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Abstract9

Hypoxia is an important environmental stimulus that causes transcriptional and metabolic reprogramming in cells to facil‐10

itate their survival. Here, we performed stable isotope tracing and metabolic flux analyses of proliferating primary cells11

in hypoxia. Despite activation of the hypoxia‐inducible factor (HIF) transcriptional program and up‐regulation of glycolytic12

genes, glycolytic flux was decreased in hypoxic cells in our models. No evidence for increased glutaminolysis or reductive13

carboxylation was observed. While pharmacologic stabilization of HIF in normoxia with the prolyl hydroxylase inhibitor14

molidustat did increase glycolytic flux as expected, hypoxia abrogated this effect. Together, these data suggest that primary15

cell bioenergeticmetabolism is closely coupled to cell proliferation rate and that other regulatory factors override the effects16

of HIF‐dependent up‐regulation of glycolytic gene expression on glycolytic flux.17
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Introduction20

Metazoan cells depend on aerobic respiration to meet cellular energy demands. With an inadequate oxygen supply, or21

hypoxia, cells must reduce energy consumption and shift energy production away from oxidative phosphorylation. Cells22

accomplish this goal through stabilization of the hypoxia‐inducible transcription factor 1α (HIF‐1α), which activates tran‐23

scription of glucose transporters, glycolytic enzymes, lactate dehydrogenase, and pyruvate dehydrogenase kinase, while24

decreasing the expression of proteins in the tricarboxylic acid (TCA) cycle and electron transport chain (Semenza, 2012).25

Overall, these changes in gene transcription should increase glycolytic capacity and divert glucose‐derived pyruvate from ox‐26

idative phosphorylation toward lactate fermentation to maintain energy production and minimize the formation of reactive27

oxygen species (Zhang et al., 2008).28

While this “glycolytic shift” of primary carbon metabolism is well‐described, the effects of hypoxia on other metabolic path‐29

ways are an area of active investigation (Jain et al., 2020). Since hypoxia is a prominent feature of cancer biology as tumor30

growth outstrips blood supply, most detailed metabolic studies of cell metabolism in hypoxia have used tumor cell models31

(Wise et al., 2011). For example, stable isotope tracing and metabolic flux analyses identified a critical role for reductive car‐32

boxylation of glutamine‐derived 2‐oxoglutarate for lipid biosynthesis in tumor growth (Gameiro et al., 2013; Metallo et al.,33

2011; Scott et al., 2011; Wise et al., 2011), and metabolomic studies identified aspartate as a limiting metabolite for cancer34

cell proliferation under hypoxia (Garcia‐Bermudez et al., 2018). By contrast, comparatively little is known about metabolic35

adaptations of primary cells to hypoxia and the importance of the metabolic pathways described above remain to be elu‐36

cidated. This information would provide important context for understanding the extent to which cancer cell metabolism37

responds differently to hypoxic stress. Given the metabolic adaptations required for rapid proliferation in cancer cells, we38

hypothesized that hypoxia would elicit different metabolic responses in primary cells than has been observed previously in39

studies of cancer cell metabolism.40

To test this hypothesis, we developedmodels of bioenergetic carbon flux in human primary cells cultured under 21% or 0.5%41

oxygen conditions. We found that hypoxia fails to increase glycolysis in primary cells despite robust up‐regulation of the42

HIF‐1α transcriptional program. In normoxia, HIF‐1α activation by the prolyl hydroxylase inhibitor molidustat (BAY‐85‐3934,43

“BAY”) (Flamme et al., 2014) did increase glycolysis and lactate efflux; however, hypoxia abrogated this response. These44

findings suggest the existence of hypoxia‐dependent metabolic regulatory mechanisms that override the effects of HIF‐1α‐45

dependent up‐regulation of glycolytic gene expression.46
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Results47

The goal of this study was to identify the metabolic changes associated due to hypoxia in proliferating primary cells. Cells48

were seeded andplaced into hypoxia for 24 h prior to sample collection to provide adequate time for activationof the hypoxia‐49

dependent transcriptional program. From this starting point, we identified the optimal cell seeding density and time course50

to capture exponential cell growth (Figure 1A), thought to be an indicator ofmetabolic steady state. Lung fibroblasts cultured51

in 0.5% oxygen grew more slowly (Figure 1B), but slower growth was not associated with decreased cell viability (Figure 1C).52

These cells demonstrated robust stabilization of HIF‐1α protein associatedwith up‐regulation of downstream targets, such as53

glucose transporter 1, (GLUT1), and lactate dehydrogenase A (LDHA) (Figure 1D‐H). These changes persisted for the duration54

of the experimental time course.55

Extracellular metabolite fluxes56

Having established a model system, we next determined the extracellular fluxes of glucose (GLC), lactate (LAC), pyruvate57

(PYR), and amino acids (Figure 1I‐J and Supplementary Figure 1). Flux calculations incorporated the changes in cell number,58

extracellular metabolite concentrations, and medium evaporation over time (Murphy and Young, 2013) (Supplementary59

Figure 1). Surprisingly, while glucose uptake was modestly increased in hypoxia, lactate efflux was decreased (Figure 1I)60

despite activation of the HIF‐1 transcriptional program. Similar findings were observed in pulmonary artery smooth muscle61

cells (Supplementary Figure 1) and when the ambient oxygen level was decreased further to 0.2% (Supplementary Figure62

2). In addition to glucose and lactate, extracellular fluxes of pyruvate and amino acids were generally decreased in hypoxia,63

including a marked decrease in glutamine uptake. Notably, hypoxia was previously shown to increase glutamine uptake in64

studies of cancer cell metabolism (Gameiro et al., 2013; Metallo et al., 2011; Wise et al., 2011).65

Given that hypoxia did not increase glucose and lactate fluxes as expected from the associated changes in glycolytic gene66

expression, we next assessed the capacity of HIF‐1α to augment glycolysis in lung fibroblasts. Cells were treated with BAY67

to stabilize HIF‐1α under 21% oxygen conditions (Figure 2). Similar to hypoxia, BAY decreased cell growth rate (Figure 2A‐68

B) and activated the HIF‐1 transcriptional program (Figure 2C‐G). Compared to hypoxia, BAY treatment resulted in a similar69

activation of HIF‐1 target gene transcription and protein expression. In normoxia, this transcriptional programwas associated70

with increased glucose uptake and lactate efflux (Figure 2H). Relatively modest effects on amino acid fluxes were observed71

as compared to 0.5% oxygen culture conditions (Figure 2J).72
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Stable isotope tracing73

To characterize further the extent of hypoxia‐inducedmetabolic reprogramming, we next treated lung fibroblasts with stable74

carbon isotopes of glucose and glutamine to trace label incorporation into key carbon utilization pathways (Figure 3 and Sup‐75

plementary Figure 3). Overall, hypoxia‐treated cells had decreased label incorporation into downstream metabolites (i.e.,76

the unlabeled, or M0, fraction was greater). This finding is consistent with the extracellular flux measurements suggesting77

slower substrate utilization by hypoxic cells. BAY treatment recapitulated the labeling pattern observed with hypoxia, sug‐78

gesting similar intracellular metabolite flux between these two conditions. Beyond this observation, the labeling patterns in79

hypoxia‐ and BAY‐treated cells were similar to their respective controls, arguing against marked metabolic reprogramming in80

response to prolyl hydroxylase inhibition by either hypoxia or BAY. Compared to previous studies of metabolic flux in cancer81

cells (Metallo et al., 2011; Wise et al., 2011), no hypoxia‐mediated increase in M5‐labeled citrate from [U‐13C5] glutamine82

was observed, indicating no increase in reductive carboxylation for lipid synthesis. The overall fraction of M5‐citrate in these83

cells was low (< 6%).84

Metabolic flux analysis85

To clarify changes in intracellular metabolite fluxes, we next generated metabolic flux models incorporating the extracellular86

flux measurements and tracing data described above. Preliminary labeling time courses indicated that, even after 72 h of87

labeling, intracellular metabolites did not reach isotopic steady state (Supplementary Figure 4). Thus, we performed isotopi‐88

cally non‐stationary metabolic flux analysis as implemented by INCA (Jazmin and Young, 2013; Murphy et al., 2013; Young,89

2014) (Figure 4, Supplementary Figure 4, and Supplementary Tables 3 and 4). Overall, proliferating lung fibroblasts demon‐90

strated high rates of glucose uptake and glycolysis. Approximately 15% of cytoplasmic pyruvate enters the TCA cycle with the91

balance converted to lactate. In hypoxia, significant reductions in glycolysis, the TCA cycle, and amino acid metabolism were92

observed (Figure 4A). To facilitate the identification of differential carbon utilization between treatment groups, metabolite93

fluxes were normalized to cell growth rate. In this analysis, a modest increase in glycolytic flux is observed (Supplementary94

Figure 4D). This observation suggests that the effects of the HIF‐1 transcriptional program are evident only after adjusting95

for differences in cell growth rate.96

Metabolite fluxes in DMSO‐treated cells were similar to 21% oxygen controls. Compared to hypoxia, BAY treatment was asso‐97

ciated with an increase in glycolysis and lactate fermentation in 21% oxygen, while similar decreases in serine and glutamine98

incorporation were observed (Figure 4D).99

Although the metabolite exchange fluxes for bidirectional reactions tend to be poorly resolved, two observations are worth100

highlighting (Supplementary Tables 3 and 4). First, consistent with the stable isotope tracing results, the rate of reductive101
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carboxylation through reversible flux by isocitrate dehydrogenase is low and unchanged by hypoxia or BAY treatment. Sec‐102

ond, hypoxia and BAY treatment are associated with amarked increase in the lactate transport exchange flux (21%: 9.96e‐05103

[0‐35]; 0.5%: 2,950 [2,630‐3,310] fmol/cell/h). Since the net lactate transport flux is secretion, this observation suggests in‐104

creased lactate uptake with hypoxia or BAY treatment. This may be consistent with the HIF‐driven increased expression of105

the reversible lactate transporter MCT4 (Contreras‐Baeza et al., 2019). To investigate this hypothesis, lung fibroblasts were106

treated with [U‐13C3] lactate (2 mM) and 13C incorporation into intracellular metabolites was analyzed by LC‐MS (Figure 3).107

Here, weobserved increased labeling of TCAmetabolites citrate (CIT), 2‐oxoglutrate (2OG),malate (MAL), and aspartate (ASP)108

following hypoxia or BAY treatment (Figure 3 and Supplementary Figure 3). Notably, lactate labeled ~50% of citrate and ~20%109

of downstream TCA cycle metabolites, indicating that lactate may be an important respiratory fuel source in these cells even110

though lactate efflux is high. Although lactate has been used less commonly than glucose and glutamine in stable isotope111

tracing studies, Faubert and colleagues (2013) demonstrated lactate incorporation in human lung adenocarcinoma in vivo. In112

this study, lactate incorporation corresponded to regions of high glucose uptake as determined by [18F]‐fluorodeoxyglucose113

positron emission tomography, suggesting that lactate consumption can occur in areas of high glucose utilization. In addition114

to downstreammetabolites, we also observed hypoxia‐ and BAY‐dependent increases in lactate incorporation in fructose bis‐115

phosphate (FBP) and 3‐phosphoglycerate (3PG). This is consistent with prior reports describing hypoxia‐mediated increases116

in glycogen synthesis (Favaro et al., 2012; Pelletier et al., 2012; Pescador et al., 2010). Together, these data suggest that117

lactate makes a modest (~10% carbon) contribution to this process.118

Hypoxia abrogates the metabolic effects of prolyl hydroxylase inhibition119

To reconcile the differential effects of prolyl hydroxylase inhibition by hypoxia and BAY, we next addressed whether hypoxia120

could suppress the effects of BAY on glucose and lactate fluxes (Figure 5). Lung fibroblasts cultured in standard growth121

medium were treated with BAY and cultured in either 21% or 0.5% oxygen. Similar to previous experiments, BAY treatment122

decreased cell growth rate, increased glucose uptake, and increased lactate efflux in 21% oxygen. Interestingly, when com‐123

bined with 0.5% oxygen, BAY treatment was unable to enhance lactate efflux. These data suggest that hypoxia antagonizes124

the effects of HIF‐1 activation on glycolytic flux in these primary cells.125
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Discussion126

In this work, we used 13C metabolic flux analysis to identify hypoxia‐mediated metabolic changes in proliferating human pri‐127

mary cells. Our principal finding was that hypoxia reduced, rather than increased, carbon flux through glycolysis and lactate128

fermentation pathways despite robust activation of the HIF‐1 transcriptional program and up‐regulation of glycolytic genes.129

Certainly, our finding that hypoxia was associated with decreased glycolysis and lactate fermentation was unexpected. Sev‐130

eral aspects of our experimental designmay have contributed to this finding. First, our goal was to understand howmetabolic131

reprogramming may support cell proliferation in hypoxia. Thus, we measured metabolite fluxes in cells during the exponen‐132

tial growth phase accounting for cell growth rate, metabolite degradation rates, and medium evaporation with multiple133

measurements over a 72 h time course. Often, cells are studied near confluence, where metabolic contributions to biomass134

production are less and the rate of glycolysis in hypoxia may be higher. Second, we began our experimental treatments 24135

h prior to collecting samples to ensure that the hypoxia metabolic program was established prior to labeling. Similar studies136

(Grassian et al., 2014; Metallo et al., 2011) typically placed cells into hypoxia at the time of labeling. Third, and perhaps most137

importantly, these flux determinations were performed in human primary cell cultures rather than immortalized cell lines.138

In addition, we found that hypoxia suppressed the increase in glycolysis induced byHIF‐1α stabilizationwith the PHD inhibitor139

BAY. Together, these findings suggest that changes in enzyme levels alone are insufficient to alter metabolic flux in hypoxia140

and, thus, point to the existence of upstream regulatory mechanisms. Several HIF‐independent metabolic regulatory mecha‐141

nismsmay be considered. Hypoxia‐mediated activation of AMP‐activated protein kinase (AMPK) reduces ATP demand in cells142

and contributes to cell survival in hypoxia (Dengler, 2020; Wheaton and Chandel, 2011). While the effects of hypoxic AMPK143

activation on decreasing protein synthesis arewell established, directmeasurements of the effects of AMPKonmetabolic flux144

in hypoxia are sparse. Marsin and colleagues (2002) demonstrated AMPK‐mediated up‐regulation of phosphofructokinase‐2145

and glycolysis in monocytes treated with both hypoxia and LPS, but not with hypoxia alone. Although not hypoxia per se,146

AMPK inhibition promoted a HIF‐1α‐dependentmetabolic shift to glycolysis in mouse embryonic fibroblasts and Eμ‐Myc lym‐147

phoma cells (Faubert et al., 2013) and, similarly, AMPK activation by AICAR reduced lactate production in tamoxifen‐resistant148

breast cancer cell lines (Woo et al., 2015). These data suggest that AMPK signaling may antagonize the effects of the HIF‐1149

transcriptional program, although the mechanism for this effect remains to be elucidated. Other HIF‐independent pathways150

may regulate glycolytic flux in hypoxia. These include changes in the activities of other oxygen‐dependent enzymes (Islam151

et al., 2018; Masson et al., 2019), non‐HIF targets of PHD enzymes (Winning et al., 2010), and HIF‐independent signaling152

pathways (Arany et al., 2008; Padmanabha et al., 2015). Finally, hypoxia imposes a reductive stress on cells associated with153

an increase in the NADH/NAD+ ratio secondary to impaired electron transport (Chance and Williams, 1955; Garofalo et al.,154

1988). NADH accumulationmay slow glycolysis via feedback inhibition of GAPDH (Tilton et al., 1991). Any of thesemolecular155
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mechanisms may contribute to uncoupling glycolytic enzyme expression from glycolytic flux as observed in the experiments156

described here.157

These findings raise important questions regarding the cell‐autonomous role of HIFs in the hypoxia response. Certainly, on158

an organismal level, HIFs drive expression of angiogenic and erythropoietic factors to increase oxygen delivery to hypoxic159

tissues. Within individual cells, HIF‐1α seems to be important for mitigating the adverse effects of reactive oxygen species160

(ROS) formationbydysfunctional electron transport in themitochondria. Indeed, hypoxia increasedoxygen consumptionand161

ROS production in HIF‐1α‐null mouse embryonic fibroblasts (MEFs), which was associated with increased cell death (Zhang162

et al., 2008). Interestingly, these cells also had increased ATP levels compared to wild type, suggesting that mitochondrial163

functionwas adequate under 1% oxygen culture conditions to support oxidative phosphorylation andmeet the energy needs164

of the cells. Given the prominence of HIFs in mediating the transcriptional response to hypoxia, it is somewhat surprising165

that none of PHD, HIFs, or their downstream targets were found to be selectively essential as a function of oxygen tension166

in a genome‐wide CRISPR growth screen of cells cultured in normoxia and hypoxia (Jain et al., 2020). In light of our findings,167

additional studies are warranted to understand the role of HIFs in mediating the metabolic response to hypoxia in primary168

cells. Moreover, these data strongly caution investigators against drawing conclusions about metabolite flux frommeasures169

of gene transcription alone.170

In summary, in this metabolic flux analysis of proliferating human primary cells in vitro, we have demonstrated that hypoxia171

uncouples an increase in HIF‐dependent glycolytic gene transcription from glycolytic flux. Indeed, the degree of metabolic172

reprogramming in hypoxia was modest and suggests close coupling between proliferation and metabolism. Further inves‐173

tigations of metabolic flux in primary cell cultures in hypoxia are warranted to identify the key regulators of metabolism in174

hypoxia and to clarify the contributions of HIF proteins to hypoxic metabolic reprogramming.175

Methods176

Chemicals. Stable isotopes [1,2‐13C1] glucose, [U‐13C6] glucose, [U‐13C5] glutamine, and [U‐13C3] lactate were purchased177

from Cambridge Isotope Labs. Molidustat (BAY, BAY‐85‐3934) was purchased from Cayman.178

Cell culture. Commerically available primary human lung fibroblasts and pulmonary artery smoothmuscle cells (Lonza) were179

maintained in FGM‐2 or SmGM‐2 medium, respectively, without antibiotics (Lonza).180

Metabolic flux protocol. For extracellular flux measurements, cells were seeded in MCDB131 medium without glucose, glu‐181

tamine, or phenol red (genDEPOT) supplemented with 2% dialyzed fetal bovine serum (Mediatech) and naturally labeled182
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glucose (8 mM) and glutamine (1 mM) (“light” labeling medium). Preliminary experiments were performed to identify the183

optimal cell seeding density, exponential growth phase, and labeling duration consistent with metabolic and isotopic steady184

state. For lung fibroblasts, on Day ‐1, 25,000 cells were seeded in a 35 mm dish in “light” labeling medium. Hypoxia‐treated185

cells were transferred to a tissue culture glovebox set to 0.5% oxygen and 5% CO2 (Coy Lab Products). Medium was sup‐186

plemented with DMSO 0.1% or BAY (10 μM) for these conditions. On Day 0, cells were washed with PBS and the medium187

was changed to either “light” medium for flux measurements or “heavy” medium for tracer experiments. Medium and cell188

lysates were then collected on Days 0‐3 for intra‐ and extracellular metabolite measurements and total DNA quantification.189

Dishes without cells were weighed daily to correct for evaporative medium losses and to empirically determine degradation190

and accumulation rates of metabolites. Medium samples and cell lysates for DNA measurement were stored at ‐80 °C until191

analysis. Each individual experiment included triplicate wells for each treatment and time point, and each experiment was192

repeated eight times.193

Cell count. Direct cell counts of trypsizined cell suspensions in PBS were obtained following staining with propidium iodide194

and acridine orange using a LUNA‐FL fluorescence cell counter (Logos Biosystems). Indirect cell counts for fluxmeasurements195

were interpolated from total DNA quantified using the Quant‐iT PicoGreen dsDNA Assay Kit (Thermo). Cells were washed196

once with one volume of PBS, lysed with Tris‐EDTA buffer containing 2% Triton X‐100, and collected by scraping. Total DNA in197

10 μL of lysate was determined by adding 100 μL of 1X PicoGreen dye in Tris‐EDTA buffer and interpolating the fluorescence198

intensity with a standard curve generated using the λ DNA standard. Cell counts were interpolated from a standard curve of199

DNA obtained from known cell numbers seeded in basal medium (Supplementary Figure 1A). No difference in total cellular200

DNA was identified between normoxia and hypoxia cultures (Supplementary Figure 1B).201

Immunoblot. Cells were washed with one volume of PBS and collected by scraping in PBS. Cell suspensions were centrifuged202

at 5,000 ×g for 5 min at 4 °C. Pellets were lysed in buffer containing Tris 10 mM, pH 7.4, NaCl 150 mM, EDTA 1 mM, EGTA 1203

mM, Triton X‐100 1% v/v, and NP‐40 0.5% v/v containing Halt Protease Inhibitor Cocktail (Thermo). Protein concentrations204

were determined by BCA Protein Assay (Thermo). Lysates were normalized for protein concentration and subjected to SDS‐205

PAGE separation on stain‐free tris‐glycine gels (Bio‐Rad), imaged with the Chemidoc system (Bio‐Rad), transferred to PVDF206

membranes with the Trans‐Blot Turbo transfer system (Bio‐Rad), imaged, blocked in 5% blocking buffer (Bio‐Rad), blotted in207

primary and secondary antibodies, and developed usingWesternBright ECL (Advansta). Band signal intensity was normalized208

to total protein per lane as determined from the stain‐free gel or membrane images.209
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Table 1: Antibodies

Protein Catalog Manufacturer

HIF‐1α 610958 BD Biosciences

HRP‐α‐Rabbit IgG 7074 Cell Signaling Technologies

HRP‐α‐Mouse IgG A4416 Sigma

RT‐qPCR. Total RNA was isolated from cells with the RNeasy Mini Kit (Qiagen). cDNA was synthesized from 0.25‐1.00 ng210

RNA with the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). RT‐qPCR analysis was performed with211

an Applied Biosystems 7500 Fast Real Time PCR System with TaqMan Universal PCR Master Mix and pre‐designed TaqMan212

gene expression assays (Life Technologies). Relative expression levels were calculated using the comparative cycle threshold213

method referenced to ACTB.214

Table 2: qPCR Probes

Gene ID

ACTB Hs03023943_g1

GLUT1 Hs00892681_m1

LDHA Hs00855332_g1

Glucose assay. Medium samples were diluted 10‐fold in PBS. Glucose concentration was determined using the Glucose215

Colorimetric Assay Kit (Cayman) according to the manufacturer’s protocol. Standards were prepared in PBS.216

Lactate assay. Medium samples were diluted 10‐fold in PBS. Glucose concentration was determined using the L‐Lactate217

Assay Kit (Cayman). Medium samples did not require deproteinization, otherwise the samples were analyzed according to218

the manufacturer’s protocol. Standards were prepared in PBS.219

Pyruvate assay. Pyruvate was measured using either an enzymatic assay (most samples) or an HPLC‐based assay (medium220

from 0.2% oxygen experiments). For the enzymatic assay, medium samples were diluted 20‐fold in PBS. Pyruvate concentra‐221

tion was determined using the Pyruvate Assay Kit (Cayman). Medium samples did not require deproteinization, otherwise222

the samples were analyzed according to the manufacturer’s protocol. Standards were prepared in PBS. For the HPLC assay,223
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2‐oxovaleric acid was added to medium samples as an internal standard. Samples were subsequently deproteinized with224

2 volumes of ice‐cold acetone. Supernatants were evaporated to < 50% of the starting volume at 43 °C in a SpeedVac con‐225

centrator (Thermo Savant) and reconstituted to the starting volume with HPLC‐grade water prior to derivatization. Samples226

were derivatized 1:1 by volume with o‐phenylenediamine (25 mM in 2 M HCl) for 30 min at 80 °C. Derivatized pyruvate was227

separatedwith a Poroshell HPHC‐18 column (2.1 × 100mm, 2.7 μm) on an Infinity II high‐performance liquid chromatography228

system with fluorescence detection of OPD‐derivatized α‐keto acids as described previously (Guarino et al., 2019).229

Amino acid assay. Medium amino acid concentrations were determined following the addition of norvaline and sarcosine230

internal standards and deproteinization with 2 volumes of ice‐cold acetone. Supernatants were evaporated to < 50% of231

the starting volume at 43 °C in a SpeedVac concentrator (Thermo Savant) and reconstituted to the starting volume with232

HPLC‐grade water prior to analysis. Amino acids in deproteinized medium were derivatized with o‐phthalaldehyde (OPA)233

and 9‐fluorenylmethylchloroformate (FMOC) immediately prior to separation with a Poroshell HPH‐C18 column (4.6 × 100234

mm, 2.7 μm) on an Infinity II high‐performance liquid chromatography system with ultraviolet and fluorescence detection235

of OPA‐ and FMOC‐derivatized amino acids, respectively, according to the manufacturer’s protocol (Agilent) (Long, 2017).236

Flux calculations. The growth rate (µ) and flux (v) for eachmeasuredmetabolite were defined as follows (Murphy and Young,

2013):

dX

dt
= µX (1)

dM

dt
= −kM + vX (2)

where X is the cell density, k is the first‐order degradation or accumulation rate, andM is the mass of the metabolite. These

equations are solved as follows:

X = X0eµt (3)

Mekt = vX0
µ + k

(e(µ+k)t − 1) + M0 (4)

Growth rate (µ) and cell count at time 0 (X0) were determined by robust linear modeling of the logarithm of cell count as237

a function of time (t). Metabolite mass was calculated from the measured metabolite concentrations and predicted well238

volume accounting for evaporative losses (Supplementary Figure 1C). First‐order degradation and accumulation rates were239

obtained from robust linear modeling of metabolite mass v. time in unconditioned culture medium. Rates that significantly240

differed from 0 using Student’s t‐test were incorporated into the flux calculations. Final fluxes were obtained by robust linear241
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modeling of Mekt versus (e(µ+k)t − 1) to determine the slope from which v was calculated using equation (4).242

Metabolite extractionand liquid chromatography‐mass spectrometry. Intracellularmetaboliteswere obtained at every time243

point after washing 35 mm wells with 2 volumes of ice‐cold PBS and floating on liquid nitrogen. Plates were stored at ‐80 °C244

until extraction. Metabolites were extracted with 1 mL 80% MeOH pre‐cooled to ‐80 °C containing 10 nmol [D8]‐DL‐valine245

as an internal standard (Cambridge Isotope Labs). Insoluble material was removed by centrifugation at 21,000 ×g for 15 min246

at 4 °C. The supernatant was evaporated to dryness at 43 °C using a SpeedVac concentrator (Thermo Savant). Samples were247

resuspended in 35 μL LC‐MS‐grade water prior to analysis.248

LC‐MS analysis was performed on a Vanquish ultra‐high‐performance liquid chromatography system coupled to a Q Exactive249

orbitrap mass spectrometer by a HESI‐II electrospray ionization probe (Thermo). External mass calibration was performed250

weekly. Metabolite samples (2.5 μL) were separated using a ZIC‐pHILIC stationary phase (2.1 × 150 mm, 5 μm) (Merck). The251

autosampler temperature was 4 °C and the column compartment was maintained at 25 °C. Mobile phase A was 20 mM252

ammonium carbonate and 0.1% ammonium hydroxide. Mobile phase B was acetonitrile. The flow rate was 0.1 mL/min. The253

mobile phase gradient was as follows: 0 min, 80% B; 5 min, 80% B; 30 min, 20% B; 31 min, 80% B; 42 min, 80% B. Solvent254

was introduced to the mass spectrometer via electrospray ionization with the following source parameters: sheath gas 40,255

auxiliary gas 15, sweep gas 1, spray voltage ‐3.1 kV, capillary temperature 275 °C, S‐lens RF level 40, and probe temperature256

350 °C. The mass spectrometer was operated in selected ion monitoring mode with an m/z window width of 9.0 centered257

1.003355‐times half the number of carbon atoms in the target metabolite. The resolution was set at 70,000 and AGC target258

was 1 × 105 ions. Data were acquired and peaks integrated using TraceFinder 4.1 (Thermo). Peak areas were corrected for259

quadrupole bias as previously described (Kim et al., 2015). Raw mass isotopomer distributions were corrected for natural260

isotope abundance using a custom R package employing the method of Fernandez, et al. (Fernandez et al., 1996).261

Biomass determination. The dry weight of each lung fibroblast was determined to be ~ 493 pg. This value was estimated by262

washing 3 × 106 cells twice in PBS and thrice in ice‐cold acetone prior to drying overnight in a SpeedVac. The composition of263

the dry cell mass was estimated from the literature (Quek et al., 2010; Sheikh et al., 2005), and stoichiometric coefficients264

were determined as described (Murphy et al., 2013; Zamorano et al., 2010).265

Metabolic flux analysis. Metabolic flux analysis was performed using the elementary metabolite unit‐based software266

package INCA (Young, 2014). Inputs to the model include the chemical reactions and atom transitions of central carbon267

metabolism, extracellular fluxes, the identity and composition of 13C‐labeled tracers, and the MIDs of labeled intracellular268

metabolites. The metabolic network was adapted from previously published networks (Murphy et al., 2013; Vacanti et269

al., 2014) and comprises 48 reactions representing glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle,270
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anaplerotic pathways, serine metabolism, and biomass synthesis. The network includes seven extracellular substrates271

(aspartate, cystine, glucose, glutamine, glycine, pyruvate, serine) and five metabolic products (alanine, biomass, glutamate,272

lactate, lipid). Models were fit using three 13C‐labeled tracers, [1,2‐13C2] glucose, [U‐13C6] glucose, and [U‐13C5] glutamine.273

The MIDs of twelve metabolites (2‐oxoglutarate, 3‐phosphoglycerate, alanine, aspartate, citrate, fructose bisphosphate, glu‐274

tamate, glutamine, lactate, malate, pyruvate, serine) were used to constrain intracellular fluxes. The following assumptions275

were made:276

1. Metabolism was at steady state.277

2. Labeled CO2 produced during decarboxylation reactions left the system and did not re‐incorporate during carboxyla‐278

tion reactions.279

3. Protein turnover occurred at a negligible rate compared to glucose and glutamine consumption.280

4. Acetyl‐CoA, aspartate, fumarate, malate, oxaloacetate, pyruvate existed in cytosolic and mitochondrial pools. Aspar‐281

tate and malate were allowed to exchange freely between the compartments.282

5. The per cell biomass requirements of proliferating lung fibroblasts were similar to published estimated in other cells283

(Quek et al., 2010; Sheikh et al., 2005).284

6. Dilution of alanine, aspartate, glutamate, glutamine, lactate, and pyruvate was allowed to occur through reversible285

exchange with unlabeled substrates in the medium as these metabolites were present in unconditioned medium or286

serum.287

7. Succinate and fumarate are symmetric molecules that have interchangeable orientations when metabolized by TCA288

cycle enzymes.289

Flux estimation was repeated a minimum of 50 times from random initial values. Results were subjected to a χ2 statistical290

test to assess goodness‐of‐fit. Accurate 95% confidence intervals were computed for estimated parameters by evaluating291

the sensitivity of the sum‐of‐square residuals to parameter variations (Antoniewicz et al., 2006; Murphy et al., 2013).292

Data analysis. The raw data and annotated analysis code necessary to reproduce this manuscript are contained in an R293

package research compendium available by reasonable request to the authors and will be made publicly available following294

publication of the manuscript. Data analysis, statistical comparisons, and visualization were performed in R (R Core Team,295

2020) using the packages listed below except as noted otherwise above. Experiments included technical and biological296

replicates as noted above. Outliers were identified using the median absolute deviation approach. Two group comparisons297

(e.g., 21% v. 0.5% oxygen) were performed using Student’s t‐test. Multifactor comparisons (e.g., BAY and oxygen) were298

performed using linear mixed‐effects models with Tukey’s post hoc testing. Probability values less than 0.05 were considered299
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significant.300
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Figure Legends473

Figure 1: Extracellular fluxes of lung fibroblasts in hypoxia. (A) Growth curves of lung fibroblasts cultured in 21% and 0.5%474

oxygen. (B) Growth rates were determined by linear fitting of log‐transformed growth curves. (C) Cell viability, assessed475

by acridine orange plus propidium iodide staining, did not differ between 21% and 0.5% oxygen culture conditions (n = 3476

technical replicates). (D) Representative immunoblot of lung fibroblast protein lysates collected at the indicated times. (E, F)477

Relative change inHIF‐1α (E) and LDHA (F) protein levels compared to 21%oxygentime0. (G,H) Relative changes inGLUT1 (G)478

and LDHA (H) mRNA levels compared to 21% oxygen time 0. (I, J) Extracellular fluxes of the indicated metabolites. Biological479

replicates are indicated and the summary data are expressed as themean ± SEM (n = 8). Comparisons were performed using480

Student’s paired t‐test. Flux probability values were not corrected for multiple comparisons. Abbreviations as noted in the481

text.482

Figure 2: Prolyl hydroxylase inhibition of lung fibroblasts in normoxia. (A) Growth curves of lung fibroblasts cultured in 21%483

oxygen and treatedwithmolidustat (BAY, 10 μM) or vehicle (DMSO, 0.1%). (B) Growth rates were determined by linear fitting484

of log‐transformed growth curves. (C) Representative immunoblot of lung fibroblast protein lysates collected at the indicated485

times. (D, E) Relative change in HIF‐1α (D) and LDHA (E) protein levels compared to DMSO time 0. (F, G) Relative changes486

in GLUT1 (F) and LDHA (G) mRNA levels compared to DMSO time 0. (H, I) Extracellular fluxes of the indicated metabolites.487

Biological replicates are indicated and the summary data are expressed as the mean ± SEM (n = 8). Comparisons were488

performed using Student’s paired t‐test. Flux probability values were not corrected for multiple comparisons. Abbreviations489

as noted in the text.490

Figure 3: Mass isotopomer distributions after 72 h of labeling. lung fibroblasts were labeled with the indicated tracers491

(glucose 8 mM, glutamine 1 mM, lactate 2 mM). Intracellular metabolites were analyzed by LC‐MS. Mass isotopomer distri‐492

butionswere adjusted for natural abundance. Data are themean ± SEMof 4 biological replicates. FBP, fructose bisphosphate;493

3PG, 3‐phosphoglycerate; 2OG, 2‐oxoglutarate.494

Figure 4: Metabolic flux maps of lung fibroblasts. (A) Ratio of metabolic fluxes in 0.5% oxygen compared to 21% oxygen.495

(B) Ratio of metabolic fluxes in cells treated with molidustat (BAY) compared to DMSO vehicle control. Fluxes with non‐496

overlapping confidence intervals are highlighted to indicate significant changes.497

Figure 5: Hypoxia inhibits the effects of HIF‐1α stabilization on glycolysis. Lung fibroblasts were cultured in standard growth498

medium and treated with molidustat (BAY, 10 μM) or vehicle (DMSO, 0.1%) in 21% or 0.5% oxygen conditions. (A) Growth499

rates were determined by linear fitting of log‐transformed growth curves. (B, C) Extracellular fluxes of glucose (B) and lactate500

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2020. ; https://doi.org/10.1101/2020.09.21.306464doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.306464
http://creativecommons.org/licenses/by-nc-nd/4.0/


(C). Biological replicates are indicated and the summary data are expressed as themean. Comparisons were performed using501

amixed‐effects linearmodel with date as a randomeffect. Adjusted p‐values for the indicated comparisonswere determined502

using Tukey’s post hoc test.503
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Figure 1: Extracellular fluxes of lung fibroblasts in hypoxia. (A) Growth curves of lung fibroblasts cultured in 21% and 0.5%

oxygen. (B) Growth rates were determined by linear fitting of log‐transformed growth curves. (C) Cell viability, assessed

by acridine orange plus propidium iodide staining, did not differ between 21% and 0.5% oxygen culture conditions (n = 3

technical replicates). (D) Representative immunoblot of lung fibroblast protein lysates collected at the indicated times. (E, F)

Relative change inHIF‐1α (E) and LDHA (F) protein levels compared to 21%oxygentime0. (G,H) Relative changes inGLUT1 (G)

and LDHA (H) mRNA levels compared to 21% oxygen time 0. (I, J) Extracellular fluxes of the indicated metabolites. Biological

replicates are indicated and the summary data are expressed as themean ± SEM (n = 8). Comparisons were performed using

Student’s paired t‐test. Flux probability values were not corrected for multiple comparisons. Abbreviations as noted in the

text.
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Figure 2: Prolyl hydroxylase inhibition of lung fibroblasts in normoxia. (A) Growth curves of lung fibroblasts cultured in 21%

oxygen and treatedwithmolidustat (BAY, 10 μM) or vehicle (DMSO, 0.1%). (B) Growth rates were determined by linear fitting

of log‐transformed growth curves. (C) Representative immunoblot of lung fibroblast protein lysates collected at the indicated

times. (D, E) Relative change in HIF‐1α (D) and LDHA (E) protein levels compared to DMSO time 0. (F, G) Relative changes

in GLUT1 (F) and LDHA (G) mRNA levels compared to DMSO time 0. (H, I) Extracellular fluxes of the indicated metabolites.

Biological replicates are indicated and the summary data are expressed as the mean ± SEM (n = 8). Comparisons were

performed using Student’s paired t‐test. Flux probability values were not corrected for multiple comparisons. Abbreviations

as noted in the text.
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Figure 3: Mass isotopomer distributions after 72 h of labeling. lung fibroblasts were labeled with the indicated tracers

(glucose 8 mM, glutamine 1 mM, lactate 2 mM). Intracellular metabolites were analyzed by LC‐MS. Mass isotopomer distri‐

butionswere adjusted for natural abundance. Data are themean ± SEMof 4 biological replicates. FBP, fructose bisphosphate;

3PG, 3‐phosphoglycerate; 2OG, 2‐oxoglutarate.
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Figure 4: Metabolic flux maps of lung fibroblasts. (A) Ratio of metabolic fluxes in 0.5% oxygen compared to 21% oxygen.

(B) Ratio of metabolic fluxes in cells treated with molidustat (BAY) compared to DMSO vehicle control. Fluxes with non‐

overlapping confidence intervals are highlighted to indicate significant changes.
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Figure 5: Hypoxia inhibits the effects of HIF‐1α stabilization on glycolysis. Lung fibroblasts were cultured in standard growth

medium and treated with molidustat (BAY, 10 μM) or vehicle (DMSO, 0.1%) in 21% or 0.5% oxygen conditions. (A) Growth

rates were determined by linear fitting of log‐transformed growth curves. (B, C) Extracellular fluxes of glucose (B) and lactate

(C). Biological replicates are indicated and the summary data are expressed as themean. Comparisons were performed using

amixed‐effects linearmodel with date as a randomeffect. Adjusted p‐values for the indicated comparisonswere determined

using Tukey’s post hoc test.
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