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Abstract

Locust swarms are a major threat to agriculture, affecting every continent except

Antarctica and impacting the lives of 1 in 10 people. Locusts are short horned

grasshoppers that exhibit two behaviour types depending on their local population

density. These are; solitarious, where they will actively avoid other locusts, and

gregarious where they will seek them out. It is in this gregarious state that locusts can

form massive and destructive flying swarms or plagues. However, these swarms are

usually preceded by the formation of hopper bands by the juvenile wingless locust

nymphs. It is thus important to understand the hopper band formation process to

control locust outbreaks.

On longer time-scales, environmental conditions such as rain events synchronize

locust lifecycles and can lead to repeated outbreaks. On shorter time-scales, changes in

resource distributions at both small and large spatial scales have an effect on locust

gregarisation. It is these short time-scale locust-resource relationships and their effect

on hopper band formation that are of interest.

In this paper we investigate not only the effect of food on both the formation and

characteristics of locust hopper bands but also a possible evolutionary explanation for

gregarisation in this context. We do this by deriving a multi-population aggregation

equation that includes non-local inter-individual interactions and local inter-individual

and food interactions. By performing a series of numerical experiments we find that

there exists an optimal food width for locust hopper band formation, and by looking at

foraging efficiency within the model framework we uncover a possible evolutionary

reason for gregarisation.

Author summary

Locusts are short horned grass hoppers that live in two diametrically opposed

behavioural states. In the first, solitarious, they will actively avoid other locusts,

whereas the second, gregarious, they will actively seek them out. It is in this gregarious

state that locusts form the recognisable and destructive flying adult swarms. However,

prior to swarm formation juvenile flightless locusts will form marching hopper bands
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and make their way from food source to food source. Predicting where these hopper

bands might form is key to controlling locust outbreaks.

Research has shown that changes in food distributions can affect the transition from

solitarious to gregarious. In this paper we construct a mathematical model of

locust-locust and locust-food interactions to investigate how and why isolated food

distributions affect hopper band formation. Our findings suggest that there is an

optimal food width for hopper band formation and that being gregarious increases a

locusts ability to forage when food width decreases.

Introduction 1

Having plagued mankind for millennia, locust swarms affect every continent except 2

Antarctica and impact the lives of 1 in 10 people [1]. A single locust swarm can contain 3

millions of individuals [2] and is able to move up to 200 kilometres in a day [3]; with 4

each locust being able to consume its own body weight in food [4]. Locusts have played 5

a role in severe famine [5], disease outbreaks [6], and even the toppling of dynasties [7]. 6

More recently, in March 2020 a perfect storm of events caused the worst locust 7

outbreaks in over 25 years in Ethiopia, Somalia and Kenya during the COVID-19 8

pandemic [8]. Damaging tens of thousands of hectares of croplands and pasture, these 9

outbreaks presented an unprecedented threat to food security and livelihoods in the 10

horn of Africa. In addition, the onset of the rainy season meant the locusts were able to 11

breed in vast numbers raising the possibility of further outbreaks [9]. 12

Locusts are short horned grasshoppers that exhibit density-dependent 13

phase-polyphenism, i.e., two or more distinct phenotype expressions from a single 14

genotype depending on local population density [10]. In locusts there are two key 15

distinct phenotypes, solitarious and gregarious, with the process of transition called 16

gregarisation. Gregarisation affects many aspects of locust morphology from 17

colouration [11], to reproductive features [12], to behaviour [13]. Behaviourally, 18

solitarious locusts are characterised by an active avoidance of other locusts, whereas 19

gregarious locusts are strongly attracted to other locusts. In this gregarious state there 20

is greater predator avoidance on the individual level [14], the group display of 21

aposematic colours has a greater effect of predator deterrence [15], and the resulting 22
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aggregations may act as a means of preventing mass disease transmission [16]. It is also 23

in the gregarious state that locusts exhibit large scale and destructive group dynamics 24

with flying swarms of adult locusts being perhaps the most infamous manifestation of 25

this. 26

Despite the destruction caused by adult swarms, the most crucial phase for locust 27

outbreak detection and control occurs when wingless nymphs form hopper bands, large 28

groups of up to millions of individuals marching in unison [4]. Depending on the species, 29

these groups may adopt frontal or columnar formations, the former being comet like in 30

appearance with dense front and less dense tail [17], and the latter being a network of 31

dense streams [4]. Understanding the group dynamics of gregarious locusts are key to 32

improving locust surveys and control by increasing our ability to understand and 33

predict movement. 34

In addition to the group dynamics, better knowledge of locust interactions with the 35

environment would help to improve the prediction of outbreaks [18]. On longer 36

time-scales, environmental conditions such as rain events synchronize locust lifecycles 37

and can lead to repeated outbreaks [10]. On shorter time-scales, changes in resource 38

distributions at both small and large spatial scales have an effect on locust 39

gregarisation [19–22]. It is these short time-scale locust-environment interactions that 40

we investigate in this paper, using mathematical modelling to further understand both 41

their effect on swarming and if there is any advantage to gregarisation in this context. 42

As all the mentioned behaviours arise from simple interactions, understanding the 43

group dynamics of gregarious locusts can also give deep insight into the underlying 44

mechanisms of collective behaviour, consequently they are an important subject of 45

mathematical modelling efforts. Self propelled particles models (SPP) in conjunction 46

with ring shaped arenas [23] and/or field data [24] have been used to extract 47

behavioural characteristics from gregarious locusts [2]. For instance using these 48

techniques Buhl and colleagues have found the critical density for the onset of collective 49

movement [23], the interaction range of locusts (13.5cm), and the way that hopper band 50

directional changes are affected by locust density [17]. One downside of SPP models is 51

that there are few analytical tools available to study their behaviour. In contrast, 52

continuum models can be analysed using an array of tools from the theory of partial 53

differential equations (PDEs). They are most appropriately employed when there are a 54
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large number of individuals since they do not account for individual behaviour, instead 55

giving a representation of the average behaviour of the group. The latter (continuum) 56

approach is adopted in this paper. 57

The non-local aggregation equation, first proposed by Mogilner and 58

Edelstein-Keshet [25], is a common continuum PDE analogue of SPP models [26, 27]. It 59

based a conservative mass system of the form 60

∂ρ

∂t
+∇ · [(−∇Q ? ρ)ρ] = 0,

where Q is defined as some social interaction potential, ρ is the density of species in 61

question, and ? is the convolution operation. For this type of model the existence and 62

stability of swarms has been proven [25], and both travelling wave solutions [25] and 63

analytic expressions for the steady states [28] have been found. This model has been 64

further extended to include non-linear local repulsion which leads to compact and 65

bounded solutions [29]. While usually used for single populations, the model has been 66

further adapted to consider multiple interacting species [30]. 67

In a 2012 paper, Topaz et. al. [31] used a multispecies aggregation equation to model 68

locusts as two distinct behavioural sub-populations, solitarious and gregarious. By 69

considering the locust-locust interactions and the transition between the two states, 70

they were able to deduce both the critical density ratio of gregarious locusts that would 71

cause a hopper band to occur and visualised the rapid transition once this density ratio 72

had been reached [31]. For simplicity the model focused on inter-locust interactions and 73

ignored interactions between locusts and the environment. While there exists some 74

continuum models of locust food interactions to investigate the effect of food on peak 75

locust density [32] or to consider hopper band movement [33], we are not aware of any 76

studies that consider locust-locust and locust-food interactions as well as gregarisation 77

in a continuum setting. 78

The aims of this paper are threefold. Firstly, to derive a mathematical model that is 79

akin the 2012 Topaz model with the inclusion of both locust-food dynamics and local 80

repulsion. Secondly, we use the newly derived model to understand how food interacts 81

with the gregarisation and hopper band formation process. Finally, we investigate under 82

what conditions being gregarious confers an advantage compared to being solitarious. 83
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This paper is organised as follows: we begin with the derivation of a PDE model in 84

which locusts only interact with food when they come into direct contact with it. Our 85

model includes both non-local inter individual interactions and local inter individual 86

and food interactions. Then, we look at some mathematical properties of our model 87

with a homogeneous food distribution. We next use numerical simulations to investigate 88

the effect of food distribution on hopper band formation, and the relative foraging 89

advantage of gregarisation. Finally, we summarise our results and offer ideas for further 90

exploration of the model. 91

Models and methods 92

Model derivation 93

In this section we present a PDE model of locust foraging that includes both local 94

inter-individual and food interactions and non-local inter-individual interactions. In this 95

model locusts are represented as a density of individuals (number per unit area) in 96

space and time and are either solitarious, s(x, t), or gregarious g(x, t), with the total 97

local density defined as ρ(x, t) = s(x, t) + g(x, t). For later convenience we will also 98

define the local gregarious mass fraction as 99

ψg(x, t) =
g(x, t)

ρ(x, t)
, (1)

and the global gregarious mass fraction as 100

φg(t) =

∫
g(x, t) dx∫
ρ(x, t) dx

. (2)

It is possible to write s and g in terms of Eq (5) as 101

g = ψg(x, t)ρ(x, t) and s = (1− ψg(x, t))ρ(x, t).

We assume that the time-scale of gregarisation is shorter than the life cycle of

locusts, ignoring births and deaths and thus conserving the total number of locusts. We

also allow for a transition from solitarious to gregarious and vice-versa depending on the
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local population density. Hence, conservation laws give equations of the form

∂g

∂t
+∇ · (Jglocal

+ Jgnon-local
) = K(s, g), (3a)

∂s

∂t
+∇ · (Jslocal

+ Jsnon-local
) = −K(s, g), (3b)

where J (s,g)local
is the flux due to local interactions, J(s,g)non-local

is the flux due to 102

non-local interactions, and K(s, g) represents the transition between the solitarious and 103

gregarious states. 104

In addition to locusts we include food resources, let c(x, t) denote the food density 105

(mass of edible material per unit area). We assume that locust food consumption 106

follows the law of mass action and on the time-scale of hopper band formation food 107

production is negligible, giving 108

∂c

∂t
= −κc(x, t)ρ(x, t), (4)

where κ is the locust’s food consumption rate. 109

Finally, for later convenience we will also define the local gregarious mass fraction as 110

ψg(x, t) =
g(x, t)

ρ(x, t)
, (5)

and the global gregarious mass fraction as 111

φg(t) =

∫
g(x, t) dx∫
ρ(x, t) dx

. (6)

It is possible to write s and g in terms of Eq (5) as 112

g = ψg(x, t)ρ(x, t) and s = (1− ψg(x, t))ρ(x, t).

Local interactions. We now turn to specifying the local interaction terms in Eq (3a) 113

and Eq (3a). These are captured by taking the continuum limit of a lattice model, we 114

do this by following the work of Painter and Sherratt [34]. We begin by considering 115

solitarious locust movement on a one-dimensional lattice (we assume that local 116

gregarious locust behaviour is the same resulting in a similar derivation). Let sti be the 117
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number of solitarious locusts at site i at time t, and let gti ,ρ
t
i, and cti be similarly defined. 118

We assume that the transition rate for a locust at the ith site depends on the food 119

density at that site, and the relative population density between the current site and 120

neighbouring sites. If we let T ±i be the rate at which locusts at site i move to the right, 121

+, and left, −, during a timestep, then our transition probabilities are 122

T ±i = F (ci)(α+ β(τ(ρi)− τ(ρi±1))),

where F is a function of food density, τ is a function related to the local locust density, 123

and α and β represent probabilities of movement. If nutrients are abundant at the 124

current site, then we assume locusts are less likely to move to a neighbouring site, which 125

implies F is a decreasing function. We set, 126

F (ci) = e−
ci
c0 ,

where c0 is related to how long a locust remains stationary while feeding. We further 127

assume that as the locust population density rises at neighbouring sites relative to the 128

population density of the current site, the probability of moving to those sites decreases 129

proportional to the number of collisions between individuals that would occur. Using 130

the law of mass action, this gives, 131

τ(ρ) = ρ2.

Thus, our transition probabilities are 132

T ±i = e−
ci
c0 (α+ β(ρ2

i − ρ2
i±1)).

Then the number of individuals in cell i at time t+ ∆t is given by 133

st+∆t
i = sti + T −i+1s

t
i+1 + T +

i−1s
t
i−1 − (T −i + T +

i )sti.

From this, we can derive the continuum limit for both solitarious and gregarious locust
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densities, and find our local flux as

Jglocal
= −D

[
∂

∂x

(
ge−

c
c0

)
+ γgρe−

c
c0
∂ρ

∂x

]
,

Jslocal
= −D

[
∂

∂x

(
se−

c
c0

)
+ γsρe−

c
c0
∂ρ

∂x

]
,

where D and γ are continuum constants related to α and β respectively. In higher

dimensions, the expressions for fluxes are:

Jglocal
= −D∇ ·

[
∇
(
ge−

c
c0

)
+ γgρe−

c
c0∇ρ

]
, (8a)

Jslocal
= −D∇ ·

[
∇
(
se−

c
c0

)
+ γsρe−

c
c0∇ρ

]
. (8b)

Non-local interactions. For our non-local interactions we adopt the fluxes used by

Topaz et. al. [31]. By considering each locust subpopulation, solitarious and gregarious,

as having different social potentials, we obtain the following expressions for the

non-local flux

Jgnon-local
= −∇(Qg ? ρ)g, (9a)

Jsnon-local
= −∇(Qs ? ρ)s. (9b)

We also adopt the functional forms if the social potentials used by Topaz et. al. [31], as 134

they are used extensively in modelling collective behaviour and are well studied [28]. 135

They are based on the assumption that solitarious locusts have a long range repulsive 136

social potential and gregarious locusts have a long range attractive and a shorter range 137

repulsive social potential. The social potentials are given by, 138

Qs(x) = Rse
−|x|
rs and Qg(x) = Rge

−|x|
rg −Age

−|x|
ag ,

where, Rs and rs are the solitarious repulsion strength and sensing distance respectively. 139

Similarly, Rg and rg are the gregarious repulsion strength and sensing distance. Finally 140

Ag and ag are the gregarious attraction strength and sensing distance. 141

Gregarisation dynamics. For the rates at which locusts become gregarious (or 142

solitarious) we again follow the work of Topaz et. al. [31]. We assume that solitarious 143
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locusts transition to gregarious is a function of the local locust density (and vice versa). 144

This gives our equations for kinetics as, 145

K(s, g) = −f1(ρ)g + f2(ρ)s, (10)

where, f1(ρ) and f2(ρ) are positive functions representing density dependant transition

rates. To make our results more directly comparable we again use the same functional

forms as Topaz et. al. [31] ,

f1(ρ) =
δ1

1 +
(
ρ
k1

)2 , (11a)

f2(ρ) =
δ2

(
ρ
k2

)2

1 +
(
ρ
k2

)2 , (11b)

where δ1,2 are maximal phase transition rates and k1,2 are the locust densities at which 146

half this maximal transition rate occurs. 147

A system of equations for locust gregarisation including food interactions.

By substituting our flux expressions, (8a) through to (9b), and kinetics term (10), into

our conservation equations, (3a) and (3b), and rearranging the equation into a

advection diffusion system, we obtain the following system of equations

∂g

∂t
+∇ · (gvg)−D∇ ·

[
e−

c
c0∇g

]
= −f1(ρ)g + f2(ρ)s, (12a)

∂s

∂t
+∇ · (svs)−D∇ ·

[
e−

c
c0∇s

]
= f1(ρ)g − f2(ρ)s, (12b)

∂c

∂t
= −κc(x, t)ρ(x, t). (12c)

with 148

vg = −∇(Qg ? ρ) +De−
c
c0

(
1

c0
∇c− γρ∇ρ

)
and 149

vs = −∇(Qs ? ρ) +De−
c
c0

(
1

c0
∇c− γρ∇ρ

)
where f1, f2, Qs, and Qg are previously defined. 150
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Non-dimensionalisation. We non-dimensionalise Eq (12a), Eq (12b), and Eq (12c), 151

and the explicit expressions for f1, f2, Qs, and Qg, using the following scalings 152

t =
1

δ2
t̄, x = agx̄, (ρ, s, g) = k1(ρ̄, s̄, ḡ), and c = c0c̄

Then dropping the bar notation the dimensionless governing equations are

∂g

∂t
+∇ · (gvg)−D∗∇ ·

[
e−c∇g

]
= −f∗1 (ρ)g + f∗2 (ρ)s, (13a)

∂s

∂t
+∇ · (svs)−D∗∇ ·

[
e−c∇s

]
= f∗1 (ρ)g − f∗2 (ρ)s, (13b)

∂c

∂t
= −κ∗c(x, t)ρ(x, t), (13c)

where 153

vg = −∇Q∗g ? ρ+D∗e−c (∇c− γ∗ρ∇ρ) ,vs = −∇Q∗s ? ρ+D∗e−c (∇c− γ∗ρ∇ρ) ,

and

Q∗g = R∗ge
−|x|
r∗g −A∗ge−|x|, Q∗s = R∗se

−|x|
r∗s

f∗1 (ρ) =
δ∗

1 + ρ2
, f∗2 (ρ) =

(ρk)
2

1 + (ρk)
2 ,

Note that we have introduced the following dimensionless parameters,

D∗ =
D

δ2a2
g

, k =
k1

k2
, δ∗ =

δ1
δ2
, γ∗ = k2

1γ, κ
∗ =

κk1

δ2
,

R∗g =
Rgk1

δ2ag
, A∗g =

Agk1

δ2ag
, R∗s =

Rsk1

δ2ag
, r∗g =

rg
ag
, r∗s =

rs
ag
.

For notational simplicity we drop the ·∗ notation in the rest of the paper. 154

Results 155

PDE model analysis 156

In this section we investigate the behaviour of our model with a spatially uniform food 157

density. Under certain simplifying assumptions, we are able to calculate the maximum 158
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density and size of gregarious hopper bands for both small and large numbers of locusts. 159

We then consider the linear stability of the homogeneous steady states to investigate 160

how the availability of food affects hopper band formation, before finally investigating 161

how the center mass is affected by locust interactions. Full details of all calculations can 162

be found in S1 Appendix. 163

Density of gregarious hopper bands. Under some simplifying assumptions we 164

can estimate the maximum density and width of gregarious locusts for both small and 165

large numbers of locusts, termed the small and large mass limits, in one dimension. To 166

begin, we assume that c is constant and not depleting, there are minimal solitarious 167

locusts present in the hopper band (i.e. ρ ≈ g), and the effect of phase transitions in the 168

hopper band is negligible (i.e. f1(ρ)s = f2(ρ)g = 0). Finally, while the support of g is 169

infinite (due to the linear diffusion) the bulk of the mass is contained as a series of 170

aggregations, we will approximate the support of a single aggregation as Ω. Using these 171

assumptions we can rewrite Eq (13a) as a gradient flow of the form, 172

∂g

∂t
= ∇ ·

(
g∇
[
δE

δg

])
,

where 173

E[g] =

∫
Ω

1

2
g[Qg ? g] +

De−cγ

6
g3 +De−c(g log(g)− g) dx, (14)

with the minimisers satisfying 174

δE

δg
= (Qg ? g) +

De−cγ

2
g2 +De−c log(g) = λ.

Next, we follow the work of [29,32,35] and with a series of simplifying assumptions we 175

consider both the large and small mass limit in turn. First, define the mass of locusts as 176

M =

∫
Ω

g(x) dx,

To find the large mass limit, we begin with Eq (14) and assume that g(x) is 177

approximately rectangular and for a single aggregation that the support is far larger 178

than the range of e
−|x|

r . This gives e
−|x|

r ≈ 2rδ(x) (where δ(x) is the Dirac delta 179
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function), and therefore Qg ≈ 2 (Rgrg −Ag) δ(x). Using these assumptions we can 180

estimate the maximum gregarious locust density, ||g||∞, as 181

||g||∞ =

3

(
− (Rgrg −Ag) +

√
(Rgrg −Ag)2 − 4(De−c)2γ

3

)
2De−cγ

, (15)

with support, 182

||Ω|| = 2MDe−cγ

3

(
− (Rgrg −Ag) +

√
(Rgrg −Ag)2 − 4(De−c)2γ

3

) . (16)

The accuracy of this approximation is illustrated by Fig 1. We observe that within our 183

model as c increases so too does the maximum density of our locust formation. However, 184

as the mass of locusts, M , increases the maximum density remains constant and the 185

support ||Ω|| becomes larger. Finally, by using these derived relationships with field 186

measurements of maximum locust densities we can estimate values of γ. 187
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Fig 1. Large mass limit with estimates for the max value and support. The
max value and support are labelled ||g||∞ and Ω respectively. For both the simulation
and calculations D = 0.01, γ = 60, Rg = 0.25, rg = 0.5, Ag = 1, and c = 0 and 1. As
the mass M is increased the gregarious locust shape g becomes increasingly rectangular
as the maximum locust density does not depend on the total mass. In addition as the
amount of food is increased from c = 0 on the left to c = 1 on the right, the maximum
density for the gregarious locusts increases.

For the small mass limit, we begin with Eq (14) and approximate the social 188

interaction potential using a Taylor expansion, e
−|x|

r ≈ 1− |x|r (giving 189
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Qg ≈ (Rg −Ag)− |x|
(
Rg

rg
−Ag

)
). In addition, we ignore the effect of linear diffusion 190

within Ω. These assumptions give Eq (14) as 191

E[g] =

∫
Ω

1

2
g

([
(Rg −Ag)− |x|

(
Rg
rg
−Ag

)]
? g

)
+
De−cγ

6
g3 dx. (17)

Following [32], gives an estimate of the maximum gregarious locust density, ||g||∞, as 192

||g||∞ =
3

√√√√3M2
(
Ag − Rg

rg

)
4De−cγ

, (18)

with support, 193

||Ω|| = B

(
2

3
,

1

2

)
3

√√√√ MDe−cγ

6
(
Ag − Rg

rg

) . (19)

where B is the β-function (for definition see [36], page 207). 194

The results of these approximations can be seen in Fig 2. While these 195

approximations are less accurate than those of the large mass limit, they illustrate that 196

as the amount of food increases so too does the maximum hopper band density. 197

However this effect is less pronounced than in the large mass limit. It also demonstrates 198

how the maximum hopper band density and support both increase with an increase in 199

locust mass. 200
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Fig 2. Small mass limit with estimates for the max value and support. The
max value and support are labelled ||g||∞ and Ω respectively. For both the simulation
and calculations D = 0.01, γ = 60, Rg = 0.25, rg = 0.5, Ag = 1, and c = 0 and 1.

The accuracy of both the small and large mass approximations and the transition 201
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between the two can be seen in Fig 3 for both the maximum hopper band density and 202

support. In the simulations in order to estimate the finite support, Ω, rather than the 203

infinite support due to linear diffusion, g = 0.01 was used the cut-off value. 204
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Fig 3. Small and Large mass limit estimates and simulated results for both
the maximum hopper band density (left) and support (right). In the
simulations in order to estimate the finite support, Ω, rather than the infinite support
due to linear diffusion, Ω′, g = 0.01 was used the cut-off value.

Linear stability analysis of homogeneous steady states. To see what effect 205

food has on hopper band formation we look at the stability of the homogeneous steady 206

states of s, g, and c, given by s̄, ḡ, and c̄, with the total density ρ̄ = s̄+ ḡ. We assume 207

that c does not deplete (i.e. κ = 0), as otherwise the only homogeneous steady states 208

are c̄ = 0 or s̄ = ḡ = 0. We then perturb the homogeneous steady state to find under 209

what conditions the steady states are unstable. Using this assumption gives the 210

condition for hopper band formation (i.e., instability of the homogeneous steady state) 211

in terms of the global gregarious mass fraction Eq (6) and the total density as 212

φg > φ̄g =

De−c̄

ρ̄ +De−c̄ρ̄γ + Q̂s

Q̂s − Q̂g
. (20)

where Q̂s and Q̂g are the Fourier transform of Qs and Qg respectively. 213

From this, it can be seen that as ρ̄ increases the gregarious fraction required for 214

hopper band formation increases suggesting an upper locust density for hopper band 215

formation. However, the effect of ρ̄ on hopper band formation is diminished as the 216
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amount of available food increases. 217

For our specific functions Qg = Rge
− |x|rg −Age−|x| and Qs = Rse

− |x|rs , taking the one 218

dimensional Fourier transforms of Qs and Qg using the following definition, 219

f̂(k) =

∫
Rn

f(x)e−ik·x dx,

gives the following relationship, 220

φg > φ̄g =

De−c̄

ρ̄ +De−c̄ρ̄γ + 2Rsrs

2Ag − 2Rgrg + 2Rsrs
. (21)

From this we can find the maximum homogenous density, ρ̄, that locust aggregations 221

can still form. So taking Eq (21) and substituting φ̄g = 1 we can solve for ρ̄ as, 222

ρ̄ =
(Ag −Rgrg) +

√
(Ag −Rgrg)2 − (De−c̄)2γ

De−c̄γ
≈ 2

3
||g||∞,

where ||g||∞ is maximum density for the large mass limit given by Eq (15). 223

Finally, we calculate if it is possible for a particular homogeneous density of locusts

to become unstable (and thus form a hopper band). By calculating the homogeneous

steady state gregarious mass fraction as,

φg =
f2(ρ̄)

f1(ρ̄) + f2(ρ̄)
,

then by combining with (21) we obtain an implicit condition for hopper band formation 224

as 225

f2(ρ̄)

f1(ρ̄) + f2(ρ̄)
>

De−c̄

ρ̄ +De−c̄ρ̄γ + 2Rsrs

2Ag − 2Rgrg + 2Rsrs
. (22)

In Eq (22), if the values on the left are not greater than those on the right then it is not 226

possible for a great enough fraction of locusts to become gregarious and for instabilities 227

to occur. As the value of the right hand side decreases as the amount of food increases, 228

we can deduce that the presence of food lowers the required density for hopper band 229

formation. 230

Time until hopper band formation with homogeneous locust densities. We 231

also estimate time until hopper band formation with homogeneous locust densities and 232
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a constant c. By assuming that s and g are homogeneous we can ignore the spatial 233

components of Eq (12a) and Eq (12b). We again denote the combined homogeneous 234

locust density as ρ̄ however now ρ̄ = s(t) + g(t). Finally, assuming that g(0) = 0, we 235

find the homogeneous density of gregarious locusts as a function of time is given by 236

g(t) =
ρ̄f2(ρ̄)

f1(ρ̄) + f2(ρ̄)

(
1− e−[f1(ρ̄)+f2(ρ̄)]t

)
.

Which we then solve for t∗ such that g(t∗) = φ̄gρ̄, where φ̄g is given by Eq (20). This 237

gives an estimation for time of hopper band formation (i.e. the time required for the 238

homogeneous densities to become unstable) as, 239

t∗ =
− ln

(
1− φ̄g(f1(ρ̄)+f2(ρ̄))

f2(ρ̄)

)
f1(ρ̄) + f2(ρ̄)

. (23)

Thus, as increasing food decreases the gregarious mass fraction required for hopper band 240

formation it follows that it also decreases the time required for hopper band formation. 241

Center of mass. Another property of the model is how the center of mass for the 242

locusts behaves. For a single population with diffusive terms it has been shown that the 243

center of mass does not move [29]. Using a similar method we look at how the total 244

population of locusts behaves with a constant food source, i.e. c(x, t) is constant in 245

space and time. We assume that ρ(x, t)→ 0 on the boundary of our domain Ω (note: 246

the proof also works if zero flux through the boundary of the domain is imposed), and 247

that Qs and Qg are symmetric. For convenience we also let D∗ = De−c. We begin by 248

adding equations (13a) and (13b), and rewrite the result in terms of the local gregarious 249

mass fraction (see Eq (5)), which gives 250

∂ρ

∂t
= −∇ ·

[
−∇(Qs ? ρ)ρ+∇(Qs ? ρ)ψgρ−∇(Qg ? ρ)ψgρ− γD∗ρ2∇ρ−D∗∇ρ

]
.

We now consider the behaviour of the center of mass. For notational simplicity we let 251

〈a, b〉 =

∫
Ω′
ab dx,
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and define the mass of locusts to be 252

M̄ = 〈ρ, 1〉.

Then the position of the center of mass, C, of ρ, is given by 253

C =
1

M̄
〈ρ,x〉.

The motion of the center of mass is then given by,

M̄
∂C

∂t
=

〈
∂ρ

∂t
,x

〉
,

= 〈−∇ · [−∇(Qs ? ρ)ρ+∇(Qs ? ρ)ψgρ−∇(Qg ? ρ)ψgρ (24)

−γD∗ρ2∇ρ−D∗∇ρ
]
,x
〉
,

= 〈−∇(Qs ? ρ), ρ〉+ 〈∇(Qs ? ρ), ψgρ〉 − 〈∇(Qg ? ρ), ψgρ〉

−
〈
γD∗ρ2∇ρ, 1

〉
− 〈D∗∇ρ, 1〉 , (25)

where Eq (25) is obtained using integration by parts and our boundary conditions.

Then, considering the diffusion terms in Eq (25), we get

−〈D∗∇ρ, 1〉 −
〈
γD∗ρ2∇ρ, 1

〉
= −〈D∗∇ρ, 1〉 −

〈
γD∗

3
∇ρ3, 1

〉
,

= 0,

by our boundary conditions and integration by parts. This gives 254

M̄
∂C

∂t
= 〈−∇(Qs ? ρ), ρ〉+ 〈∇(Qs ? ρ), ψgρ〉 − 〈∇(Qg ? ρ), ψgρ〉 . (26)

Then using integration by parts and our boundary conditions on Eq (26), we obtain 255

M̄
∂C

∂t
= 〈Qs ? ρ,∇(ρ)〉 − 〈Qs ? ρ,∇(ψgρ)〉+ 〈Qg ? ρ,∇(ψgρ)〉 . (27)
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However, using properties of convolutions and the assumption Qs and Qg are 256

symmetric, we find and alternate expression for Eq (26) as 257

M̄
∂C

∂t
= −〈Qs ? ρ,∇(ρ)〉+ 〈Qs ? ρ,∇(ψgρ)〉 − 〈Qg ? ρ,∇(ψgρ)〉 . (28)

Summing Eq (27) and Eq (28), and dividing by 2M̄ we find 258

∂C

∂t
= 0.

From this we can conclude that in absence of non-uniformities in the food distribution 259

or other movement mechanisms (such as alignment) the center of mass of locusts cannot 260

move. 261

Numerical results 262

We now investigate both the effect of food on locust hopper band formation and the 263

effect of gregarisation on locust foraging efficiency in one dimension. In order to 264

simulate our equations, we used a first order upwinding Finite Volume Scheme for the 265

advection component with Fourier transforms to solve the convolution and central 266

differencing schemes for the diffusion terms. We used an adaptive Runge-Kutta scheme 267

for time, a full detailed derivation can be found in S2 Appendix. 268

Parameter selection and initial conditions. The bulk of the parameters, 269

Rs, rs, Rg, rg, Ag, k, and δ, have been adapted from [31] to our non-dimensionalised 270

system of equations. We explore two parameter sets that we will term symmetric and 271

asymmetric based on the time frame of gregarisation vs solitarisation. In the symmetric 272

parameter set (δ = 1, k = 0.681), gregarisation and solitarisation take the same amount 273

of time and the density of locusts for half the maximal transition rate is lower for 274

solitarization. This is the default parameter set from Topaz et. al. [31] with an adjusted 275

k1 term that is calculated using Eq (22) and the upper range for the onset of collective 276

behaviour as ≈ 65 locusts/m2 [31, 38]. This behaviour is characteristic of the Desert 277

locust (Schistocerca gregaria) [10]. 278

In the asymmetric parameter set (δ = 1.778, k = 0.1), solitarisation takes an order of 279
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magnitude longer than gregarisation, and the density of locusts for half the maximal 280

transition rate is lower for solitarization. This is the alternative set from Topaz et. 281

al. [31]. The Australia plague locust (Chortoicetes terminifera) potentially follows this 282

behaviour taking as little as 6 hours to gregarise but up to 72 hours to solitarise [37, 39]. 283

The complete selection of parameters can be seen in Table 1. 284

Table 1. Dimensionless parameters used in numerical simulations for both
symmetric and asymmetric gregarisation-solitarisation.

Variable Symmetric Value Asymmetric Value Source

k 0.681 0.1 Eq (22) [10,23,31,37]
δ 1 1.778 [10,31,37]
D 2.041 2.041
γ 431.87 294.44 Eq (15) [17]
Rs 1063.5 878.1 [31]
rs 1 1 [23,31]
Rg 940.5 775.6 [31]
rg 0.2857 0.2857 [23,31]
Ag 2008.7 1658.6 [31]
κ 0.09 0.18 Eq (13c)

At the densities we are investigating we will assume that the majority of movement 285

will be due to locust-locust interactions rather than random motion, so we set our 286

dimensional linear diffusion term to be of the order 10−2, giving our non-dimensional 287

linear diffusion as D = 2.041 for both symmetric and asymmetric parametrisation. 288

Next, we estimate the maximum locust density as ≈ 1000 locusts/m2 [17] and adapt 289

this to our one dimensional simulation as ||g||∞ ≈ 10
√

10 locusts/m. Then using Eq 290

(15) we find γ = 431.87 for the symmetric parameters and γ = 294.44 for the 291

asymmetric parameters. 292

To estimate κ we begin with Eq (13c) and set the nondimensionalised density of 293

locusts to 1 (ρ = 1) (and ρ = 0.5 for the asymmetric parameters), we then want the 294

locusts to consume approximately 70% of the food over the course of the simulation 295

(i.e., c transitions from c = 1 to c = 0.30) ). Solving for κ we find κ ≈ 0.09 (and 296

κ ≈ 0.18 for the asymmetric parameters). 297

Our spatial domain is the interval x = [0, L], where L = 3/0.14, with periodic 298

boundary conditions (i.e., s(0, t) = s(L, t)). Our time interval is 12.5 units of time (in 299

dimensional terms this is a 3m domain for a simulated 50 hours). 300
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The initial locusts densities are given by 301

s(x, 0) =
ρamb

16.6
(16.6 + µ) and g(x, 0) = 0, (29)

where ρamb is a ambient locust density and µ is some normally distributed noise, 302

µ ∼ N (0, 1). To ensure that simulations were comparable, we set-up three locust initial 303

condition and rescaled them for each given ambient locust density. Finally, the initial 304

condition for food is given by a smoothed step function of the form, 305

c(x, 0) =
FM
2ζ

[
tanh

(
α

[
x−

(
x0 −

ζ

2

)])
− tanh

(
α

[
x−

(
x0 +

ζ

2

)])]
, (30)

with α = 7, x0 = L/2, FM being the food mass and ζ being the initial food footprint. 306

We will also introduce ω = 100ζ/L which expresses the food footprint as a percentage of 307

the domain. 308

The effect of food on hopper band formation. To investigate the effect that 309

food had on locust hopper band formation, we ran a series of numerical simulations in 310

which the total number of locusts and the size of food footprint were varied, while the 311

total mass of food remained constant. The food footprint ranges from covering 2.5% of 312

the domain to 50% of the domain (ω = 2.5 to ω = 50). For the symmetric parameters 313

four food masses were tested, FM = 1.5, 2, 2.5 and 3, and for the asymmetric variables 314

two food masses were tested, FM = 1.5 and 3. As a control we also performed 315

simulations with both no food present and a homogeneous food source, represented by 316

ω = 0 and ω = 100 respectively, for each ambient locust density. 317

We varied the ambient locust density ranging from ρamb = 0.8 to ρamb = 1.4 for the 318

symmetric parameters. This range was selected based on Eq (22) so that in the absence 319

of food hopper band formation would not occur. We also ran three simulations for each 320

combination of ρamb, ω, and FM with varied initial noise and took the maximum peak 321

density across the three simulations, as we found in certain cases the initial noise had an 322

effect on whether a hopper band would form. 323

For the asymmetric variables we varied ρamb from ρamb = 0.3 to ρamb = 0.55, to test 324

the effect food had on the time frame of hopper band formation. From Eq (22) there 325

should be hopper band formation at the upper half of this density range, however from 326
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Eq (23) this will only occur outside or right at the end of our simulated time frame. We 327

ran a single simulations for each combination of ρamb, ω, and FM . 328

The results for the symmetric parameter experiments are displayed in Fig 4. The 329

plots show the final peak gregarious density for the varying food footprint sizes and 330

ambient locust densities. In the blue regions there was no hopper band formation and in 331

the green regions there was successful hopper band formation. It can be seen in the 332

plots that as the food mass is increased the minimum required locust density for hopper 333

band formation decreases. This effect is more pronounced within an optimal food width 334

and this optimal width increases as as the amount of food increases. 335

Fig 4. Maximum gregarious locust density for the symmetric gregarisation
parameters with varying food footprint sizes and initial ambient locust
densities. For the simulations, x = [0, 3/0.14] with periodic boundary conditions and
t = [0, 12.5]. The initial condition for locust densities is given by Eq (29) and food
initial conditions are given by Eq (30). Ambient locust density ranges from ρamb = 0.8
to ρamb = 1.4, food footprint ranges from ω = 0 to ω = 50, the food mass
FM = 1.5, 2, 2.5 and 3, and the consumption rate κ = 0.09. The plots show the final
peak gregarious density for the varying food footprint sizes and ambient locust densities,
in the blue regions there was no hopper band formation and in the green regions there
was successful hopper band formation.
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The results for the asymmetric parameter experiments are displayed in Fig 5. Again, 336

green indicates successful hopper band formation and blue indicates no hopper band 337

formation. It can be seen in these plots that with no food present a hopper band failed 338

to form within the simulated time. From this we can infer that food also decreases the 339

required time for hopper band formation, again there is an optimal food width for this 340

effect. 341

Fig 5. Maximum gregarious locust density for the asymmetric
gregarisation parameters with varying food footprint sizes and initial
ambient locust densities. For the simulations, x = [0, 3/0.14] with periodic
boundary conditions and t = [0, 12.5]. The initial condition for locust densities is given
by Eq (29) and food initial conditions are given by Eq (30). Ambient locust density
ranges from ρamb = 0.3 to ρamb = 0.55, food footprint ranges from ω = 0 to ω = 50, the
food mass FM = 1.5 and 3, and the consumption rate κ = 0.18. The plots show the
final peak gregarious density for the varying food footprint sizes and ambient locust
densities, in the blue regions there was no hopper band formation and in the green
regions there was successful hopper band formation.

We can delve deeper into the results by looking at a representative sample of 342

simulations in Fig 6. In these simulations ρamb = 1.2, κ = 0.09, and FM = 1.5, with 343

food footprints ω = 7.5, 10, and 12.5 as well as with no food present. In the 344

simulations in which food is present, gregarious locusts aggregate at the center of the 345

food. If the food source is too narrow (ω = 7.5, t = 3) there is an attempt at hopper 346

band formation but the gregarious mass is too small and the food source has not been 347

sufficiently depleted so a large portion remains within the food source, thus the hopper 348

band does not persist. If the food is too wide (ω = 12.5) the gregarious locusts simply 349

cluster in the center of the food and don’t attempt hopper band formation. However, if 350

the food width is optimal (ω = 10) there is a successful hopper band formed, this is seen 351

as clump or aggregation of gregarious locusts in the final plot. 352

September 16, 2020 23/32

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2020. ; https://doi.org/10.1101/2020.09.21.305896doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.305896
http://creativecommons.org/licenses/by/4.0/


0 10 20
0

0.5

1

1.5

2

0 10 20
0

0.5

1

1.5

2

0 10 20
0

0.5

1

1.5

2

0 10 20
0

0.5

1

1.5

2

0 10 20
0

0.5

1

1.5

2

0 10 20
0

0.5

1

1.5

2

0 10 20
0

0.5

1

1.5

2

0 10 20
0

0.5

1

1.5

2

0 10 20
0

0.5

1

1.5

2

0 10 20
0

0.5

1

1.5

2

0 10 20
0

0.5

1

1.5

2

0 10 20
0

0.5

1

1.5

2

0 10 20
0

0.5

1

1.5

2

0 10 20
0

0.5

1

1.5

2

0 10 20
0

1

2

3

0 10 20
0

0.5

1

1.5

2

Fig 6. A selection of plots showing the effect of food distribution on
gregarisation and locust hopper band formation. In these simulations
ρamb = 1.2, κ = 0.09, and FM = 1.5 with ω = 7.5, 10, and 12.5, as well as with no food
present (labelled ω = 0).

The effect of gregarisation on foraging efficiency. It is also possible to 353

investigate the effect of gregarisation on foraging efficiency. Using [40] as a guide we 354

first calculate the per capita contact with food for solitarious and gregarious locusts, 355

respectively as 356

ηs(t) =

∫ L

0

c(x, t)s(x, t)

1− φg(t)
dx and ηg(t) =

∫ L

0

c(x, t)s(x, t)

φg(t)
dx.
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We then calculate the instantaneous relative advantage at time t as 357

b(t) =
ηg(t)

ηs(t)
. (31)

By looking at the instantaneous relative advantage vs the global gregarious mass 358

fraction prior to hopper band formation in Fig 7, it can be seen that as the gregarious 359

mass fraction increases so too does the foraging advantage of being gregarious. Thus, as 360

a greater proportion of locusts become gregarized it is more advantageous to be 361

gregarious. This effect is increased by the mass of food present but is diminished by the 362

size of the food footprint to the point where no advantage is conferred when the food 363

source is homogeneous. This effect is visualised in Fig 6, as gregarious locusts aggregate 364

in the center of the food mass and displace their solitarious counterparts. 365
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Fig 7. Instantaneous relative advantage of gregarious locusts vs gregarious
mass fraction at various food footprints and food masses. In these simulations
ρamb = 0.95 and κ = 0.09. The homogeneous food source is labelled ω = 100. It can be
seen that as the gregarious mass fraction increases so too does the foraging advantage of
being gregarious, this effect is increased by the mass of food present but is diminished
by the size of the food footprint.

Discussion 366

Locusts continue to be a global threat to agriculture and food security, and so being 367

able to properly predict and control outbreaks is of great importance. In this paper we 368

presented a continuum model that includes non-local and local inter-individual and 369
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interactions with food resources. This model extends the existing Topaz et. al. 370

2012 [31] model for locust gregarisation to include food interactions and local repulsion. 371

By analysing and simulating our new model we have found that food acts to: increase 372

maximum locust density, lower the gregarious fraction required for hopper band 373

formation, and decreases both the required density and time for hopper band formation 374

with this effect being more pronounced at some optimal food width. 375

Analytical investigations of our model shows that a spatially uniform food source has 376

a variety of effects has on locust behaviour. Firstly, by considering a purely gregarious 377

population we found that the maximum locust density is affected by the amount of food 378

present, in that increasing food leads to increased maximum density. Then, by 379

performing a linear stability analysis we found the gregarious mass fraction required for 380

hopper band formation depends on both the ambient locust density and the amount of 381

food present, with increasing food decreasing the required gregarious mass fraction. 382

Using this relationship we then found that our model also has a theoretical maximum 383

locust density for hopper band formation, and that the presence of food lowers both the 384

required time and density of locusts for hopper band formation. Finally, we have also 385

shown that the center of mass of locusts is not dependent on the locust-locust 386

interactions we explored, so prior to extra interactions such as alignment locusts will 387

aggregate at roughly the center of food sources. This leads to a possible extension of the 388

model by including the alignment component of locusts collective movement. 389

While it has been shown that highly clumped food sources lead to a greater 390

likelihood of gregarisation [20], using numerical simulations we have shown that there 391

exists an optimal width for these food clumps for hopper band formation. This effect 392

was shown to lower the required density for hopper band formation via the symmetric 393

parameters and the required time via the asymmetric parameters. This optimal width is 394

dependent on the amount of food present relative to the locust population. This effect 395

appears to be brought about by the depletion of the food source, if the food source is 396

not sufficiently depleted, then a gregarious hopper band will fail to form because a 397

portion of the gregarious population will remain on the food. 398

In 1957 Ellis and Ashall [41] found that dense but patchy vegetation promoted the 399

aggregation of hoppers and that sparse uniform plant cover promoted their dispersal. 400

By looking at the relative foraging advantage of gregarious locusts in these situations we 401
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found that as the gregarious mass fraction increases so too does the foraging advantage 402

of being gregarious. This effect is increased by the mass of food present but is 403

diminished by the size of the food footprint to the point where no advantage is offered 404

with a homogenous food source. While there are various explanations about the costs 405

and benefits of group living [42], there are very few explanations about the evolution of 406

phase polyphenism (but see the predator percolation hypothesis in [43]) and why some 407

animals would switch back and forth between solitary and gregarious phenotypes. Our 408

results, in line with recent studies about solitary and social foraging in complex 409

environments [44], provide a possible evolutionary explanation for Ellis and Ashall 410

observations. 411

Preventative methods are the key to improving locust control. This includes the 412

ability to predict mass gregarisation according to resource distribution patterns so that 413

the area searched for locusts is reduced and control efforts are deployed in high risk 414

areas early on [18]. Our results have the potential to improve predictive gregarisation 415

models and early detection efforts by further increasing our understanding of the link 416

between gregarisation and vegetation (resource) distribution, the latter becoming 417

increasingly easy to quantify during field surveys, and aerial surveys including drones 418

and satellite imagery [21,37]. Future research should focus on developing decision 419

support systems integrating predictive gregarisation models and GIS data from surveys. 420
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scheme used for simulating the numerical results.
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