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ABSTRACT 
 

The brain’s white matter microstructure, as assessed using diffusion-weighted MRI (DWI), changes significantly with age 
and also exhibits significant sex differences. Here we examined the ability of a traditional diffusivity metric (fractional 
anisotropy derived from diffusion tensor imaging, DTI-FA) and advanced diffusivity metrics (fractional anisotropy derived 
from the tensor distribution function, TDF-FA; neurite orientation dispersion and density imaging measures of intra-
cellular volume fraction, NODDI-ICVF; orientation dispersion index, NODDI-ODI; and isotropic volume fraction, 
NODDI-ISOVF) to detect sex differences in white matter aging. We also created normative aging reference curves based 
on sex. Diffusion tensor imaging (DTI) applies a single-tensor diffusion model to single-shell DWI data, while the tensor 
distribution function (TDF) fits a continuous distribution of tensors to single-shell DWI data. Neurite orientation dispersion 
and density imaging (NODDI) fits a multi-compartment model to multi-shell DWI data to distinguish intra- and extra-
cellular contributions to diffusion. We analyzed these traditional and advanced diffusion measures in a large population 
sample available through the UK Biobank (15,394 participants; age-range: 45-80 years) by using linear regression and 
fractional polynomials. Advanced diffusivity metrics (NODDI-ODI, NODDI-ISOVF, TDF-FA) detected significant sex 
differences in aging, whereas a traditional metric (DTI-FA) did not. These findings suggest that future studies examining 
sex differences in white matter aging may benefit from including advanced diffusion measures. 
  
Keywords: diffusion-weighted MRI, white matter microstructure, diffusion tensor imaging, tensor distribution function, 
neurite orientation dispersion and density imaging, sex differences, aging, normative reference curves  
 
 

1. INTRODUCTION 
 

The brain’s white matter microstructure significantly changes over the lifespan, with prior work also demonstrating sex 
differences in the brain’s white matter microstructure as measured with diffusion-weighted MRI (DWI)1,2. Differences in 
aging between men and women may contribute to sex differences in the incidence and course of age-related 
neurodegenerative diseases such as Alzheimer’s disease3,4. Most DWI studies thus far have used diffusion tensor imaging 
(DTI) metrics such as fractional anisotropy (FA) to characterize the white matter5. However, more recently developed 
DWI methods such as the tensor distribution function (TDF) and neurite orientation dispersion and density imaging 
(NODDI) may provide more refined representations of underlying white matter properties6-10. DTI applies a single-tensor 
diffusion model to single-shell DWI data, whereas TDF models multiple underlying fiber populations in single-shell DWI 
data, and NODDI applies a multi-compartment model to multi-shell DWI data5-10. 
 
Here we investigated the ability of both traditional diffusion methods (DTI) and advanced diffusion methods (TDF, 
NODDI) to capture differences in white matter microstructure. We specifically focused on the relative sensitivity of these 
metrics to sex differences in brain aging, due to the potential relevance of such sex differences to conditions such as 
Alzheimer’s disease. Whole-brain DWI data available through the UK Biobank was analyzed to examine the following 
diffusivity metrics: DTI-FA, TDF-FA, NODDI-ICVF (intra-cellular volume fraction), NODDI-ODI (orientation  
dispersion index), and NODDI-ISOVF (isotropic volume fraction). We also created sex-stratified centile reference 
curves11-13 for each diffusivity metric to provide normative models of white matter aging among men and women, as such 
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normative reference values may allow for the future stratification of individuals at risk for age-related neurodegenerative 
diseases. 

 
2. METHODS 

 
2.1 Data acquisition 
 
The UK Biobank is a publicly available dataset of community-based middle-aged and older adults residing in the United 
Kingdom14. Here we analyzed cross-sectional data from a total of 15,394 UK Biobank participants aged 45-80 years old. 
Subjects were classified as male or female based on chromosomal sex; participants were only included if their 
chromosomal sex was identical to their sex as recorded elsewhere in the UK Biobank (i.e., participant sex as reported by 
the subject or as recorded in the subject’s medical records). Our sample consisted of an approximately equal number of 
males and females (47.63% male, 52.36% female). Whole-brain DWI data was collected on a single Siemens Skyra 3T 
scanner within this sample using a standard Siemens 32-channel head coil. As detailed elsewhere14, DWI data were 
acquired using a spin-echo echo-planar imaging sequence with 5 b=0 s/mm2 (plus an additional 3 blip-reversed b=0 s/mm2), 
50 b=1000 s/mm2 and 50 b=2000 s/mm2 diffusion-weighted volumes, for a total of 100 distinct diffusion-encoding 
directions. A multiband acceleration factor of 3 was used for acquisition, with a 104x104x72 field of view and a voxel size 
of 2x2x2 mm. Informed consent was obtained from all participants, and ethical approval for the UK Biobank was received 
from the research ethics committee. The research reported here was conducted using the UK Biobank Resource under 
Application Number 11559. 
 
2.2 DWI processing 
 
DWI data were preprocessed as described in Alfaro-Almagro et al.15 Briefly, eddy currents, head motion, and outlier slices 
were corrected using FSL’s Eddy tool16,17, and gradient distortion correction was then applied. 
 
Measures derived from single-shell DWI data (b=1000 s/mm2, 50 gradients) included a traditional single-tensor model of 
fractional anisotropy (DTI-FA) and an advanced measure of fractional anisotropy derived using the tensor distribution 
function (TDF-FA), which models multiple underlying fiber populations. DTI-FA was fit using FSL’s DTIFIT, and TDF-
FA was fit using in-house scripts8. Measures derived from the multi-shell DWI data (b=1000 s/mm2, b=2000 s/mm2, 100 
gradients) included a neurite orientation dispersion and density imaging (NODDI) model of intra-cellular volume fraction 
(ICVF), orientation dispersion index (ODI), and isotropic volume fraction (ISOVF). NODDI metrics were fit using the 
AMICO tool18. 
 
DWI metrics were projected to a standard white matter skeleton using publicly available ENIGMA protocols19. Briefly, 
each subject’s whole-brain DTI-FA map was nonlinearly registered to the ENIGMA DTI-FA template using ANTs20, and 
the resulting transformation was applied to the maps for each diffusivity metric. Diffusivity metrics were then projected 
onto the ENIGMA DTI-FA template skeleton using FSL’s TBSS21 and mean whole-skeleton diffusivity values were 
extracted for each metric. 
 
2.3 Statistical analyses 
 
Our primary analyses used linear regression models in R to examine the interaction between age and participant sex for 
each diffusivity metric (DTI-FA, TDF-FA, NODDI-ICVF, NODDI-ODI, NODDI-ISOVF). These models included mean-
centered linear and quadratic age terms, sex, and the interaction between age and sex, as well as the following nuisance 
covariates22: educational attainment (operationalized as “college” or “no college”), socioeconomic status (quantified using 
the Townsend Deprivation Index23), waist-hip ratio, and population structure (measured using the first 4 principal 
components obtained from the UK Biobank’s genetic ancestry analyses). We also completed supplementary analyses that 
included arterial stiffness (quantified using pulse wave velocity as a proxy for arterial blood pressure) as an additional 
nuisance covariate or body mass index (BMI) as a nuisance covariate instead of waist-hip ratio. 
 
To assess the robustness of results, two additional statistical approaches were used: fractional polynomials and binarizing 
age into a discrete variable. Fractional polynomials allow continuous independent variables, such as age, to be flexibly 
modeled in a non-linear manner without specifying a priori the relationship between the independent and dependent 
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variable24-26. We used fractional polynomials to find the best-fitting model for age for each diffusivity metric (DTI-FA, 
TDF-FA, NODDI-ICVF, NODDI-ODI, NODDI-ISOVF) by testing one- and two-term curvilinear models for age using 
the following possible powers: -2, -1, -0.5, 0, 0.5, 1, 2 and 3, where x0 corresponds to ln(x); these analyses also included 
our covariates of non-interest (educational attainment, socioeconomic status, waist-hip ratio, population structure) and 
participant sex. After finding the best-fitting model for each diffusion measure, the interaction between age and sex was 
then tested for each measure using Stata’s MFPI package27. To further assess the robustness of results to the chosen 
statistical model, we also followed previously published statistical recommendations27 to repeat analyses after discretizing 
the continuous variable of interest. Specifically, we binarized age by splitting participants into two groups: > 60 years old 
and < 60 years old; this binarization threshold was selected based on previous large-scale neuroimaging studies examining 
aging25,26. We then tested the interaction between age group and sex for each diffusivity metric using a linear regression 
model that also included the main effects of age group and sex, as well as our covariates of non-interest. 
 
Lastly, sex-stratified normative centile reference curves11-13 were created for each diffusivity metric using quantile 
regression to model age continuously with linear and quadratic age terms (Figure 1). 

 
3. RESULTS 

 
Our primary linear regression analyses revealed that significant sex differences in white matter aging were detected by 
advanced DWI metrics only. Specifically, a significant age by sex interaction was found for NODDI-ODI (linear age p < 
0.001) and NODDI-ISOVF (linear age p = 0.04, quadratic age p = 0.003), with a marginally significant interaction found 
for TDF-FA (quadratic age p = 0.059). Sex differences in white matter aging were not significant for the traditional metric 
DTI-FA or for NODDI-ICVF (all ps > 0.2).  
 
Supplemental analyses including arterial stiffness or BMI as nuisance covariates resulted in highly similar findings. The 
interaction between age and sex remained significant for NODDI-ODI (both linear age ps < 0.001) and NODDI-ISOVF 
(both linear age ps < 0.05; both quadratic age ps < 0.01), with the interaction also attaining statistical significance for TDF-
FA (both quadratic age ps < 0.05). In line with our primary analyses, there were no significant group differences in aging 
between men and women on average for DTI-FA or NODDI-ICVF (all ps > 0.1). 
 
When assessing the robustness of our primary results by using fractional polynomials to model age, we similarly found 
that sex differences in aging were detected by advanced DWI methods only. The interaction between age and participant 
sex was significant for NODDI-ODI (p < 0.001), as well as marginally significant for NODDI-ISOVF (p = 0.053). White 
matter aging did not significantly differ between male and female participants on average when using DTI-FA, TDF-FA, 
or NODDI-ICVF (all ps > 0.2). 
 
In line with the results of our primary linear regression analyses, as well as those from our fractional polynomial analyses, 
follow-up exploratory analyses binarizing participants into two age groups (> 60 years and < 60 years) similarly indicated 
significant interactions between age group and sex for advanced diffusivity metrics only. Specifically, age group by sex 
interactions were significant for NODDI-ODI (p < 0.001) and TDF-FA (p = 0.02), but not for DTI-FA, NODDI-ICVF, or 
NODDI-ISOVF (all ps > 0.1). 
 
Normative centile reference curves for each metric, calculated using quantile regression, are presented in Figure 1 for male 
and female participants separately. 

 
4. DISCUSSION 

 
We found that advanced measures of white matter microstructure detected significant sex differences in aging in the UK 
Biobank, unlike traditional diffusivity metrics (DTI-FA). Specifically, NODDI-ODI demonstrated robust aging-related 
group differences between male and female participants on average. NODDI-ISOVF and TDF-FA also tended to exhibit 
aging-associated differences between men and women, although the exact pattern of findings for these metrics depended 
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Figure 1. Normative centile reference curves calculated for each metric using quantile regression for (A) male participants, and (B) 
female participants Solid colored lines indicate the following centiles: 5th (black), 25th (blue), 50th (red), 75th (green), 95th (purple). 
Each dot represents one participant, with orange dots representing males and blue dots representing females. Dotted lines within 
each plot reflect data density, with distributions for each diffusivity metric and age presented as histograms to the top and right of 
each plot.  
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(A) Male Reference Curves
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(B) Female Reference CurvesAge
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on the statistical approach used to model age. Notably, the traditional DWI metric, DTI-FA, consistently failed to capture 
sex differences in aging across all statistical approaches used.  
 
NODDI fits a multi-compartment model to multi-shell DWI data to distinguish intra- and extra-cellular contributions to 
diffusion10, resulting in metrics that may provide greater biological interpretability than metrics derived from single-shell 
DWI data, such as DTI-FA. This improved biological specificity of NODDI may contribute to our finding that NODDI-
ODI and NODDI-ISOVF were particularly sensitive to sex differences in aging. For instance, our results indicate that 
measures of white matter dispersion (NODDI-ODI) exhibit sex differences in aging trajectories whereas measures of white 
matter density do not show detectable differences (NODDI-ICVF). As both of these underlying biological processes are 
thought to contribute to DTI-FA, this may explain why DTI-FA was less sensitive to aging differences between men and 
women than NODDI-ODI.  
 
TDF is an advanced approach for single-shell DWI data which a fits a continuous distribution of tensors, whereas DTI fits 
a single-tensor model to single-shell DWI data6,7. As the brain’s white matter includes crossing fibers, the model used by 
TDF may thus adhere more closely to the underlying biology than DTI8. This may contribute to our finding that TDF-FA 
was more sensitive to sex differences in aging than DTI-FA. However, TDF-FA was less sensitive to such sex differences 
than the multi-shell measure NODDI-ODI. As NODDI provides greater biological specificity than TDF-FA, together these 
findings suggest that models that align more closely with the brain’s underlying biology may also provide greater 
sensitivity to aging-related sex differences. Additionally, compared to DTI-FA, TDF-FA may be well-suited for analyzing 
archival single-shell data. 
 
We also created sex-stratified normative reference curves for each diffusivity metric. Such reference curves could have 
future clinical applications by allowing for the identification of individuals who may be at risk for age-related 
neurodegenerative diseases, such as Alzheimer’s disease11. However, future longitudinal studies are needed to specifically 
assess the potential clinical utility of such reference curves for the current diffusivity metrics. Additionally, these age-
dependent reference curves would need to be adjusted if applied to brain data coming from new scanners and cohorts. The 
error variance in the metrics shown here depends to some extent on the scanner, scan protocol, and hardware, such that the 
centile at which an individual appears in these reference curves would be biased unless their data had the same error 
variance as the single-scanner UK Biobank data from which these charts were derived. Many harmonization efforts are 
underway to allow cross-scanner transfer, which would allow the adaptation of these normative charts to data collected on 
different scanners within the UK Biobank, as well as data collected on new scanners elsewhere. These harmonization 
methods include ComBat28 and its variants (ComBat-GAM29, longitudinal ComBat30, and CovBat31), hierarchical Bayesian 
models that model the mean, variance, and other moments of the cohort data32, and transfer learning models. Additional 
approaches can be applied to harmonize the diffusion MRI data directly33,34, and they deserve further study, as they may 
further sensitize and boost statistical power in analyses such as those presented in this paper.  
 

5. CONCLUSIONS 
 
As a whole, our findings demonstrate the utility of advanced diffusivity metrics when studying sex differences in aging. 
Future research examining sex differences in the brain’s white matter in healthy and diseased aging may benefit from 
including advanced diffusion measures. 
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