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Genome-scale reaction network models are available for many prokaryotic organisms. Yet, to
predict the proteome and metabolome of the cell from them, additional information about (i) the
nonlinear enzyme kinetics and (ii) the regulation of protein expression by metabolic signals is nec-
essary. Knowledge about the latter could be sidestepped by assuming that expression regulation
has evolved to achieve the protein composition that maximizes cellular growth rate. A general
mathematical framework for optimizing the growth rate of models comprising an arbitrarily com-
plex metabolic network and a relatively simple protein-synthesis network was recently formulated
independently by two research groups [de Groot et al., PLoS Comput. Biol. 16, e1007559 (2020);
Dourado & Lercher, Nature Commun. 11, 1226 (2020)]. Here, this formalism is further developed
with particular focus on carrying out the optimization numerically. To this end, we identify the
concentrations of the enzymes as the independent variables of the optimization problem and propose
novel multiplicative updates for the iterative calculation of the dependent metabolite concentrations.
The reduced gradient method, with analytical derivatives, is employed for the numerical optimiza-
tion. Additionally, the roles of the dilution of the metabolite concentrations by growth and the
commonly invoked constraint on the cell dry mass density are clarified. These developments should
lay the basis for the practical optimization of large-scale kinetic models, thus formally connecting
the physiological “macrostate” of the cell, characterized by its growth rate, to its “microstate”,
described by the cell proteome and metabolome.

Author summary An evolving population of non-
interacting, unicellular organisms in a constant environ-
ment will maximize its growth rate. By expressing the
growth rate as a mathematical function of the cellular
composition, it becomes possible to formulate an opti-
mization problem whose solution yields the cell proteome
and metabolome at the maximal growth rate. The formu-
lation and solution of such an optimization problem has
the potential to elucidate fundamental optimality princi-
ples in living cells and to enable the engineering of com-
plex biological systems. Building on previous work, here
we address the task of solving this optimization prob-
lem numerically. In the process, we elucidate the math-
ematical role of some common simplifying approxima-
tions. This allows us to organize many of the existing
formulations of the optimization problem into a hierar-
chy, whose lower levels are reached by invoking these ap-
proximations.

I. Introduction

Unicellular organisms rely on networks of biochemi-
cal reactions to synthesize all their molecular compo-
nents from a handful of small molecules.1 Each reac-
tion in the network has two main attributes: the sto-
ichiometry of the molecules participating in it and the
identity of the enzyme that catalyzes the reaction. For
many prokaryotes, the enzymes encoded in the genome
and their corresponding reactions are currently known at
close to a complete genomic coverage.2,3 Turning this de-
tailed knowledge of cell metabolism into a predictive tool

of cell physiology is a central aim of metabolic engineer-
ing and prokaryotic systems biology.

At the core of the mathematical analysis of metabolism
lies the observation that, at steady state, the total influx
and outflux of every compound in the network should ex-
actly balance each other.4,5 Together, these mass-balance
equalities of all compounds limit the space of the possi-
ble reaction fluxes, and thus constrain the flow of matter
from the inputs to the outputs of the network. These
fundamental constraints, which depend only on the stoi-
chiometries of the reactions and on their connectivity in
the network, are expressed most elegantly using matrix
formalism.6,7

While the existing methods of metabolic analysis differ
greatly in the way this mathematical core is extended,
they fall roughly into two main categories: constraint-
based modeling8 and kinetic modeling.9 The former
methods supplement the metabolic reaction network with
an objective function (typically a linear combination of
the fluxes), whose optimum is intended to correspond to
the physiological state of the organism under the mod-
eled growth condition.4,5 To describe cell growth, the
network is typically augmented with an extra “biomass
reaction”, which reflects the stoichiometries of the pre-
cursor molecules (as well as the energy and reducing
equivalents) employed in the synthesis of the cellular
macromolecules.10,11 When predicting maximum growth,
for example, one aims to maximize the flux through the
biomass reaction, subject to the mass-balance constraints
and to physiologically realistic bounds on the fluxes of
the input reactions (e.g., glucose uptake). This general
optimization framework, commonly referred to as flux-
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balance analysis (FBA),12 is widely used to calculate op-
timal reaction fluxes in large metabolic networks. Being
unaware of the necessary expression levels of the enzymes
and the intracellular metabolite concentrations, however,
the optimization may favor costly metabolic routes that
are avoided by the cell.13

The cell metabolome and proteome take center stage in
the kinetic modeling of metabolism, where the flux of ev-
ery reaction is written as a mathematical function of the
concentrations of the metabolites participating in it and
the corresponding enzyme. Although the functional form
of this relation, known as the rate law, may be very com-
plex if mechanistic details are fully accounted for, simpler
generic expressions appear to be sufficient for the analysis
of metabolic reaction networks.14,15 Even these, however,
contain biochemical parameters (e.g., the turnover num-
ber of each enzyme and the Michaelis constants of its
substrates and products), whose knowledge is currently
limited to a relatively small number of well-characterized
enzymes of only a few organisms.16,17 To further compli-
cate matters, the conditions of the in vitro measurements
collected in databases like BRENDA16 and SABIO-RK17

may differ from those of the intracellular milieu, which
in turn is likely to be inhomogeneous across the cellu-
lar interior. Consequently, the inference of the catalytic
parameters by fitting to dynamic time-course or steady-
state metabolic data is an essential step in the construc-
tion of kinetic models of metabolism.9

The mathematical analysis presented in this paper
takes as its starting point the constraint-based model-
ing framework, including an objective function. Differ-
ently from FBA and related methods, however, the reac-
tion fluxes are “dressed” with the rate laws of the ki-
netic modeling, thus enabling the optimization of the
objective function directly with respect to the metabo-
lite and enzyme concentrations. Despite the difficulties
of obtaining good-quality kinetic parameters mentioned
above, the formalism assumes that the rate laws of all
reactions in the network, including the numerical values
of all necessary rate-law parameters, are known.

In principle, the fluxes calculated with FBA-like meth-
ods can be related to the molecular concentrations in a
post-processing step by inverting the mathematical rela-
tionships of the rate laws.18 The solution to this inverse
problem, however, is not unique, as different combina-
tions of metabolite and enzyme concentrations could lead
to identical fluxes.18 An additional criterion is therefore
needed to select among the various possibilities. In their
systematic study, Noor et al. minimized the total enzyme
demand (i.e., the total enzyme mass density) of the mod-
eled metabolic network at fixed reaction fluxes.18 As the
enzyme concentrations are readily expressed in terms of
the fixed reaction fluxes and the metabolites through the
rate laws, the minimization problem was formulated in
the space of the metabolite concentrations only.18 (Note
that by fixing the fluxes one implicitly fixes the rate of
biomass production, hence the growth rate.)

A similar minimization of the density with respect to

the reactants, keeping the reaction flux fixed, was used
to analyze metabolic reactions in isolation.19 Differently
from ref. 18, in this case the objective function received
contributions from the densities of both the enzyme and
its substrates. The minimization predicted a non-linear
relationship between the optimal enzyme and substrate
concentrations, which was independent of the magnitude
of the constrained flux. This relationship was demon-
strated to hold, without any fitting parameter, for the
enzyme-substrate pairs of reactions that are the domi-
nant sink of their substrates, and which thus could legit-
imately be treated as being approximately isolated.19

The minimization of the total enzyme mass density at
a fixed reaction flux (i.e., fixed growth rate) had also been
studied for general metabolic networks in refs. 20 and 21,
where the optimal solutions were shown to be elementary
flux modes.6,22,23 In the context of cell growth, however,
the biological motivation for minimizing a mass density
at fixed growth rate may not be immediately clear. An
objective function with a more direct biological interpre-
tation is the cell growth rate, as it is equivalent to evolu-
tionary fitness for non-interacting unicellular organisms
in a constant environment.24,25

Previously, Molenaar et al. had argued that many
of the observed metabolic choices of prokaryotes could
be rationalized as strategies for achieving growth-rate
maximization.26 As the authors had nicely explained,
however, maximizing the growth rate is only possible
in the case of models that account for both metabolism
and macromolecular synthesis, even if in a coarse-grained
manner.26 Any model of only part of the complete cel-
lular design, no matter how detailed, does not provide
access to the growth rate.26 In the light of this insight,
many researchers have employed a minimal complete-cell
model, with one reaction for metabolism and one reac-
tion for protein synthesis, whose growth rate is maxi-
mized analytically.27–30 In each case, however, the ana-
lytical optimization was carried out in a way that did not
generalize to large-scale metabolic models.

Unifying the separate mathematical ingredients out-
lined above, Dourado and Lercher recently formulated
a growth-rate optimization problem for metabolic mod-
els of arbitrary size.31 First, the enzyme-cost perspective
of Noor et al. was integrated with the constraint-based
optimization framework by explicitly modeling the en-
zymes as products of a dedicated biochemical reaction,
akin to the biomass reaction of FBA. A new enzyme, the
“ribosome”, was assigned to this reaction. As a result,
the growth rate of the model becomes a function of the
kinetic rate of the ribosome and the amounts of the en-
zymes that need to be synthesized. Second, the roles of
the mass density and the growth rate, as an objective
function and a constraint, were exchanged compared to
the treatments of refs. 18 and 19. Nevertheless, like there,
the problem of optimizing the growth rate was formu-
lated in the space of the metabolite concentrations. This
led to closed-form expressions for the growth rate, the
enzyme concentrations, and the reaction fluxes as func-
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tions of the concentrations of the metabolites.31 These
were further utilized to relate the marginal fitness bene-
fits of all intracellular concentrations, which were shown
to be identical in the optimal balanced growth state.31

A similar mathematical synthesis was reported si-
multaneously by de Groot and co-workers,32 who mod-
eled the production of proteins in a more general way.
Whereas in ref. 31 all enzymes were produced through a
single reaction, a separate protein-synthesis reaction was
introduced for each enzyme in ref. 32. This seemingly
minor generalization prevents the derivation of some of
the closed-form expressions of Dourado and Lercher, as
we show later below. The main focus in ref. 32 was on
extending the geometric picture of a feasible flux cone,6,7

which plays a central role in the linear program of FBA,
to the nonlinear optimization problem at hand. In par-
ticular, “elementary growth modes” were defined as the
edges of the nonlinear cone, in analogy to the elementary
flux modes in the linear problem.

In the present paper, we work with the more general
model of de Groot et al.32 With the benefit of hindsight,
we show that the principal difference between the for-
malisms of refs. 31 and 32 is the choice of the indepen-
dent variables used to parametrize the feasible states of
the optimization. As already mentioned, these were the
metabolite concentrations in ref. 31. In ref. 32, on the
other hand, the feasible states were visualized as being
in the space of the ribosome fractions allocated to the
synthesis of the separate proteins. We find that while
this choice more closely reflects the degrees of freedom
accessible to the cell’s regulatory system, it unnecessarily
complicates the mathematical expressions needed for the
actual numerical optimization, including the analytical
derivatives of the growth rate. An equally general alter-
native is to treat the concentrations of the proteins as
independent variables. In our opinion, this choice leads
to simpler mathematical expressions that are easier to in-
terpret intuitively. The ensuing optimization framework,
developed below, can be viewed as a generalization of re-
source balance analysis (RBA), in which the metabolite
concentrations are absent altogether.33,34 In our treat-
ment the metabolite concentrations influence the satu-
ration of the enzymes, and thus appear as the depen-
dent variables of the optimization. This generalization
leads to non-convex optimization problems in cases in-
volving the choice among alternative active metabolic
subnetworks.35

The rest of the paper is organized as follows. A model
of a cell in balanced growth, comprising a set of mass-
balance equalities, is formulated in Sec. II A. While this
is essentially the model of ref. 32 (without a density con-
straint), we make use of matrix notation, thus making the
formalism more concise and easier to code using vector-
ized objects. In Sec. II B, we pose the problem of optimiz-
ing the growth rate, and use the mass-balance equalities
of the enzymes to eliminate the ribosome allocation frac-
tions. (These variables were retained in ref. 32, where the
concentrations of the proteins were eliminated instead.)

The remaining mass-balance equalities of the metabolites
constrain the space of feasible concentrations. In Sec.
II C 1 we propose novel multiplicative updates to solve
these constraints numerically for the concentrations of
the metabolites, treating the concentrations of the en-
zymes as parameters. While parametrizing the feasible
states in terms of the protein concentrations is always
possible, using the concentrations of the metabolites as
parameters becomes an option when the stoichiometric
matrix of the model has additional structure (Sec. II C 2).
The requirements that enable such metabolite-centered
perspective, first developed in ref. 31, are spelled out in
Sec. II E, after introducing three minimal models used
to illustrate the developed formalism (Sec. II D). In Sec.
II F, we highlight the inability of the examined model to
keep its protein concentrations finite upon maximization
of the growth rate, and discuss the role of the metabolites
in this context. The problem of infinite protein concen-
trations is overcome by either neglecting the dilution of
the metabolites completely (Sec. II G) or by assuming
that either the dry-mass density or the macromolecular
density of the cell is constant (Sec. II H). In all cases,
the reduced gradient method is shown to be well suited
for the numerical optimization of the growth rate (Sec.
II G 1). The final section of the paper (Sec. III) summa-
rizes our findings, charts the formal relationship between
the optimization problem we study and many of its vari-
ations in the literature, and ends with an outlook.

II. Methods and results

A. Formulation of the model

We model all cellular processes using the mathematics
of chemical reaction networks.36,37 Consequently, even
processes that lack chemical steps, like the passive trans-
port of sugar molecules across the cell membrane, for
example, are referred to as “chemical reactions”. We as-
sume that the reactions are catalyzed by enzymes, whose
kinetics are specified by appropriate rate laws.14 Our
treatment neglects stochastic fluctuations that are both
extrinsic and intrinsic to the cell,38 where the former
refers to the differences in the catalytic parameters of
the enzymes from one cell to another, and the latter to
the fluctuations in the numbers of the chemical species
about their averages for constant values of the catalytic
parameters. Additionally, we assume that all reactions
proceed homogeneously in time and space, thus ignor-
ing complications related to the cell cycle39,40 and cell
structure.

A single growing cell increases its volume and mass
for some time and subsequently divides. In the present
context, the issue of individual cell division is avoided
by viewing the extensive variables in the formalism (e.g.,
the amounts of the compounds and the volume in which
the reactions take place) as referring not to a single cell
but to a cell culture.41 Nonetheless, if all cells in the
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culture are identical, albeit at different ages since their
last division, the intensive variables (e.g., densities and
concentrations) are also properties of a single (average)
cell. For simplicity, we will speak about such a single cell,
even when discussing extensive variables.

1. The cell as a network of chemical reactions

The amounts of the chemical species, collected in the
vector n (mol), change in time because of the chemical
reactions as follows:

ṅ(t) = Nv(t). (1)

Here, the dot above n indicates differentiation with re-
spect to time; the vector v (mol s−1) contains the ve-
locities of the reactions; and the matrix N contains the
stoichiometric coefficients of the molecules participating
in the reactions. (Lowercase and uppercase bold letters
are used for vectors and matrices, respectively.)

The mathematical properties of the stoichiometric ma-
trix N are of central importance in the structural analy-
sis of the kinetic system (1).42 In particular, the left null
space of N corresponds to quantities that are conserved
by the simultaneous kinetics of all reactions, whereas
its right null space corresponds to combinations of reac-
tion fluxes that leave the molecular amounts unchanged.
While the null spaces of N play a fundamental role in
the flux-balance analysis (FBA) of metabolic networks,6,7

they correspond to properties of the system (1) that are
independent of its kinetics. The calculation of the growth
rate, however, requires additional, kinetic information.

2. Cell reactions are catalyzed by enzymes

As such, (1) does not constitute a closed dynamical sys-
tem. To achieve closure, the reaction velocities should be
related to the kinetic variables n, whose time derivatives
appear on the left-hand side.

Before specifying these relationships, we distinguish
between two types of molecules—catalysts (i.e., facilita-
tors of the reactions) and non-catalysts.31,32 We will refer
to the former as “enzymes” and the latter as “metabo-
lites”. While motivated by the biochemical usage of these
terms, here we use them more broadly. In particular,
our enzymes will include the ribosome and transporter
proteins, without necessarily implying active transport.
Similarly, our metabolites will include the substrates and
the products of all reactions, as long as the latter are not
already classified as enzymes. With this understanding,
we partition the vector of moles as

n(t) =

[
nx(t)
ne(t)

]
, (2)

where the subscripts x and e refer to, respectively, the
metabolites and the enzymes. With Nx and Ne denoting

the numbers of these two types of molecules, n has Nx+
Ne elements.

Like refs. 31 and 32, we assume that all modeled reac-
tions are catalyzed by enzymes, with the enzymes sup-
posed to be sufficiently dilute to appear linearly in the
reaction velocities. Using matrix notation, we write this
linear relationship as

v(t) = Rα(cx)ne(t). (3)

Here, the matrix Rα (s−1) contains the molar rates of the
reactions (i.e., rate per mole of enzyme), which are given
by appropriate enzyme rate laws.14 These are functions
of the concentrations of the metabolites, cx, and the en-
zyme kinetic parameters [not indicated in (3)]. Since the
concentrations of the chemical species are

c(t) = n(t)/V (t), (4)

the cell volume, V (l, liter), becomes relevant. Although
not made explicit in (3), the variables cx also depend
on the time. (The meaning of the subscript of Rα will
become apparent in the next subsection.)

Combining (1) and (3), thus eliminating the reaction
velocities, we get

ṅ(t) = NRα(cx)ne(t). (5)

The temporal changes of all chemical species (on the left-
hand side of this equality) are driven by the enzymes on
the right-hand side. Since the enzymes appear on both
sides, the dynamical system (5) is self-replicating26 or
self-fabricating.32 Here, we refer to it as “autosynthetic”,
as similar models have been studied before.43

Equation (5), together with the definition of the con-
centrations in (4), is still not a closed dynamical system,
since the rate of change of the volume remains unspeci-
fied. For full closure, it is necessary to have an additional
kinetic equation of the form

V̇ (t) = r(n(t), V (t)), (6)

where the rate r is, potentially, a function of all kinetic
variables. Together, (5) and (6) constitute a closed dy-
namical system. All questions about its kinetics can be
addressed by integrating these differential equations in
time.

3. Metabolism and protein synthesis

As in refs. 31 and 32, we will treat all enzymes
as proteins and will take all proteins to be enzymes.
We lump transcription and translation in an effective
protein-synthesis reaction catalyzed by the enzyme “ri-
bosome”. Following ref. 32, we introduce Ne reactions of
protein synthesis—one for each enzyme. With the ribo-
some kept aside, the remaining Nm = Ne − 1 enzymes
catalyze the metabolic reactions. For simplicity, we take
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the metabolic reactions to be in a one-to-one correspon-
dence with the metabolic enzymes.

In line with these assumptions, we partition the vectors
in (3) as

v(t) =

[
vmet(t)
vps(t)

]
, ne(t) =

[
nm(t)
nr(t)

]
, (7)

where vmet and vps are the rates of, respectively, the
metabolic and protein-synthesis reactions, and nm and
nr are the amounts of, respectively, the metabolic en-
zymes and the ribosomes.

While all protein-synthesis reactions are catalyzed by
the ribosome, not all ribosomes are simultaneously en-
gaged in the synthesis of the proteins of one particular
type. We denote by αε the fraction of the total ribosome
pool allocated to the synthesis of enzymes of type ε, and
collect these fractions in the vector α. For simplicity, we
assume that there are no idle ribosomes, hence the sum
of the Ne ribosome allocation fractions equals one. This
normalization condition is most conveniently written us-
ing vector notation as

1Te α =

Ne∑
ε=1

αε = 1, (8)

where 1e is a vector composed of Ne ones, and the su-
perscript T denotes the transpose of a column vector to
a row vector.

With the partitioning of the vectors in (2) and (7), the
matrices N and Rα partition as follows:

N =

[
S −Q
0 L−1

]
, Rα(cx) =

[
F(cx) 0

0 G(cx)α

]
. (9)

(Blackboard bold style is used for diagonal matrices.)
On the right-hand side of (9), the diagonal matrix F =

diag(Fµ), µ = 1, . . . , Nm, is composed of the molar rates
of the metabolic enzymes, Fµ(cx). Similarly, the diagonal
matrix G = diag(Gε), ε = 1, . . . , Ne, contains the molar
rates of the ribosome when working on the synthesis of
each of the protein types, Gε(cx). As G multiplies the
vector α, the right half of Rα in (9) is a column vector.
The overall dimension of Rα is (Nm +Ne)× (Nm + 1).

On the left-hand side of (9), the Nx × Nm-matrix S
is the stoichiometric matrix of the metabolic reactions.
The overall normalization of each column of N depends
on the definition of the reaction velocity in the corre-
sponding row of Rα. Differently from ref. 32, we take Gε
to correspond to the average rate of adding one amino
acid to the elongating chain of protein ε, and not to the
production of a complete protein by the ribosome. Be-
cause of this choice, the lower right corner of N con-
tains the inverse of the matrix L = diag(`ε), where `ε is
the number of monomers (amino acids) making up pro-
tein ε. Concurrently, the Nx × Ne-matrix Q contains
the stoichiometric coefficients of the metabolites partic-
ipating in the protein-synthesis reactions, but referring
to the addition of one amino acid. For the amino acids

of the model, the corresponding elements in a given col-
umn of Q are equal to the fractions of these amino acids
in the respective protein. The overall dimension of N is
(Nx +Ne)× (Nm +Ne).

Using (9), we write the metabolic and protein-synthesis
parts of the kinetic equation (5) as[

ṅx(t)
ṅe(t)

]
=

[
SF(cx) −QG(cx)α

0 L−1G(cx)α

] [
nm(t)
nr(t)

]
. (10)

In this dynamical model, the metabolite concentrations,
cx, which appear as arguments of the rate laws in F and
G, are functions of time, but the ribosome allocation frac-
tions, α, are time-independent parameters.

4. Balanced cell growth

In what sense does the system of differential equations
(10) lead to growth? The last scalar equality in (10) is

ṅr(t) = `−1
r Gr(cx)αrnr(t), (11)

where `r, Gr and αr refer to the ribosome components
of L, G and α, respectively. This equation describes the
synthesis of the ribosomes by the ribosomes. As the rate
of increase of nr is proportional to nr, (11) corresponds
to exponential growth with instantaneous rate constant

λr = `−1
r Gr(cx)αr. (12)

Since more ribosomes will produce more proteins, the
numbers of all proteins will increase concurrently. Thus,
in our model, cell growth is driven solely by the autocat-
alytic property of the ribosomes and is independent of
the kinetics of the volume.

In reality, the synthesis of proteins and the increase of
the cell volume are different, though related, processes
that can be decoupled under appropriate experimental
conditions.44 For a proper understanding of cell size reg-
ulation and its role in cell division,39 the kinetics of the
volume [eq. (6)] should be modeled explicitly.45 This,
however, is not the purpose of the current paper. Here,
we focus on a special type of kinetics, called balanced
growth,46 in which all molecular constituents and the
volume of the cell increase exponentially with constant
rate λ (s−1):

ṅ(t) = λn(t), V̇ (t) = λV (t). (13)

Since one of these equalities sets the growth rate, the
remaining Nx + Ne equations act as constraints on the
Nx + Ne + 1 kinetic variables of the dynamical system
(i.e., nx, ne and V ). As a result, only one kinetic de-
gree of freedom is left in balanced growth.47 This de-
gree of freedom, which can be identified with any linear
combination of the kinetic variables, undergoes exponen-
tial growth with rate constant λ. During the balanced-
growth dynamics of the system, the ratios between the
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time-dependent variables and this reference degree of
freedom stay constant. Thus, what remains to be stud-
ied is the relationship between Nx + Ne constant ratios
and the growth rate λ. This is the static (i.e., time-
independent) problem that we engage with in the present
paper.

From the perspective of chemical intuition, the most
convenient choice for a reference kinetic variable is the
volume, since the ratios between the other kinetic vari-
ables and V are equal to the concentrations [eq. (4)]. In
balanced growth, all concentrations are independent of
time.

The first equation in (13) allows us to eliminate the
time derivative on the left-hand side of (5). After di-
viding the result by the volume, we obtain the following
algebraic equation for the concentrations:

λc = NRα(cx)ce. (14)

On the right-hand side are the rates with which the con-
centrations of the compounds would increase due to the
activity of the chemical reactions only (i.e., at constant
volume). On the left-hand side are the rates with which
the concentrations would decrease due to the increase
of the cell volume only (i.e., if the reactions were to be
switched off). Since the increase of volume dilutes the
concentrations of all compounds, we refer to λc in (14) as
the rate of dilution. In balanced growth, the chemical re-
actions produce new compounds exactly at the rates that
are required to occupy the newly added volume, thereby
keeping all concentrations constant.

In the following, we refer to (14) as the balanced-
growth equalities of the chemical species. These alge-
braic equations, whose metabolic and protein parts are
[cf. (10)]

λ

[
cx
ce

]
=

[
SF(cx) −QG(cx)α

0 L−1G(cx)α

] [
cm
cr

]
, (15)

constitute the model of a cell in balanced growth that is
studied in the rest of the paper.

B. The optimization problem

In this section, we consider the problem of maximizing
the growth rate of the cell model (15). The optimization
is to be carried out with respect to the variables cx, ce
and α, which are subject to the balanced-growth equal-
ities (15) and the normalization condition (8). The ki-
netic parameters in the enzyme rate laws will be treated
as fixed.

Defining the vector-valued function [cf. (14)]

h(cx, ce,α) = NRα(cx)ce − λc, (16)

the optimization of the growth rate amounts to the fol-

lowing constrained optimization program:

maximize λ (17a)

with respect to cx, ce,α (17b)

subject to h = 0, (17c)

1Te α− 1 = 0, (17d)

cx > 0, ce > 0, α > 0. (17e)

The non-negativity conditions (17e) ensure that the op-
timization variables (17b) are interpretable as concentra-
tions and ribosome allocation fractions, respectively.

1. Balanced-growth equalities of the proteins

The protein part of the balanced-growth equalities (15)
reads

λce = L−1G(cx)αcr. (18)

The last of these Nm + 1 scalar equalities recovers the
growth rate in (12). In ref. 32, the remaining Nm equal-
ities were used to eliminate the concentrations of the
metabolic enzymes from the optimization problem by ex-
pressing them in terms of the other optimization vari-
ables. (This is shown in Sec. S5 of the SI.)

Here, we will eliminate the ribosome allocation frac-
tions, α. To be able to do so, we assume that the growth
rate is strictly positive (λ > 0), which immediately im-
plies that some ribosomes (cr > 0) are allocated to the
synthesis of new ribosomes (αr > 0). Additionally, none
of the metabolites that are necessary for the synthesis
of the needed proteins should be missing, i.e., if cε > 0
for some enzyme ε, then Gε(cx) > 0. To simplify the
discussion of the analytical results, below we will take
Gε(cx) > 0 for all ε, independently of whether cε = 0 or
not. This will guarantee that the diagonal rate matrix G
is invertible.

Because the matrices L and G are diagonal, the scalar
equalities (18) are decoupled and can be solved for α:

α = λ
1

cr
G−1(cx)Lce. (19)

By taking the dot product of (19) with 1e, and using the
normalization constraint (17d), the growth rate is readily
expressed in terms of the concentrations only:

λ(cx, ce) =
cr

1Te G−1(cx)Lce
. (20)

Substituting this growth rate back in (19), we get

α(cx, ce) =
G−1(cx)Lce

1Te G−1(cx)Lce
. (21)

This closed-form expression for the ribosome allocation
fractions automatically ensures that α is properly nor-
malized and αε > 0.
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2. Balanced-growth equalities of the metabolites

Having used the normalization (17d) and the protein
part of (17c) to express the objective function (17a) and
the variables α in terms of the concentrations, we are
left only with the metabolic part of (17c) as an equality
constraint.

Substituting α from (19) in the metabolic part of the
balanced-growth equalities (15), the latter can be written
as

λcx = SF(cx)cm − λQLce. (22)

The two additive contributions on the right-hand side of
(22) correspond to the rates of production of the metabo-
lites by the metabolic reactions (SFcm) and to their con-
sumption in the reactions of protein synthesis (λQLce).
The rate of metabolite dilution is on the left-hand side.

Since the growth rate λ is a function of the concen-
trations [eq. (20)], the Nx scalar equalities (22) are non-
linear in both the metabolites and the proteins. Hence,
an analytical elimination of Nx optimization variables is
not possible in general. How to do this numerically will
be discussed in the next section.

Having eliminated the variables α, we transform the
original optimization problem (17) to the following equiv-
alent program:

minimize τ (23a)

with respect to cx, ce (23b)

subject to hx = 0 (23c)

cx > 0, ce > 0. (23d)

Here, we have defined the objective function (23a), which
is to be minimized, as the reciprocal of the growth rate
in (20):

τ(cx, ce) = λ−1 =
1

cr
1Te G−1(cx)Lce. (24)

We will refer to τ as the “growth time” of the cell. Ad-
ditionally, in (23c) we defined the vector-valued function

hx(cx, ce) = SF(cx)cm − λ(cx, ce)[QLce + cx], (25)

which imposes the metabolic balanced-growth equalities
(22) as constraints to the optimization.

Although the non-negativity conditions (23d) appear
as separate inequality constraints, in numerical work it
is possible to impose them automatically by variable
transformation.48 The bounds ci > 0 can be handled
by working with the variables yi, defined as ci = y2i , in-
stead of ci. In the case of strict inequalities, ci > 0, it
is possible to use yi = ln ci. Indeed, working with the
logarithms of the metabolite concentrations in the nu-
merical optimization of metabolic networks is a common
practice.18

The optimization problem (23) is in the space of the
Nx + Ne concentration variables (23b). Since these are

constrained by the Nx scalar equalities (23c), the feasible
space of the problem has Ne degrees of freedom, which
can be used to parametrize all balanced-growth states of
the model.

C. States of balanced growth

In this section we discuss how to numerically solve the
Nx equality constraints (23c) for some of the variables in
terms of the others. First, we treat the Ne enzyme con-
centrations as the independent variables and determine
the Nx metabolite concentrations from them. Then, we
consider the opposite case, namely treating the metabo-
lite concentrations as the independent variables and solv-
ing for the protein concentrations.31

1. Protein concentrations as parameters

To impose the constraint (23c), with the protein con-
centrations treated as parameters, we view hx in (25) as
a function of the metabolite concentrations only and look
for its root, cx. This is a multidimensional root-finding
problem, which can be solved numerically.

a. Additive update rule
The best-characterized multidimensional root-finding

method is Newton-Raphson.49 In our case, it consists of
updating the metabolite concentrations iteratively, until
convergence, as

cx ← cx − η[∇xhx]−1hx, (26)

where the Nx ×Nx-matrix ∇xhx is the Jacobian of the
function hx with respect to the variables cx, and the
“learning rate” η adjusts the step size. (The Jacobian is
given in the Sec. S1B of the SI.) At every iteration step,
hx and ∇xhx need to be re-calculated at the new values
of cx, and the Jacobian needs to be inverted.

Being an additive update rule, (26) can lead to neg-
ative, and hence meaningless, concentrations during the
iterations. As already mentioned, one way of preventing
this is to work with the logarithms or square roots of the
metabolite concentrations.48 Another possibility is to re-
place the additive update by a multiplicative update, as
described next.

b. Multiplicative update rule
Multiplicative updates have been employed success-

fully in optimization problems with non-negative op-
timization variables. First used in the non-negative
factorization of matrices,50 they were applied more re-
cently to quadratic programming with non-negativity
constraints51 and polynomial root finding.52 Given the
non-negativity conditions (23d), multiplicative updates
are highly relevant to our case.

The equality constraint (23c) reflects the balance be-
tween inward fluxes that increase the concentrations of
the metabolites and outward fluxes that decrease these
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concentrations. As these fluxes contribute additively to
the constraint function (25), the latter is of the form

hx(cx, ce) = h+
x (cx, ce)− h−

x (cx, ce), (27)

where the elements of the vectors h+
x and h−

x are non-
negative for all choices of the concentrations cx and ce.

Because of this special form of hx, its root cx can be
obtained using the following multiplicative update rule:

cx ← cx ◦
[
h+
x (cx, ce)

h−
x (cx, ce)

]κ
, κ > 0. (28)

Here, the multiplication (denoted by ◦), the division, and
the power function are elementwise operations on the vec-
tors. Since the ratios h+ξ /h

−
ξ in (28) are non-negative for

all ξ = 1, . . . , Nx, the metabolite concentrations are guar-
anteed to remain non-negative throughout the iterations.
The parameter κ plays a role similar to the learning rate
η, and can be varied (e.g., around κ = 1) to improve the
stability (smaller κ) and convergence rate (larger κ) of
the algorithm.

The separation (27) is readily achieved by splitting the
matrices S, F, and Q in (25) into their positive and neg-
ative parts as

S = S+ − S−, F = F+ − F−, Q = Q+ −Q−, (29)

where all elements of S±, F±, and Q± are non-negative.
Then, h+

x and h−
x are [cf. (25)]

h+
x = (S+F+ + S−F−)cm + λQ−Lce
h−
x = (S+F− + S−F+)cm + λ(Q+Lce + cx).

(30)

Note that F+ and F− contain the contributions of, re-
spectively, the forward and backward directions of the
reversible reactions. Since S+ has non-zero entries for
the products of the forward reactions, and S− has non-
zero entries for the products of the backward reactions,
(S+F+ + S−F−)cm contains the rates of production of
the metabolites by the metabolic reactions. The last ad-
ditive contribution to h+

x in (30) accounts for the pro-
duction of the metabolites (e.g., ADP) by the reactions
of protein synthesis. Similarly, the vector h−

x contains
the rates of consumption (including the dilution, λcx) of
the metabolites. Thus, according to (28), if h+ξ > h−ξ
(i.e., the rate of production of metabolite ξ is larger than
its rate of consumption) the concentration cξ should in-
crease. Conversely, if h+ξ < h−ξ (i.e., the rate of consump-

tion is larger than the rate of production) the concentra-
tion cξ should decrease. Qualitatively, this mimics the
actual response of the reaction network. The update ter-
minates when, for all metabolites, the rates of production
are equal to the rates of consumption, which is the state
of balanced growth. For the right-hand side of (28) to be
finite, the consumption rates, h−

x , of all present metabo-
lites should be strictly positive. (h−ξ can be equal to zero

when cξ = 0.)

The physical interpretation of h+
x and h−

x as rates of
production and consumption justifies the condition κ > 0
in (28). On the basis of the separation (27) alone, we
could equally well have decided to multiply cx by the
reciprocal ratio h−

x /h
+
x (i.e., κ < 0), which is also guar-

anteed to be non-negative. This latter choice, however,
would increase the concentration of a metabolite when its
rate of production is smaller than its rate of consumption,
resulting in a destabilizing positive feedback.

The multiplicative update (28) has the practical appeal
of rendering obsolete the differentiation of the enzyme
rate laws and the subsequent inversion of the Jacobian
matrix, which were required by the Newton-Raphson up-
date (26).

While multiplicative updates are simple to imple-
ment, formally establishing their convergence properties
has proven more difficult. Since most such analyses
are concerned with applications to non-negative matrix
factorization,53–56 convergence in other contexts is yet to
be clarified.51,52

2. Metabolites as parameters

When the stoichiometry matrix of the model is of
full column rank, it also becomes possible to select the
metabolite concentrations as the independent variables
that parametrize the states of balanced growth. As this
situation was analyzed thoroughly in ref. 31, it is revis-
ited here only to highlight the extra flexibility gained in
the presence of additional structure.

By assuming that the columns of the Nx×Nm-matrix
S are linearly independent (i.e., S is of full column rank),
we effectively limit the discussion in this case to models
whose metabolites are more than, or equal in number to,
the metabolic enzymes (Nx > Nm). Since the rank of S
is now equal to Nm, S lacks a right null space but may
have a left null space. The two null spaces bear directly
on the task of solving the Nx equality constraints (23c)
for the Nm concentrations of the metabolic enzymes, cm.
a. The equality constraints
When S lacks a right null space, the Nm ×Nx-matrix

S−1
left = (STS)−1ST (s) (31)

is a left inverse of S, i.e., S−1
leftS = Im, where Im is the

Nm×Nm identity matrix. (Equations that apply only to
models whose metabolic stoichiometry matrices have a
left inverse will be indicated with s.) After both sides of
the Nx equality constraints (23c) are multiplied by S−1

left
from the left, these are transformed into the Nm equality
constraints

hm(cx, ce) = 0, (s) (32)

for the vector-valued function

hm = F(cx)cm − λ(cx, ce)S
−1
left[QLce + cx]. (s) (33)
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For given metabolite concentrations, cx, and ribosome
concentration, cr, the root of this function, cm, can be
obtained numerically as discussed below.

If there are more metabolites than metabolic enzymes,
the left null space of S is of dimension Nleft = Nx −Nm,
and Nleft linearly independent row vectors in this space
can be stacked to form the Nleft ×Nx-matrix Vleft such
that VleftS = 0. Multiplying both sides of (23c) from
the left by Vleft, the following additional Nleft equalities
are deduced (recall that λ > 0):

Vleft[QLce + cx] = 0. (s) (34)

As the rows of Vleft correspond to quantities that are
conserved by the kinetics of the metabolic reactions,7,42

the conservation realations encoded by (34) relate the
concentrations of Nleft (dependent) metabolites to the
concentrations of Nm (independent) metabolites.31 Con-
sequently, the concentrations of the independent metabo-
lites plus the ribosome concentration provide the full set
of Nm+1 = Ne parameters necessary to parametrize the
states of balanced growth.

b. Updating the protein concentrations
Viewing hm in (33) as a function of the concentrations

of the metabolic enzymes, cm, we can again employ the
Newton-Raphson method to find its root. The condition
in this case is that the Nm×Nm derivative matrix ∇mhm
is invertible. This Jacobian of hm with respect to cm is
worked out in the SI (Sec. S1C). Since ∇mhm contains
F as an additive contribution [cf. (33)], it is going to be
invertible if the molar rates of all metabolic enzymes are
non-zero, i.e., Fµ(cx) 6= 0 for all µ. This is the case
if all metabolic reactions are active31 and none of the
reversible reactions is in chemical equilibrium.

In the simple examples that we consider later in the
paper, the elements of the vector S−1

left[QLce+cx] in (33)
will be non-negative. Additionally, the diagonal elements
of F will be non-negative, as our illustrative models will
contain only irreversible reactions. Under these simpli-
fying conditions, the multiplicative update that can be
used instead of an additive Newton-Raphson update, be-
comes [cf. (33)]

cm ← cm ◦
[
λ(cx, ce)S

−1
left[QLce + cx]

F(cx)cm

]κ
, κ > 0. (s)

(35)
[In general, the matrices F, S−1

left, and S−1
leftQ should be

written as the difference of two non-negative parts, and
the update rule (35) should be modified accordingly.]
Since ◦ and the division line in (35) denote elementwise
operations, for κ = 1 the above update simplifies to

cm ← λ(cx, ce)F−1(cx)S−1
left[QLce + cx]. (s) (36)

[The same right-hand side can be obtained directly from
(32) and (33) after inverting the matrix F and isolating
cm.]

To justify (35) intuitively, we note that the denomina-
tor, Fµcµ, is equal to the flux (per unit volume) catalyzed

by metabolic enzyme µ. The numerator, on the other
hand, contains the rate of dilution of all cell components
downstream of this reaction.31 For given cx and ce, if
the rate of dilution is larger than the reaction flux (i.e.,
the expression in the square brackets is larger than one),
the update increases the concentration of the enzyme, cµ,
and hence the flux. Conversely, if the flux of the reaction
is larger than the rate of dilution of its downstream com-
pounds, the expression in the square brackets is smaller
than one and the enzyme concentration is decreased. The
procedure converges when, for every reaction, the dilu-
tion of the downstream chemical species is equal to its
flux, within a prespecified precision.

D. Illustrative minimal models

To illustrate the developed theory and provide numer-
ical examples in the subsequent sections of the paper,
we introduce the three simple models shown in Fig 1.
In these models, A and B denote the metabolites while
R, T , U , and V denote the proteins (enzymes). The
chemical reactions of the models are given in the sec-
ond, and their stoichiometric matrices in the third rows
of the figure. In accordance with the choice made before,
the protein-synthesis reactions reflect the addition of one
amino acid to the respective proteins.

The models in Fig 1 were selected as the minimal mod-
els exhibiting a certain property. The first model, TR,
is the minimal possible autosynthetic cell model with
separate reactions for metabolism and protein synthe-
sis. Variations of this minimal model have appeared
extensively in the literature.27–31 The second model in
Fig 1, the TVR model, is the minimal autosynthetic cell
model with non-square, hence non-invertible, stoichio-
metric matrix. The proteins in the TR and TVR models
are built from a single precursor molecule. As a result,
all proteins have identical amino acid composition. The
third, TUR model, is the minimal model that allows for
proteins with different amino acid compositions. Conse-
quently, it falls outside the class of models analyzed in
ref. 31.

The fourth row of Fig 1 contains the molar rate ma-
trices of the models, written here for general rate laws
of the metabolic enzymes (Fµ) and the ribosome (Gε).
The particular enzyme rate laws used subsequently in
the numerical examples are given in the last row of the
figure. They correspond to irreversible reactions but in
the case of the metabolic proteins include product inhi-
bition, which accounts for the occupancy of the enzyme
active site by the product(s) of the reaction.57 In these
expressions, kµ (s−1) is the turnover number of metabolic
enzyme µ, and Kξ

µ (M) is the Michaelis constant of this
enzyme for metabolite ξ.

In the left half of Table 1, we have listed possible val-
ues for the numbers of amino acids of type ξ contained
in a protein of type ε. (These coefficients, pξε, form an
Nx×Ne-matrix P.) The numbers in the table were cho-
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Fig 1. Illustrative minimal autosynthetic cell models. The metabolic reactions are colored blue, the protein-synthesis reactions
are red. Dashed arrows connect the enzymes to the reactions that they catalyze. All enzymes are imagined to be proteins.

Table 1. Assumed amino acid content (P) and fractional com-
position (Q) of the proteins in the three minimal models.

P Q

T V /U R T V /U R

TR A 300 - 400 1 - 1

TVR A 300 350 400 1 1 1

TUR A 200 150 100 2/3 3/7 1/4

B 100 200 300 1/3 4/7 3/4

`ε 300 350 400

60×`ε 18000 21000 24000

sen arbitrarily but considering that the median length of
the E. coli proteins is approximately 300 amino acids.58

Dividing the coefficients pξε by the total number of amino
acids in the corresponding protein (denoted by `ε), we
obtain the matrix Q, which appeared in the upper-right
corner of the stoichiometry matrix N [eq. (9)]. (Using
matrix notation, Q = PL−1.) The elements of Q, qξε,
which correspond to the pξε in the left half of Table 1,
are given in the right half of the table.

Since protein synthesis is template-directed polymer-
ization, the rate law of the ribosome is modeled with an
equation that is applicable to such a process.59 For an
abundant template, the molar synthesis rate of a poly-
mer composed of `ε monomers is well approximated by59

1

`ε
Gε(cx) =

1

`ε

[
kr,ε

1

1 +
∑
ξ qξεK

ξ
r,ε/cξ

]
, (37)

where kr,ε (s−1) is the turnover number of the ribosome
for attaching one monomer to polymer ε, and Kξ

r,ε (M)
is the Michaelis constant of the ribosome for monomer ξ
during the synthesis of polymer ε.

Depending on the level of desired detail, it may be rea-
sonable to assume that the constants kr,ε and Kξ

r,ε of the
ribosome are independent of the type of the synthesized
protein, i.e.,

kr,ε = kr, Kξ
r,ε = Kξ

r , ε = 1, . . . , Ne. (38)

Although not essential for the presented analysis, this
assumption was made when writing the ribosome rate
law in the last row of Fig 1.

Table 2 contains the values of the enzyme parameters
that we use in the numerical examples later in the pa-
per. The catalytic rate constants of the metabolic en-
zymes T , U and V were chosen based on the observa-
tion that the transport rate for sugar transporters satu-
rated with external substrate is approximately 100 s−1.58

The rate constant of the ribosomes R was chosen to be
the largest value of the translation rate interval for E.
coli (10-20 aa s−1).58 Although otherwise arbitrary, the
Michaelis constants were intended to be on the same or-
der of magnitude as the concentrations of the metabolites
in E. coli.60 The KM values for the ribosomal substrates
A and B were set to, respectively, 10 mM and 5 mM. The
KM values of the metabolic proteins, which reflect the
occupancy of the transporters by the intracellular sub-
strates, were chosen to be in the range of tens of mM.

In our models, the cell consists of only two or three
different types of proteins. In reality, the total amount
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Table 2. Turnover numbers (kε) and Michaelis constants (Kξ
ε )

of the enzymes in the illustrative models.

T R T V R T U R

kε (s−1) 100 20 100 50 20 100 70 20

KA
ε (mM) 100 10 100 75 10 100 - 10

KB
ε (mM) - - - - - - 70 5

of ribosome necessary to incorporate 20 amino acids per
second to an extending polypeptide chain should be more
than 400 amino acids. Similarly, although T , U and V
were imagined to be transporters, the effective enzyme
amounts involved in supplying amino acids to the ribo-
some should be more than 300 or 350 amino acids. With
these considerations in mind, we increased the sizes of
all enzymes uniformly by a factor of 60. The resulting
protein sizes are given in the last row of Table 1. As this
rescaling brought the calculated growth rates of the mod-
els close to the experimental values for E. coli (≤ 2 h−1),
these larger values will be used as `ε in the numerical
examples of the following sections.

E. Uniformly composed proteins

Even after the assumption that the catalytic proper-
ties of the ribosome do not depend on the identity of the
synthesized protein [eq. (38)], the molar rates Gε in (37)
still depend on the protein type ε through the stoichio-
metric coefficients qξε. In many coarse-grained models
the proteins are either built from only one building block
(e.g., the TR and TVR models of Fig 1) or from several
building blocks combined in fixed ratios (e.g., the TUR
model with qξε = qξ for all ε). As a result, all proteins
in such models have the same amino acid composition,
with possible differences in the total number and order
of the amino acids.

In this section, we consider such models with uniformly
composed proteins to illustrate how the analysis simpli-
fies when the matrix Q has additional structure. Al-
though not stated there explicitly, the analysis of ref. 31
applies to such models with structured Q.

1. Separable protein-composition matrix

The condition qξε = qξ for all ε has two related implica-
tions. First, the composition matrix Q has Ne identical
columns and is of the separable form

Q = [q, q, . . . , q] = q1Te , (q) (39)

where the vector q denotes one of the columns. (Equa-
tions that hold only for models with uniformly composed
proteins will be indicated with q.) Second, the molar
rates of protein synthesis are independent of the protein

type:

Gε(cx) = kr
1

1 +
∑
ξ qξKr,ξ/cξ

= G(cx). (q) (40)

As a result, G = GIe, where Ie is the Ne × Ne identity
matrix.

This special form of G immediately simplifies many
of the above equations. For example, the relationship
between the concentrations of the protein types and the
fractions of the ribosomes allocated to their synthesis [eq.
(21)] becomes independent of the kinetic properties of the
ribosome:

α(ce) =
Lce

1Te Lce
. (q) (41)

As a result, the ribosome allocation fractions are basically
a reweighted (and normalized) version of the protein con-
centrations.

The vector Lce in the numerator of (41) reports the
concentrations of the enzymes in units of amino acids.
The sum of all these concentrations in the denominator
of (41) is the total concentration of amino acid units
incorporated in the proteins:

caaprot = 1Te Lce =

Ne∑
ε=1

`εcε. (42)

Thus, when all proteins have uniform amino acid compo-
sition, the fraction of ribosomes dedicated to each protein
(αε) is equal to the fraction of amino acids this protein
contains out of the total number of amino acids in the
proteome (`εcε/c

aa
prot).

Another expression that simplifies for G = GIe is the
growth rate [eq. (20)]:

λ(cx, cr/c
aa
prot) =

G(cx)cr

1Te Lce
= G(cx)

cr
caaprot

. (q) (43)

When all proteins have uniform composition, they appear
in the growth rate only as the ratio between the number
of ribosomes and the number of amino acids in the entire
proteome (cr/c

aa
prot).

Other expressions simplify as a result of the separable
form of Q in (39). Since in this case QLce = qcaaprot, the
constraint function hx [eq. (25)] becomes

hx(cx, ce) = SF(cx)cm − crG(cx)

[
q +

cx
caaprot

]
. (q)

(44)
Because of the property (39), we will refer to models

with uniformly composed proteins as models with sep-
arable Q. We will refer to models with general, non-
uniform composition of their proteins as models with
non-separable Q. These two possibilities correspond to
the columns of Table 3. The rows of the table distinguish
whether the matrix S has a left inverse. In this way, the
autosynthetic cell models of the type considered in this
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Table 3. Classes of autosynthetic cell models according to the
specified properties of their matrices S and Q. Each illustra-
tive model from Fig 1 is assigned to its corresponding class
(in parenthesis).

Q

separable (q) non-separable

S
left inverse (s) sq (TR) s· (TUR)

no left inverse ·q (TVR) ··

paper are classified according to the properties of their
matrices S and Q. As an example, the illustrative models
from Fig 1 have been assigned to their respective classes
in Table 3.

2. Invertible metabolic stoichiometry matrix

From Sec. II C 2 we recall that the left inverse of S
allows for expressing the concentrations of the metabolic
enzymes in terms of the concentrations of the metabolites
and the ribosome. In the case of models with uniformly
composed proteins, the root cm of (44) is

cm = crG(cx)F−1(cx)S−1
left

[
q +

cx
caaprot

]
. (sq) (45)

[This expression corresponds to eq. (5) of ref. 31.] If there
are more metabolites than metabolic enzymes (i.e., S has
more rows than columns), the metabolite concentrations
should additionally satisfy the Nleft conservation equali-
ties [cf. (34)]

hleft(cx, c
aa
prot) = Vleft[qc

aa
prot + cx] = 0. (sq) (46)

(Since there are no linearly dependent metabolites in the
three simple models of Fig 1, an additional example is
provided in Sec. S4A to illustrate this situation.)

Using (45), the concentrations of the metabolic en-
zymes can be eliminated from the objective function
(23a). To this end, we rewrite the reciprocal of the
growth rate in (43) as

τ(cx, cm, cr) =
1TmLmcm
G(cx)cr

+
`r

G(cx)
, (q) (47)

where Lm and `r are the components of L that corre-
spond to, respectively, the metabolic enzymes and the
ribosomes. Substituting (45) into (47), we get

τ(cx, c
aa
prot)

= 1TmLmF−1(cx)S−1
left

[
q +

cx
caaprot

]
+

`r
G(cx)

. (sq)
(48)

[This result corresponds to eq. (6) in ref. 31.] Impor-
tantly, the objective function does not depend on any
of the individual protein concentrations but only on the

total protein concentration expressed in units of amino
acids, caaprot.

Because the remaining constraint (46) is a function of
the same variables as the objective function (48), in this
case the optimization problem (23) simplifies to

minimize τ (49a)

with respect to cx, c
aa
prot (49b)

subject to hleft = 0 (49c)

cx > 0, caaprot > 0, (sq) (49d)

where the proteins are present only in bulk as caaprot. [Up
to the assumption of constant dry mass density, which we
discuss in Sec. II H 2, the problem (49) is essentially the
optimization that was formulated in ref. 31.] This opti-
mization is in the space of Nx+1 concentration variables
that are subject to Nleft equality constraints.

For a square matrix S, the equality constraint (49c)
drops out completely and the optimization of the growth
rate is unconstrained (assuming one works with the log-
arithms or the square roots of the concentrations).

3. The TR model

Let us illustrate the analysis in the case of uniformly
composed proteins by applying it to the TR model. Since
there is only one metabolite, the constraint hx is a scalar
function. With cT , cR and cA denoting the concentra-
tions of the two proteins (T and R) and the metabolite
(A), we have

caaprot = `T cT + `RcR

hA = cTFT (cA)− cRG(cA)[1 + cA/c
aa
prot].

(50)

We determined the balanced-growth states of the TR
model for cT and cR in the range from 1µM to 300µM,
intended to roughly correspond to measured values in E.
coli.61 (The kcat and KM parameters were as given in
Table 2.) Figure 2a shows the cA values obtained with
the Newton-Raphson algorithm. Identical results were
obtained using the multiplicative update (28) with κ = 1,
which for the TR model reads

cA ← cA
cTFT (cA)

cRG(cA)[1 + cA/caaprot]
. (51)

The metabolite concentration in Fig 2a changes by five
orders of magnitude in the examined range, while the
protein concentrations vary by only 2.5 orders of mag-
nitude. At a fixed ribosome concentration, cA increases
with cT . This makes sense since more metabolite will
accumulate inside the cell if the amount of the trans-
porter is increased. In contrast, at a fixed transporter
concentration, cA decreases for increasing cR, as more
metabolite is utilized when there is more ribosome.

The growth rate (43) is plotted in Fig 2b. Unlike the
metabolite concentration, it is non-monotonic and ex-
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Fig 2. States of balanced growth (a) and the corresponding growth rate (b) of the TR model. The base-10 logarithms are of
the molar concentrations of the ribosome (cR), transporter (cT ), and metabolite (cA). The contour lines of constant elevation
are shown on the x-y planes of the plots. The enzyme parameters were fixed at their values in Table 2.

hibits a clear maximum. In the examined range of pro-
tein concentrations, the maximum appears to be reached
at the cR = 10−3.5 M boundary, where cT & 10−4 M.

Interestingly, the contours of constant λ, which are
drawn on the cT -cR plane in Fig 2b, run almost par-
allel to the cT = cR diagonal. Since the two horizontal
axes are logarithmic, lines parallel to this diagonal cor-
respond to constant ratios of the two protein concentra-
tions. Thus, the growth rate is observed to change only
weakly when the protein concentrations are rescaled to-
gether by a common factor.

To uncover the origin of these observations, we switch
from the protein-based description adopted in Fig 2, to
a metabolite-based description (Secs. II C 2 and II E 2).

In the parametrization based on the concentrations of
the metabolites, the growth time of the TR model is [eq.
(48)]

τ(cA, c
aa
prot) =

`T
FT (cA)

[
1 +

cA
caaprot

]
+

`R
G(cA)

. (52)

This objective function should be minimized with respect
to its arguments. As the equality constraint (49c) is not
present in the TR model, the minimization is subject only
to the requirement that cA and caaprot are non-negative.
From the appearance of these variables in (52), it is clear
that the growth time reaches its minimum in the limit
caaprot → ∞. At the same time, from (45), the protein
concentrations in the TR model satisfy

cT
cR

=
G(cA)

FT (cA)

[
1 +

cA
caaprot

]
. (53)

Thus, while the total protein concentration goes to infin-
ity during the optimization of the growth rate, the ratio
of the two protein concentrations remains finite. These
observations explain the location of the maximum of the
growth rate at the edge of the horizontal plane in Fig 2b.

Although the highest growth rate is reached for caaprot →
∞, this limit is not physically meaningful. To offer an
alternative way of interpreting it, we observe that the

ratio cA/c
aa
prot in (52) originates from the dilution of the

metabolites on the left-hand side of (22). Thus, the limit
cA/c

aa
prot → 0 can alternatively be attained at finite pro-

tein concentrations but for vanishingly small metabolite
concentration. Since any finite metabolite dilution, no
matter how small, can only decrease the growth rate, the
largest growth rate is achieved at negligible dilution of
the metabolites.

F. The role of metabolite dilution

The growth exhibited by our cell model (15) was a
manifestation of the autocatalytic nature of the ribo-
somes (Sec. II A 3). The volume, in contrast, was needed
only to convert the amounts of the metabolites to con-
centrations for use in the enzyme rate laws (Sec. II A 2).
Because of this secondary role of the volume, we refrained
from specifying its rate of change in (6), and subordi-
nated its kinetics to the kinetics of the molecular amounts
through the requirement of balanced growth [eq. (13)].

The central role of the ribosomes, however, was ob-
scured by identifying the single kinetic degree of freedom
that remained in balanced growth with the volume, since
the other variables were retained only as constant multi-
ples of it [i.e., the concentrations in (14)]. In this section,
we select the amount of the ribosomes to be the reference
degree of freedom. In the process, the special role played
by the dilution of the metabolites is elucidated.

1. The ribosome as a common reference

When the ribosome amount, nr, is used as a refer-
ence kinetic degree of freedom in balanced growth, the
other kinetic variables are mapped to the following time-
independent ratios:

θ =
n(t)

nr(t)
,

1

cr
=
V (t)

nr(t)
. (54)
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Notably, the ribosome concentration, cr, serves as a con-
version factor between a normalization by V and a nor-
malization by nr. Dividing our main equation (14) by
this conversion factor, we get

λθ = NRα(cx)θe, (55)

in which the variables are now normalized by nr, rather
than the volume.

Similar to the partitioning of the vector n (Sec. II A),
we split the vector of ratios, θ, into its metabolic and
enzyme subcomponents as follows:

θ =

[
θx
θe

]
, θe =

[
θm
θr

]
. (56)

In the second equality, the enzyme ratios θe are further
split into the ratios of the metabolic enzymes, θm, and
the ribosomes, θr. Since θr = nr/nr = 1, the vector θe
contains only Nm parameters.

Although the ratios θ reflect the central role of the
ribosomes in our growth model, when it comes to the
metabolites, it is more convenient to work with their con-
centrations since these appear in the rate laws. We there-
fore write the metabolic and protein parts of (55) as [cf.
(15)]

λ

[
1
cr
cx

θe

]
=

[
SF(cx) −QG(cx)α

0 L−1G(cx)α

][
θm
θr

]
, (57)

where the metabolites have been normalized by V and
the enzymes by nr. The only place were the two differ-
ent normalizations ever meet is the term λcx/cr, which is
the product of the rate of metabolite dilution, λcx, and
the volume expressed in ribosome units, V/nr = 1/cr.
Without this term, the two normalizations would be com-
pletely decoupled.

The difference between (55) and (14), or their ex-
panded versions (57) and (15), consists of a simple rescal-
ing. In that sense, (55) and (57) cannot be claimed to
really bring forward the unique role of the ribosomes in
the model. For this, one should look at the growth rate.

The growth time, which served as the objective func-
tion of the optimization problem (23), was given in (24).
Here, we rewrite it in terms of the protein ratios, θe, as
follows:

τ(cx,θm) = λ−1 = 1Te G−1(cx)Lθe. (58)

Since τ does not contain the concentration cr, which sets
the scale of all other protein concentrations (ce = crθe),
we conclude that the growth rate in balanced growth
does not depend directly on the absolute protein con-
centrations but only on their ratios with the ribosome
concentration.

To make this last point explicit, we rewrite (58) as [cf.
(47)]

τ(cx,θm) = 1TmG−1
m (cx)Lmθm +

`r
Gr(cx)

, (59)

where Gm and Gr are the parts of G that correspond to
the metabolic enzymes and the ribosomes, respectively.
Clearly, this objective function is a function of Nx +Nm
variables only (i.e., cx and θm), and not of Nx +Nm + 1
variables as suggested by (23b).

Of course, the ribosome concentration influences the
growth rate indirectly through the metabolites, which are
constrained by the upper part of (57). The corresponding
constraint function is equal to hx [eq. (25)] divided by cr:

1

cr
hx = SF(cx)θm − λ(cx,θm)

[
QLθe +

cx
cr

]
, (60)

where λ is as given in (58). As noted before, all terms in
(60) except the last one contain the enzyme ratios θe; the
last term, which accounts for the dilution of the metabo-
lites, depends on the concentration of the ribosomes.

At the end of Sec. II E 3, we observed that maximal
growth rate is achieved when the entire mass flux is di-
rected towards protein synthesis and the dilution of the
metabolites is vanishingly small in comparison. Mathe-
matically, this corresponds to the limit cx/cr → 0 in (60).
In this limit, the concentration cr disappears completely
from the formalism. As a result, the normalization of
the metabolites by the volume and the normalization of
the proteins by the ribosomes decouple, and the absolute
enzyme concentrations are unknowable.

2. Neglecting metabolite dilution

In the absence of metabolite dilution, finding the root
cx of the constraint function in (60) amounts to solving
the equality

SF(cx)θm =
1

1Te G−1(cx)Lθe
QLθe (d) (61)

for the metabolite concentrations. (Equations that as-
sume negligible metabolite dilution are indicated with
d.) Let cx be a solution of (61) for some protein con-
centrations. The same cx remains a solution after all
protein concentrations are rescaled by a common factor,
as such rescaling does not affect the ratios θe. Thus,
when the metabolite dilution is neglected, the states of
balanced growth depend only on the protein composi-
tion of the cell (i.e., the relative amounts of the proteins)
and not on its protein content (i.e., the absolute protein
concentrations). As the overall rescaling of the protein
concentrations also leaves the growth rate of the model
unaffected [eq. (58)], it appears that the protein concen-
trations can be increased indefinitely at fixed metabolite
concentrations without affecting the growth rate.

To rationalize this flawed behaviour we note that the
rate laws in (3) contain the concentrations of the metabo-
lites, thus naturally coupling their amounts to the vol-
ume, but do not contain the concentrations of the en-
zymes, as only their amounts play a role. As far as the
model is concerned, the enzymes might as well be point
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particles that do not occupy any volume. In reality, in-
creasing protein concentrations will eventually force the
volume to expand,44 providing direct coupling to volume
that is not mediated by the dilution of the metabolites.

Although the formulated model lacks a built-in mech-
anism for keeping the enzyme concentrations reasonably
low, its formulation actually assumed that this is the
case. Indeed, the functional form of the enzyme rate laws
applies only when the substrates are much more abun-
dant than the enzymes. Additionally, increased macro-
molecular crowding would progressively modify the rates
of the modeled processes,62,63 rendering rate laws with
constant catalytic parameters inappropriate. For the ap-
plicability of the mathematical analysis, therefore, we
need to assume that the concentrations of the enzymes
remain realistically small through some means that are
not part of the model. (This limitation will be addressed
in Sec. II H.) Subject to such a restriction, the solution cx
of (61), which neglects metabolite dilution, is invariant to
the simultaneous rescaling of the protein concentrations.

Naturally, the same conclusion applies to models with
uniformly composed proteins (denoted by q in Table 3),
for which (61) simplifies to [cf. (44)]

SF(cx)θm = G(cx)q. (qd) (62)

G. Negligible metabolite dilution

The above observations clarify why the practical task
of optimizing the growth rate was not addressed so far:
if attempted such optimization would predict infinitely
large protein concentrations. In this section we study
the optimization of the growth rate assuming that the
rate of metabolite dilution [λcx in (22)] is negligible com-
pared to the rates of production of the metabolites by
the metabolic reactions (SFcm) and their consumption
in protein synthesis (λQLce).

1. Optimization with the reduced gradient method

When the dilution of the metabolites is negligible, the
constraint function in (23c) is replaced by [cf. (61)]

h̃x(cx,θm) = SF(cx)θm −
QLθe

1Te G−1(cx)Lθe
. (d) (63)

As both this constraint and the objective function [eq.
(59)] are functions of the variables cx and θm, the opti-
mization problem (23) becomes

minimize τ (64a)

with respect to cx,θm (64b)

subject to h̃x = 0 (64c)

cx > 0, θm > 0. (d) (64d)

Since now Nx + Nm optimization variables are related
through Nx equality constraints, only Nm variables are
independent [compared to Nm+1 = Ne variables in (23)].

With ∆cx and ∆θm denoting small increments of the
optimization variables (64b), the corresponding change
in the objective function (64a) to first order in the incre-
ments is

∆τ = [∇xτ ]∆cx + [∇mτ ]∆θm. (65)

In this expression, the derivatives of the growth time are
row vectors with components

[∇xτ ]ξ =
∂τ

∂cξ
, [∇mτ ]µ =

∂τ

∂θµ
, (66)

for ξ = 1, . . . , Nx and µ = 1, . . . , Nm.
Naively, one could try to locate the minimum of the ob-

jective function by changing the optimization variables in
the direction of its steepest descent. Such motion down
the gradient of τ , however, is likely to violate the equality
constraint (64c). A downhill direction that also satisfies
the equality constraint, at least to first order in the in-
crements, is given by the so-called reduced gradient.64

Assuming that the constraint was satisfied before the
update of the variables, we require that it is also satisfied
to first order after the update:64

∆h̃x = [∇xh̃x]∆cx + [∇mh̃x]∆θm = 0. (67)

Here, the derivatives of the constraint function are ma-
trices with components

[∇xh̃x]ξξ′ =
∂h̃ξ
∂cξ′

, [∇mh̃x]ξµ =
∂h̃ξ
∂θµ

. (68)

From (67), it is clear that cx and θm cannot be changed
independently while satisfying the constraint.
a. Proteins as independent variables

If the square matrix ∇xh̃x is invertible, (67) can be
solved for ∆cx:

∆cx = −[∇xh̃x]−1[∇mh̃x]∆θm. (69)

In Sec. S2B, we show that ∇xh̃x is invertible if the rate
laws of the metabolic enzymes account for inhibition by
their products. This is the reason why product inhibition
was explicitly included in the rate laws of the metabolic
reactions in Fig 1, even though the reactions were taken
to be irreversible.

Substituting ∆cx from (69) into (65), we obtain the
reduced gradient of the objective function with respect
to the independent protein variables:64

dτ

dθm
= [∇mτ ]− [∇xτ ][∇xh̃x]−1[∇mh̃x]. (70)

This gradient is a row vector with Nm components.
The independent protein variables are now updated in

the direction opposite to the reduced gradient:64

θm ← θm − η
(

dτ

dθm

)T
. (71)
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The step size η should be small enough for the value of
the objective function at the new point to be smaller than
its current value.

Although the corresponding increments of the depen-
dent metabolite variables can be calculated from the in-
crements of the independent variables using (69), this
proportionality is only accurate to first order. A better
strategy is to update the dependent variables using either
the Newton-Raphson algorithm (26) or the multiplicative
update (28), but with neglected metabolite dilution.

b. Metabolites as independent variables
For completeness, we also mention the possibility of

using the metabolite concentrations, cx, as the indepen-
dent variables of the optimization problem (64). As dis-
cussed in Sec. II C 2, this option was available only for
models with S of full column rank (denoted by s in Ta-
ble 3). When the number of metabolites was larger than
the number of metabolic enzymes (Nx > Nm), the Nx
equality constraints (23c) led to the Nm equalities (32)
and the Nx −Nm conservation equalities (34).

When the dilution of the metabolites is neglected, as
done presently, the metabolite concentrations, cx, drop
out completely from the conservation relations (34), thus
compromising these constraints. To avoid such compli-
cations, we will illustrate the possibility of treating the
metabolites as the independent variables of the optimiza-
tion (64) only for the case with equal numbers of metabo-
lites and metabolic enzymes (Nx = Nm). As S was as-
sumed to be of full column rank, this condition makes it
invertible, and does away with the conservation relations
(34).

To express the increments ∆θm in (67) in terms of

the increments ∆cx, the Nx ×Nm-matrix ∇mh̃x in (67)
should be “inverted”. When Nx = Nm and S is invert-
ible, ∇mh̃x is also invertible if none of the diagonal ele-
ments of F is equal to zero (as discussed in the Sec. S2B).
The reduced gradient of the objective function with re-
spect to the independent metabolite variables is now

dτ

dcx
= [∇xτ ]− [∇mτ ][∇mh̃x]−1[∇xh̃x], (s) (72)

and the concentrations of the metabolites are updated as

cx ← cx − η
(

dτ

dcx

)T
. (s) (73)

At every time step, the dependent variables θm can be
calculated using the multiplicative update rule (35), but
with neglected metabolite dilution.

2. Numerical examples

a. The TR model
We repeated the analysis of the TR model but with

the last term of hA in (50) set to zero (i.e., neglecting
metabolite dilution). As expected, the contours of con-
stant cA (Fig 3a) as well as those of constant λ (Fig

3b) are now perfectly aligned with the cT = cR diago-
nal of the protein plane, thus illustrating the invariance
of the balanced-growth states to the overall rescaling of
the protein concentrations. Clearly, when the dilution
of the metabolites is neglected, the ratio θT = cT /cR is
sufficient to parametrize the states of balanced growth.

In Fig 4a we show the metabolite concentration (left
vertical axis) and the growth rate (right vertical axis) of
the TR model against this parameter. The two curves
are the cross-sections of the respective surfaces in Fig 3.
A comparison with the Michaelis constants of the two
proteins reveals that the inflection points of the cA curve
(red solid line) correspond to the values of KT and KR

(black dashed lines). In this particular case, the growth
rate is seen to be maximal when cA ≈ KT , at which point
the ribosome works at close to full saturation.

For the TR model with neglected metabolite dilution,
the equality constraint (62) is

FT (cA)θT = G(cA). (74)

Because the functions F and G are nonlinear in their ar-
gument, this equality had to be solved for cA numerically
when generating Fig 4a. In contrast, (74) it is trivial to
solve for θT , assuming a given cA:

θT = G(cA)/FT (cA). (75)

Using this expression, we calculated the ratio cT /cR for
cA between 0.1µM and 10 M. The result, together with
the corresponding growth rate, is shown in Fig 4b. Al-
though for the red curve this is just Fig 4a with swapped
horizontal and vertical axes, no iterative updates were
necessary for its generation.

To numerically locate the optimal growth rate of the
TR model, we applied the reduced gradient algorithm
treating either the protein ratio, θT , or the metabo-
lite concentration, cA, as the independent variables. At
convergence, we had λ = 2.15 h−1, θT = 0.324 and
cA = 81.7 mM in both cases. These values agree visu-
ally with the locations of the maximal growth rate in
Figs 4a and 4b.
b. The TVR model
In the case of the TVR model with neglected metabo-

lite dilution, the ratios θT = cT /cR and θV = cV /cR
parametrize all balanced-growth states. Because there
is only one metabolite, there is only one equality con-
straint. Figure 5a shows the metabolite concentration,
located with the Newton-Raphson algorithm, against the
ratios θT and θV . The corresponding growth rate is plot-
ted in Fig 5b. Identical results were obtained using the
multiplicative update (28) with κ = 1:

cA ← cA
FT (cA)θT + FV (cA)θV

G(cA)
. (76)

When the concentration of either T or V relative to
that of the ribosome is vanishingly small, the TVR model
reduces to the TR model. Indeed, both the θT = 10−2
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Fig 3. TR model as in Fig 2, but with neglected metabolite dilution.
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Fig 4. Analysis of the TR model with neglected metabolite dilution. The states of balanced growth are parametrized by either
the ratio of the two protein concentrations (a) or the metabolite concentration (b).

and θV = 10−2 cross-sections of the surface in Fig 5b
resemble the profile of the growth rate in Fig 4a. Due to
our choice of enzyme parameters (Table 2), the maximal
growth rate for θT = 10−2 is smaller than that for θV =
10−2. Hence, the latter is the global maximum, at least
for the range of θT and θV values shown in the figure.

For the TVR model, the equality constraint (62) reads

FT (cA)θT + FV (cA)θV = G(cA). (77)

While (77) could be solved for cA when θT and θV were
given, the opposite, i.e., calculating these two protein ra-
tios for given cA, is not uniquely possible. From that per-
spective, the TVR model is different than the TR model.
Indeed the metabolic stoichiometry matrix of the former
is not of full column rank and does not have a left inverse
(it is of class ·q in Table 3). Thus, the balanced-growth
states of the TVR model cannot be fully parametrized
in terms of the metabolites rather than the ratios of the
protein concentrations.

Because the growth rate attains its maxima when ei-
ther θV → 0 (global maximum) or θT → 0 (local max-
imum), during the optimization of the growth rate it is
advantageous to work with the square roots of θT and
θV in order to prevent the vanishing ratio from becoming

negative in the update (71). Applying the reduced gra-
dient method we obtained the optimal growth rate λ =
2.15 h−1 at θT = 0.324, θV = 0.00 and cA = 81.7 mM.
This corresponds to the global maximum in Fig 5b. Only
when the search was initiated very near the second (local)
maximum did the algorithm converge to λ = 1.68 h−1 at
θT = 0.00, θV = 0.532 and cA = 46.3 mM.

c. The TUR model

As the matrix S of the TUR model is invertible (it is
of class s· in Table 3), its balanced-growth states allow
full parametrization in terms of the metabolites. From
these, the protein ratios can be determined iteratively
using the multiplicative update (36), after dropping the
contribution of metabolite dilution. For κ = 1, and θT =
cT /cR and θU = cU/cR, this update reads

[
θT
θU

]
←

[
qAT `T
FT

qAU `U
FT

qAR`R
FT

qBT `T
FU

qBU `U
FU

qBR`R
FU

]θTθU
1


[
`T
GT
, `U
GU

, `R
GR

]θTθU
1


. (78)
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Fig 5. Balanced growth analysis of the TVR model with neglected metabolite dilution. Parametrization by the ratios of the
concentrations of the metabolic proteins to the concentration of the ribosome.

At convergence, the denominator of (78) is equal to the
growth time, τ .

Both surfaces θT and θU (Fig 6a) converged to five
(ten) decimal places in 10 (20) iteration updates across
the entire range of examined metabolite concentrations.
(These were calculated for the kcat and KM values in
Table 2.) As expected, θT depends strongly on the con-
centration of A but only weakly on the concentration of
B. In contrast, θU increases with increasing cB but is
almost insensitive to cA.

The growth rate in Fig 6b reaches its global maximum
in the middle of the examined range of metabolite con-
centrations. Unlike the situation in the TVR model (Fig
5b), here none of the proteins vanishes at the maximal
growth rate, as both are required for cell growth.

In the optimization of this model, either the protein
ratios or the metabolite concentrations can be treated
as independent variables. To be consistent with Fig 6,
we made the latter choice when applying the reduced
gradient method. Consequently, the independent con-
centrations cA and cB were updated according to (73)
while the dependent protein ratios θT and θV were de-
termined using the multiplicative update (78). The al-
gorithm converged to λ = 2.03 h−1 at cA = 83.1 mM
and cB = 37.7 mM, with corresponding protein ratios
θT = 0.099 and θU = 0.270. This point agrees with the
maximal growth rate in Fig 6b.

H. Constraining the cell volume

Metabolite dilution was neglected in the previous sec-
tion for purely mathematical reasons: if accounted for, it
forced the enzyme concentrations to increase indefinitely
during the optimization of the growth rate. By neglect-
ing it, however, we effectively took the stance that the
enzyme concentrations were fundamentally unknowable
and only their ratios were meaningful. Ultimately, this
position is indefensible.

The origin of the problem is addressed in the current
section by assigning molar volumes to the enzymes of

the model. Consequently, protein concentrations become
limited, and the optimal growth rate is reached at finite
protein concentrations, even after accounting for the di-
lution of the metabolites.

1. The volume in balanced growth

By leaving the rate of change of the volume unspecified
in (6), we gave up on the possibility to model the full
kinetics of the dynamical system comprising eqs. (5) and
(6). The latter equation, together with the condition of
balanced growth [eq. (13)], implies

r(n(t), V (t)) = λV (t). (79)

In principle, this equality can be solved for the volume,
thus expressing V in balanced growth as a function of
the molecular amounts and the growth rate:

V (t) = f(n(t), λ) (80)

Formally, this functional dependence can be used to in-
troduce the partial molar volumes of the substances at a
given growth rate:

δi =
∂V

∂ni
=

∂f

∂ni
, (81)

where δi is the change in volume per mole of substance i
added to a large volume of the mixture.65

On the other hand, differentiating (80) with respect to
time, and using the conditions of balanced growth (13),
we get

V̇ =
∑
i

∂f

∂ni
ṅi = λ

∑
i

∂f

∂ni
ni = λV. (82)

Combining the last equality in (82) with the definition of
the partial volumes in (81), we deduce that the volume
in balanced growth is a weighted sum of the amounts of
the cell constituents:65

V (t) =
∑
i

δini(t) = δTn(t). (83)
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Fig 6. Balanced growth analysis of the TUR model with neglected metabolite dilution. The ratios of the metabolic proteins to
the ribosome (a), and the growth rate (b), are parametrized by the concentrations of the metabolites.

In mixtures of non-interacting components, the par-
tial molar volumes, δ, are equal to the molar volumes of
the components. When the components interact, how-
ever, the partial molar volumes not only deviate from
the molar volumes but may even be negative.65 Since
the contents of the cell likely behave as an interacting
mixture, the Nx + Ne partial molar volumes in (83) are
not expected to be known precisely in any specific situ-
ation. Nonetheless, a vast majority of these coefficients
will certainly be strictly positive.

The importance of (83) for our purposes is that it as-
signs volumes to the proteins of the model. As a result,
their amounts cannot be increased indefinitely without
increasing the cell volume. By providing a direct cou-
pling of the enzymes to the volume, as opposed to the
indirect coupling through the dilution of the metabolites,
the model now has an in-built mechanism for restricting
the concentrations of the proteins. What remains to be
done is to turn (83) into a practical tool for the math-
ematical analysis, even if the partial molar volumes are
not known.

2. Constant density approximations

Measurements of the cytoplasmic protein and RNA
content of the bacterium E. coli revealed that the den-
sities of these two major mass components varied across

exponential and stationary growth phases with their to-
tal density remaining approximately constant.66 A more
recent experimental study reported the proportionality
of volume and cell dry mass for exponentially growing E.
coli under various growth limitations,67 suggesting that
the dry mass density is approximately constant. Whereas
the older reported values of the total cytoplasmic pro-
tein and RNA density were spread between 300 g l−1 and
400 g l−1,66 recent optical measurements indicate that the
dry mass density of E. coli varies more narrowly be-
tween 270 g l−1 and 320 g l−1 depending on the growth
medium.68

By definition of the dry mass density, ρdry (g l−1), the
relationship between the cell volume and the amounts of
the cell constituents, excluding water, is∑

i

Mini(t) = ρdryV (t), (84)

where Mi (g mol−1) are the molar masses of the chemi-
cal species. Dividing both sides of (84) by the volume,
the dry mass density is readily expressed in terms of the
concentrations of the species:

ρdry =
∑
i

Mici. (85)

To calculate ρdry of the TR model, we assigned to
its metabolite A the molar mass MA = 100 g mol−1,
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Fig 7. Contours of constant growth rate (filled color, identical
to the contours in Fig 2b), and the densities ρdry (solid, g l−1)
and ρmacro (dotted) of the TR model.

which corresponds to an average amino acid.58 Then,
from (85), the dry mass density of the model is ρdry =
MA(cA + `T cT + `RcR). In Fig 7, the lines of constant
ρdry are plotted on top of the contours of the growth
rate from Fig 2b. Although the growth rate in the figure
is calculated for all pairs of protein concentrations, the
above discussion suggests that only the narrow vicinity
of the contour ρdry = 300 g l−1 should be viewed as bio-
physically relevant. Clearly, if the optimization of the
growth rate is restricted to remain on this contour, the
protein concentrations at the optimal growth rate will be
finite.

In addition to the catalytic proteins, the ribosomes,
and the metabolites, which are represented in our illus-
trative models, the dry mass of the cell receives contri-
bution from structural proteins, genomic DNA, lipids,
lipopolysaccharides, peptidoglycan, and other types of
molecules, whose functional roles are not part of these
models. As such structural and informational molecules
could constitute a substantial fraction of the cell dry
mass, the experimental density should, in principle, be
rescaled when used in these models. Given the coarse-
grained nature of the models, however, it is not clear
what exactly the correct rescaling should be. Since the
examples in this section are intended to serve as qualita-
tive illustrations, we have not performed any rescaling.

One way of enforcing a constant dry mass density
through eq. (83) is to select δi = Mi/ρdry for all i.
This corresponds to a mixture of non-interacting com-
ponents, whose molar volumes are proportional to their
molar masses.

Alternatively, the cytoplasm could be envisioned as a
highly interacting mixture whose volume is dominated
by the molar volumes of the hydrated macromolecules,
while the comparatively smaller metabolites occupy the
space between them without requiring too much addi-
tional hydration, thus having partial molar volumes that

are close to zero [i.e., large δe and δx ≈ 0 in (83)]. In this
case, the assumption of constant dry mass density can be
replaced by an assumption of (approximately) constant
macromolecular density. Since all macromolecules in our
model are proteins, this assumption can be stated as

Ne∑
ε=1

Mεnε(t) = ρmacroV (t). (86)

Dividing both sides of (86) by the volume, the macro-
molecular density in our model is expressed in terms of
the concentrations of the enzymes:

ρmacro =

Ne∑
ε=1

Mεcε. (87)

As an example, the lines of constant ρmacro of the TR
model are shown in Fig 7. Naturally, they are almost
identical to the contours of ρdry in the upper left corner
of the figure, where cA is small (cf. Fig 2a), but deviate
substantially in the lower right corner where cA is large.

One way of expressing the assumption of constant
macromolecular density through eq. (83), is to select
δε = Mε/ρmacro for all enzymes and δx = 0 for the
metabolites. Taken literally, this choice implies a non-
interacting mixture composed of macromolecules, whose
molar volumes are proportional to their molar masses,
and metabolites with negligibly small volumes.

Whether any of the densities ρdry and ρmacro is indeed
approximately constant across different balanced-growth
conditions is an experimental question. However, con-
sidering that the metabolites constitute about 5-10% of
the dry mass of E. coli cells,58,60 the distinction between
the dry mass density and the macromolecular density
may be inconsequential for the purpose of constraining
the enzyme concentrations during the optimization of the
growth rate.

3. Optimization with constrained density

Neglecting the metabolite dilution term λcx/cr from
the constraint function (60) allowed us to carry out the
optimization (64) in the space of the metabolite concen-
trations, cx, and the ratios of the metabolic enzymes, θm.
To bring metabolite dilution back into the optimization
procedure of Sec. II G 1, it is sufficient to express the ri-
bosome concentration, cr, in terms of the optimization
variables (64b).

Dividing both sides of (83) by the amount of the ribo-
somes, nr, we get

c−1
r = δTθ = δTx θx + δTe θe. (88)

Here, both the metabolites and the enzymes appear as
the ratios θ [cf. (56)]. Since it is more convenient to work
with the concentrations of the metabolites, rather than
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their ratios, we use δTx θx = δTx cx/cr in (88) to deduce
that

c−1
r (cx,θm) =

δTe θe

1− δTx cx
. (89)

This is a closed-form expression of the reciprocal of the
ribosome concentration in terms of the optimization vari-
ables (64b).

a. Constant macromolecular density
The assumption of constant macromolecular density

corresponds to using δx = 0 for the metabolites and δε =
Mε/ρmacro for the enzymes in (89). With this choice,
the concentration of the ribosomes is a function of the
enzyme ratios only:

c−1
r (θm) = ρ−1

macro1
T
eMeθe, (90)

where the matrix Me = diag(Mε), ε = 1, . . . , Ne, con-
tains the molar masses of the enzymes. The analysis of
Sec. II G 1 is thus directly applicable after subtracting
the following extra term from the constraint function h̃x
in (63):

λ
cx
cr

=
1TeMeθe

1Te G−1(cx)Lθe
cx

ρmacro
. (91)

(The derivatives of this new constraint function with re-
spect to the metabolite concentrations, cx, and the ratios
of the metabolic proteins, θm, are given in Sec. S3 of the
SI.)

For models with uniformly composed proteins, G =
GIe and Me = MaaL, where Maa (g mol−1) is the molar
mass of an average amino acid. Then, (91) simplifies to

λ
cx
cr

= G(cx)Maa
cx

ρmacro
. (q) (92)

In the case of the TR and TVR models (class q in Table
3), the equality constraints in (74) and (77) now become

FT (cA)θT = G(cA)[1 + ρ−1
macroMAcA]

FT (cA)θT + FV (cA)θV = G(cA)[1 + ρ−1
macroMAcA],

(93)

respectively. Consequently, the functions G in (75) and
(76) should be multiplied by the factor (1+ρ−1

macroMAcA).
In the case of the TUR model, the following extra con-

tribution should be added to the numerator of the mul-
tiplicative update (78):

MT θT +MUθU +MR

ρmacro

[
1
FT
cA

1
FU
cB

]
. (94)

Its denominator remains unmodified.
The optimization of these three illustrative models was

carried out with the reduced gradient method after intro-
ducing the outlined changes. We used ρmacro = 300 g l−1,
and MA = MB = 100 g mol−1 for the molar masses of the
metabolites. The results are compiled in rows ‘m’ (for

Table 4. Optima of the three illustrative models, located with
neglected metabolite dilution (n), assuming constant macro-
molecular density ρmacro = 300 g l−1 (m), or constant dry
mass density ρdry = 300 g l−1(d).

λ/h−1 θT θV,U cA/mM cB/mM cR/µM

T
R

n 2.1506 0.3237 - 81.65 - -

m 2.1396 0.3246 - 78.37 - 100.53

d 2.1393 0.3245 - 78.23 - 97.91

T
V

R

n 2.1506 0.3237 0.0000 81.65 - -

m 2.1396 0.3246 0.0000 78.37 - 100.53

d 2.1393 0.3245 0.0000 78.23 - 97.91

T
U

R

n 2.0272 0.0992 0.2703 83.14 37.70 -

m 2.0117 0.1011 0.2699 73.76 36.47 95.27

d 2.0111 0.1010 0.2698 73.25 36.40 91.80

macro) of Table 4. The previous results with neglected
metabolite dilution were recovered using ρ−1

macro = 0 in
the above equations (rows ‘n’ of Table 4). As this latter
case leads to effectively infinite protein concentrations,
the concentration of the ribosome was left unspecified in
the last column of the table.
b. Constant dry mass density
In the case of constant dry mass density, we have δe =

Me1e/ρdry for the enzymes as well as δx = Mx1x/ρdry
for the metabolites, where the molar masses of the lat-
ter have been collected in the diagonal matrix Mx =
diag(Mξ), ξ = 1, . . . , Nx. Substituting these partial mo-
lar volumes into the expression of the ribosome concen-
tration (89), we get

c−1
r (cx,θm) =

1TeMeθe

ρdry − 1TxMxcx
. (95)

The derivatives of the resulting constraint function with
respect to cx and θm are given in Sec. S3B.

The optimization results for the three illustrative mod-
els are given in rows ‘d’ (for dry mass) of Table 4. A com-
parison of the optimal growth rates in the ‘n’, ‘m’ and ‘d’
rows of each model reveals that, for the selected model
parameters, the additional constraint on the density re-
duces the growth rate by less than 1%. In the case of the
TR model, this result is in line with Fig 7, where the con-
tours of constant growth rate show that the maximal λ
has plateaued out already at densities of about 150 g l−1.
Thus, increasing the density from 300 g l−1 to 600 g l−1

or all the way to infinity (row ‘n’) is not expected to
significantly change the maximal growth rate.

Similar to the growth rate, the protein fractions at the
optimum are also observed to depend only weakly on
the density constraint. The largest effect, which is still
moderate, is on the concentrations of the metabolites.

From the perspective of the current section, the ob-
served weak effect of the density constraint on the op-
timal growth rate and the corresponding protein ratios
(though not necessarily on the metabolite concentra-
tions) is extremely encouraging. After all, the whole idea
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of fixing either the dry-mass density or the macromolec-
ular density (and not only its precise numerical value) is
a convenient shortcut that, ideally, should be replaced by
a more realistic model of cell size regulation.

c. Neglected metabolite dilution
The constraint on the density was introduced above in

order to account for the dilution of the metabolite con-
centrations in the optimization of the growth rate. Nev-
ertheless, the physical picture behind the relationship be-
tween cell volume and molecular amounts [eq. (83)], as
well as the assumptions that led to eqs. (90) or (95) for
the ribosome concentration, should be largely indepen-
dent of the magnitude of the dilution term. The same
equations are therefore expected to hold even when the
dilution of the metabolites is negligibly small. Then, it
becomes possible to maximize the growth rate in the ab-
sence of metabolite dilution, as was done in Sec. II G,
and subsequently calculate cr, using either (90) or (95),
to recover finite protein concentrations at the optimum.
When applied to the TUR model, for example, this
approach yields either cr = 95.35µM (with ρmacro =
300 g l−1) or cr = 91.51µM (with ρdry = 300 g l−1).
These values, calculated after an optimization with ne-
glected metabolite dilution, are intended to replace the
missing ribosome concentration in row ‘n’ of Table 4 for
the TUR model.

III. Discussion

A. Summary

One of the main aims of the current paper was to
bridge the gap between the analyses of refs. 31 and 32,
both of which addressed balanced cell growth in a gen-
eral way applicable to large, genome-scale models. Here,
we clarified that the principal difference between the for-
malisms of these two studies is the choice of indepen-
dent variables used to parametrize the states of balanced
growth—metabolite concentrations in the case of the for-
mer and ribosome allocation fractions in the latter (Sec.
II E). In the process, the formalism was developed for
yet another choice of these variables: the concentrations
of the proteins.

The other central goal of the paper was to bridge the
gap between the analyses of refs. 31 and 32, on the
one hand, and the actual numerical optimization of the
growth rate in balanced growth, on the other. In Sec.
II C, we showed how to numerically calculate the con-
centrations of the metabolites from known protein con-
centrations within the framework of a kinetic, autosyn-
thetic cell model of balanced growth. To this end, mul-
tiplicative updates were introduced as an alternative to
Newton-Raphson’s additive updates, thus avoiding the
need for the derivatives of the rate laws and the inversion
of the Jacobian matrix. Multiplicative updates appear to
be perfectly suited to the current problem since reaction
fluxes can always be separated into positive (production

or inflow) and negative (consumption or outflow) parts.69

Given the more extensive experimental coverage of the
cell proteome (e.g., 2359 protein concentrations of E. coli
were measured under 22 experimental conditions70) in
comparison to the cell metabolome (103 metabolite con-
centrations under 3 conditions60), the proposed compu-
tational framework could, in principle, be useful for pre-
dicting the metabolite concentrations that correspond to
a given proteome. In practice, the bottleneck in this task
will be poor knowledge of the enzyme rate laws and their
kinetic and thermodynamic parameters.15 However, ef-
forts for expanding the existing kcat and KM values16,17

by machine-learning approaches are underway.71 Pro-
vided these parameters are available, the reduced gra-
dient method of Sec. II G 1 should allow for the practical
numerical optimization of the growth rate of large, au-
tosynthetic cell models.

In addition to the aforementioned primary objectives,
some issues pertaining to the states of balanced growth,
in general, and to the problem of optimizing the balanced
growth rate, in particular, were also addressed.

In Sec. II F, the growth-induced dilution of the metabo-
lite concentrations was identified to be the only point in
the treatment where the amounts of the enzymes coupled
to the volume of the cell. This is because, on the one
hand, the amounts of all chemical species are ultimately
proportional to the amount of the ribosomes and, on the
other, only the metabolites are “perceived” (through the
enzyme rate laws) as concentrations rather than as ab-
solute amounts. By simultaneously “sensing” both the
volume of the cell and the ribosome amount, the metabo-
lite dilution provides a weak, indirect coupling between
the two. Although the magnitude of this term influences
the growth rate, maximal growth rate is achieved at van-
ishingly small metabolite dilution, which corresponds to
infinite protein concentrations.

In the light of this observation, two alternative ways
of dealing with the problem of infinite protein concen-
trations were subsequently explored. In Sec. II G, we
neglected the dilution of the metabolites and observed
that the resulting model behaves well (i.e., problems with
matrix inversion are avoided) if the inhibition of the en-
zymes by their products is accounted for in the rate laws.
This mathematical requirement highlights the mechanis-
tic role that product inhibition plays in restricting the
metabolite concentrations in the cell. Indeed, the con-
centrations of some metabolites could become unrealis-
tically high in models with missing product inhibition.
In these cases, including the metabolites in the density
constraint serves as a natural constraining mechanism.

In Sec. II H, the dilution of the metabolites was re-
instated after directly linking the cell volume to the
amounts of the proteins by assuming constant macro-
molecular density or dry-mass density. This direct cou-
pling trumped the indirect coupling mediated by the di-
lution of the metabolites, and forced the concentrations
of the proteins to remain finite during the optimization
of the growth rate.
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The discussion in Sec. II H 1, as well as physical in-
tuition, are unequivocal about the direct effect that cell
constituents exert on cell volume. In this context, the
assumption of constant dry mass density is frequently
invoked as an integral part of models of balanced cell
growth.41 In particular, the dry mass density was con-
strained in both refs. 31 and 32.

While the mathematical role of the assumption of con-
stant density for the optimization of the growth rate
is unquestionable, the numerical examples in Sec. II H 3
suggest that envisioning the density as a limited physical
resource for which the (macro)molecules have to compete
may be misleading in some cases. In the considered ex-
amples, the optimal states of the three models with con-
strained dry mass or macromolecular density were practi-
cally identical to the states at infinite density (i.e., with
neglected metabolite dilution). The density constraint
thus appears to only perturb the optimal state, rather
than dictate it.

Of course, the cell density may be a stiff and domi-
nant constraint under some growth conditions and a soft
constraint under others. The observation that protein
synthesis continued even after cell growth was inhibited
in fission yeast is an example for the latter.44

B. Relation to other formulations

Both refs. 31 and 32 analyzed a cell model that grows
by synthesizing its own enzymes. This problem has been
studied before both in the context of specific small-scale
models26–29,72,73 and more generally.20,21,33,74,75 How-
ever, a closer examination of the constrained optimiza-
tion problems formulated in these and other similar stud-
ies often reveals subtle differences in either the choice of
the objective function or the mathematical expressions
of the constraints. Sometimes these variations make it
hard to decide which conclusions depend on the particu-
lar choices made and which apply more generally to other
optimization scenarious.

For example, both refs. 31 and 32 include the metabo-
lites in their density constraints. In contrast, only the
total density of the enzymes (i.e., the macromolecules of
the model) is constrained in refs. 28, 29, and 33. An-
other common difference consists in the treatment of the
metabolite concentrations: their dilution by growth is ei-
ther included31,32,73 or omitted.21,29,75 Yet another point
of variation is the choice of the objective function. While
we and others21,26–29,31–33,72,73 have selected to maximize
the growth rate of the model at a fixed density (either
ρdry or ρmacro), some studies minimize the total enzyme
density at a fixed output flux (e.g., the flux through the
“ribosome” in the case of growth).19,20,75

In Fig 8, the optimization studied in the current paper
is depicted as being at the top of a hierarchy of pos-
sible optimization problems that are reached after one
or two simplifying assumptions. The scheme we exam-
ined is in the rectangle at Level 0. By neglecting the

dilution of the metabolite concentrations, we descend
one level down (Level 1). This assumption is commonly
invoked.20,21,29,75 Further down (Level 2) are optimiza-
tion problems that assume all enzymes to operate with
metabolite-independent molar rates. Resource balance
analysis (RBA) models33,34,74 fall into this last category.

Given that the metabolites are missing entirely from
Level 2, the question arises as to what exactly the opti-
mization of the growth rate achieves here. An answer is
given in ref. 34, which offers a concise but very readable
account of RBA. At this level, the optimization decides
which reactions should be active and which should be in-
active. The ability to switch parts of the metabolic net-
work on and off allows for, among others, modeling the
transition to fermentation in overflow metabolism and
the hierarchical utilization of various carbon sources in
catabolite repression.34

Building on this background, the optimization at
the higher level (Level 1) additionally determines the
metabolite concentrations that maximize the fluxes of
the active reactions by accounting for the dependence
of the enzyme saturations on the metabolites. This in-
formation may feed back on the level below to change
the ranking of two alternative active subnetworks, as has
been illustrated on a simple example in ref. 21. At the
highest level (Level 0), the concentrations in the active
subnetwork are further modified by taking into account
the contribution of metabolite dilution.

For the optimization at Level 0, a constraint on the
density is needed in order to express the concentration
of the ribosomes in terms of the optimization variables
cx and θm (Sec. II H). In Fig 8, the density constraint
is present in the function ρ(cx), which is equal to either
ρmacro [eq. (90)] or (ρdry − 1TxMxcx) [eq. (95)], though
other choices for the relative weights of the different
molecular species are also conceivable.32 At the two lower
levels of the hierarchy (Levels 1 and 2), the assumption
of constant density is not necessary to carry out the op-
timization because the ribosome concentration drops out
together with the neglected metabolite dilution. If de-
sired, such a constraint can be employed after the opti-
mization to calculate the concentration of the ribosomes
and, subsequently, the concentrations of the metabolic
enzymes (Sec. II H 3 c).

The main hierarchy, which is enclosed in rectangles
in Fig 8, applies to models whose proteins have arbi-
trary amino acid compositions.32 Some simplifications
arise when all proteins of the model have identical compo-
sition of their building blocks (Sec. II E).31 The hierarchy
formed by such models parallels the main hierarchy, and
is depicted in the right half of Fig 8.

While the assumption of uniformly composed proteins
may appear to be too restricting, in fact all models that
link cell metabolism to the synthesis of macromolecules
through a single “translation” reaction with fixed stoi-
chiometry (like the biomass reaction of FBA) fall into
this category (e.g., refs. 27–29, 72, and 73). To this
class also belong all RBA models with a single “trans-
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Level Optimization problem

0
min
cx,θm

τ = 1T
e G−1(cx)Lθe

s.t. τSF(cx)θm = QLθe + cx/cr
c−1
r = 1T

e Meθe/ρ(cx)

min
cx,θm

τ = G−1(cx)1
T
e Lθe

s.t. τSF(cx)θm = τG(cx)q + cx/cr

c−1
r = 1T

e LeθeMaa/ρ(cx)

1
min
cx,θm

τ = 1T
e G−1(cx)Lθe

s.t. τSF(cx)θm = QLθe

min
cx,θm

τ = G−1(cx)1
T
e Lθe

s.t. SF(cx)θm = G(cx)q

2
min
θm

τ = 1T
e G−1Lθe

s.t. τSFθm = QLθe

min
θm

τ = G−11T
e Lθe

s.t. SFθm = Gq

Negligible metabolite dilution (d)
cx/cr → 0

Constant enzyme saturations
F(cx) = F, G(cx) = G

Uniform proteins (q)
Q = q1T

e , G(cx) = G(cx)Ie, Me = MaaL

Fig 8. A hierarchy of growth-rate optimization problems resulting from (i) neglecting the dilution of the metabolite concentra-
tions, denoted by d, and (ii) additionally assuming that the saturations of all enzymes remain constant. A parallel hierarchy
exists for models whose proteins have identical amino acid composition, which were denoted by q. Most of the general analyses
in the literature are related to the optimization highlighted in yellow.

lation capacity” constraint,33,74 as well as schemes that
focus on the flux through a single “output” or “objec-
tive” reaction.20,21,75 The generalization of de Groot et
al., which assigns a separate translation reaction to ev-
ery enzyme,32 thus departs from a type of model that is
deeply ingrained in the field.

In ref. 31, the optimization problem at the highest
level of this parallel hierarchy was examined for mod-
els with S of full column rank (class s in Table 3), which
assumes that only the active reactions are included. Our
treatment allowed for the selection of the active reactions
among all possible reactions, as illustrated by the anal-
ysis of the TVR model with two alternative pathways
(Sec. II G 2 b).

The next level (highlighted in yellow in Fig 8) is es-
pecially interesting since almost all of the studies cited
above are related to it either directly or indirectly. As
already stated, the assumption of constant density is not
needed for this optimization. In refs. 20 and 21, how-
ever, either the ribosome flux is maximized for a fixed
total enzyme density,21 or the total enzyme density is
minimized for a fixed flux through the ribosomes.20 Why
is the macromolecular density present in these two cases,
although it is absent from the optimization in the yellow
rectangle of Fig 8?

In the case of models with proteins of uniform com-
position, both the growth time and the macromolecular
density are proportional to the total protein content ex-
pressed in units of amino acids, caaprot = 1Te Lce [eq. (42)].

Specifically,

τ =
caaprot

G(cx)cr
, ρmacro = Maac

aa
prot, (q) (96)

where Maa is the molar mass of an average amino acid.
Recognizing the denominator in (96) to be the flux
through the ribosome, i.e., vr = G(cx)cr, we thus have
the relationship

τ(cx, ce) =
1

Maa

ρmacro(ce)

vr(cx, cr)
. (q) (97)

For fixed ribosome flux, minimizing the macromolecular
density is seen to be equivalent to minimizing the growth
time. This is the setting of ref. 20. Alternatively, if the
macromolecular density is taken to be constant, maxi-
mizing vr is equivalent to minimizing the growth time,
which is the setting of ref. 21.

Most significantly, for models with uniform proteins,
the equality constraint of the optimization problem can
be rewritten as a null-space problem [cf. (44)]:

[
S ;−(q + 1

caaprot
cx)
] [
vm(cx)

vr(cx)

]
= 0. (q) (98)

Here, [S ; b] denotes the matrix obtained by augmenting
the metabolic stoichiometry matrix with an extra col-
umn equal to the vector b. (This is equivalent to ap-
pending the negatives of the stoichiometric coefficients
of the “biomass reaction” to the stoichiometry matrix of
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a metabolic model.) In (98), the column vector multiply-
ing the augmented matrix from the right is[

vm(cx)

vr(cx)

]
=

[
F(cx)cm
G(cx)cr

]
, (q) (99)

whose components are the fluxes (per unit volume) of
the metabolic reactions, vm = vmet/V , and the single
protein-synthesis reaction, vr. Clearly, the flux vector
satisfying the constraint (98) lies in the right null space
of [S ;−q − cx/caaprot]. It can therefore be written as a
weighted sum of the elementary flux modes (EFMs) of
this matrix with non-negative weights.

For the purposes of the optimization, the augmented
stoichiometric matrix in (98) is not particularly conve-
nient since it is a function of the metabolite concentra-
tions, which are not known ahead of time. This incon-
venience is removed at Level 1 (highlighted in yellow),
where the dilution of the metabolites is neglected. As
the augmented matrix now simplifies to [S ;−q], it can
be calculated without knowledge of the metabolite con-
centrations, and its EFMs can be enumerated before the
optimization is initiated. Relying on the results of refs.
20 and 21 that the optimal flux vector is a single EFM,
and not a superposition of two or more EFMs, the op-
timization of the growth rate can then proceed in two
steps. First, remaining on a single EFM, the metabolite
concentrations are adjusted to yield the maximal growth
rate. Second, the maximal growth rates of all EFMs are
compared and the EFM with the highest growth rate is
selected. (This approach was illustrated in ref. 21 on a
simple network with only two EFMs.)

Even if the explosion of EFMs in large, genome-scale
networks were not a problem, it is clear from Fig 8 that
such two-stage optimization strategy will not be directly
applicable when one moves up (including metabolite di-
lution) or to the left (allowing for proteins with different
compositions) of the optimization problem in the yellow
rectangle. In either case, the mass-balance equations of
the metabolites cannot be written as a null-space prob-
lem of a constant matrix.

C. Outlook

Within the framework of the presented autosynthetic
cell model, Ne parameters were necessary to uniquely
describe the states of balanced growth (Sec. II B 2). Al-
though the choice of these parameters was not unique,
the concentrations of the Ne enzymes were a natural op-
tion (Sec. II C 1). In the formalism of the current pa-
per, these protein concentrations constitute the “state
variables” of the cell. After either neglecting the contri-
bution of metabolite dilution or assuming constant cell
density, the number of necessary independent parameters
dropped by one to Nm. Because the growth rate of the
model naturally contained the ratios between the concen-
trations of the metabolic enzymes and the concentration

readout

state

control

metabolites

proteins

alloc. frac.

encoding production

decoding

Fig 9. Relationships between the state variables (enzyme con-
centrations ce), readout variables (metabolite concentrations
cx), and control variables (ribosome allocation fractions α)
of a cell.

of the ribosomes [cf. (24)], these ratios were our variables
of choice (Sec. II G).

In ref. 32, the allocation fractions of the ribosome
were selected as the Nm independent variables. These
were called the “control variables” of the cell. When
the stoichiometry matrix of the cell model has a left
inverse, there are Nm linearly independent metabolites
(Sec. II C 2). The concentrations of these metabolites
were selected as the independent variables in ref. 31.
Since the metabolome of the cell provides a readout of
its activity, we refer to the metabolite concentrations as
the “readout variables” of the cell. These three choices
of independent variables are illustrated schematically in
Fig 9.

Ultimately, the description of balanced growth should
be independent of the choice of free variables. It is there-
fore important to elucidate the mathematical conditions
that ensure this equivalence. At the same time, there
could be various reasons for preferring one set of vari-
ables to the others. On the analytical side, it could be
that the resulting equations are simpler and thus eas-
ier to interpret intuitively or implement numerically. On
the practical side, experimental information about the
three sets of variables may not be uniformly available at
any specific growth condition or across different condi-
tions. In all cases, however, even more flexibility should
be gained by pooling together the strengths of the differ-
ent variables and switching between them in the modeling
process.

When it comes to their biological context, it is abso-
lutely essential to consider the three alternative sets of
independent variables simultaneously (Fig 9). After all,
a desired protein state is generated by allocating the cor-
rect fractions of the ribosome pool to the production of
the different protein types (“production” arrow in Fig
9). These allocation fractions, on the other hand, are
determined with the help of proteins that regulate tran-
scription and translation by “reading out” the metabolic
status of the cell (“decoding” arrow in Fig 9). For the
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previous two processes to be successful, however, the cell
metabolome should provide a faithful image of the enzy-
matic state of the cell (“encoding” arrow in Fig 9).

Such systems-level perspective on the problem enables
us to ask many further questions. At the encoding stage:
What are the mathematical conditions that the network
of metabolic reactions should satisfy for the metabolic
read-out variables to offer a faithful representation of
the enzymatic state of the cell?75 Are there sets of sev-
eral strategically chosen metabolites that can encode this
state with minimal loss of information?76 At the decoding
stage: What should the network structure of the cellular
transcription/translation regulation be for the decoding
from the strategically chosen metabolites to be as faith-
ful as possible? What should the mathematical forms of
the interactions between the sensed metabolites and their
sensor proteins be? How well can these functional forms
be approximated by actual molecular bindings? At the
production stage: How is the allocation of the ribosomes
to the synthesis of different proteins regulated? How does
the direct involvement of metabolites (e.g., ppGpp) in
this process modify the regulatory network of the decod-
ing stage? Regarding the integration of the three stages:
What mathematical properties should the resulting sys-
tem have for it to respond homeostatically to different

environmental perturbations?77 Can this system adjust
to different perturbations such that, in each case, the fi-
nal physiological states are good approximations to the
states with optimal fitness?29,75

Unicellular organisms appear to have found—at least
approximate—solutions to these questions through evo-
lution. We hope that the mathematical framework of
autosynthetic cell models of the type studied here and
elsewhere,31,32,78,79 will help us gain understanding about
the spectrum of all possible solutions, both actual and bi-
ologically unexplored.

Acknowledgments

Stimulating discussions with Hugo Dourado, Ariel
Amir, Xiao-Pan Hu, Tin Yau Pang, Alexander Kroll, and
Ohad Golan are gratefully acknowledged. This work was
funded by the Volkswagenstiftung under the “Life?” ini-
tiative, by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) through CRC 1310 and
through grant EXC 2048/1 (Project ID: 390686111) un-
der Germany’s Excellence Strategy.

∗ dzsezer@gmail.com
1 Donald E. Nicholson, “IUBMB-Nicholson metabolic path-

ways charts,” Biochemistry and Molecular Biology Educa-
tion 29, 42–44 (2001).

2 Minoru Kanehisa, Miho Furumichi, Mao Tanabe, Yoko
Sato, and Kanae Morishima, “KEGG: new perspectives
on genomes, pathways, diseases and drugs,” Nucleic Acids
Research 45, D353–D361 (2016).

3 Ron Caspi, Richard Billington, Carol A Fulcher, Ingrid M
Keseler, Anamika Kothari, Markus Krummenacker, Mario
Latendresse, Peter E Midford, Quang Ong, Wai Kit Ong,
Suzanne Paley, Pallavi Subhraveti, and Peter D Karp,
“The MetaCyc database of metabolic pathways and en-
zymes,” Nucleic Acids Research 46, D633–D639 (2018).

4 M. R. Watson, “Metabolic maps for the Apple II,” Bio-
chemical Society Transactions 12, 1093–1094 (1984).

5 M R Watson, “A discrete model of bacterial metabolism,”
Bioinformatics 2, 23–27 (1986).

6 Reinhart Heinrich and Stefan Schuster, The Regulation of
Cellular Systems (Chapman & Hall, 1996).

7 Bernhard Ø. Palsson, Systems Biology: Properties of Re-
constructed Networks (Cambridge University Press, 2006).

8 Nathan E. Lewis, Harish Nagarajan, and Bernhard O.
Palsson, “Constraining the metabolic genotype–phenotype
relationship using a phylogeny of in silico methods,” Na-
ture Reviews Microbiology 10, 291–305 (2012).

9 Pedro A. Saa and Lars K. Nielsen, “Formulation, construc-
tion and analysis of kinetic models of metabolism: A re-
view of modelling frameworks,” Biotechnology Advances
35, 981–1003 (2017).

10 J. Pramanik and J. D. Keasling, “Stoichiometric model
of Escherichia coli metabolism: Incorporation of growth-

rate dependent biomass composition and mechanistic en-
ergy requirements,” Biotechnology and Bioengineering 56,
398–421 (1997).

11 Adam M Feist and Bernhard Ø Palsson, “The biomass
objective function,” Current Opinion in Microbiology 13,
344–349 (2010).

12 Jeffrey D Orth, Ines Thiele, and Bernhard Ø Palsson,
“What is flux balance analysis?” Nature Biotechnology 28,
245–248 (2010).

13 Deya Alzoubi, Abdelmoneim Amer Desouki, and Mar-
tin J. Lercher, “Flux balance analysis with or without
molecular crowding fails to predict two thirds of experi-
mentally observed epistasis in yeast,” Scientific Reports 9,
11837 (2019).

14 Herbert M. Sauro, Enzyme Kinetics for Systems Biology
(Ambrosius Publishing, 2011).

15 Sean R. Hackett, Vito R. T. Zanotelli, Wenxin Xu,
Jonathan Goya, Junyoung O. Park, David H. Perlman,
Patrick A. Gibney, David Botstein, John D. Storey, and
Joshua D. Rabinowitz, “Systems-level analysis of mech-
anisms regulating yeast metabolic flux,” Science 354,
aaf2786 (2016).

16 Lisa Jeske, Sandra Placzek, Ida Schomburg, Antje Chang,
and Dietmar Schomburg, “BRENDA in 2019: a European
ELIXIR core data resource,” Nucleic Acids Research 47,
D542–D549 (2018).

17 Ulrike Wittig, Renate Kania, Martin Golebiewski, Maja
Rey, Lei Shi, Lenneke Jong, Enkhjargal Algaa, Andreas
Weidemann, Heidrun Sauer-Danzwith, Saqib Mir, Olga
Krebs, Meik Bittkowski, Elina Wetsch, Isabel Rojas, and
Wolfgang Müller, “SABIO-RK—database for biochemical
reaction kinetics,” Nucleic Acids Research 40, D790–D796

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.19.304998doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.19.304998
http://creativecommons.org/licenses/by-nc-nd/4.0/


27

(2011).
18 Elad Noor, Avi Flamholz, Arren Bar-Even, Dan Davidi,

Ron Milo, and Wolfram Liebermeister, “The protein cost
of metabolic fluxes: Prediction from enzymatic rate laws
and cost minimization,” PLOS Computational Biology 12,
e1005167 (2016).

19 Hugo Dourado, Veronica G. Maurino, and Martin J.
Lercher, “Enzymes and substrates are balanced at minimal
combined mass concentration in vivo,” bioRxiv , 128009
(2017).

20 Meike T. Wortel, Han Peters, Josephus Hulshof, Bas
Teusink, and Frank J. Bruggeman, “Metabolic states with
maximal specific rate carry flux through an elementary flux
mode,” The FEBS Journal 281, 1547–1555 (2014).

21 Stefan Müller, Georg Regensburger, and Ralf Steuer, “En-
zyme allocation problems in kinetic metabolic networks:
Optimal solutions are elementary flux modes,” Journal of
Theoretical Biology 347, 182–190 (2014).

22 Stefan Schuster and Claus Hilgetag, “On elementary flux
modes in biochemical reaction systems at steady state,”
Journal of Biological Systems 02, 165–182 (1994).

23 Stefan Schuster, Thomas Dandekar, and David A.
Fell, “Detection of elementary flux modes in biochemi-
cal networks: a promising tool for pathway analysis and
metabolic engineering,” Trends in Biotechnology 17, 53–
60 (1999).

24 R. A. Fisher, The General Theory of Natural Selection
(Oxford University Press, 1930).

25 Erik Gullberg, Sha Cao, Otto G. Berg, Carolina Ilbäck,
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