniffer’ model of RPA [29];  (E) Homeostasis model with embedded ultrasensitivity [29];  (F) 
Antithetic integral control model of RPA [22,23]. 
 
 

 
 

2.2  The mathematical basis for RPA in general interaction networks 
 
We now turn our attention to the more challenging problem of how Robust Perfect Adaptation 
(RPA) may be achieved in complex networks that are self-organizing, self-regulating and evolvable – 
in other words, networks that arise in biology.  To understand how complexity is organised into 
robustly adapting systems in nature, it is not a simple matter of looking for more solutions to the 
RPA problem, given that we already know some solutions in very small, simple networks (as 
summarised in Section 2.1).  Nor do we seek a method for testing particular network topologies to 
see if they are capable of RPA.  Rather, we seek the set of all possible RPA network topologies - that 
is, all the possible arrangements of nodes that are capable of exhibiting RPA, along with the 
constraints on reaction mechanisms at those nodes.    
 
 
Our recent work [5] has demonstrated that two – and only two - classes of network topology 
(modules) can truly be considered topological basis elements for RPA in arbitrarily complex 
networks.  These topological basis modules, along with a general way to combine those modules, 
span the complete solution space to the RPA problem.  RPA-capable networks are thereby 
constrained to be modular.  This fundamental property of robustly performing complex networks 
suggests that they may now be studied from the point of view of their unexpected simplicity – that 
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is, as decompositions into basis modules.  Since the set of all possible network arrangements grows 
factorially with network size, the very limited set of RPA-capable network topologies defined by this 
basis effectively represents the “needles in the haystack” that evolution must seek out over and 
over again as networks that require the RPA property grow and change over time. 
 
The essential foundation for the development of this more RPA theory may be summarised briefly 
as follows (see [5] for full details): 
 
Suppose we have n interacting ‘nodes’.  Typically, ‘nodes’ refer to the interacting physical 
components in the system although, they could refer to more complicated mathematical 
expressions involving these interactions [5].  Here, for the sake of concreteness, it will be helpful to 
consider the ‘nodes’ to be the interacting proteins in an intracellular signalling network.   We 
denote the respective concentrations (or abundances) of these interacting proteins as P1, P2, …, Pn.  
One of these proteins, the ‘input node’, will receive a signal from outside the network, while one 
node (often, but not necessarily, distinct from the input node) is the endpoint of interest, which is 
expected to exhibit RPA in response to the signal received at the input node, and is given the status 
of the ‘output node’.  Let us assume that the n nodes are ordered so that the input node is P1 and 
the output node is Pn.  For a network with single input/output node, we will place this node first in 
the ordering, P1. 
 
Now, to each node Pi in the set, we associate a reaction rate fi = dPi /dt, which allows us to account 
for the nature and strength of the interactions among the n nodes of the network.  The rate fi will 
always be regulated by at least one other node, say Pj.  It will almost always also depend on the 
node’s own concentration, Pi ,  except in the case of an exceptional reaction mechanism of central 
importance to the RPA problem – the “opposition mechanism” – which we discuss in Section 3.2. 
The input node, P1, will also be regulated by the external stimulus, S.  In general, fi could depend on 
any subset of the n network nodes.  Thus, fi has the general form 
 
fi = dPi	/dt = fi(P1,	P2,	…	,Pn) 
 
for all nodes not receiving an external stimulus, and 
 
f1 = dP1 /dt = fi(P1, P2, … ,Pn, S),  
 
for the input node, P1. 
 
It is a straightforward algebraic problem to determine that there are two key mathematical 
quantities that codify the sensitivity of the output node’s steady-state to the level of the externally-
delivered stimulus.  These are (1) the system Jacobian, Jn, and (2) the “input-output minor”, M1n, 
associated to Jn.  We depict the structures of these quantities in Figure 2.  As shown, the input-
output minor Mij is obtained from Jn by eliminating the row associated with the network’s input 
node, Pi, and the column associated with the output node, Pj.   
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Figure 2:  The RPA Equation – the fundamental algebraic condition that must be satisfied by all RPA-
capable networks – is derived from the ‘input-output’ minor, Mij, associated to the input node (Pi) 
and output node (Pj) for a network.  As indicated, Mij is obtained from the Jacobian matrix, Jn, of the 
system by eliminating the row of Jn associated with the input node, Pi,  and the column associated 
with the output node, Pj. 
 
 
 
The ratio of the determinants of these two key matrices gives rise to the special algebraic condition 
which must be satisfied by all RPA-capable networks at steady-state, for all possible parameter 
sets, and all possible stimulus levels delivered to the system.  In particular, 
 
Det(M1n)/Det(Jn) = 0, 
 
Or, equivalently, 
 
Det(M1n) = 0,		with		Det(Jn)	¹	0, 
 
is a necessary condition for RPA in all networks, regardless of size or complexity, and must be 
satisfied by all system steady states, for all possible parameter choices, and all stimulus levels. 
We refer to the equation Det(M1n)=0 hereafter as the RPA equation, with the condition  
Det(Jn) ¹ 0 denoted the RPA constraint.  Rigorous analysis of these algebraic conditions [5] has 
shown that the RPA equation, in particular, induces tremendous structure on network designs that 
accommodate the RPA property. 
 
Note that both these mathematical conditions can contain an extraordinarily large number of terms 
in networks containing more than just a handful of nodes.  Indeed, the RPA equation can contain up 
to (n-1)!  terms, depending on how extensively the n nodes are interconnected.  The RPA constraint 
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can contain up to n! terms.  Fortunately, a topological approach to the structure of the RPA 
equation [5] has simplified this problem tremendously, and allowed the set of all possible RPA-
capable network configurations to be determined – not by enumeration, of course, but through the 
identification of a suitable basis. 
 
With a view to describing the essential nature of this (topological) basis, along with the rules for 
combining (interconnecting) basis elements in general RPA-capable networks, we devote the next 
section to a new diagrammatic method for presenting the mathematical content of the RPA 
equation. 
 
 
3.  Methods for RPA Analysis 
 
3.1   A diagrammatic method for analysing the RPA capacity of a network 
 
As is evident from the discussion in the previous section, we require remarkably little biochemical 
information about a particular network to analyse its capacity for RPA.  The RPA equation 
comprises a summation of terms, each a product of (n-1) factors of the form 𝜕fi/𝜕Pj or the form 
𝜕fk/𝜕Pk.  Each factor of the form 𝜕fi/𝜕Pj corresponds to a network interconnection  Pj àPi, while 
𝜕fk/𝜕Pk may be referred to as the ‘kinetic multiplier’ [5] associated to the node Pk.  As we will see, 
kinetic multipliers play a pivotal role in ‘solving’ the RPA equation since these are the only class of 
factors that can be identically zero while still preserving the configuration of the underlying 
network.  In particular, a zero value for a factor of this type places constraints on the reaction 
mechanism occurring at the node in question, without removing any network linkages impinging on 
the node.  
 
The mathematical content of each term in the RPA equation thus suggests a diagrammatic 
representation:  Replacing the factor 𝜕fi/𝜕Pj with the symbol Pj àPi, and representing 𝜕fk/𝜕Pk 
with the symbol (Pk), we see that the terms of the RPA equation correspond to successions of 
linkages, along with kinetic multipliers, that exist in the underlying network.  Together, these form 
‘routes’ leading from the input node to the output node, feedback loops (multi-node cycles), and 
products of kinetic multipliers (one-node cycles).   

 
In fact, we have shown [5] that the special algebraic structure of the determinant map will 
constrain each term of the RPA equation to assume the following form:  
 

(+/−)9:;
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X. 

 
In the special case of a network with a single input/output node, the route component will reduce 
to unity, producing an RPA equation with only cycle components: 
 

(+/−)9:;
<=>?@A	
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(+/−)9:;
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X. 
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In fact, each and every ‘route’ in a particular network (leading from the input node through to the 
output node) will be represented as a route component P1 à … à Pn in the associated RPA 
equation.  Likewise, each and every feedback loop that exists in the network will appear in the cycle 
component of the RPA equation.  In particular, the full set of cycle components appended to a 
particular route component will be generated by all possible combinations of cycles (i.e. feedback 
loops and kinetic multipliers) formed by the nodes that are disjoint from (not occurring in) that 
route component.  For clarity and convenience, we represent a feedback loop of the form Pa à Pb 
à Pc à Pa with the diagrammatic representation (Pa à Pb à Pc) – see Figure 3.  The RPA 
equation may thus be interpreted as a summation of all possible route-cycle combinations for its 
network. 
 
 

 
Figure 3:  Collections of factors appearing in a single term of the RPA equation may be represented 
diagrammatically as route segments, feedback loops or one-node cycles (“kinetic multipliers”).  Of 
these three types of network contributions resident in the terms of the RPA equation, only kinetic 
multipliers can assume a zero value without affecting the interconnectivity of nodes in the network, 
since these reflect the nature of the reaction mechanisms at individual nodes. 
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Note that each term in the RPA equation is prefixed with a positive or negative sign.  There are two 
contributing factors to this sign, so we represent it as the product of two component signs – the 
native sign and the influence sign, as indicated above.  The native sign is inherited from the term’s 
contribution to the determinant expansion.  It is straightforward to show (see Proposition 1 in [5]) 
that the native sign for the term is given by (−1)WY<YJ , where z is the number of distinct cycles 
(feedback loops plus kinetic multipliers) present in the term, and n is the number of nodes in the 
network.  The influence sign, on the other hand, takes account of how many inhibitory interactions 
occur in the sequences of node-node linkages comprising routes and feedback loops represented in 
the term.  An odd number of inhibitory interactions attracts a negative sign, while a positive 
number of such interactions attracts a positive sign.  Note that kinetic multipliers always attract a 
negative sign [5].   
 
In Figure 4 we demonstrate the application of these simple principles by deducing the 
diagrammatic representation of the RPA equation for a simple 6-node network.  For reasons that 
will become clear through the analysis of the examples in Section 4, the particular network 
configuration depicted in Figure 4 is not capable of exhibiting RPA.  Note that here, and in all 
subsequent network schematics, we adopt the convention that the symbol à represents an 
activating interaction while the symbol —• denotes an inhibitory interaction.  For this network, P1 
is selected as the input node, while P6 is the output node.   
 
In this particular network, there are two distinct routes from P1 to P6:  P1àP5àP6, and 
P1àP2àP3àP6.   For the route P1àP5àP6, containing no inhibitory interactions, there is just one 
feedback loop disjoint from the route, namely (P2àP3àP4).  There are thus two possible cycle 
combinations appended to this route:  (P2àP3àP4) and (P2)(P3)(P4).  Both combinations 
contribute a negative interaction sign to the term (a negative feedback loop, and an odd number of 
kinetic multipliers).  The native sign contributed by the first combination is (−1)JYZYJ = (+1);  for 
the second combination, the native sign is (−1)[YZYJ = (+1). 
 
For the route P1àP2àP3àP6, also containing no inhibitory interactions, there are no disjoint 
feedback loops;  the route is therefore only appended to the cycle combination (P4)(P5).  This 
combination contributes a positive interaction sign (an even number of kinetic multipliers), with 
native sign equal to (−1)\YZYJ= (-1).  
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Figure 4:  A simple six-node network example, illustrating the diagrammatic method for deducing 
the RPA equation for a network.  As shown, this network comprises two distinct routes from input 
(P1) to output (P6).  The cycle combination appended to each route comprises all possible 
combinations of cycles composed of nodes that are disjoint from that route. 
 
 
 
 
 
3.2  Fundamental design principles of RPA networks 
 
Equipped with an understanding of the mathematical content of the RPA equation, we may now 
consider the general properties of network configurations that satisfy the RPA equation.  At the 
broadest level, identifying the full space of all RPA-capable network topologies relies on a general 
method for partitioning the RPA equation to ‘independently-adapting subsets’.  This framework 
interprets the terms of the RPA equation as elements of a topological space, with the 
independently-adapting sets serving as the closed sets of that space [5].  Such partitions of the RPA 
equation impose severe constraints on the design principles of networks capable of exhibiting RPA.   
 
With the aim of presenting a non-technical exposition of the essential design principles of RPA-
capable networks uncovered by this approach, we proceed in two steps:  First, we present (below) 
a summary of the network design principles that may be deduced from the properties of a 
mathematically-valid partition of the RPA equation.  Then, in the remainder of this chapter (Section 
4), we illustrate the application of these core RPA design principles through the discussion and 
analysis of five simple network examples, exploiting the use of the diagrammatic method we 
presented in Section 3.1  The design summary below and the set of illustrative examples together 
give a comprehensive overview of the essential design features that characterise all RPA-capable 
networks. 
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SUMMARY OF DESIGN PRINCIPLES OF RPA-CAPABLE NETWORKS 
 

A.  General Principles 
a. There exist only two, and only two, distinct types of independently-adapting subsets 

in a mathematically valid partition of the RPA equation:  S-sets and M-sets.  All terms 
contained in an S-set are identically zero due to the presence of a “special” kinetic 
multiplier (𝑃T) ≡ 𝜕𝑓T/𝜕𝑃T = 0	(at steady-state) for all stimulus levels, and for all 
network parameters.  All terms contained in an M-set are strictly non-zero, and 
exactly ‘balance’ – for all stimulus levels, and for all network parameters. 

b. In a valid partition, terms are assigned to independently-adapting subsets by route.  
That is, once a term has been assigned to a particular set in the partition, all terms 
with the same route component must also been assigned to that set. 

c. The terms of an S-set correspond to the presence of an Opposer Module in the 
associated network.  The special reaction mechanism (𝑃T) ≡ 0 referred to as an 
Opposer mechanism, or Opposer kinetics.  The node Pk  is referred to as an Opposer 
node.  Opposer nodes can only exist within a feedback loop (see Theorem 1 in [5]).  
The essential structure of an Opposer Module is illustrated in Figure 5.  The feedback 
architecture is defined by a diverter node (D) at the base of the module, and a 
connector node (C) at the apex of the module. 

d. The terms of an M-set correspond to the presence of a Balancer Module in the 
associated network.  As illustrated in Figure 6, a Balancer Module is defined by a 
diverter node (D) at the apex, and a connector node (C) at the base, with one or 
more route segments connecting these two nodes. Subnetworks of arbitrary 
complexity may be embedded into these route segments.  All nodes downstream of 
the diverter node, and upstream of the connector node, are referred to as Balancer 
Nodes.   

e. A network for which the input and output nodes are not distinct (i.e. a network with 
a single input/output node) has an RPA equation which may only contains S-set(s).  
Equivalently, a network with a single input/output node can only achieve RPA 
through a decomposition into one or more Opposer Modules.  It cannot contain 
Balancer Modules (see Example Network 3 in Section 4). 
 

B. Opposer Principles 
a. An Opposer Module can function with a single Opposer node, but can also employ a 

collection of Opposer nodes which work collaboratively to ‘solve’ the RPA problem 
for the network.  Such a collection of opposer nodes is known as an ‘opposing set’.  
Opposing sets must work within a very well-defined sub-network topology, 
embedded into a feedback loop (see Theorem 3 in [5]).  Some simple configurations 
for valid opposing sets are depicted in Figure 5.  Interested readers are referred to 
[5] for a more extensive description of opposing set topologies. 

b. An Opposer node requires a unique regulator node. If, in practice, multiple nodes 
regulate an Opposer Node, then this unique regulator is the nearest upstream 
branchpoint of these multiple regulatory pathways (see [5]).  For clarity, Section 4 
only considers examples where the Opposer Node is regulated directly by a single 
upstream node. 

c. An Opposer node exhibits Opposer kinetics (see point c under ‘General Principles’ in 
part A above) via a mathematical principle known as kinetic pairing (see [5] for 
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further details).   If Po is the concentration of the opposer node, and PR is the 
concentration of its unique regulator, then kinetic pairing results in the vanishing of 
a function of the following form on the steady-state locus of the system:  g(Po).(PR – 
k), where k is a function of network parameters.   The simplest possible function 
form for Opposer kinetics is a rate equation that is zero-order in Po , which is the 
functional form we adopt in all our examples in Section 4.  Much more complicated 
mechanisms for orchestrating Opposer kinetics are possible however (see [5] for a 
more extensive discussion of this point). 

d. An Opposer node never exhibits the RPA property.  Rather, an Opposer Node uses 
kinetic pairing (see point c above) to compute an ‘error integral’ [5] which confers 
the RPA property on its unique regulator node.  This, in turn, confers the RPA 
property on various other nodes within the Opposer Module (see Figure 5). 

e. An Opposer node can never directly regulate another Opposer node.  This fact places 
severe constraints on the topologies of opposing sets (see point a above). 
 
 

 
Figure 5:  Essential design features of an Opposer module.   Opposer modules are characterised by a 
feedback architecture delineated by two nodes – a connector node, C, at the apex of the module, 
and a diverter node, D, at the base of the module.  Arbitrary subnetworks may be embedded at the 
positions indicated without affecting the RPA-promoting function of the module.  At least one 
computational node (an Opposer node) is embedded into the feedback segment of the module.  All 
nodes that exhibit the RPA property due to the activities of the Opposer node(s) are indicated with a 
red asterisk.  Collections of opposer nodes may be organised in intricate topological arrangements 
within the feedback segments of Opposer modules, and work together collaboratively to confer RPA 
on the diverter node of the module.  Several possible opposer node arrangements are illustrated in 
the inset to the figure (see [5] for a more complete description of ‘opposing sets’ and their 
associated ‘master sets’):  (A) a two-node opposing set with three-node master set;  (B) a three-
node opposing set with five-node master set; (C) a two-node opposing set with seven-node master 
set. 
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C. Balancer Principles 
a. In order to generate a Balancer Module, each M-set requires at least one term with 

negative sign, and at least one term with positive sign.   
b. Balancer nodes and Connector nodes are subject to special reaction mechanisms – 

the Balancer mechanism and the Connector mechanism, respectively.  If PB is the 
concentration of a Balancer node, and PRB is the concentration of its unique 
regulator, then kinetic pairing results in the vanishing of a function of the following 
form on the steady-state locus of the system:  (PB/PRB – kB), where k is a function of 
network parameters.  If PC is the concentration of a Connector node, and PD is the 
concentration of the Diverter node of the module, then kinetic pairing results in the 
vanishing of a function of the following form on the steady-state locus of the system:  
g(PD).(PC – kC), where kC is a function of network parameters. 

c. Balancer nodes exhibit Balancer kinetics, and Connector nodes exhibit Connector 
kinetics, via the mathematical principle known as kinetic pairing (see point c under 
‘Opposer Principles’ in part B above). 

d. The presence of the requisite term signs (see point a above) and the requisite 
reaction mechanisms at balancer/connector nodes enables the M-set to achieve 
independent adaptation through a ‘balancing act’ [5]. 
 

 

 
Figure 6:  Essential design features of a Balancer module.  Balancer modules possess a ‘feedforward’ 
topology, which may incorporate any number of parallel pathways between the two defining nodes 
of the module – the diverter node, D, at the apex, and the connector node, C, at the base.  Feedback 
loops may also be embedded into these parallel pathways, as indicated.  Only the connector node 
exhibits the RPA property in a Balancer module, as indicated by the red asterisk. 
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D. Principles of Intermodular Connections 
a. AS noted schematically in Figures 5, 6 and 7, some nodes with an RPA module exhibit 

RPA, and some do not.  Connector nodes and Opposer regulators are examples of 
nodes that do exhibit RPA, while Balancer nodes and Opposer nodes are examples of 
nodes that do not.  Outgoing regulations from nodes that exhibit RPA are referred to 
as ‘blind’ regulations.  Any new network linkages that emanate from these nodes, 
leading ultimately to the output node, merely supply additional terms to the existing 
subset of the RPA equation partition associated with the module in question.  The 
new network connections are thus to be interpreted as part of the exist module.  By 
contrast, outgoing regulations from nodes that do not exhibit RPA are referred to as 
‘live’ regulations.  Any new network linkages that emanate from live nodes supply 
new terms that must be assigned to a different subset in the partition of the RPA 
equation.  These new ‘routes’ must therefore be connected downstream to a 
separate RPA module.  The two modules act independently, and are said to be 
connected “in parallel” (see Network Example 1 in Section 4). 

b. It is possible for a single subset in a partition of the RPA equation to be associated 
with multiple potential modular structures in the underlying network.  In this case, 
the multiple modules are said to be connected “in series” (see Network Example 2 in 
Section 4).   

 
 
A final comment on stability is in order before proceeding to our network examples.  Identifying 
RPA-exhibiting steady states from the solution of the RPA equation is not, in itself, a guarantee that 
the associated ‘set-point’ is a stable one.  System stability is, in general, a complex matter that is 
beyond the scope of the present chapter, and for which we provide some guidance in [5].  We do 
note here that in the context of feedback regulation, positive feedback is highly destabilizing while 
negative feedback, although no guarantee of stability, is stability-promoting.  For this reason, all 
feedback loops chosen in the following examples are negative feedback loops, for which we show 
that stable RPA performance readily obtains. 
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Figure 7:  In the context of intermodular connectivities, nodes that exhibit the RPA property within 
an RPA module are referred to as ‘blind nodes’, while nodes that do not exhibit the RPA property are 
known as ‘live nodes’.  Any live nodes that contribute to a route of the network must be connected 
downstream to another RPA module (as indicated schematically by the symbol A above).  Blind 
nodes can contribute to additional routes without affecting the RPA capacity of the network.   
 
 
 
 
 
4.  Applications of the Diagrammatic Method to Example Networks 
 
In this Section we illustrate these topological principles through an examination of five simple 
networks, each having an RPA equation containing only a small number of terms.  In each case, we 
examine the conditions under which the network could exhibit RPA, identifying the computational 
nodes that are subject to special constraints on reaction mechanism in order to solve the RPA 
equation.   
 
 
4.1  Example Network 1:  An opposer module in parallel with a balancer module 
 
In Figure 8 we depict a simple five-node network that receives an external stimulus at P1.  
Nominating the node P5 as the output, this network contains a number of parallel pathways, as well 
as a negative feedback loop between nodes P1 and P2.  Appealing to the diagrammatic method 
introduced earlier, we readily conclude that the RPA equation for this particular network 
configuration contains three terms, as shown in Figure 8.   
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A simple partition of the RPA equation for this network may achieved as follows:  A two-node 
opposer module is formed through the feedback interactions between P1 and P2.  The node P2 plays 
the role of the opposer node (noted in yellow), and is subject to Opposer kinetics `Da

`ba
= 0.  The 

single regulator of this opposer node, P1, will thus exhibit RPA under these conditions, and the first 
term of the RPA equation noted in Figure 8 will be assigned to an S-set (noted in yellow).  
 
But the Opposer node, P1 ,also appears in a route of the network:  The network connections P2àP3 
and P2àP4 are therefore ‘live’ regulations, and the terms containing these regulations in their route 
components must be assigned to a separate subset in the partition.  We see that two different 
pathways emanating from P2 reconnect at node P5, and noting that the two remaining terms of the 
RPA equation have different signs, it follows that assigning P3 the role of a Balancer node (noted in 
blue), and P4 the role of a Connector node (noted in green), will allow P4 to exhibit RPA.  These 
terms are thereby assigned to an M-set (noted in blue in the diagrammatic representation).  Under 
these conditions, the output node, P5, is regulated by two RPA-exhibiting nodes (P1 and P4), and 
must, itself, exhibit RPA. 
 
Thus, for this RPA solution, there are three nodes subject to special reaction mechanisms:  P2 
requires Opposer kinetics, P3 requires Balancer kinetics, and P4 requires Connector kinetics.  The 
remaining nodes (P2 and P1) are not subject to any constraints;  the RPA-capacity of this network is 
unaffected by the reaction kinetics at these nodes.  For illustrative purposes, we choose the 
simplest possible functional forms for the rate equations at P2, P3 and P4  as follows: 
 
For Opposer node, P2: 
𝑑𝑃\
𝑑𝑡 = 		 𝑘f𝑃J −	𝑘g																																																																																																					(4.1.1)																										 

Since this reaction rate is zero-order in P2, it is clear that the Opposition condition `Da
`ba

= 0 will 

obtain at steady state, for any choice of parameters.  In fact, it readily follows from this equation 
that the unique regulator node, 𝑃J, exhibits the RPA property with set-point 𝑘g/𝑘f. 
 
For Balancer node, P3: 
𝑑𝑃[
𝑑𝑡 = 		 𝑘Z𝑃\ −	𝑘j𝑃[																																																																																															(4.1.2) 

 
This rate equation ensures that P3 will always be proportional to P2 at steady state:     
𝑃[ = (𝑘Z/𝑘j)𝑃\. 
 
For Connector node, P4: 
𝑑𝑃f
𝑑𝑡 = 		 𝑘k𝑃\ −	𝑘l𝑃[𝑃f																																																																																												(4.1.3) 

 
Connector kinetics are ensured by this equation, since both terms are ‘balanced’ by the diverter 
node, since at steady-state, 𝑃[ = (𝑘Z/𝑘j)𝑃\ due to the upstream balancer kinetics.  It follows that 
P4 exhibits the RPA property with set-point 𝑘k𝑘j/𝑘l𝑘Z. 
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As noted above, any functional forms are allowed for the remaining nodes, provided the reaction 
rates accurately reflect the regulations noted in the network schematic.  We choose the following 
simple forms: 
 
𝑑𝑃J
𝑑𝑡 = 	𝑘J𝑆 −	𝑘\𝑃\ −	𝑘[𝑃J																																																																																	(4.1.4)																																		 

𝑑𝑃g
𝑑𝑡 = 		 𝑘JJ𝑃J + 𝑘J\𝑃f −	𝑘Jo𝑃g																																																																										(4.1.5) 

 
This network thus achieves RPA through the actions of two independently functioning modules – an 
Opposer module, and a Balancer module.  Since the modules contribute independently, each 
associated to its own subset in the partition of the RPA equation, the modules are said to be in 
parallel (see [5] for further discussion).  
  
We solve Equations (4.1.1) through (4.1.5) above for a range of different stimulus strengths, with 
results as shown in Figure 8 (see Figure caption for parameter values).  Notice that each time the 
stimulus (red curve) undergoes a step increase, the output node (blue curve) exhibits a rapid initial 
increase, but then diminishes back to the baseline level, even though the larger stimulus magnitude 
persists.  Since the output always returns to the same value, regardless of the stimulus level being 
received at the input node, the system exhibits RPA. 
 
 

 
Figure 8:  Network Example 1 – a two-node Opposer Module in parallel with a three-node Balancer 
Module.  Parameters: 𝑘J = 𝑘[ = 𝑘f = 𝑘Jo = 1; 𝑘\ = 𝑘g = 𝑘Z = 𝑘j = 𝑘k = 𝑘l = 𝑘JJ = 𝑘J\ = 0.5. 
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4.2  Example Network 2:  An opposer module in series with a balancer module 
 
Figure 9 presents an alternative combination of the two module types considered in the previous 
example.  In this configuration, the two-module structure is, in fact, redundant.  In particular, this 
network will exhibit RPA as a single opposer module if the node P2 acts as an opposer node (i.e. if it 
operates with opposer kinetics `Da

`ba
= 0).  If P2 does not act as an opposer, the network can still 

exhibit RPA as a single balancer module, provided P3 exhibits balancer kinetics, and P4 exhibits 
connector kinetics.  In other words, this particular configuration can operate either as an Opposer 
module or as a Balancer module.  For this reason, we say that the two potential modules – the 
Opposer and the Balancer – are topologically in series. 
 
This series connection of the two modules becomes clear when we examine the two-term RPA 
equation for this network (see diagrammatic representation in Figure 9). 
 
We simulate a set of model equations for this network, corresponding to the configuration as a 
single Opposer module (with diagrammatic solution highlighted in yellow as an opposition 
mechanism).  The only node subject to a special reaction constraint in this scenario is P2, for which 
we again choose the simple zero-order form to confer opposer kinetics: 
 
𝑑𝑃\
𝑑𝑡 = 		 𝑘f𝑃J −	𝑘g																																																																																									(4.2.1)																																			 

 
For the remaining three nodes, any reaction mechanism is allowed.  We choose the following very 
simple rate equations: 
𝑑𝑃J
𝑑𝑡 = 	𝑘J𝑆 −	𝑘\𝑃\ −	𝑘[𝑃J																																																																								(4.2.2)																																				 

𝑑𝑃[
𝑑𝑡 = 		 𝑘Z𝑃J −	𝑘j𝑃[																																																																																					(4.2.3) 

𝑑𝑃f
𝑑𝑡 = 		 𝑘k𝑃J − 𝑘l𝑃[𝑃f																																																																																		(4.2.4) 

 
We note that the rate equations for P3 and P4 above happen to be consistent with balancer kinetics 
and connector kinetics, respectively. But any other functional forms for these equations would also 
be suitable, since the Opposer module is active as long as P4 operates with opposer kinetics, as 
reflected in Equation (4.2.1).   
 
Simulation outputs for Equations (4.2.1) through (4.2.4) above are given in Figure 9.  Note that for 
this particular choice of parameters (see Figure caption), the system exhibits damped oscillations.  
Indeed, as the stimulus undergoes a step increase, the output first increases rapidly, but then 
decreases and undershoots the setpoint.  The signal then increases again and slightly overshoots 
the setpoint, before finally approaching the setpoint asymptotically.  Since the set-point is 
independent of the stimulus magnitude, the system exhibits RPA.  The time-dependent response of 
the system, on the other hand, and its propensity for oscillations, depends on the choice of 
parameters.  Notice also that the time-dependent response exhibits a great deal of symmetry:  as 
long as the difference in stimulus magnitude is preserved from one step-increase to the next, the 
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time-dependent response of the system remains identical.  This latter property is a consequence of 
the special (simple) choices of reaction kinetics used in this example. 
 
 
 

 
Figure 9: Network Example 2 – a two-node Opposer Module in series with a three-node Balancer 
Module.  Parameters: 𝑘J = 𝑘\ = 𝑘[ = 𝑘f = 𝑘g = 𝑘Z = 𝑘j = 𝑘k = 𝑘l = 1. 
 
 
 
 
4.3  Example Network 3:  A single opposer module with two-node opposing set, and a single 
input-output node. 
 
In the simple four-node network example in Figure 10, we illustrate two interesting features that 
can characterise RPA-capable networks:  (1)  The network need not have distinct input-output 
nodes – a valid topological possibility rarely considered in the RPA literature to date;  and (2) a 
single Opposer module may contain a whole constellation of opposer nodes, connected together in 
an orchestrated collection of interconnected feedback loops.  For simplicity of illustration, we 
choose to examine a set of just two opposer nodes collaborating to confer RPA on the output node, 
P1 (which is also the node receiving the external stimulus, S). 
 
Networks with a single input/output node have an RPA equation with a slightly different structure 
insofar as each term in the equation contains only the cycle component.  There are no ‘routes’ in 
networks with a single input/output node.  Thus, as noted in the summary of RPA network design 
features in Section 3.2, a network of this type can only achieve RPA through an Opposer Module. 
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There are two (negative) feedback loops disjoint from the input/output node in this network, giving 
rise to three different cycle combinations as indicated in the diagrammatic representation in Figure 
10.  All three of the remaining nodes exist in feedback loops, and it is clear from the diagrammatic 
representation that the Opposer mechanisms `Da

`ba
= `Dq

`bq
= 0 are sufficient to satisfy the RPA 

equation for this network. 
 
We solve the following simple rate equations for this RPA network solutions for a range of 
increasing steps in the stimulus, S: 
 
𝑑𝑃J
𝑑𝑡 = 	𝑘J𝑆 −	𝑘\𝑃f −	𝑘[𝑃J																																																																																				(4.3.1)																									 

𝑑𝑃\
𝑑𝑡 = 		 𝑘f𝑃J −	𝑘g𝑃[																																																																																																(4.3.2)																												 

𝑑𝑃[
𝑑𝑡 = 		 𝑘Z𝑃\ −	𝑘j𝑃f − 𝑘k𝑃[																																																																																		(4.3.3) 

𝑑𝑃f
𝑑𝑡 = 		 𝑘l𝑃[ − 𝑘Jo																																																																																																				(4.3.4) 

 
These solutions are depicted in Figure 10.  Notice that for these simple reaction kinetics, and for the 
chosen parameters (see Figure caption), the time-dependent response exhibits damped oscillations 
as well as a high level of symmetry for fixed step-increases in stimuli. 
 
 

 
Figure 10: Network Example 3 – a two-node Opposing Set (a single Opposer Module with two 
collaborating opposer nodes).  The network has a single input/output node (P1).  Parameters: 𝑘J =
𝑘\ = 𝑘Z = 𝑘j = 𝑘k = 1; 	𝑘[ = 𝑘f = 𝑘g = 𝑘l = 𝑘Jo = 0.8. 
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4.4  Example Network 4:  A single RPA-capable network with two possible RPA solutions 
 
In the example depicted in Figure 11, we highlight two crucial properties that characterise many 
RPA-capable networks:   

(1) RPA may be achieved in large networks with constraints at only a single node of the 
network.  In other words, all but one of the vast array of chemical reactions comprising a 
complex network may be perturbed (mutationally, pharmacologically, or otherwise) while 
exerting no influence whatsoever on that network’s ability to exhibit RPA.  Only the single 
computational node of the network (e.g. the opposer node P1 in the case of the network in 
Figure 11) is subject to a strict constraint on its reaction mechanism (here, an opposer 
mechanism). 

(2) For networks of sufficient complexity, there may be multiple ways for the network to be 
decomposed into RPA modules.  

 
Although the network in Figure 11 contains seven interacting nodes its very simple architecture, 
and sparse input-output minor, endows it with a small RPA equation:  Three distinct routes from P1 
to P7 exist in this network (P1àP2àP7, P1àP2àP3àP6àP7 and P1àP2àP3àP5àP6àP7), with the 
single network feedback loop (P2àP3àP4) contiguous with all three.  The RPA equation is limited 
to the three terms noted in Figure 11.  Since each term contains the kinetic multiplier (P4) in its 
cycle component, and the node P4 occurs in a feedback loop, this entire network can achieve RPA 
through the activity of the single opposer node P4 alone.  
 
For illustration, we simulate a set of model equations for this RPA possibility, again choosing zero-
order kinetics for the reaction rate at P4 to guarantee opposer kinetics for this node: 
 
𝑑𝑃f
𝑑𝑡 = 		 𝑘k𝑃[ −	𝑘l.																																																																																																		(4.4.1) 

Once again, an arbitrary choice can be made for the remaining reaction rates, so we choose the 
following very simple forms: 
 
 
𝑑𝑃J
𝑑𝑡 = 	𝑘J𝑆 −	𝑘\𝑃J																																																																																																(4.4.2)																			 

𝑑𝑃\
𝑑𝑡 = 		 𝑘[𝑃J − 𝑘f𝑃f −	𝑘g𝑃\																																																																															(4.4.3) 

𝑑𝑃[
𝑑𝑡 = 		 𝑘Z𝑃\ − 𝑘j𝑃[																																																																																														(4.4.4)																														 

𝑑𝑃g
𝑑𝑡 = 		 𝑘Jo𝑃[ − 𝑘JJ𝑃g																																																																																											(4.4.5) 

𝑑𝑃Z
𝑑𝑡 = 		 𝑘J\𝑃[ − 𝑘J[𝑃g𝑃Z																																																																																						(4.4.6) 

𝑑𝑃j
𝑑𝑡 = 		 𝑘Jf𝑃\ + 𝑘Jg𝑃Z −	𝑘JZ𝑃j																																																																									(4.4.7) 
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Solutions to these equations are given in Figure 11 (with parameter choices listed in the Figure 
caption).  Here again, for the simple reaction kinetics we’ve employed, and for this particular 
parameter set, the time-dependent response exhibits damped oscillations as well as a high level of 
symmetry for fixed step-increases in stimuli. 
 

 

 
Figure 11: Network Example 4 – An RPA-capable network with two possible decompositions into 
basis modules.  Here we depict the network in its realization as a single Opposer Module.  
Parameters: 𝑘J = 𝑘\ = 𝑘[ = 𝑘f = 𝑘g = 𝑘Jo = 𝑘JJ = 𝑘J\ = 𝑘J[ = 𝑘Jf = 𝑘Jg = 𝑘JZ = 1.  𝑘Z =
𝑘j = 𝑘k = 𝑘l = 0.5. 
 
 
 
 
Now, the node P3 also occurs in a feedback loop in this network, and is thus a candidate Opposer 
node.  Nevertheless, its kinetic multiplier only appears in one of the three terms owing to the fact 
that P3 also occurs in a route of this network (as reflected in the remaining two terms).  With P3 
acting as an Opposer node, the network may still achieve RPA through the simultaneous activity of 
a Balancer module, with P5 as a Balancer node, and P6 as a Connector node.   This gives rise to the 
two-module structure depicted in Figure 12, in which an Opposer module and a balancer module 
coexist in parallel.   
 
For this alternative RPA solution, with P3 acting as an Opposer node, the node P4 may no longer 
possess opposer kinetics.  We thus replace the rate equation for this node with the following simple 
form: 
 
𝑑𝑃f
𝑑𝑡 = 		 𝑘k𝑃[ −	𝑘l𝑃f.																																																																																						(4.4.8)																																		 
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We also replace the rate equation for P3 with a zero-order rate law for which opposer kinetics are 
assured: 
 
𝑑𝑃[
𝑑𝑡 = 		 𝑘Z𝑃\ − 𝑘j.																																																																																											(4.4.9)																																					 

 
Moreover for this two-module RPA solution, P5 must operate with balancer kinetics, and P6 with 
connector kinetics.  We observe that Equations (4.4.5) and (4.4.6) already conform to these 
requisite reaction mechanisms (although no special reaction kinetics were required at these nodes 
for the previous RPA solution noted above).  We solve the new set of model equations 
(incorporating the new rate equations (4.4.8) and (4.4.9) above) and display the results in Figure 12.  
Notice that the symmetry that previously characterized the time-dependent solutions (Figure 11) 
has now been lost in this two-module version of the network due to the alterations in reaction 
mechanisms. 
 
 

 
Figure 12:  Network Example 4 with an alternative RPA solution.  Here the network is shown as a 
three-node Opposer Module in parallel with a three-node Balancer Module.  Parameters: 𝑘J =
𝑘\ = 𝑘[ = 𝑘f = 𝑘g = 𝑘Jo = 𝑘JJ = 𝑘J\ = 𝑘J[ = 𝑘Jf = 𝑘Jg = 𝑘JZ = 1.  𝑘Z = 𝑘j = 𝑘k = 𝑘l = 0.5. 
 
 
 
4.5  Example Network 5:  A twelve-node RPA-capable network with two opposer modules in 
parallel 
 
In our final example, we emphasize again that RPA may achieved in larger networks with only very 
few constraints on individual nodes.  By the diagrammatic method we’ve demonstrated throughout 
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this chapter, it is straightforward to show that the simple twelve-node network configuration 
illustrated in Figure 13 has an RPA equation with fourteen terms.  As we highlight in the 
diagrammatic representation of this RPA equation, the kinetic multiplier (P9) occurs in eight of 
these terms, while the kinetic multipliers (P5) and (P6) occur in the remaining six terms.  Nodes P5, P6  
and P9 are all contained in feedback loops, so they are suitable choices for Opposer nodes.  By 
proposing a set of simple modeling equations that endow , with P9 subjected to an opposer 
reaction mechanism, and either P5 or P6 also subjected to an opposer mechanism, we show in 
Figure 13 that this network readily exhibits RPA through this decomposition into two parallel 
Opposer modules. 
 
We choose the following simple set of equations for the model simulations in Figure 13: 
 
𝑑𝑃J
𝑑𝑡 = 	𝑘J𝑆 −	𝑘\𝑃J																																																																																					(4.5.1)																					 

𝑑𝑃\
𝑑𝑡 = 		 𝑘[𝑃J −	𝑘f𝑃\																																																																																		(4.5.2)		 

𝑑𝑃[
𝑑𝑡 = 		 𝑘g𝑃J + 𝑘Z𝑃\ + 𝑘j𝑃j − 𝑘k𝑃[																																																						(4.5.3)																																						 

𝑑𝑃f
𝑑𝑡 = 		 𝑘l𝑃[ −	𝑘Jo𝑃f𝑃Z																																																																												(4.5.4)																						 

𝑑𝑃g
𝑑𝑡 = 		 𝑘JJ − 𝑘J\𝑃f																																																																																				(4.5.5)							 

𝑑𝑃Z
𝑑𝑡 = 		 𝑘J[𝑃[ − 𝑘Jf(𝑃g + 𝑃Z)																																																																		(4.5.6) 

𝑑𝑃j
𝑑𝑡 = 		 𝑘Jg𝑃J −	𝑘JZ𝑃j																																																																														(4.5.7) 

𝑑𝑃k
𝑑𝑡 = 		 𝑘Jj𝑃j − 𝑘Jk𝑃l	 − 𝑘Jl𝑃k																																																														(4.5.8) 

𝑑𝑃l
𝑑𝑡 = 		 𝑘\o𝑃k − 𝑘\J																																																																																			(4.5.9) 

𝑑𝑃Jo
𝑑𝑡 = 		 𝑘\\𝑃f −	𝑘\[𝑃Jo																																																																										(4.5.10)	 

𝑑𝑃JJ
𝑑𝑡 = 		 𝑘\f𝑃Jo + 𝑘\g𝑃f − 𝑘\Z𝑃JJ																																																									(4.5.11) 

𝑑𝑃J\
𝑑𝑡 = 		 𝑘\j𝑃Jo + 𝑘\k𝑃JJ	+	𝑘\l𝑃k − 𝑘[o𝑃J\																																							(4.5.12) 

 
Notice that for this particular choice of parameters, no oscillations are observed in the output 
signal in response to each step-increase in stimulus.  Indeed, the output decreases monotonically  
to the fixed stimulus-independent baseline level after its initial transient increase. 
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Figure 13:  Network Example 5 – A twelve-node RPA-capable network with two Opposer Modules in 
parallel.  Parameters:  𝑘J = 𝑘\ = 𝑘[ = 𝑘f = 𝑘g = 𝑘Z = 𝑘j = 𝑘k = 𝑘Jg = 𝑘JZ = 𝑘\\ = 𝑘\[ =
𝑘\f = 𝑘\g = 𝑘\Z = 𝑘\j = 𝑘\k = 𝑘\l = 𝑘[o = 1;  𝑘l = 𝑘Jo = 𝑘JJ = 𝑘J\ = 𝑘J[ = 𝑘Jf = 𝑘Jj =
𝑘Jk = 𝑘Jl = 𝑘\o = 𝑘\J = 1.   
 
 
 
 
5.  Concluding Remarks:  Future Directions for RPA Theory 
 
The analysis of the complex networks arising in nature confronts us with extraordinary technical 
challenges.  In many biological contexts – cellular signal transduction and cellular metabolism, for 
instance – the underlying signaling networks are so complex and high-dimensional that their 
detailed topologies and reaction mechanisms are essentially unknowable.  Without access to the 
full network design space for a particular functional requirement, proposing an accurate and 
predictive mathematical model for a particular network, or testing such a network to see if it meets 
a particular mathematical criterion, would require us to know (a) all the molecules involved in the 
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cascades of chemical reactions that are initiated once a “stimulus” of some kind is delivered to the 
system (including all scaffolds, adaptor proteins, second messengers and other ancillary molecules), 
and (b) the reaction mechanisms (e.g. rate laws and kinetics) of all reactions, including the role of 
intermediate complexes in all enzyme-catalysed reactions, and the specific mechanisms of multisite 
covalent modification (which could be processive or distributive in nature, for example).  In 
practice, we would also require information on the abundances of all reactant molecules, since the 
kinetics of a given reaction can vary in important qualitative ways as the involved enzymes become 
“saturated” by their substrates.  
 
The topological method we discuss here for solving the RPA problem is thus an important step 
forward in our quest to determine how biological complexity is organised.  Indeed, the strict 
mathematical requirement for robust networks to exist in well-defined modular structures suggests 
the tantalising concept that complex networks are like snowflakes:  while each is unique, all 
individual instances are alike in their essential structure.  Our hope is that the pragmatic discussion 
of the general RPA solution presented here will stimulate broad interest in these new approaches, 
and promote the discovery of new robustness-preserving network designs for other functional 
requirements of biological systems. 
 
Before closing, we wish to highlight a frontier research problem in RPA theory:  the deep question 
of how integral control is implemented at the microscale of complex networks through intricate 
intermolecular interactions.   Although we have employed very simple reaction rate laws for 
illustrative purposes in our example networks here, the molecular implementation of integral 
control in intracellular compartments is almost certainly vastly more complex.  Significant progress 
has been made in this direction through the study of a special case of RPA known as absolute 
concentration robustness (ACR).  It is now clear [5] that the Shinar-Feinberg model of ACR [30] is a 
simple balancer module, although the connector kinetics required for this model are buried much 
more deeply into the reactions of this model than the simple connector mechanisms employed in 
this chapter.  Even the Opposer node in the antithetical integral control model [22] requires a 
transformation of coordinates to achieve opposer kinetics [31].  In addition, the deep connection 
between RPA and ultrasensitivity [5] suggests a wealth of future avenues for identifying new 
mechanisms for the construction of robustness-promoting integrals from amid intricate 
biochemical reactions.  The study of robustness at network microscales along these lines will offer 
us fresh insights into the biological signalling mechanisms underpinning human disease states, 
along with new possibilities for pharmacological disruption, and will spawn a host of new 
opportunities in synthetic biology. 
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