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Abstract:  

Meningitis is a potentially life-threatening infection characterized by the inflammation of the 

leptomeningeal membranes. Many different viral and bacterial pathogens can cause meningitis, 

with differences in mortality rates, risk of developing neurological sequelae and treatment 

options. Here we constructed a compendium of digital cerebrospinal fluid (CSF) proteome maps 

to define pathogen-specific host response patterns in meningitis. The results revealed a drastic 

and pathogen-type specific influx of tissue-, cell- and plasma proteins in the CSF, where in 

particular a large increase of neutrophil derived proteins in the CSF correlated with acute 

bacterial meningitis. Additionally, both acute bacterial and viral meningitis result in marked 

reduction of brain-enriched proteins. Generation of a multi-protein LASSO regression model 

resulted in an 18-protein panel of cell and tissue associated proteins capable of classifying acute 

bacterial meningitis and viral meningitis. The same protein panel also enabled classification of 

tick-borne encephalitis, a subgroup of viral meningitis, with high sensitivity and specificity. The 

work provides insights into pathogen specific host response patterns in CSF from different 

disease etiologies to support future classification of pathogen-type based on host response 

patterns in meningitis.  
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Introduction 

Meningitis is a common condition with an estimated annual prevalence of 8.7 million cases 

globally (Kassebaum et al, 2017). In the majority of cases, meningitis is caused by viruses, such 

as enteroviruses, and is associated with low mortality rates (Chadwick, 2005). Certain subtypes 

of viral meningitis (VM), such as tick-borne encephalitis (TBE) are in contrast associated with 

higher mortality rates and risk of developing neurological sequelae (Bogovic & Strle, 2015). 

Acute bacterial meningitis (ABM) is one of the leading causes of death due to infectious diseases 

worldwide and is associated with rapid disease progression, increased risk of long-term 

neurological sequelae in survivors and high mortality rates (van de Beek et al, 2004; van de Beek 

et al, 2006). The different bacterial and viral pathogens are associated with specific virulence 

mechanisms that impacts the molecular phenotype of the host immune response.  This 

information can be used to diagnose patients with meningitis, which routinely involves lumbar 

punctures to evaluate several parameters in the CSF such as the number of white blood cells as 

well as glucose and protein concentrations to differentiate between ABM and VM (Ross et al, 

1988). Unfortunately, these parameters are relatively non-specific yielding inconclusive 

diagnostic information (Garty et al, 1997; Lindquist et al, 1988; Nigrovic et al, 2002) and it 

currently remains unknown if different pathogens and pathogen types can evoke detectable 

differences in host response proteome.  

Extracellular body fluids such as blood plasma, saliva and cerebrospinal fluid (CSF) are deficient 

in the machinery required for de novo protein synthesis. The protein constituents of body fluids 

are generated via active protein secretion from surrounding tissues or from passive leakage 

derived from normal protein turnover from cells and tissues. During healthy conditions, the 

concentration of individual proteins in body fluids is maintained via a tightly controlled balance 
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between protein secretion and clearance. This balance is altered in severe infectious diseases 

such as sepsis or meningitis due the host responses triggered by the invading pathogen 

(Malmstrom et al, 2016). In meningitis and sepsis, the immune response normally increase 

cellular and acellular mediators in the CSF and plasma, which leads to a drastic proteome 

reorganization (Karlsson et al, 2018). In the most severe stages of disease, host immune response 

becomes overwhelming, leading to organ damage and impaired prognosis (van de Beek et al., 

2004; van de Beek et al., 2006).  

Improved definitions of the pathogen or pathogen type specific host response patterns in CSF 

could provide insights into specific virulence mechanisms subsequently leading to the 

development of new diagnostic and prognostic information. However, detection of pathogen 

specific host response patterns requires the analysis of large sample cohorts to compare host 

response patterns from a similar group of pathogens to all other pathogen types. As the protein 

composition of body fluids is produced elsewhere, mRNA transcript profiling is less suitable for 

the detection of host responses. Mass spectrometry (MS) based protein quantification has 

become the preferred method for multiplexed and quantitative analysis of proteomes (Aebersold 

& Mann, 2016). The prevailing MS strategy, relies on data-dependent acquisition (DDA) where 

the mass spectrometer sequentially selects and fragments trypsin generated peptide ions to 

generate informative daughter fragment ion spectra used for database searching.  Although such 

proteomics experiments enable identification of thousands of peptide ions, the strategy is 

associated with lower quantitative reproducibility, as in complex samples the number of 

available peptides exceeds the cycling time of the data-dependent acquisition method. In 

contrast, the recent development of sequential window acquisition of all theoretical fragment ion 

spectra (SWATH)-MS generates fragment ion spectra of all MS-measurable peptides to produce 
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a digital representation of the analyzed proteome (Gillet et al, 2012). In SWATH-MS, proteome 

maps are generated based on data-independent acquisition (DIA), followed by protein 

quantification using a priori established assay libraries (Teleman et al, 2017). Different assay 

libraries can be used to iteratively query the same DIA data in an iterative fashion, which is a 

considerable advantage as it permits a single data collection step for clinical samples (Guo et al, 

2015) and focused re-analysis in future studies. Importantly, DIA is associated with a high 

degree of reproducibility making it possible to merge data sets analyzed separately in time to 

perform cross-study comparisons. In this way, new opportunities emerge to construct 

compendiums of proteome maps from physical biobanks to identify protein patterns in body 

fluids associated with for example disease progression and treatment options. 

In this study, we developed a compendium of SWATH-MS CSF proteome maps to provide 

novel insights in central nervous system (CNS) functioning and host response in a cohort of 

patients with meningitis. We demonstrate how an extendable compendium of proteome maps 

supports post-acquisition and iterative data analysis using cell and tissue derived assay libraries 

to define discriminatory protein panels associated with ABM or VM. The results revealed how 

meningitis generates pathogen specific changes in the CSF proteome. Furthermore, the 

compendium of CSF proteome maps supported the identification of a protein panel capable of 

differentiating between ABM, VM and TBE, a viral meningitis subgroup, with high sensitivity 

and specificity based on the host response patterns in the CSF. 
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Results  

Construction of a compendium of SWATH-MS CSF proteome maps from meningitis patients 

Detection of pathogen-specific host responses in the CSF proteome requires comparative 

analysis of patient sample cases of meningitis caused by different pathogens. Here, CSF was 

collected by lumbar puncture from a cohort of 135 patients admitted to the hospital with the 

suspicion of meningitis. Following confirmed diagnosis, the patients were broadly subdivided 

into ABM (n=35), neuroborreliosis (BM, n=7), VM (n=21), suspected ABM (n=5), suspected 

VM (n=16) and inflammation without infection (n=2). In this cohort, ABM was caused by 11 

different bacterial pathogens, where the most frequent pathogen was S. pneumoniea. VM was 

caused by 7 different viruses with the highest frequency of TBE and enteroviruses (Fig 1). 

Patients with suspected meningitis but with normal white blood cell (WBC) count (<5 x 10^6 /L) 

and with no clinical signs of infection/inflammation were regarded as a control group (n=49).  

CSF from each sample was digested, and peptides were analyzed by DDA MS for the 

construction of a CSF proteome assay library and DIA-MS to produce a compendium of 

proteome maps (Fig. 1A).  The CSF assay library was merged with previously established assay 

libraries from 28 healthy human organs or primary cells to enable the quantification of proteins 

enriched in relevant tissues such as brain, plasma and immune cells. The assay library relied on 

the protein abundance in the analyzed tissues and provides a statistically significant relationship 

between proteins and tissues, which was integrated into our results to infer the most likely tissue 

origin of proteins detected in the CSF. The compendium of SWATH-MS files was subsequently 

interrogated with the merged human assay library followed by interrogation of assay libraries 

from the most common pathogens causing meningitis to determine protein profiles correlating 

with pathogen-type (Fig. 1B).   
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Changes in the proteome pattern in CSF during meningitis 

On average, the total protein intensities in ABM was 2, 2.7 and 4.3 times higher than in BM, VM 

and the control group, respectively (Supplementary Figure 1A). This reflects an elevated protein 

concentration in CSF, associated in particular with bacterial meningitis. The distribution of 

quantified proteins in relation to sample groups is presented as a heat map in Figure 2A. The 

sample clustering clearly subdivides the sample cohort into four distinct clusters representing 

predominantly the ABM, VM and control samples. The row-wise color-coding indicates inferred 

tissue origin based on the information from the assay library. The most distant sample cluster 

includes in principle all the ABM samples. The remaining sample clusters are more similar but 

the general trend supports subdivision of most of the VM samples from the control samples. We 

observe that numerous neutrophil-, plasma- and brain- associated proteins constitutes on average 

15-20 % of the protein intensity, where in particular the neutrophil proteins increased during 

ABM (Supplementary Figure 1B). Plasma proteins are known to be major constituents of CSF 

under physiological conditions (Guldbrandsen et al, 2014) and presence of brain-associated 

proteins in CSF is likely related to protein turnover in the brain. Statistical analysis between 

sample groups reveals 79 statistically induced or repressed proteins (Fig. 2B-D). The majority of 

significantly altered proteins were associated with neutrophils (32 % in ABM and 14 % in VM), 

the brain (44 % in ABM and 32 % in VM) and some plasma proteins including several acute-

phase proteins (Supplementary Fig. 2A-B). In addition, several neutrophil associated proteins 

were induced ≥ 64-fold (yellow dots) but not statistically significant, indicating a large degree of 

variation associated with these proteins. For each group, the average intensities of all neutrophil 

proteins show a significant increase only in ABM compared to controls (Fig. 2F), whereas there 

is a significant decrease in brain-associated proteins in ABM, VM and TBE (Fig. 2E). Among 
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the gene ontology (GO) terms enriched for the repressed proteins in ABM was "regulation of 

synapse maturation and assembly", suggesting changes on the cellular level in neuronal circuits 

during ABM (Supplementary Fig. 2C). Of the induced proteins, notable GO terms were 

"regulation of apoptotic signaling pathway", "defense response to bacterium" and "glial cell 

development". These suggest increased apoptotic pathways and enriched molecular processes 

specialized in combating bacteria in the CSF of patients with ABM, followed by increased 

development of glial cells, which are involved in maintaining chemical homeostasis and act as 

the immune cells of the CNS (Ransohoff & Brown, 2012). 

Cross-comparison of CSF protein composition between ABM, BM and VM 

To evaluate differences in the host response between the sample groups we plotted the 

differentially expressed proteins in scatter plots, with the corresponding log2 fold change for 

ABM/control on the x-axis and log2 fold change for BM/control on the y-axis (Fig. 3A). This 

cross-plot was repeated for ABM against VM (Fig. 3B) and VM against BM (Fig. 3C). Proteins 

that were statistically significant or associated with high fold changes (≥ 64) in both sample 

groups were colored in black, otherwise only in one color (red; ABM, orange; BM and green; 

VM). This cross-comparison reveals that ABM and VM evoke a more similar response 

compared to BM. In total, ABM was associated with 49 unique statistically significant proteins 

and VM 10 proteins and 16 proteins were shared between the disease groups (Figure 3D). Only 

three proteins, chitinase-3-like protein 2 (CHI3L2), Immunoglobulin mu heavy chain disease 

protein (MUCB), and profilin-1 (PROF1), were found at higher levels in all the three diseased 

groups compared to control (Fig. 3E), although the intensities for these proteins are substantially 

higher in the ABM samples. Previous studies have shown an association between these proteins 

and neurological disease (Mollgaard et al, 2016; Narayanan et al, 2016; Opsahl et al, 2016). The 
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inferred tissue assignment and average intensities for the 49 ABM-specific proteins in all 

samples are presented in Figure 3F and for the 10 VM-specific proteins in Figure 3G. We 

observed that neutrophil proteins are distinctive for ABM, but not for VM. In addition, ABM 

also led to increased levels of acute-phase proteins such as serum amyloid a-1 (SAA1) and C-

reactive protein (CRP). In contrast, VM resulted in increased concentrations of C4b-binding 

protein and C-X-C motif chemokine 10 (CXCL10), where the latter chemokine is elevated in 

plasma during viral infections.  

Predictive proteomic patterns using LASSO regression modeling 

To define host response protein patterns specific for pathogen-type, we used LASSO regression 

to select discriminatory protein intensities from the compendium of CSF proteome maps. In 

total, we included the four broader groups, ABM, BM, VM and the control group. In addition, 

we included TBE, as this group was associated with a distinct molecular host-response. We used 

4-fold cross-validation to build a model for each of the 5 groups to distinguish the groups from 

each other. To assess the stability of our model, we repeated the process 100 times (runs), 

generating 2000 models in total (4 folds x 5 groups x 100 runs). All of the tested groups had an 

area under the receiver operating characteristic curve (AUROC) above 0.80 and two of them had 

an AUROC above 0.90 (Fig. 4A). The protein profiles for ABM and control were reproducible 

across the 100 runs and specific, with a mean AUROC of 0.96 for ABM and 0.95 for controls. 

The models for BM and VM had a lower mean AUROC of 0.85 and 0.80 respectively. TBE 

displayed the most stable and discriminatory AUROC of 0.87 of all specific causative-agent 

subgroups, indicating that TBE evokes a distinct host response. In total 18 proteins were detected 

in ≥ 90 % of the 100 runs in every fold and had a nonzero weight, which were consistently used 

in the LASSO models for discriminating different sample groups. For these 18 predictive 
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proteins, we visualized the distribution of the respective protein contribution to the models as 

boxplots colored by the average weight (coefficient) over all 100 runs (Fig. 4C). Proteins with a 

non-zero coefficient had a positive influence on the model and are regarded as predictive 

proteins for the disease group as shown by the fill color of the box plots. The average intensity of 

the 18 proteins shows the differences in the abundance levels in their respective sample group 

(Fig. 4D). Five of the 18 proteins were in general detected in higher amounts in ABM and BM 

and include proteins such as gelsolin (GEL), cathepsin D (CATD) and Transthyretin (TTHY) 

that are involved in neutrophil degranulation according to the Reactome Pathway Database. Nine 

of the proteins were exclusively elevated in ABM and include proteins involved in inflammatory 

response (A2GL, HPT A1T1), fibrin clot formation (HEP2, PROS), LPS binding (CD14) and 

regulation of the complement cascade (CFAH). Notably, these proteins are all found in lower 

concentrations in the control samples and these proteins were mostly predictive for ABM and/or 

the control samples. In contrast, BM, VM and TBE in general have less discriminatory weight 

coefficient. For TBE monocyte differentiation antigen CD14 was elevated compared to the 

controls. Antithrombin-III, a serine protease inhibitor that regulates the blood coagulation 

cascade, was associated with a high weight coefficient and a relatively high abundance level in 

the VM group. In conclusion, these results demonstrate that LASSO regression can select a set of 

predictive proteins to classify different disease etiologies in meningitis, which was not possible 

by any of single-protein biomarker candidates quantified in this study.  

Longitudinal follow-up of protein levels in ABM and subarachnoidal hemorrhage 

Meningitis is a disease that is associated with a risk of developing severe neurological sequelae 

in survivors, and some studies have shown that the levels of certain proteins remained high in the 

CSF from non-survivors (Goonetilleke et al, 2010), such as chitotriosidase, complement C1q 
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tumor necrosis factor-related protein 9 and haptoglobin. To investigate changes of the CSF 

proteome over time, we extended the compendium of proteome maps with an additional total of 

36 CSF samples from ABM (6 patients) and from patients with subarachnoidal hemorrhage 

(SAH, 4 patients). From these patients there were multiple CSF samples collected up to 10-13 

days after admittance to hospital (Fig, 5A). Four LASSO-predicted proteins for ABM remained 

elevated until the end of the 10-day period (Fig. 5B), suggesting that sampling over a longer time 

period is required to observe the protein levels returning to baseline. The brain proteins with 

significantly lower levels in ABM started to increase during the extended follow-up times 

peaking around day 5 (Fig. 5C). In contrast, the proteins with significantly lower abundance in 

ABM compared to control cases, show a slight increase over time (Fig. 5D), whereas the 

proteins with higher levels in ABM compared to control decreased in ABM over the 10 day-

period (Fig. 5E). The levels of neutrophil proteins in ABM start to decrease but showed a high 

degree of variability (Fig. 5F). In all cases, proteins levels were low or absent in SAH. 

Interestingly, the LASSO-predicted proteins used for discriminating ABM tend to stay elevated 

even after the patients were released from hospital care. These results indicate an ongoing 

complex host response process that is unique to infectious neurological disease, such as ABM, 

and are absent in other types of neurological trauma such as SAH. Data of protein levels over a 

longer period of time could possibly help in understanding neurological sequelae that are 

followed after some cases of meningitis.  
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Discussion  

Here we present a resource of extendable compendium of CSF proteome maps from a cohort of 

meningitis patients to define specific host response patterns in meningitis. The quantified 

proteins have a median CVs for technical replicates below 20 % as previously shown (Guo et al., 

2015). The compendium presented in this study is comprised of in total 171 CSF samples with 

different sample- and time-dimensions generated from <50 μl of CSF.  In SWATH-MS, the post-

acquisition targeted data analysis strategy using previously established assay libraries confirms 

presence and relative abundance of proteins. Once acquired, the compendium of SWATH-MS 

maps can be iteratively re-analyzed in silico to test new hypotheses. In this study, we used a 

highly curated assay library to search for tissue or cell enriched proteins informative for host 

response patterns associated with ABM, BM, TBE, and VM.  

In severe infectious diseases, several factors may influence the type and magnitude of the host 

response, such as type of infecting pathogen, host immune status and time of infection. The 

dysregulated host responses during sepsis and meningitis can be detrimental to the host (Iskander 

et al, 2013; Ward et al, 2008). At the same time, altered protein composition of CSF provides an 

opportunity to probe disease status of the complex interplay of factors driving the host response.  

Damage derived from the infectious process and/or the host response may generate detectable 

protein changes associated with for example organ damage (Malmstrom et al, 2015).  In this 

study, we used LASSO regression to define protein patterns capable of discriminating between 

ABM, BM, VM, TBE and controls. Based on an assay library containing information of tissue 

and cell enriched proteins, the different disease groups had noticeable differences in protein 

patterns associated with neutrophils, blood plasma and proteins predominantly present in the 

brain. The increased levels of neutrophil proteins are a consequence of infiltrating activated 
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neutrophils, known to occur predominately during ABM (Hoffman & Weber, 2009; Tunkel & 

Scheld, 1993). Neutrophils may release decondensed extracellular DNA coated with 

antimicrobial proteins called neutrophil extracellular traps (NETs) (Moorthy et al, 2016). A 

recent study showed high levels of NETs in the cerebrospinal fluid (CSF) of patients with 

pneumococcal meningitis and that disrupting NETs using DNase I significantly reduces bacterial 

load, demonstrating that NETs contribute to the pathogenesis of pneumococcal meningitis 

(Mohanty et al, 2019). It is noteworthy that both ABM and VM introduce reduced levels of brain 

specific proteins, although the overlap of the reduced proteins between ABM and VM is small. 

The reason for this reduction is not clarified although it was previously reported that brain 

proteins decrease in CSF during other neurological disorders, such as Huntington's disease (Fang 

et al, 2009). 

The large number of disease-causing pathogens in meningitis leads to high heterogeneity in both 

patients and disease progression, and this variability can be seen in other severe infectious 

diseases such as sepsis. In order to account for this clinical diversity in medical research, 

traditional individual biomarker studies can be replaced with multi-protein panels to provide 

better coverage of the underlying disease. The LASSO regression model resulted in 18 predictive 

proteins. Proteins predictive of ABM include cathepsin D (CATD) and complement factor H 

(CFAH), both of which are known plasma proteins involved in clearance of specifically bacterial 

infections (Bewley et al, 2011; Haapasalo et al, 2012).  Furthermore, one predictive protein of 

VM, antithrombin-3 (ANT3), has shown to have a broad-spectrum anti-viral activity for various 

human cytomegaloviruses and herpes simplex viruses (Quenelle et al, 2014). These results 

together indicate that large-scale multi-protein panels can yield biologically and clinically 

valuable results difficult to achieve with traditional statistical analyses. 
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The high reproducibility of SWATH-MS is a consequence of the data-independent acquisition, 

which generates fragment-ion spectra from all MS-measurable peptides from a proteome. This 

feature can support extension of the compendium to generate a digital representation of physical 

biobanks. In total, the sample cohort in this study consists of patients infected with 19 different 

pathogens, where the three largest groups were Streptococcus pneumoniae, Enteroviruses and 

TBE. Among these pathogen groups, the LASSO regression generated the highest AUC for TBE 

although the sample size was relatively small. There are currently no biomarkers for detecting 

and diagnosing TBE (Bogovic & Strle, 2015). Future extension of the compendium will enable 

further investigations of pathogen-specific host responses for other pathogens in CSF.  In 

addition, the opportunity to re-analyze the compendium in silico based on improved assay 

libraries will provide opportunities to find new protein-patterns correlating with other types of 

clinical information such as disease outcome or the development of neurologic sequelae. This 

goal can be achieved through either a data-driven process where samples are clustered based on 

similarities in the proteome changes or in a hypothesis driven fashion where the compendium is 

interrogated for protein profiles correlating with for example pathogen-type, infection time or 

disease severity. The increasing efforts to construct complete assay libraries of the human 

proteome (Kim et al, 2014; Matsumoto et al, 2017; Zolg et al, 2017) will provide improved 

definition of proteins enriched in particular cells and tissues and will enable quantification of 

additional proteins, post-translational modifications (Rosenberger et al, 2017) and proteolytically 

processed proteins from the already established compendiums of proteome maps.  Ultimately 

such a resource can be anticipated to enable improved correlation between host responses and 

detectable changes in CSF and potentially blood plasma to identify molecular markers that can 
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be used for the development of new diagnostic, prognostic and treatment decisive information 

for severe infectious diseases. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.09.18.301630doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.301630


 16

Materials and Methods 

Patients and CSF samples 

CSF samples (n=171) from a total of 139 patients from two different cohorts were analyzed. 

Patients enrolled in a prospective study at the Clinic for Infectious Diseases, Lund University 

Hospital, Lund, Sweden, between March 2006 and November 2009 (as previously described, 

(Linder et al, 2011)) with a clinical suspicion of meningitis who underwent a lumbar puncture 

and where CSF samples were collected were included. The patients were categorized into 

following groups: ABM (n=35), BM (n=7), VM (n=21, of which TBE n=5), suspected ABM 

(n=5), suspected VM (n=16) and inflammation with no infection (n=2). Control patients had a 

suspected meningitis, but were declared healthy after displaying a normal CSF WBC count (<5 x 

10^6 /L) (n=49). In addition, longitudinal samples were collected from six of the previously 

mentioned ABM patients (6 original samples and additional 14 longitudinal samples) and from 4 

patients with subarachnoidal hemorrhage (SAH, 22 longitudinal samples).  

Ethics statement 

The medical ethics committees (Institutional Review Boards) of the Lund University approved of 

the study (decision number 790/2005 and 2016/672), and all samples were taken with the 

informed consent of the participants or next of kin. 

CSF sample preparation 

A constant volume of 50 μl of each CSF sample was used to correlate to the protein 

concentration present in each sample. Samples were heat-inactivated by incubation on a heat-

block for 5 min at 80 °C to kill any microorganisms present in the samples, and then transferred 

into lysing matrix tubes (Nordic Biolabs) containing 90 mg silica beads (0.1 mm). The cells were 

homogenized with a cell disruptor (BeadBeater, FastPrep 96, MP Biomedicals) twice for 180 
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seconds. The samples were incubated for 30 min at 37 °C in 10 M urea, 1 M ABC (ammonium 

bicarbonate) and 1 μg trypsin (Sequence grade modified trypsin porcin, Promega) for 

denaturation and tryptic cleavage. Samples were further incubated in 10 M urea and 1 M ABC 

for 30 min, after which large unfolded proteins were spun down by centrifugation. The 

supernatants were reduced by incubation for 60 min at 37 °C in 500 mM TCEP (tris(2-

carboxyethyl) phosphine, Sigma Aldrich), and alkylated by incubation with 500 mM IAA (2-

Iodoacetamide, Sigma Aldrich). Samples were diluted in 100 mM ABC, and incubated overnight 

in 1 μg trypsin, after which trypsin was inactivated by addition of formic acid. C18-columns 

(Vydac UltraMicro SpinTM Silica C18 300Å) were used according to manufacturer's 

instructions to clean-up and concentrate the peptide samples. 

LC-MS/MS analysis 

All peptide analyses were performed on a Q Exactive Plus mass spectrometer (Thermo Fisher 

Scientific) connected to an EASY-nLC 1000 ultra-high-performance liquid chromatography 

system (Thermo Fisher Scientific). For shotgun analysis, peptides were separated on an EASY-

Spray column (Thermo Scientific; ID 75 μm x 25 cm, column temperature 45 °C). Column 

equilibration and sample load were performed using constant pressure at 600 bar. Solvent A was 

used as stationary phase (0.1 % formic acid). Solvent B (mobile phase; 0.1 % formic acid, 100% 

acetonitrile) was used to run a linear gradient from 5 % to 35 % over 60 min at a flow rate of 300 

nl/min. One full MS scan (resolution 70,000 @ 200 m/z; mass range 400-1,600 m/z) was 

followed by MS/MS scans (resolution 17,500 @ 200 m/z) of the 15 most abundant ion signals 

(TOP15). The precursor ions were isolated with 2 m/z isolation width and fragmented using 

higher-energy collisional-induced dissociation at a normalized collision energy of 30. Charge 

state screening was enabled and unassigned or singly charged ions were rejected. The dynamic 
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exclusion window was set to 10 s. Only MS precursors that exceeded a threshold of 1.7e4 were 

allowed to trigger MS/MS scans. The ion accumulation time was set to 100 ms (MS) and 60 ms 

(MS/MS) using an AGC target setting of 1e6 (MS and MS/MS). 

For data-independent acquisition (DIA), peptides were separated using an EASY-spray column 

(Thermo Fisher Scientific; ID 75 ym x 25 cm, column temperature 45 °C). Column equilibration 

and sample load was performed at 600 bar. Solvent A was used as stationary phase (0.1 % 

formic acid).  Solvent B (mobile phase; 0.1 % formic acid, 100% acetonitrile) was used to run a 

linear gradient from 5 % to 35 % over 120 min at a flow rate of 300 nl/min. A full MS scan 

(resolution 70,000 @ 200 m/z; mass range from 400 to 1,200 m/z) was followed by 32 MS/MS 

full fragmentation scans (resolution 35,000 @ 200 m/z) using an isolation window of 26 m/z 

(including 0.5 m/z overlap between the previous and next window). The precursor ions within 

each isolation window were fragmented using higher-energy collisional-induced dissociation at 

normalized collision energy of 30. The automatic gain control was set to 1e6 for both MS and 

MS/MS with ion accumulation times of 100 ms (MS) and 120 ms (MS/MS). The obtained raw 

files were converted to mzML using MSConvert (Kessner et al, 2008). 

Shotgun analysis mass spectrometry analysis 

The shotgun MS data was searched with Trans-Proteomic Pipeline (TPP, v4.7 POLAR 

VORTEX rev 0, Build 201405161127) using X!Tandem against the UniProt human reference 

proteome (UP000005640, Oct-2015, reviewed and canonical proteins only), and for generation 

of decoy proteins a reverse approach was used. Cysteine carbamidomethylation was considered 

as a fixed and methionine oxidation as a variable modification, and enzyme specificity was set 

for trypsin to allow two missed cleavage sites. Variable acetylation of the n-terminae, S-

carbamoylmethyl-cysteine cyclization of the n-terminal cysteines as well as pyro-glutamic acid 
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formation from glutamic acid and glutamine was also allowed by X!Tandem. The precursor mass 

tolerance thresholds were set to 20 ppm and the fragment mass tolerance to 50 ppm.  The raw 

files were gzipped and Numpressed (Teleman et al, 2014) and converted to mzML format using 

msconvert from ProteoWizard (v3.05930 suite, (Chambers et al, 2012)). 

Assay library creation and DIA analysis 

Assay libraries were created using the Fraggle-Franklin-Tramler workflow (Teleman et al., 

2017). In brief, fragment spectra from TPP search results were interpreted by the software tool 

fraggle and assembled into a retention time normalized consensus assay library with a Franklin 

derived multi-level FDR of <0.01.  Assays were generated by the software tool Tramler and 

contain only the 3-6 most intense fragments within the mass range of 350-2000 m/z and do not 

fall within the precursor isolation window (Deutsch et al, 2012). The assay library was stored in 

traML format. For DIA analysis, DIANA v2.0.0 was used (Teleman et al, 2015) with a 20 ppm 

extraction window. The generated data was manually curated to remove various immunoglobulin 

variable chain proteins. 

Human tissue atlas  

The human tissue atlas was used to statistically assign all detected proteins (n=771) to human 

tissue based on abundance. A total of 12 tissue-assignments were used, which included the 

following tissues and cell types: adipose, brain, liver, nerve, erythrocytes, lymphocytes, 

macrophages, neutrophils, platelets and plasma. Proteins associated to other tissues that were 

available via the atlas were depicted here as "others". A protein was depicted as "not classified" 

if the abundance could not be statistically associated to only one tissue, or if it was missing from 

the atlas altogether. The tissue assignments of certain proteins used in further analyses in this 
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study were compared and matched against other, publicly available and published protein tissue-

assignment repositories (Supplementary Table 1). 

Statistical analysis 

For statistical analyses a Benjamini-Hochberg corrected t-test was used. Gene ontology 

annotations were performed by using two unranked lists of proteins with GOrilla  (Eden et al, 

2009). For the LASSO modeling, the proteomic data was first log-transformed, scaled and 

centered (i.e. log10 of the abundances, subtraction of the per-protein mean and division by the 

per-protein standard deviation). This data was then used as the input to the LASSO 

implementation of the LiblineaR package of the R statistical programming language (R version 

3.6.1; LiblineaR version 2.10-8). A 4-fold cross-validation approach was used for model 

building, where the samples were split randomly into 4 balanced groups (same proportion of 

pathogen type as the whole cohort). For each of the 4 groups, the model was trained on 3/4 of the 

data and the performance was evaluated on the remaining 1/4, and this modeling was performed 

100 times. Proteins that received a non-zero weight coefficient (as in the value of that protein has 

an influence on the model) in ≥ 90 % of all models were selected for further analysis. 
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Supplementary Materials 

Fig. S1. Overview of average protein content and intensities. 

Fig. S2. Analysis of differences in the CSF of patients with meningitis. 

Table S1. Cross-referencing the tissue assignments based on Malmström, et al. (unpublished 

work). 

Table S2. The full data generated from 112 data-independent acquisition MS-runs. 

Table S3. The full data generated from the data-independent acquisition MS-runs from the 

longitudinal study. 
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Figure legends:  

Fig. 1. Method flow chart and patient CSF samples. (A) Fifty microliters of CSF from each 

sample were prepared and analyzed using both shotgun MS and SWATH-MS for the 

construction of CSF proteome assay library and production of a digital compendium of SWATH-

MS proteome maps. These SWATH-MS maps were post-acquisition interrogated with 

previously established assay library from 28 healthy human organs or primary cells to enable the 

quantification of proteins enriched in relevant tissues such as brain, plasma or immune cells. The 

SWATH-MS maps were further interrogated with the CSF assay library for determining protein 

profiles correlating with ABM, VM, BM and control samples. (B) A summary showing the 

number of CSF samples in each sample group, as well as the bacterial or viral strains that caused 

meningitis. The distribution of gender (as percentage in male) and average age for each group are 

also presented. 

Fig. 2. CSF proteome analysis. (A) The quantified proteins (rows) and samples (columns) were 

clustered and visualized in a heat map. Top horizontal color bar classified sample groups, and 

left vertical color bar classified the human tissue assignments for each protein. The data was 

row-wise normalized by Z-score transformation, and column and row clustering was performed 

with ward.D and canberra clustering criterions. (B-D) Differentially expressed proteins between 

control and ABM (B), BM (C) and VM (D) are shown in volcano plots. Statistically significant 

proteins (Hochberg-corrected p-values ≤ 0.05 and log2 fold change ≤ -2 and ≥ 2) are labeled in 

red. Statistically non-significant proteins with a high fold change of ≥ 64 were labeled in yellow. 

(E-F) Log2 scaled average intensities of brain and neutrophil -associated proteins for ABM, BM, 

VM, TBE and control are presented. The significance of the changes were calculated with a 

standard student's t-test and marked with Asterix (one or two star significance). 
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Fig. 3. Cross-comparison of CSF protein composition between ABM, BM and VM. (A-C) 

Significantly regulated proteins (Benjamini-Hochberg corrected p-value ≤ 0.05 and log2 fold 

change of ≤ -2 and ≥ 2) together with proteins with high fold change of ≥ 64 for all three groups 

were selected, and their fold changes two disease group at a time were plotted against each other: 

ABM vs. BM (A), ABM vs. VM (B) and BM vs. VM (C). The points are colored based on their 

significance in either one group only (red; ABM, orange; BM, green; VM) or in both (black). 

Proteins absent in one group were plotted at the null-line for that group for visualization 

purposes. (D) Venn diagram summarizes the overlap of the proteins shown in A-C for the 

different groups. The intensities of the three proteins shared in all three groups (E), 49 proteins 

specific to ABM (G) and 10 proteins specific to VM (I) are shown as bar plots for every CSF 

sample. For the latter two groups, the number of proteins associated to each tissue is presented, 

(F; ABM and H; VM). Proteins not classified to a tissue were further divided into two groups 

depending on if they were down-regulated (-) or up-regulated (+) compared to control. 

Fig. 4. Predictive proteomic profiling using a LASSO regression model. (A) Predictive 

proteomic profiling was performed on all detected and manually curated proteins (n=771) by 

LASSO regression model to assign predictive scores to discriminate ABM, BM, VM, TBE and 

control samples from each other. The samples were split into four randomly selected folds, and 

the modeling was repeated 100 times. The average area under the curve (AUC) of the sensitivity 

and specificity of the predicted model is presented in a ROC curve. (B) The variation of the AUC 

across the 100 repetitions is shown as box plots. (C) All proteins that were detected in each fold 

and in ≥ 90 % of the 100 repetitions (18 proteins) were selected as important proteins for the 

construction of the LASSO prediction model, and their value (e.g. log-transformed, centered and 

scaled protein abundances) plotted as box plots. The fill color of the box plot represents the 
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weight coefficient assigned to each individual protein, where blue and red represent positive or 

negative effect of that protein for prediction of that specific sample group. (D) The selected 18 

proteins are presented in a heat map, with sample groups as rows and sample group averages for 

each protein as columns. 

Fig. 5. Longitudinal investigation of protein abundances in ABM and subarachnoidal 

hemorrhage. (A) Summary of the cerebrospinal fluid samples collected from patients with ABM 

(n=6) or subarachnoidal hemorrhage (SAH, n=4) for longitudinal analysis of CSF proteome is 

presented. (B-F) Based on previous results, five groups of proteins were selected for longitudinal 

analysis in ABM up to 10 days and in SAH up to 13 days after admittance to hospital: four 

proteins selected by LASSO as predictive and indicative of ABM (B), brain-associated proteins 

down-regulated in AMB (C), down-regulated proteins not classified to a tissue and specific to 

ABM (D), up-regulated proteins not classified to a tissue and specific to ABM (E) and neutrophil 

proteins up-regulated in ABM (F). 
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