1 **Title:**

- 2 An immunodominance hierarchy exists in $CD8^+$ T cell responses to
- 3 HLA-A*02:01-restricted epitopes identified from the non-structural polyprotein 1a of
- 4 SARS-CoV-2.

5 **Running title:**

6 Dominant hierarchy of CTL epitopes in SARS-CoV-2 pp1a

7

8 Authors:

9 Akira Takagi,¹ and Masanori Matsui²*

10 Affiliation:

- ¹School of Medical Technology, Faculty of Health and Medical Care, Saitama Medical
- 12 University, 1397-1 Yamane, Hidaka-city, Saitama 350-1241, Japan
- ¹³ ²Department of Microbiology, Faculty of Medicine, Saitama Medical University,
- 14 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan
- 15 *Corresponding author. E-mail address: mmatsui@saitama-med.ac.jp
- 16 Tel: +81-49-276-1438; Fax: +81-49-295-9107.
- 17

18 Key words:

- 19 SARS-CoV-2, COVID-19, CTL epitope, HLA-A*02:01, pp1a, vaccine,
- 20 immunodominance, hierarchy
- 21

22 Abstract

23	COVID-19 vaccines are being rapidly developed and human trials are underway.
24	Almost all of these vaccines have been designed to induce antibodies targeting spike
25	protein of SARS-CoV-2 in expectation of neutralizing activities. However,
26	non-neutralizing antibodies are at risk of causing antibody-dependent enhancement.
27	Further, the longevity of SARS-CoV-2-specific antibodies is very short. Therefore, in
28	addition to antibody-induced vaccines, novel vaccines on the basis of
29	SARS-CoV-2-specific cytotoxic T lymphocytes (CTLs) should be considered in the
30	vaccine development. Here, we attempted to identify HLA-A*02:01-restricted CTL
31	epitopes derived from the non-structural polyprotein 1a of SARS-CoV-2. Eighty-two
32	peptides were firstly predicted as epitope candidates on bioinformatics. Fifty-four in 82
33	peptides showed high or medium binding affinities to HLA-A*02:01. HLA-A*02:01
34	transgenic mice were then immunized with each of the 54 peptides encapsulated into
35	liposomes. The intracellular cytokine staining assay revealed that 18 out of 54 peptides
36	were CTL epitopes because of the induction of IFN- γ -producing CD8 ⁺ T cells. In the 18
37	peptides, 10 peptides were chosen for the following analyses because of their high
38	responses. To identify dominant CTL epitopes, mice were immunized with liposomes
39	containing the mixture of the 10 peptides. Some peptides were shown to be statistically
40	predominant over the other peptides. Surprisingly, all mice immunized with the liposomal
41	10 peptide mixture did not show the same reaction pattern to the 10 peptides. There were
42	three pattern types that varied sequentially, suggesting the existence of an

43 immunodominance hierarchy, which may provide us more variations in the epitope44 selection for designing CTL-based COVID-19 vaccines.

Importance

47	For the development of vaccines based on SARS-CoV-2-specific cytotoxic T
48	lymphocytes (CTLs), we attempted to identify HLA-A*02:01-restricted CTL epitopes
49	derived from the non-structural polyprotein 1a of SARS-CoV-2. Out of 82 peptides
50	predicted on bioinformatics, 54 peptides showed good binding affinities to
51	HLA-A*02:01. Using HLA-A*02:01 transgenic mice, 18 in 54 peptides were found to be
52	CTL epitopes in the intracellular cytokine staining assay. Out of 18 peptides, 10 peptides
53	were chosen for the following analyses because of their high responses. To identify
54	dominant epitopes, mice were immunized with liposomes containing the mixture of the
55	10 peptides. Some peptides were shown to be statistically predominant. Surprisingly, all
56	immunized mice did not show the same reaction pattern to the 10 peptides. There were
57	three pattern types that varied sequentially, suggesting the existence of an
58	immunodominance hierarchy, which may provide us more variations in the epitope
59	selection for designing CTL-based COVID-19 vaccines.
60	
61	

63 Introduction

64	In December 2019, the coronavirus disease 2019 (COVID-19) caused by the severe
65	acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was firstly identified in Wuhan,
66	Hubei province, China. Since then, its subsequent spread of global infection has still
67	continued to gain momentum. As of September 16th, 2020, the COVID-19 pandemic has
68	infected more than 29.4 million people around the world and caused more than 931,000
69	deaths. Although the clinical symptom is varied from asymptomatic or mild self-limited
70	infection to severe life-threating respiratory disease, the mechanism of disease outcome
71	remains unclear. Many nations are struggling to find appropriate preventive and control
72	strategies. However, there are no vaccines or antiviral drugs available for the treatment of
73	this infectious disease.
74	There are seven coronaviruses that infect humans. In addition to SARS-CoV-2,
75	SARS-CoV and middle-east respiratory syndrome coronavirus (MERS-CoV) cause
75 76	SARS-CoV and middle-east respiratory syndrome coronavirus (MERS-CoV) cause severe pneumonia, whereas the other four human coronaviruses including HCoV-229E,
76	severe pneumonia, whereas the other four human coronaviruses including HCoV-229E,
76 77	severe pneumonia, whereas the other four human coronaviruses including HCoV-229E, -NL63, -OC43 and -HKU1 cause common cold (1). Like other coronaviruses,
76 77 78	severe pneumonia, whereas the other four human coronaviruses including HCoV-229E, -NL63, -OC43 and -HKU1 cause common cold (1). Like other coronaviruses, SARS-CoV-2 possesses a large single-stranded positive sense RNA genome (2). As
76 77 78 79	severe pneumonia, whereas the other four human coronaviruses including HCoV-229E, -NL63, -OC43 and -HKU1 cause common cold (1). Like other coronaviruses, SARS-CoV-2 possesses a large single-stranded positive sense RNA genome (2). As shown in Fig. 1, the 5'-terminal two-thirds of the genome are composed of ORF1a and
76 77 78 79 80	severe pneumonia, whereas the other four human coronaviruses including HCoV-229E, -NL63, -OC43 and -HKU1 cause common cold (1). Like other coronaviruses, SARS-CoV-2 possesses a large single-stranded positive sense RNA genome (2). As shown in Fig. 1, the 5'-terminal two-thirds of the genome are composed of ORF1a and ORF1b. ORF1a encodes the polyprotein 1a (pp1a) containing non-structural proteins

84 The host cell receptor for SARS-CoV-2 is the angiotensin-converting enzyme 2 (ACE2)

85 which is also the receptor for SARS-CoV (3, 4).

86	It was shown that the increased cell numbers of antibody-secreting cells, follicular
87	helper T cells, activated $CD4^+$ T cells and $CD8^+$ T cells were observed in a non-severe
88	COVID-19 patient (5), indicating that robust immune responses can be elicited to the
89	newly emerged, SARS-CoV-2. Therefore, the induction of protective immunity against
90	SARS-CoV-2 is considered to help control COVID-19. Vaccines are being rapidly
91	developed in the world, and human trials are underway for several vaccine candidates,
92	ranging from traditional vaccines comprised of inactivated SARS-CoV-2 preparations (6)
93	to innovative vaccines such as subunit (7), RNA (8), DNA (9), and adenoviral (10)
94	vaccines. Almost all of these vaccines have been designed to induce antibodies targeting
95	S protein because some antibodies specific for the receptor binding domain (RBD) of S
96	protein may have neutralizing activities and can interfere with the binding between ACE2
97	on host cells and virus. In fact, it was reported that DNA vaccine encoding S protein
98	induced neutralizing antibody in rhesus macaques and protected them from the challenge
99	with SARS-CoV-2 (9). However, there are two major issues concerning this vaccine. One
100	issue is that non-neutralizing and sub-neutralizing antibodies to S protein induced by this
101	vaccine are at risk of causing antibody-dependent enhancement (ADE) (11). ADE is the
102	phenomenon in which binding of suboptimal antibodies to viruses enhances viral entry
103	mediated by Fc receptors into immune cells, and promotes inflammatory and tissue injury
104	(12). ADE has been reported in the evaluation of vaccine candidates directed to S protein

105	for SARS-CoV (13-16). Because of their similarities, these findings enable us to foresee
106	the high risks of ADE in SARS-CoV-2 vaccines directed to S protein. It is worth noting
107	that RBD-specific antibodies with potent neutralizing activity are extremely rare among
108	S-specific antibodies in COVID-19-covalescent individuals (17, 18), suggesting that the
109	development of effective vaccines might requires novel strategies to selectively target
110	RBD of SARS-CoV-2. On the other hand, Passive immunization of RBD-specific
111	monoclonal antibodies obtained from convalescent individuals might be safe and
112	effective for the elimination of SARS-CoV-2 (19-21), but much more expensive to
113	produce for worldwide use than vaccines (22). The other issue is the short longevity of
114	neutralizing antibodies to SARS-CoV-2. It was previously reported that the
115	SARS-CoV-specific antibodies are short-lived for at most about 2-3 years (23, 24) in
116	comparison with SARS-CoV-specific memory T cells (25). The longevity of
117	SARS-CoV-2-specific antibodies are likely to be even shorter, as indicated by antibody
118	titers being undetectable or approaching baseline in the majority of
119	SARS-CoV-2-infected individuals after 2-3 months post onset of symptoms (26). Taken
120	together, these data strongly suggest that it does not seem right to rely too much on just
121	the S-specific antibody-induced vaccine to control the COVID-19 pandemic.
122	In the viral infection, $CD8^+$ cytotoxic T lymphocytes (CTLs) play an important role for
123	the clearance of virus as well as neutralizing antibodies. CTLs recognize virus-derived
124	peptides in association with major histocompatibility complex class I (MHC-I) molecules
125	on the surface of antigen presenting cells and kill virus-infected target cells. It was

126	reported that $CD4^+$ T cells and $CD8^+$ T cells are decreased in proportion to the disease
127	severity and are exhausted in severe COVID-19 patients (27, 28), suggesting the
128	significance of CD8 ⁺ CTLs in the clearance of SARS-CoV-2. Furthermore,
129	SARS-CoV-specific memory T cells persisted up to 11 years (25), predicting the long life
130	of SARS-CoV-2-specific memory T cells. Therefore, in addition to antibody-induced
131	vaccines, novel vaccines based on SARS-CoV-2-specific CTLs should also be considered
132	in the future vaccine development for the prevention and disease control of COVID-19.
133	For the development of CTL-based COVID-19 vaccine, we here attempted to identify
134	HLA-A*02:01-restricted, dominant CTL epitopes derived from pp1a of SARS-CoV-2.
135	Pp1a is a largest protein composed of 4,401 amino acids among SARS-CoV-2 proteins,
136	and therefore, it seems highly possible to find dominant epitopes in this protein.
137	Furthermore, pp1a is produced first in SARS-CoV-2-infected cells, suggesting
138	pp1a-specific CTLs could kill infected cells before the formation of mature virions. In
139	addition, this protein is composed of 11 non-structural regulatory proteins that are highly
140	conserved among many different coronaviruses (29). To identify CTL epitopes, we used
141	computational algorithms, HLA-A*02:01 transgenic mice and the peptide-encapsulated
142	liposomes. In a similar way, we previously identified CTL epitopes of SARS-CoV pp1a
143	(30).
144	

145 **<u>Results</u>**

146 Prediction of HLA-A*02:01-restricted CTL epitopes derived from SARS-CoV-2

147 **pp1a.**

148	We firstly attempted to predict HLA-A*02:01-restricted CTL epitopes derived from
149	SARS-CoV-2 pp1a using four computer-based programs, SYFPEITHI (31), nHLAPred
150	(32), ProPred-I (33), and IEDB (34). Eighty-two epitopes with high scores for all four
151	programs were selected and synthesized into 9-mer peptides (Table 1). These peptides
152	were then evaluated for their binding affinities to HLA-A*02:01 molecule using
153	TAP2-deficient RMA-S-HHD cells. As the half-maximal binding level (BL ₅₀) values of
154	the influenza A virus matrix protein 1-derived peptide, FMP_{58-66} (35) as a high binder
155	control and the HIV reverse transcriptase-derived peptide, HIV-pol ₄₇₆₋₄₈₄ (36) as a
156	medium binder control were 2.3 μ M and 80.6 μ M, respectively, we defined a high binder
157	with a BL ₅₀ value below 10 μ M, a medium binder with a BL ₅₀ value ranging from 10 to
158	100 μ M, and a low binder with a BL ₅₀ value above 100 μ M. As shown in Table 1, 20
159	peptides were high binders, whereas 34 peptides were medium binders, suggesting that
160	the bioinformatics prediction was mostly successful. In contrast, the remaining 28
161	peptides displayed low affinities or no binding to HLA-A*02:01 molecules (Table 1). In
162	the following experiments, 54 peptides involving high binders and medium binders were
163	chosen to further investigate their abilities of peptide-specific CTL induction.
164	

165 Detection of SARS-CoV-2 pp1a-specific CD8⁺ T cell responses in mice immunized

166 with peptide-encapsulated liposomes.

167 Each of 54 peptides selected were encapsulated into liposomes as described in the

168 materials and methods. HLA-A*02:01 transgenic (HHD) mice (37) were then

169 subcutaneously (s.c.) immunized twice at a one-week interval with each of

170 peptide-encapsulated liposomes together with CpG adjuvant. One week later, spleen cells

171 of immunized mice were prepared, stimulated *in vitro* with a relevant peptide for 5 hours,

and stained for their expression of cell-surface CD8 and intracellular interferon-gamma

173 (IFN-γ). As shown in Fig. 2, the intracellular cytokine staining (ICS) assay showed that

174 significant numbers of IFN-γ-producing CD8+ T cells were elicited in mice immunized

175 with 18 liposomal peptides including pp1a-38, -52, -84, -103, -445, -597, -641, -1675,

176 -2785, -2884, -3083, -3403, -3467, -3583, -3662, -3710, -3732, and -3886, revealing that

177 these 18 peptides are HLA-A*02:01-restricted CTL epitopes derived from SARS-CoV-2

178 pp1a. As indicated in Table 2, multiple epitopes are located in small proteins such as nsp1

179 (180 aa) and nsp6 (290 aa), whereas only one epitope is seen in the large nsp3 composed

180 of 1945 amino acids. On the other hand, the remaining 36 peptides out of 54 peptides in

181 liposomes were not able to stimulate peptide-specific CTLs in mice (data not shown),

182 demonstrating the necessity to generate data through wet-lab experiments. Interestingly,

183 four epitopes including pp1a-103, -2884, -3403, and -3467 are located in the amino acid

184 sequence of SARS-CoV pp1a as well (Table 2). pp1a-3467 was previously reported by us

185 in the identification of SARS-CoV-derived CTL epitopes (30). However, any of 18

186	epitopes are not found in the amino acid sequence of either MERS-CoV or the four
187	common cold human coronaviruses involving HCoV-OC43, HCoV-229E, HCoV-NL63,
188	and HCoV-HKU1.
189	In the 18 positive peptides, 10 peptides including pp1a-38, -84, -641, -1675, -2884,
190	-3467, -3583, -3662, -3710, and -3732 were selected for the following analyses because
191	of the high ratios of IFN- γ^+ cells in CD8 ⁺ T cells (Fig. 2).
192	
193	Identification of dominant CTL epitopes.
194	To confirm that the 10 peptides are effective epitopes for peptide-specific CTL
195	responses, we examined whether peptide-specific killing activities were elicited in mice
196	with each of 10 peptides in liposomes. HHD mice were immunized s.c. twice with each
197	of peptide-encapsulated liposomes and CpG adjuvant. One week later, equal numbers of

198 peptide-pulsed and -unpulsed target cells were transferred into immunized mice via i.v.

199 injection, and peptide-specific lysis was analyzed by flow cytometry. In support of the

200 data of ICS (Fig. 2), peptide-specific killing was observed in mice immunized with any of

201 10 liposomal peptides (Fig. 3A).

202 We next attempted to identify dominant CTL epitopes among the 10 CTL epitopes.

203 The same amounts of the 10 peptide solutions at an equal concentration were mixed

- 204 together and encapsulated into liposomes. Seventeen mice were immunized once with the
- 205 liposomes containing the mixture of 10 peptides. One week later, spleen cells were
- 206 incubated with each of the 10 peptides for 5 hours, and the ICS assay was performed. As

207	shown in Fig. 3B & C, pp1a-38 and -84 were statistically predominant over almost all
208	other peptides in the induction of peptide-specific IFN- γ^+ CD8 ⁺ T cells. Furthermore,
209	pp1a-641 and pp1a-3732 were significantly superior to pp1a-1675/-3583 and
210	pp1a-1675/-3583/-3662 in the stimulation of IFN- γ -producing CD8 ⁺ T cells, respectively
211	(Fig. 3B).
212	We also examined the peptide-specific induction of $CD107a^+ CD8^+ T$ cells and $CD69^+$
213	CD8 ⁺ T cells. CD107a and CD69 are markers of degranulation and early activation on
214	CD8 ⁺ T lymphocytes, respectively. Nine mice were immunized once with the liposomes
215	encapsulating the mixture of the 10 peptides. After one week, spleen cells were
216	stimulated with each peptide, and stained for their expression of CD107a or CD69 of
217	CD8 ⁺ T cells. At first glance, the graphs of CD107a (Fig. 4A) and CD69 (Fig. 4B)
218	expression were similar to that of IFN- γ expression of CD8 ⁺ T cells (Fig. 3C). As shown
219	in Figs. 4A & 4C, both pp1a-38 and pp1a-84 were superior to almost all other peptides
220	for the CD107a expression of CD8 ⁺ T cells. Moreover, pp1a-641 and pp1a-3732 elicited
221	CD107a-positive T cells better than pp1a-1675/-2884/-3467 and
222	pp1a-1675/-2884/-3467/-3583, respectively. In the case of CD69 expression (Figs. 4B &
223	4D), pp1a-38 and pp1a-3732 were more dominant than pp1a-1675/-2884/-3467/-3583 and
224	pp1a-1675/-2884/-3467/-3583/-3662, respectively. Further, pp1a-84 was superior to
225	pp1a-1675/-2884.
226	Taken together, 10 peptides differed significantly in their ability to induce

227 SARS-CoV-2 pp1a-specific CTLs when mice were immunized with the mixture of 10

228	peptides in liposomes. Thus, some peptides were found to be dominant CTL epitopes
229	although each peptide alone of the 10 peptides has the capability to efficiently activate
230	peptide-specific CTL (Figs. 2 & 3A).
231	
232	Existence of an immunodominance hierarchy.
233	The data in Fig. 5 indicate reactivity to the 10 peptides in each of 15 mice immunized
234	with the mixture of the 10 peptides in liposomes. Each graph represents reactivity of an
235	individual mouse (Fig. 5). Unexpectedly, all mice did not show the same reaction pattern
236	against the 10 peptides. It looks like there were roughly three types that varied
237	sequentially in terms of the reaction pattern to the 10 peptides. Type A is a group of mice
238	in which pp1a-38, -84, -641-specific IFN- γ^+ CD8 ⁺ T cells were predominantly elicited,
239	whereas the remaining 7 peptides were not able to activate peptide-specific IFN- γ^+ CD8 ⁺
240	T cells. In the case of type B, pp1a-3732 stimulated peptide-specific IFN- γ^+ CD8 ⁺ T cells
241	as well as pp1a-38, and -84. In addition to these three peptides, several other peptides also
242	induced IFN- γ^+ CD8 ⁺ T cells in Type C. These data suggest that there seems to be an
243	immunodominance hierarchy composed of three stages in CD8 ⁺ T cell responses to the 10
244	peptides. The immunodominance hierarchy may provide us more variations for designing
245	CTL-based COVID-19 vaccines.
246	

247 Discussion

248	After the epidemics of SARS and MERS, scientists have not succeeded yet in
249	developing preventive or therapeutic vaccines available for re-emergence of them. In the
250	SARS and MERS vaccine development, the full-length S protein or its S1 subunit have
251	frequently been used as an antigen to produce anti-RBD neutralizing antibodies.
252	However, these vaccine candidates provided partial protection against virus challenge in
253	animal models accompanied by safety concerns such as ADE (1). Furthermore, antibody
254	responses to coronaviruses rapidly wane following infection or immunization (23, 24,
255	26). Considering the above, it should be necessary to consider CTL-based vaccine against
256	SARS-CoV-2 to provide robust long-lived T cell memory although neutralizing antibody
257	responses are a primary vaccine target.
258	In the current study, we aimed to find HLA-A*02:01-resctricted CTL dominant
259	epitopes derived from SARS-CoV-2. Dominant epitopes induce strong immune response
260	to eliminate a certain pathogen fast and effectively, and also contribute to make the
261	memory T cell pool. We focused on pp1a of SARS-CoV-2 to find out CTL epitopes
262	because pp1a is a largest and conserved polyprotein among the constituent proteins.
263	Further, pp1a is produced earlier than structural proteins, suggesting that pp1a-specific
264	
	CTLs can eliminate infected cells before the formation of mature virions. To predict CTL
265	CTLs can eliminate infected cells before the formation of mature virions. To predict CTL epitopes, we utilized bioinformatics to select 82 peptides with high scores in four kinds of
265 266	-

268	remaining 28 peptides displayed low binding affinities or no binding (Table 1). Out of
269	them, only eighteen peptides were found to be CTL epitopes. Hence, we have to keep in
270	mind that currently available algorithms have a limited ability to accurately predict CTL
271	epitopes although the bioinformatics approach is very useful to quickly predict a number
272	of epitopes in a large protein (38, 39).
273	Among 18 epitopes which we have identified in the current study, 4 epitopes including
274	pp1a-103, -2884, -3403, and -3467 are present in the amino acid sequence of SARS-CoV
275	pp1a (100% identity) (Table 2). Therefore, CTLs induced by these four epitopes could
276	work fine for the clearance of SARS-CoV as well. In support of this data, Le Bert et al.,
277	reported that long lasting memory T cells in SARS-recovered individuals cross-reacted to
278	N protein of SARS-CoV-2 (40). Recently, several studies found that
279	SARS-CoV-2-reactive CD4 ⁺ and CD8 ⁺ T cells were detected in a substantial proportion
280	of healthy donors who have never infected with SARS-CoV-2 or SARS-CoV (40-44). It
281	is most likely that these individuals were previously infected with one of the four human
282	coronaviruses (HCoV-229E, -NL63, -OC43 and -HKU1) that cause seasonal common
283	cold. Nelde et al. demonstrated evidence that the amino acid sequences of several
284	SARS-CoV-2 T cell epitopes recognized by unexposed individuals are similar to some
285	amino acid sequences in the four seasonal common cold human coronaviruses with
286	identities ranging from 10% to 89% (not 100% identity) (44). However, anyone has not
287	shown evidence that people with this cross-reactivity are less susceptible to COVID-19.
288	It may be also possible to assume that pre-existing T cell immunity might be detrimental

289	through mechanisms such as original antigenic sin or ADE (45). In the current data, any
290	of the 18 epitopes was not found in the amino acid sequences of the four human
291	coronaviruses, suggesting that effective common CTL epitopes derived from pp1a, if any,
292	might be very few.
293	Here, we focused on CTL epitopes restricted by HLA-A*02:01 which is the most
294	common HLA class I allele in the world, and used highly reactive HLA-A*02:01
295	transgenic mice, termed HHD mice (37). Although we can use lymphocytes of
296	SARS-CoV-2-infected individuals to identify CTL epitopes, there are mainly two
297	advantages to using HHD mice. First, a large amount of blood of patients is required for
298	examine many candidates of CTL epitopes, but any number of mice can be prepared for
299	this purpose. Second, when using patients' lymphocytes, we are only testing whether the
300	peptide candidates are recognized by memory CTLs. When using naïve mice, however,
301	we can find whether the epitope candidates are able to prime peptide-specific CTLs,
302	which may be a better criterion to judge them as vaccine antigens. It is supposed that the
303	efficient epitope for CTL recognition is not always efficient for CTL priming. However,
304	we should take into account that the immunogenic variation in HLA class I transgenic
305	mice may not be identical to that in humans because the antigen processing and
306	presentation differ between them.
307	In the previous studies, we used peptide-linked liposomes as an immunogen (30). The
308	surface-linked liposomal peptides were effective for peptide-specific CTL induction in

309 mice. However, attaching peptides to the surface of liposomes followed by purifying

310	them through the column is a fairly complicated process and time-consuming. In the
311	current study, peptide-encapsulated liposomes were used as an immunogen. In contrast to
312	the peptide-linked liposomes, the peptide-encapsulated liposomes are prepared by just
313	mixing liposomes and the peptide. In addition, the peptide-encapsulated liposomes are
314	able to prime peptide-specific CTLs in mice as efficiently as the peptide-linked
315	liposomes. Liposome itself consisting of lipid bilayers is a very safe material for humans.
316	Therefore, the peptide-encapsulated liposomes are considered to be promising as a
317	CTL-based vaccine candidate.
318	Understanding the mechanism of immunodominance is obviously important for the
319	development of effective vaccines. When mice were immunized with liposomes
320	containing the mixture of 10 peptides, it was found that some peptides induced
321	peptide-specific CTLs stronger than other peptides (Figs. 3 & 4). As shown in Figs. 3 &
322	4, pp1a-38 and -84 are considered to be relatively dominant in comparison with other
323	peptides. In general, dominant epitope-specific CTLs are activated sooner and proliferate
324	faster than subdominant epitope-specific CTLs. This immunodominance may be
325	associated with the affinity of peptide to MHC-I molecules and the affinity of T-cell
326	receptor (TCR) to the peptide-MHC-I complex. As shown in Table I, the peptide affinity
327	of pp1a-84 to HLA-A*02:01 is very high (BL ₅₀ = 6.8 μ M), while pp1a-38 is a medium
328	binder (BL ₅₀ = 76.8 μ M). Interestingly, the peptide affinity of pp1a-38 is lowest among
329	the 10 peptides selected (Table I). These data suggest that the affinity of TCR to the
330	peptide-MHC-I complex is critical for CTL immunodominance. In the selection of

331	antigenic epitopes for the CTL-based vaccine against SARS-CoV-2, dominant epitopes
332	such as pp1a-38 and -84 should be chosen because they produce strong CTL response to
333	eliminate virus-infected cells effectively. However, the immunological pressure exerted
334	by dominant epitopes may allow the epitope sequences of SARS-CoV-2 to be mutated,
335	and therefore, a vaccine containing multiple antigenic epitopes should be recommended
336	for a successful COVID-19 vaccine.
337	It was surprising that all of the genetically identical mice did not show the same
338	reactive pattern against the 10 peptides when they were immunized with liposomes
339	containing the mixture of 10 peptides (Fig. 5). There were roughly three pattern types,
340	A-C, that varied sequentially, suggesting the existence of an immunodominance
341	hierarchy composed of three stages in CD8 ⁺ T cell responses to the 10 peptides (Fig. 5).
342	The differences among the three types might be explained by the timing of CTL
343	expansion. In the type A, dominant peptides, pp1a-38, -84, and -641 presumably
344	activated T cells more efficiently than the other peptides, and hence, dominant
345	peptide-specific CTLs proliferate faster and curtail the expansion of CTLs specific for the
346	other peptides. In the type B, it is considered that the expansion of dominant CTLs
347	specific for pp1a-38, and -84 was delayed for some reason compared to that in type A,
348	and thereby subdominant CTLs specific for pp1a-3732 could afford to expand. It is also
349	thought that even non-dominant CTLs proliferated because the expansion of both
350	dominant CTLs and subdominant CTLs in the type C was later than that in the type B.
351	Although it is difficult to explain what caused difference in the timing of CTL expansion

among three reaction types, it should be important to find out what it is for the

- 353 development of CTL-based peptide vaccine.
- 354 In summary, we have identified 18 kinds of HLA-A*02:01-restricted CTL epitopes
- derived from pp1a of SARS-CoV-2 using computational algorithms, HLA-A*02:01
- transgenic mice and the peptide-encapsulated liposomes. Out of 18 epitopes, we have
- also found some dominant CTL epitopes such as pp1a-38 and -84. In the process of
- 358 finding dominant epitopes, we showed the existence of an immunodominance hierarchy
- in CD8⁺ T cell responses to these epitopes. The immunodominance hierarchy composed
- 360 of multiple stages may offer us more variations in the epitope selection for designing
- 361 CTL-based COVID-19 vaccines. These data may provide important information for
- 362 further studies of T cell immunity in COVID-19 and the development of preventive
- and/or therapeutic CTL-based vaccines against SARS-CoV-2.
- 364

366 Materials and Methods

367 **Prediction of CTL epitopes.**

- 368 Four computer-based programs including SYFPEITHI (31), nHLAPred (32), ProPred-I
- 369 (33), and IEDB (34) were used to predict HLA-A*02:01-restricted CTL epitopes derived
- from pp1a of SARS-CoV-2 (GenBank accession numbers: LC528232.1 & LC528233.1).
- 371 As shown in Table 1, 82 peptides with superior scores were selected and were
- 372 synthesized by Eurofins Genomics (Tokyo, Japan). Two control peptides, FMP₅₈₋₆₆
- 373 (sequence: GILFGVFTL) (35) and HIV-pol₄₇₆₋₄₈₄ (sequence: ILKEPVHGV) (36), were
- 374 synthesized as well.

375

376 Mice.

377	We used HLA-A*02:01 transgenic mice (37) that express a transgenic HLA-A*02:01
378	monochain, designated as HHD, in which human β 2-microglobulin is covalently linked
379	to a chimeric heavy chain composed of HLA-A*02:01 (α 1 and α 2 domains) and H-2D ^b
380	(α 3, transmembrane, and cytoplasmic domains). Six- to ten-week-old mice were used for
381	all experiments. Mice were housed in appropriate animal care facilities at Saitama
382	Medical University, and were handled according to the international guideline for
383	experiments with animals. This study was approved by the Animal Research Committee
384	of Saitama Medical University.
385	

386 Cell lines.

387	RMA-S-HHD is a TAP2-dificient mouse lymphoma cell line, RMA-S (H-2 ^b)
388	transfected with the HHD gene (37). RMA-S-HHD was cultured in RPMI-1640 medium
389	(Nacalai Tesque Inc., Kyoto, Japan) with 10% FCS (Biowest, Nuaille, France) and 500
390	µg/ml G418 (Nacalai Tesque Inc.)
391	
392	Peptide binding assay.
393	Binding of peptides to the HLA-A*02:01 molecule was measured using RMA-S-HHD
394	cells, as described (46). Briefly, RMA-S-HHD cells were pre-cultured overnight at 26°C
395	in a CO ₂ incubator, and then pulsed with each peptide at various concentrations ranging
396	from 0.01 μ M to 100 μ M for 1 hour at 26°C. After 3 hours' incubation at 37°C,
397	peptide-pulsed cells were stained with anti-HLA-A2 monoclonal antibody, BB7.2 (47),
398	followed by FITC-labeled goat anti-mouse IgG antibody (Sigma-Aldrich, St. Louis, MO).
399	Mean fluorescence intensity (MFI) of HLA-A2 expression on the surface of
400	RMA-S-HHD cells was measured by flow cytometry (FACSCanto TM II, BD Biosciences,
401	Franklin Lakes, NJ), and standardized as the percent cell surface expression by the
402	following formula: % relative binding = [{(MFI of cells pulsed with each peptide) –
403	(MFI of cells incubated at 37°C without a peptide)}/{(MFI of cells incubated at 26°C
404	without a peptide) – (MFI of cells incubated at 37°C without a peptide)}] \times 100. The
405	concentration of each peptide that yields the 50% relative binding was calculated as the
406	half-maximal binding level (BL $_{50}$). FMP $_{58-66}$ and HIV-pol $_{476-484}$ were used as control
407	peptides.

408

409 **Peptide-encapsulated liposomes.**

- 410 Peptide-encapsulated liposomes were prepared using Lipocapsulater FD-U PL
- 411 (Hygieia BioScience, Osaka, Japan) according to the manufacturer's instructions with a
- 412 slight modification. In brief, each of 54 synthetic peptides was dissolved in DMSO at a
- 413 final concentration of 10 mM. For the first screening, the same amounts of 4 to 5 kinds of
- 414 10 mM peptides were mixed to make a total 100 μ l, which was then diluted with 1.9 ml
- 415 of H_2O . For the second screening, 20 µl of each peptide at 10 mM was diluted to 2 ml
- 416 with H₂O. For the identification of dominant epitopes among the 10 peptides selected, 20
- 417 µl of each of the 10 peptide solutions at a concentration of 10 mM was mixed together,
- 418 and the total volume was increased to 2 ml by adding 1.8 ml of H_2O . The peptide
- 419 solution was added into a vial of Lipocapsulater containing 10 mg of dried liposomes,
- 420 and incubated for 15 min at room temperature. The resultant solution contains
- 421 peptide-encapsulated liposomes.

422

423 Immunization.

- 424 Mice were immunized s.c. once or twice at a one-week interval with
- 425 peptide-encapsulated liposomes (100 μl/mouse) together with CpG-ODN (5002:
- 426 5'-TCCATGACGTTCTTGATGTT-3', Hokkaido System Science, Sapporo, Japan) (5

427 μ g/mouse) in the footpad.

429 Intracellular cytokine staining (ICS).

430	ICS was performed as described (30). In brief, after 1 wk following immunization,
431	spleen cells were incubated with 50 μ M of each peptide for 5 hours at 37°C in the
432	presence of brefeldin A (GolgiPlug TM , BD Biosciences), and were stained with
433	FITC-conjugated anti-mouse CD8 monoclonal antibody (mAb) (BioLegend, San Diego,
434	CA). Cells were then fixed, permeabilized, and stained with phycoerythrin
435	(PE)-conjugated rat anti-mouse IFN-y mAb (BD Biosciences). After washing the cells,
436	flow cytometric analyses were performed using flow cytometry (FACSCanto TM II, BD
437	Biosciences).
438	
439	Detection of CD107a and CD69 molecules on CD8 ⁺ T cells.
440	For the detection of CD107a, spleen cells of immunized mice were incubated with 50
441	μ M of each peptide for 6 hours at 37°C in the presence of monensin (GolgiStop TM , BD
442	Biosciences) and 0.8 μ g of FITC-conjugated anti-mouse CD107a mAb (BioLegend).
443	Cells were then stained with PE-Cy5-conjugated anti-mouse CD8 mAb (BioLegend). For
444	the examination of CD69 marker, spleen cells of immunized mice were stimulated with
445	50 µM of each peptide for 4 hours at 37°C. Cells were then stained with PE-conjugated
446	anti-mouse CD69 mAb (BioLegend) and FITC-conjugated anti-mouse CD8 mAb.

447 Stained cells were analyzed by flow cytometry (FACSCantoTM II, BD Biosciences).

448

449 In vivo CTL assay.

450	In vivo CTL assay was carried out as described (46). In brief, spleen cells from naive
451	HHD mice were equally split into two populations. One population was pulsed with 50
452	μM of a relevant peptide and labeled with a high concentration (2.5 $\mu M)$ of
453	carboxyfluorescein diacetate succinimidyl ester (CFSE) (Molecular Probes, Eugene, OR).
454	The other population was unpulsed and labeled with a lower concentration (0.25 $\mu M)$ of
455	CFSE. An equal number (1×10^7) of cells from each population was mixed together and
456	adoptively transferred i.v. into mice that had been immunized once with a liposomal
457	peptide. Sixteen hours later, spleen cells were prepared and analyzed by flow cytometry.
458	To calculate specific lysis, the following formula was used: % specific lysis =
459	[1-{(number of CFSE ^{low} cells in normal mice)/(number of CFSE ^{high} cells in normal
460	mice)}/{(number of $CFSE^{low}$ cells in immunized mice)/(number of $CFSE^{high}$ cells in
461	immunized mice)}] x 100.
462	
463	Statistical analyses.
464	One-way ANOVA followed by post-hoc tests was performed for statistical analyses
465	among multiple groups using Graphpad Prism 5 software (GraphPad software, San
466	Diego, CA). A value of $P < 0.05$ was considered statistically significant.
467	
468	

469 ACKNOWLEDGMENTS

- 470 The authors are grateful to Professor François A. Lemonnier (Pasteur Institute, Paris,
- 471 France) for providing HHD mice and RMA-S-HHD cells. This work was supported by a
- 472 Grant-in-Aid for Scientific Research (C) (JSPS KAKENHI Grant Number: JP18K06631)
- 473 to M. M., a Grant-in-Aid for Early-Career Scientists (JSPS KAKENHI Grant Number:
- 474 JP18K15430) to A. T. from Japan Society for the Promotion of Science, and a Grant
- 475 from Ochiai memorial award 2018 to A. T. The authors have no conflicting financial
- 476 interests.
- 477

478 **<u>References</u>**

- 479 1. Sariol A, Perlman S. 2020. Lessons for COVID-19 immunity from other
- 480 coronavirus infections. Immunity 53:248-263.
- 481 2. Srinivasan S, Cui H, Gao Z, Liu M, Lu S, Mkandawire W, Narykov O, Sun M,
- 482 Korkin D. 2020. Structural genomics of SARS-CoV-2 indicates evolutionary
- 483 conserved functional regions of viral proteins. Viruses 12:360.
- 484 https://doi.org/10.3390/v12040360.
- 485 3. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. 2020.
- 486 Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein Cell
 487 181:281-292.
- 488 4. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S,
- 489 Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S.
- 490 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a
- 491 clinically proven protease inhibitor. Cell 181:271-280.
- 492 5. Thevarajan I, Nguyen THO, Koutsakos M, Druce J, Caly L, van de Sandt CE, Jia X,
- 493 Nicholson S, Catton M, Cowie B, Tong SYC, Lewin SR, Kedzierska K. 2020.
- Breadth of concomitant immune responses prior to patient recovery: a case report of
 non-severe COVID-19. Nat Med 26:453-455.
- 496 6. Gao, Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z, Gao H,
- 497 Ge X, Kan B, Hu Y, Jiangning Liu J, Cai F, Jiang D, Yin Y, Qin C, Li J, Gong X,
- 498 Lou X, Shi W, Wu D, Zhang H, Zhu L, Deng W, Li Y, Lu J, Li C, Wang X, Yin W,

- 499 Zhang Y, Qin C. 2020. Development of an inactivated vaccine candidate for
- 500 SARS-CoV-2. Science 369:77-81.
- 501 7. Guebre-Xabier M, Patel N, Tian J-H, Zhou B, Maciejewski S, Lam K, Portnoff AD,
- 502 Massare MJ, Frieman MB, Piedra PA, Ellingsworth L, Glenn G, Gale Smith G.
- 503 2020. NVX-CoV2373 vaccine protects cynomolgus macaque upper and lower
- 504 airways against SARS-CoV-2 challenge. bioRxiv
- 505 https://doi.org/10.1101/2020.08.18.256578.
- 506 8. Walsh EE, Frenck R, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S,
- 507 Neuzil K, Mulligan MJ, Bailey R, Swanson KA, Li P, Koury K, Kalina W, Cooper
- 508 D, Fontes-Garfias C, Shi P-Y, Türeci Z, Tompkins KR, Lyke KE, Raabe V,
- 509 Dormitzer PR, Jansen KU, Şahin U, Gruber WC. 2020. RNA-based COVID-19
- 510 vaccine BNT162b2 selected for a pivotal efficacy study. medRxiv
- 511 https://doi.org/10.1101/2020.08.17.20176651.
- 512 9. Yu J, Tostanoski LH, Peter L, Mercado NB, McMahan K, Mahrokhian SH, Nkolola
- 513 JP, Liu J, Li Z, Chandrashekar A, Martinez DR, Loos C, Atyeo C, Fischinger S,
- 514 Burke JS, Slein MD, Chen Y, Zuiani A, Lelis FJN, Travers M, Habibi S, Pessaint L,
- 515 Ry AV, Blade K, Brown R, Cook A, Finneyfrock B, Dodson A, Teow E, Velasco J,
- 516 Zahn R, Wegmann F, Bondzie EA, Dagotto G, Gebre MS, He X, Jacob-Dolan C,
- 517 Kirilova M, Kordana N, Lin Z, Maxfield LF, Nampanya F, Nityanandam R, Ventura
- 518 JD, Wan H, Cai Y, Chen B, Schmidt AG, Wesemann DR, Baric RS, Alter G,

519		Andersen H, Lewis MG, Barouch DH. 2020. DNA vaccine protection against
520		SARS-CoV-2 in rhesus macaques. Science 369:806-811.
521	10.	Hassan AO, Kafai NM, Dmitriev IP, Fox JM, Smith BK, Harvey IB, Chen RE,
522		Winkler ES, Wessel AW, Case JB, Kashentseva E, McCune BT, Bailey AL, Zhao
523		H, VanBlargan LA, Dai Y-N, Ma M, Adams LJ, Shrihari S, Danis JE, Gralinski LE,
524		Hou YJ, Schäfer A, Kim AS, Keeler SP, Weiskopf D, Baric RS, Holtzman MJ,
525		Fremont DH, Curiel DT, Diamond MS. 14 August 2020. A single-dose intranasal
526		ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2.
527		Cell https://doi.org/10.1016/j.cell.2020.08.026
528	11.	Iwasaki A, Yang Y. 2020. The potential danger of suboptimal antibody responses in
529		COVID-19. Nat Rev Immunol 20:339-341.
530	12.	Arvin AM, Fink K, Schmid MA, Cathcart A, Spreafico R, Havenar-Daughton C,
531		Lanzavecchia A, Corti D, Virgin HW. 2020. A perspective on potential
532		antibody-dependent enhancement of SARS-CoV-2. Nature 584:353-363.
533	13.	Weingart H, Czub M, Czub S, Neufeld J, Marszal P, Gren J, Smith G, Jones S,
534		Proulx R, Deschambault Y, Grudeski E, Andonov A, He R, Li Y, Copps J, Grolla A,
535		Dick D, Berry J, Ganske S, Manning L, Cao J. 2004. Immunization with modified
536		vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory
537		syndrome is associated with enhanced hepatitis in ferrets. J Virol 78:12672-12676.
538	14.	Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, Peters
539		CJ, Couch RB. 2012. Immunization with SARS coronavirus vaccines leads to

540 pulmonary immunopathology on cl	hallenge with the SARS virus. PLoS One
-------------------------------------	--

541 7:e35421.

542	15.	Wang SF, Tseng SP, Yen CH, Yang JY, Tsao CH, Shen CW, Chen KH, Liu FT, Liu
543		WT, Chen YM, Huang JC. 2014. Antibody-dependent SARS coronavirus infection
544		is mediated by antibodies against spike proteins. Biochem Biophys Res Commn
545		451:208-214.
546	16.	Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H, Tang H, Nishiura K, Peng J, Tan Z,
547		Wu T, Cheung K-W, Chan K-H, Alvarez X, Qin C, Lackner A, Perlman S, Yuen
548		K-Y, Chen Z. 2019. Anti-spike IgG causes severe acute lung injury by skewing
549		macrophage responses during acute SARS-CoV infection. JCI Insight 4:e123158.
550	17.	Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, Agudelo M,
551		Barnes CO, Gazumyan A, Finkin S, Hägglöf T, Oliveira TY, Viant C, Hurley A,
552		Hoffmann HH, Millard KG, Kost RG, Cipolla M, Gordon K, Bianchini F, Chen ST,
553		Ramos V, Patel R, Dizon J, Shimeliovich I, Mendoza P, Hartweger H, Nogueira L,
554		Pack M, Horowitz J, Schmidt F, Weisblum Y, Michailidis E, Ashbrook AW, Waltari
555		E, Pak JE, Huey-Tubman KE, Koranda N, Hoffman PR, West AP Jr, Rice CM,
556		Hatziioannou T, Bjorkman PJ, Bieniasz PD, Caskey M, Nussenzweig MC. 2020.
557		Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature
558		584:437-442.
559	18.	Juno JA, Tan H-X, LeeWS, Reynaldi A, Kelly HG, Wragg K, Esterbauer R, Kent

560 HE, Batten J, Mordant FL, Gherardin NA, Pymm P, Dietrich MH, Scott NE, Tham

561		W-H, Godfrey DI, Subbarao K, Davenport MP, Kent SJ, Wheatley AK. 13 July
562		2020. Humoral and circulating follicular helper T cell responses in recovered
563		patients with COVID-19. https//doi.org/10.1038/s41591-020-0995-0.
564	19.	Pinto D, Park Y-J, Beltramello M, Walls AC, Tortorici A, Bianchi S, Jaconi S,
565		Culap K, Zatta F, De Marco, A, Peter A, Guarino B, Spreafico R, Cameroni E, Case
566		JB, Chen RE, Havenar-Daughton C, Snell G, Telenti A, Virgin HW, Lanzavecchia
567		A, Diamond MS, Fink K, Veesler D, Corti D. 2020. Cross-neutralization of
568		SARS-COV-2 by a human monoclonal SARS-CoV antibody. Nature 583:290-295.
569	20.	Liu L, Wang P, Nair MS, Yu J, Rapp M, Wang Q, Luo Y, Chan JF-W, Sahi V,
570		Figueroa A, Guo XV, Cerutti G, Bimela J, Gorman J, Zhou T, Chen Z, Yuen K-W,
571		Kwong PD, Sodroski JG, Yin MT, Sheng Z, Huang Y, Shapiro L, Ho DD. 2020.
572		Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike.
573		Nature 584: 450-456.
574	21.	Zost SJ, Gilchuk P, Case JB, Binshtein E, Chen RE, Nkolola JP, Schäfer A, Reidy
575		JX, Trivette A, Nargi RS, Sutton RE, Suryadevara N, Martinez DR, Williamson LE,
576		Chen EC, Jones T, Day S, Myers L, Hassan AO, Kafai NM, Winkler ES, Fox JM,
577		Shrihari S, Mueller BK, Meiler J, Chandrashekar A, Mercado NB, Steinhardt JJ,
578		Ren K, Loo Y-M, Kallewaard NL, McCune BT, Keeler SP, Holtzman MJ, Barouch
579		DH, Gralinski LE, Baric RS, Thackray LB, Diamond MS, Carnahan RH, Crowe Jr
580		JE. 2020. Potently neutralizing and protective human antibodies against
581		SARS-CoV-2. Nature 584: 443-449.

582	22.	Ledford H. 2020. Antibody therapies could be a bridge to a coronavirus vaccine-but
583		will the world benefit? Nature 584:333-334.
584	23.	Cao W-C, Liu W, Zhang P-H, Zhang F, Richardus JH. 2007. Disappearance of
585		antibodies to SARS-associated coronavirus after recovery. N Engl J Med
586		357:1162-1163.
587	24.	Mo H, Zeng G, Ren X, Li H, Ke C, Tan Y, Cai C, Lai K, Chen R, Chan-Yeung M,
588		Zhong N. 2006. Longitudinal profile of antibodies against SARS-coronavirus in
589		SARS patients and their clinical significance. Respirology 11:49-53.
590	25.	Ng OW, Chia A, Tan AT, Jadi RS, Leong HN, Bertoletti A, Tan YJ. 2016. Memory
591		T cell responses targeting the SARS coronavirus persist up to 11 years
592		post-infection. Vaccine 34:2008-2014.
593	26.	Seow J, Graham C, Merrick B, Acors S, Steel KJA, Hemmings O, O'Bryne A,
594		Kouphou N, Pickering S, Galao RP, Betancor G, Wilson HD, Signell AW, Winstone
595		H, Kerridge C, Temperton N, Snell L, Bisnauthsing K, Moore A, Green A, Martinez
596		L, 6, Stokes B, Honey J, Izquierdo-Barras A, Arbane G, Patel A, O'Connell L,
597		O'Hara G, MacMahon E, Douthwaite S, Nebbia G, Batra R, Martinez-Nunez R,
598		Edgeworth JD, Neil1 SJD, Malim MH, Doores KJ. 2020. Logitudinal evaluation and
599		decline of antibody responses in SARS-CoV-2 infection. medRxiv
600		https://doi.org/10.1101/2020.07.09.20148429.
601	27.	Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, Chen L, Li M, Liu Y, Wang G,
602		Yuan Z, Feng Z, Zhang Y, Wu Y, Chen Y. 2020. Reduction and functional

603		exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front
604		immunol 11:1729. https://doi.rog/10.3389/fimmu.2020.01729.
605	28.	Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, Ellingson MK, Mao
606		T, Oh JE, Israelow B, Takahashi T, Tokuyama M, Lu P, Venkataraman A, Park A,
607		Mohanty S, Wang H, Wyllie AL, Vogels CBF, Earnest R, Lapidus S, Ott IM, Moore
608		AJ, Muenker MC, Fournier JB, Campbell M, Odio CD, Casanovas-Massana A; Yale
609		IMPACT Team, Herbst R, Shaw AC, Medzhitov R, Schulz WL, Grubaugh ND,
610		Dela Cruz C, Farhadian S, Ko AI, Omer SB, Iwasaki A. 2020. Longitudinal analyses
611		reveal immunological misfiring in severe COVID-19. Nature 584: 463-469.
612	29.	Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. 2019. Nat
613		Rev Microbiol 17:181-192.
614	30.	Kohyama S, Ohno S, Tatsuya Suda T, Taneichi M, Yokoyama S, Mori M,
615		Kobayashi A, Hayashi H, Tetsuya Uchida T, Matsui M. 2009. Efficient induction of
616		cytotoxic T lymphocytes specific for severe acute respiratory syndrome
617		(SARS)-associated coronavirus by immunization with surface-linked liposomal
618		peptides derived from a non-structural polyprotein 1a. Antiviral Res 84:168-177.
619	31.	Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanović S. 1999.
620		SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics
621		50:213-219.
622	32.	Bhasin M, Raghava GPS. 2006. A hybrid approach for predicting promiscuous
623		MHC class I restricted T cell epitopes. J Biosci 32:31-42.

- 624 33. Singh H, Raghava GPS. 2003. ProPred1: Prediction of promiscuous MHC class-I
- binding sites. Bioinformatics 19:1009-1014.
- 626 34. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK,
- 627 Sette A, Peters B. 2019. The immune epitope database (IEDB): 2018
- 628 update. Nucleic Acids Res 47(D1):D339-D343.
- 629 https://doi.org/10.1093/nar/gky1006.
- 630 35. Gotch F, Rothbard J, Howland K, Townsend A, McMichael A. 1987. Cytotoxic T
- 631 lymphocytes recognize a fragment of influenza virus matrix protein in association
- 632 with HLA-A2. Nature 326:881-882.
- 633 36. Tsomides TJ, Walker BD, Eisen HN. 1991. An optimal viral peptide recognized by
- 634 CD8⁺ T cells binds very tightly to the restricting class I major histocompatibility
- 635 complex protein on intact cells but not to the purified class I protein. Proc Natl
- 636 Acad Sci U S A 88:11276-11280.
- 637 37. Pascolo S, Bervas N, Ure JM, Smith AG, Lemonnier FA, Pérarnau B. 1997.
- 638 HLA-A2.1-restricted education and cytolytic activity of CD8⁺ T lymphocytes from
- 639 beta2 microglobulin (beta2m) HLA-A2.1 monochain transgenic H-2D^b beta2m
- double knockout mice. J Exp Med 185:2043-2051.
- 641 38. Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A. 2020. A
- 642 sequence homology and bioinformatics approach can predict candidate targets for
- 643 immune responses to SARS-CoV-2. Cell Host & Microbe 27:671-680, 2020.

< 1 1	20		3 67 7	TT CC A	тт	T 7	COLUD	10	•	•	1 .	•
644	39	$On \sigma \in W c$	nσ MII ⊨	Huttman A	He	Y	(())	.19	coronavirus	vaccine	deston	119110
	$\mathcal{I}\mathcal{I}$	$O_{11} \subseteq D_{1} \cup O_{11} \cup O_{12} \cup O_$	mg mo,	IIuIIIuII / I	, 110	1 .		1/	coronavirus	vacenne	ucorgii	ubilig

- reverse vaccinology and machine learning. Front Immunol 11:1581.
- 646 https://doi.org/10.3389/fimmu.2020.01581.
- 647 40. Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, Chng MHY, Lin
- 648 M, Tan N, Linster M, Chia WN, Chen MI, Wang LF, Ooi EE, Kalimuddin S,
- Tambyah PA, Low JG, Tan YJ, Bertoletti A. 2020. SARS-CoV-2-specific T cell
- 650 immunity in cases of COVID-19 and SARS, and uninfected controls. Nature
- 651
 584:457-462.
- 41. Mateus J, Grifoni A, Tarke A, John Sidney J, Ramirez SI, Dan JM, Burger ZC,
- 653 Rawlings SA, Smith DM, Phillips E, Mallal S, Lammers M, Rubiro P, Quiambao L,

654 Sutherland A, Yu ED, Antunes RS, Greenbaum J, Frazier A, Markmann AJ,

- 655 Premkumar L, de Silva A, Peters B, Crotty S, Sette A, Weiskopf D. 2020. Selective
- and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 4

657 August 2020. eabd3871. https://doi.org/10.1126/science.abd3871.

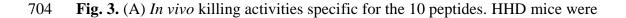
- 42. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, Rawlings
- 659 SA, Sutherland A, Premkumar L, Jadi RS, Marrama D, de Silva AM, Frazier A,
- 660 Carlin AF, Greenbaum JA, Peters B, Krammer F, Smith DM, Crotty S, 1, 2, 5, Sette A.
- 661 2020. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with
- 662 COVID-19 disease and unexposed individuals. Cell 181:1489-1501.
- 43. Braun J, Loyal L, Frentsch M, Wendisch D, Georg P, Kurth F, Hippenstiel S,
- Dingeldey M, Kruse B, Fauchere F, Baysal E, Mangold M, Henze L, Lauster R,

665		Mall MA, Beyer K, Röhmel J, Voigt S, Schmitz J, Miltenyi S, Demuth I, Müller
666		MA, Hocke A, Witzenrath M, Suttorp N, Kern F, Reimer U, Wenschuh H, Drosten
667		C, Corman VM, Giesecke-Thiel C, Sander LE, Thiel A. 2020.
668		SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19.
669		Nature https://doi.org/10.1038/s41586-020-2598-9.
670	44.	Nelde A, Bilich T, Heitmann JS, Maringer Y, Salih HR, Roerden M, Lübke M,
671		Bauer J, Jonas Rieth J, Wacker M, Peter A, Hörber S, Traenkle B, Kaiser PD,
672		othbauer U, Becker M, Junker D, Krause G, Strengert M, Schneiderhan-Marra N,
673		Templin MF, Joos TO, Kowalewski DJ, Stos-Zweifel V, Fehr M, Graf M, Gruber
674		L-C, Rachfalski D, Preuß B, Hagelstein I, Märklin M, Bakchoul T, Gouttefangeas
675		C, Kohlbacher O, Klein R, Stevanović S, Rammensee H-G, Walz JS. 2020.
676		SARS-CoV-2-epitopes define heterologous and COVID-19-induced T-cell
677		recognition. Research Square http://doi.org/10.21203/rs.3.rs-35331/v1.
678	45.	Sette A, Crotty, S. 2020. Pre-existing immunity to SARS-CoV-2: the knowns and
679		unknowns. Nat Rev Immunol 20:457-458.
680	46.	Matsui M, Kawano M, Matsushita S, Akatsuka T. 2014. Introduction of a point
681		mutation into an HLA class I single-chain trimer induces enhancement of CTL
682		priming and antitumor immunity. Mol Ther Methods Clin Dev 1:14027.
683		https://doi.org/10.1038/mtm.2014.27.

684 47. Parham, P and Brodsky, FM. 1981. Partial purification and some properties of

- 685 BB7.2. A cytotoxic monoclonal antibody with specificity for HLA-A2 and a variant
- 686 of HLA-A28. Hum Immunol 3: 277-299.

688 Figure legends


- **Fig. 1.** The linear diagrams of the SARS-CoV-2 genome and the protein subunits of
- 690 ORF1a. The SARS-CoV-2 genome consists of ORF1a, ORF1b, Spike (S), ORF3a,
- 691 Envelope (E), Membrane (M), ORF6, ORF7a, ORF7b, ORF8, Nucleocapsid (N), and
- 692 ORF10. The ORF1a polyprotein is composed of eleven non-structural proteins,
- 693 nsp1-nsp11.

694

- **Fig. 2.** Intracellular IFN- γ staining of CD8⁺ T cells specific for peptides derived from
- 696 SARS-CoV-2 pp1a. HHD mice were immunized twice with each of predicted peptides of
- 697 SARS-CoV-2 pp1a in liposomes together with CpG. After one week, spleen cells were
- 698 prepared and stimulated with (+) or without (-) a relevant peptide for 5 hours. Cells were
- then stained for their surface expression of CD8 (x axis) and their intracellular expression
- of IFN- γ (y axis). The numbers shown indicate the percentages of intracellular IFN- γ^+
- 701 cells within CD8⁺ T cells. Three to five mice per group were used in each experiment,

and the spleen cells of the mice per group were pooled.

703

immunized twice with either each of the 10 liposomal peptides (pp1a-38, -84, -641,

- ⁷⁰⁶ -1675, -2884, -3467, -3583, -3662, 3710, and -3732) or liposomes alone together with
- 707 CpG. One week later, in vivo peptide-specific killing activities were measured. Three to
- five mice per group were used, and the data of % specific lysis are shown as the mean \pm

709 SD. (B & C) Comparison of the 10 peptides in the induction of IFN- γ^+ CD8⁺ T cells.

710	Seventeen HHD mice were immunized once with the mixture of 10 peptides involving

711 pp1a-38, -84, -641, -1675, -2884, -3467, -3583, -3662, -3710, and -3732 in liposomes

vith CpG. After one week, spleen cells were stimulated with or without each of the 10

713 peptides, and intracellular IFN-γ in CD8+ T cells was stained. (C) Y-axis indicates the

relative percentages of IFN- γ^+ cells in CD8⁺ T cells which were calculated by subtracting

715 the % of IFN- γ^+ cells in CD8⁺ T cells without a peptide from the % of IFN- γ^+ cells in

716 CD8⁺ T cells with a relevant peptide. Each blue circle represents an individual mouse.

717 Data are shown as the mean (horizontal bars) \pm SD. (B) Statistical comparisons of the

relative % values of IFN- γ^+ CD8⁺ T cells among the 10 peptides in Fig. 3C were made by

719 one-way ANOVA followed by post-hoc tests. *, P < 0.05; **, P < 0.01; ***, P < 0.001;

ns, not significant.

721

722 Fig. 4. Comparison of the 10 peptides in the induction of $CD107a^+CD8^+T$ cells (A) and CD69⁺ CD8⁺ T cells (B). Nine HHD mice were immunized once with the mixture of 10 723 724 peptides involving pp1a-38, -84, -641, -1675, -2884, -3467, -3583, -3662, -3710, and 725 -3732 in liposomes with CpG. After one week, spleen cells were stimulated with or 726 without each of the 10 peptides, and the expression of CD107a (A) or CD69 (B) on CD8+ 727 T cells was analyzed. Data indicates the relative percentages of CD107a⁺ (A) and CD69⁺ 728 (B) cells in $CD8^+$ T cells which were obtained by subtracting the % of $CD107a^+$ and $CD69^+$ cells in $CD8^+$ T cells without a peptide from the % of $CD107a^+$ and $CD69^+$ cells 729

730	in CD8 ⁺ T cells with a peptide, respectively. Each red (A) or green (B) circle represents
731	an individual mouse. Data are shown as the mean (horizontal bars) \pm SD. Statistical
732	analyses of the data among the 10 peptides in Fig. 4A and Fig. 4B were performed by
733	one-way ANOVA followed by post-hoc tests in Fig. 4C and Fig 4D, respectively. $*, P <$
734	0.05; **, <i>P</i> < 0.01; ***, <i>P</i> < 0.001; ns, not significant.
735	
736	Fig. 5. Three types of reactivity in mice immunized with the mixture of the 10 peptides.
737	Fifteen mice were immunized once with the mixture of 10 peptides including pp1a-38,
738	-84, -641, -1675, -2884, -3467, -3583, -3662, -3710, and -3732 in liposomes with CpG.
739	After one week, spleen cells were stimulated with or without each of the 10 peptides, and
740	intracellular IFN- γ in CD8+ T cells was stained. Based on the reactivity pattern to the 10
741	peptides, fifteen mice were divided into three types, A-C. Each graph represents
742	reactivity of an individual mouse. Y-axis indicates the relative percentage of IFN- γ^+ cells
743	in CD8 ⁺ T cells which was calculated by subtracting the % of IFN- γ^+ cells in CD8 ⁺ T
744	cells without a peptide from the % of IFN- γ^+ cells in CD8 ⁺ T cells with a relevant peptide.

- 745 Statistical analyses of the relative % values to 10 peptides in each type were performed by
- one-way ANOVA followed by post-hoc tests. *, *P* < 0.05; **, *P* < 0.01; ***, *P* < 0.001; 746
- 747 ns, not significant.

	High binders Name Sequence BL ₅₀ Name Sequence BL ₅₀													
Name	Sequence	Sequence	BL ₅₀											
pp1a-84	VMVELVAEL	6.8 ± 0.3	pp1a-103	TLGVLVPHV	1.3 ± 0.2									
pp1a-214	TLSEQLDFI	2.0 ± 0.2	pp1a-445	GLNDNLLEI	6.0 ± 0.2									
pp1a-597	VMAYITGGV	9.5 ± 0.9	pp1a-619	TVYEKLKPV	5.6 ± 0.7									
pp1a-641	FLRDGWEIV	0.9 ± 0.1	pp1a-1675	YLATALLTL	8.4 ± 0.2									
pp1a-2270	YLNSTNVTI	8.9 ± 0.3	pp1a-2569	ILLLDQALV	9.6 ± 1.5									
pp1a-2785	AIFYLITPV	5.1 ± 1.6	pp1a-2968	YLEGSVRVV	7.5 ± 0.1									
pp1a-3013	SLPGVFCGV	3.1 ± 0.2	pp1a-3115	YLTNDVSFL	4.8 ± 0.3									
pp1a-3122	FLAHIQWMV	6.9 ± 0.4	pp1a-3128	WMVMFTPLV	9.8 ± 1.1									
pp1a-3587	ILTSLLVLV	8.3 ± 0.9	pp1a-3710	TLMNVLTLV	2.0 ± 0.4									
pp1a-3732	SMWALIISV	8.9 ± 0.4	pp1a-4094	ALWEIQQVV	6.4 ± 0.4									
	Medium binders													
Name	Name Sequence BL ₅₀ Name Sequence													
pp1a-15	QLSLPVLQV	79.4 ± 4.4	pp1a-38	VLSEARQHL	76.8 ± 6.8									
pp1a-52	GLVEVEKGV	14.5 ± 4.9	pp1a-106	VLVPHVGEI	76.0 ± 2.0									
pp1a-468	KLNEEIAII	56.2 ± 4.8	pp1a-600	YITGGVVQL	48.5 ± 7.9									
pp1a-685	FLALCADSI	10.2 ± 0.5	pp1a-702	ALNLGETFV	40.7 ± 2.8									
pp1a-1109	NLAKHCLHV	38.5 ± 8.2	pp1a-1114	CLHVVGPNV	62.9 ± 2.3									
pp1a-1161	SLRVCVDTV	85.7 ± 1.9	pp1a-1312	MLAKALRKV	95.2 ± 0.7									
pp1a-2168	YMPYFFTLL	99.0 ± 2.4	pp1a-2332	ILFTRFFYV	96.5 ± 14.0									
pp1a-2563	QLMCQPILL	11.1 ± 1.8	pp1a-2884	FLPRVFSAV	29.3 ± 6.5									
pp1a-3047	IVAGGIVAI	50.5 ± 2.5	pp1a-3083	LLFLMSFTV	39.4 ± 0.9									
pp1a-3183	FLLNKEMYL	12.9 ± 6.8	pp1a-3403	FLNGSCGSV	18.7 ± 3.2									
pp1a-3467	VLAWLYAAV	45.0 ± 10.8	pp1a-3475	VINGDRWFL	85.0 ± 5.4									
pp1a-3482	FLNRFTTTL	79.0 ± 9.6	pp1a-3583	LLLTILTSL	63.8 ± 3.1									
pp1a-3639	FLLPSLATV	15.0 ± 4.4	pp1a-3662	RIMTWLDMV	76.5 ± 7.1									
pp1a-3753	FLARGIVFM	71.2 ± 12.9	pp1a-3798	CLLNRYFRL	81.6 ± 20.2									
pp1a-3807	TLGVYDYLV	61.7 ± 8.7	pp1a-3871	VLLSVLQQL	44.9 ± 6.0									
pp1a-3886	KLWAQCVQL	27.2 ± 9.4	pp1a-4183	ALLSDLQDL	42.4 ± 6.1									
pp1a-4266	VLSFCAFAV	20.1 ± 6.1	pp1a-4283	YLASGGQPI	39.8 ± 6.2									
			oinders											
Name	Sequence	BL_{50}	Name	Sequence	BL ₅₀									
pp1a-572	GISQYSLRL	ND	pp1a-589	DLATNNLVV	ND									
pp1a-692	SIIIGGAKL	ND	pp1a-881	KTLQPVSEL	161.7 ± 28.3									
pp1a-1143	VLLAPLLSA	ND	pp1a-1148	LLSAGIFGA	ND									
pp1a-1214	FITESKPSV	122.1 ± 31.7	pp1a-1367	ILGTVSWNL	123.2 ± 11.3									
pp1a-1387	KLMPVCVET	174.2 ± 33.5	pp1a-1433	SLINTLNDL	123.4 ± 11.0									
pp1a-1642	FLGRYMSAL	124.1 ± 1.9	pp1a-1962	DLNGDVVAI	ND									
pp1a-2076	ILKPANNSL	ND	pp1a-2226	LINIIIWFL	ND									
pp1a-2228	NIIIWFLLL	ND	pp1a-2230	IIWFLLLSV	176.7 ± 6.3									
pp1a-2235	LLSVCLGSL	ND	pp1a-2242	SLIYSTAAL	134.0 ± 7.6									
pp1a-2249	ALGVLMSNL	ND	pp1a-2348	QLFFSYFAV	146.4 ± 19.7									
pp1a-2363	WLMWLIINL	102.7 ± 6.4	pp1a-2364	LMWLIINLV	159.0 ± 42.8									
pp1a-2901	KLIEYTDFA	126.0 ± 2.5	pp1a-3344	SMQNCVLKL	104.5 ± 2.2									
pp1a-3827	GLLPPKNSI	ND	pp1a-3839	KLNIKLLGV	213.5 ± 85.7									
pp1a-3917	VLLSMQGAV	112.3 ± 7.2	pp1a-4032	MLFTMLRKL	165.8 ± 21.7									

 Table 1. Predicted CTL epitopes for the SARS-CoV-2 non-structural polyprotein 1a

 High binders

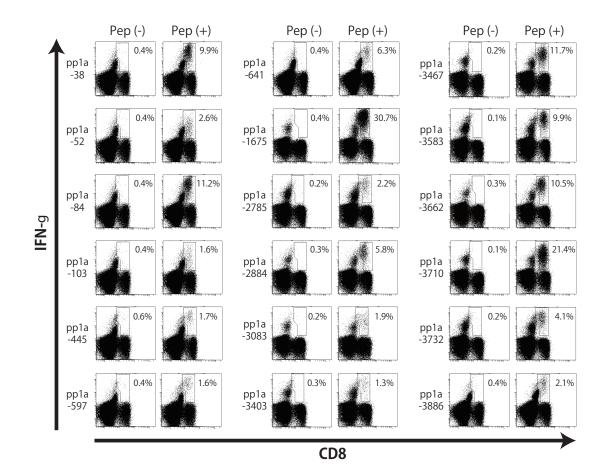
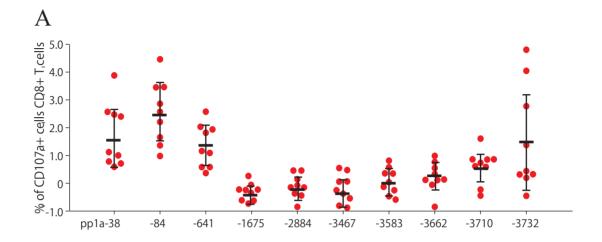
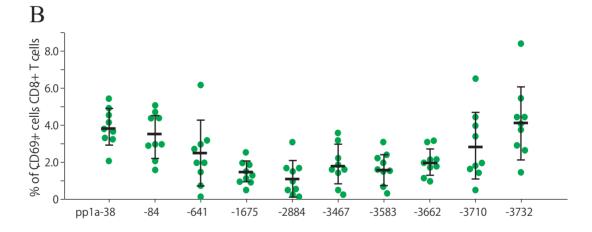
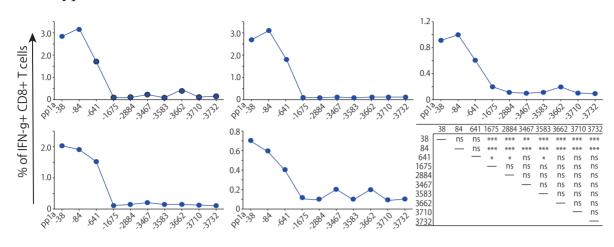

Data of peptide binding assays are shown as BL_{50} , indicating a concentration (μ M) of each peptide that yields the 50% relative binding as shown in the materials and methods. Experiments were performed in triplicate and repeated twice with similar results. Data are given as mean values \pm SD. High binders: $BL_{50} < 10 \ \mu$ M; Medium binders: $10 \ \mu$ M $\leq BL_{50} < 100 \ \mu$ M; Low binders: $BL_{50} \geq 100 \ \mu$ M or ND (not detected).

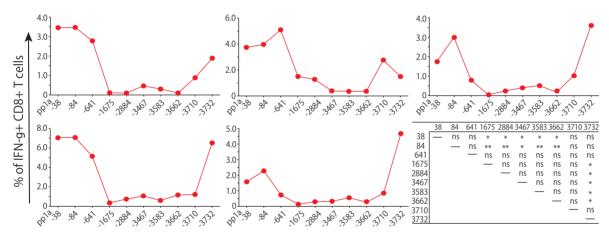
Table 2


Comparison of amino acid sequences of SARS-CoV-2 pp1a CTL epitopes with the amino acid sequence of SARS-CoV


	SAF	RS-CoV-2		SARS-	CoV
Name	Start-End	Sequence	Protein	Sequence	Identity (%)
pp1a-38	38-46	VLSEARQHL	nsp1	ALSEAREHL	89
pp1a-52	52-60	GLVEVEKGV	nsp1	GLVELEKGV	89
pp1a-84	84-92	VMVELVAEL	nsp1	KVVELVAEM	67
pp1a-103	103-11	TLGVLVPHV	nsp1	TLGVLVPHV	100
pp1a-445	445-53	GLNDNLLEI	nsp2	TLNEDLLEI	67
pp1a-597	597-605	VMAYITGGV	nsp2	IMAYVTGGL	67
pp1a-641	641-9	FLRDGWEIV	nsp2	FLKDAWEIL	67
pp1a-1675	1675-83	YLATALLTL	nsp3		
pp1a-2785	2785-93	AIFYLITPV	nsp4		
pp1a-2884	2884-92	FLPRVFSAV	nsp4	FLPRVFSAV	100
pp1a-3083	3083-91	LLFLMSFTV	nsp4	LLFLMSFTI	89
pp1a-3403	3403-11	FLNGSCGSV	nsp5	FLNGSCGSV	100
pp1a-3467	3467-75	VLAWLYAAV	nsp5	VLAWLYAAV	100
pp1a-3583	3583-91	LLLTILTSL	nsp6		
pp1a-3662	3662-70	RIMTWLDMV	nsp6	RIMTWLELA	67
pp1a-3710	3710-8	TLMNVLTLV	nsp6	TLMNVITLV	89
pp1a-3732	3732-40	SMWALIISV	nsp6	SMWALVISV	89
pp1a-3886	3886-94	KLWAQCVQL	nsp7		

[1 1	Nucleotide 2,000		6,000 I	8,000	10,000 I	12,000 I	14,000	16,000 I	18,00 I ORF11		000 22,00	0 24,0	000 26	5,000 28,0 I 6 7bi	
1	Amino aci	id		F1a S-CoV2-j	pp1a				OKPI)		S	3	a M 7a	N
1	· ·	400	800 I	1,200	1,0	500 I I	2,000	2,400		2,800	3,200	I É	3,600	4,000	4,401
1	nsp1	nsp2				nsp.	3				nsp4	nsp5	nsp6	7 8	9 10 11





С											D										
	38	84	641	1675	2884	3467	3583	3662	3710	3732		38	84	641	1675	2884	3467	3583	3662	3710	3732
38	—	ns	ns	***	**	**	*	*	ns	ns	38	—	ns	ns	**	***	*	*	ns	ns	ns
84		—	ns	***	***	***	***	***	***	ns	84			ns	*	*	ns	ns	ns	ns	ns
641			—	**	*	*	ns	ns	ns	ns	641			—	ns						
1675				—	ns	ns	ns	ns	ns	**	1675				—	ns	ns	ns	ns	ns	**
2884						ns	ns	ns	ns	*	2884					—	ns	ns	ns	ns	***
3467						—	ns	ns	ns	**	3467							ns	ns	ns	**
3583								ns	ns	*	3583								ns	ns	**
3662								—	ns	ns	3662									ns	*
3710										ns	3710										ns
3732											3732										

