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Abstract5

Studies in a variety of species have shown evidence for positively selected variants introduced into6

one population via introgression from another, distantly related population—a process known as7

adaptive introgression. However, there are few explicit frameworks for jointly modelling intro-8

gression and positive selection, in order to detect these variants using genomic sequence data.9

Here, we develop an approach based on convolutional neural networks (CNNs). CNNs do not10

require the specification of an analytical model of allele frequency dynamics, and have outper-11

formed alternative methods for classification and parameter estimation tasks in various areas12

of population genetics. Thus, they are potentially well suited to the identification of adaptive13

introgression. Using simulations, we trained CNNs on genotype matrices derived from genomes14

sampled from the donor population, the recipient population and a related non-introgressed15

population, in order to distinguish regions of the genome evolving under adaptive introgression16

from those evolving neutrally or experiencing selective sweeps. Our CNN architecture exhibits17

95% accuracy on simulated data, even when the the genomes are unphased, and accuracy de-18

creases only moderately in the presence of heterosis. As a proof of concept, we applied our19

trained CNNs to human genomic datasets—both phased and unphased—to detect candidates20

for adaptive introgression that shaped our evolutionary history.21

Introduction22

Ancient DNA studies have shown that human evolution during the Pleistocene was characterised23

by numerous episodes of interbreeding between distantly related groups (Green et al., 2010; Reich24

et al., 2010; Meyer et al., 2012; Prüfer et al., 2017; Kuhlwilm et al., 2016). We now know, for25

example, that considerable portions of the modern human gene pool derive from Neanderthals26

and Denisovans (Green et al., 2010; Reich et al., 2010; Prüfer et al., 2014). In the past few27

years, several methods have been developed to identify regions of present-day or ancient human28

genomes containing haplotypes that were introgressed from other groups of hominins. These29

include methods based on probabilistic models (Sankararaman et al., 2014, 2016; Steinrücken30

et al., 2018; Racimo et al., 2017a), on summary statistics (Vernot & Akey, 2014; Vernot et al.,31

1

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.09.18.301069doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.301069
http://creativecommons.org/licenses/by-nd/4.0/


2016; Racimo et al., 2017b) and on ancestral recombination graph reconstructions (Kuhlwilm32

et al., 2016; Hubisz et al., 2020; Speidel et al., 2019). Presumably, some of the introgressed33

material may have had fitness consequences in the recipient populations. While recent evidence34

suggests that a large proportion of Neanderthal ancestry was likely negatively selected (Harris35

& Nielsen, 2016; Juric et al., 2016), there is also support for positive selection on a smaller36

proportion of the genome—a phenomenon known as adaptive introgression (AI) (Whitney et al.,37

2006; Hawks & Cochran, 2006; Racimo et al., 2015).38

Genomic evidence for AI has been found in numerous other species, including butterflies39

(Pardo-Diaz et al., 2012; Enciso-Romero et al., 2017), mosquitoes (Norris et al., 2015), hares40

(Jones et al., 2018), poplars (Suarez-Gonzalez et al., 2016) and monkeyflowers (Hendrick et al.,41

2016). A particularly striking example is AI in dogs, which appears to show strong parallels42

to AI in humans when occupying the same environmental niches. For example, a variant of43

the gene EPAS1 has been shown to have introgressed from an archaic human population into44

the ancestors of Tibetans, and subsequently risen in frequency in the latter population, as a45

consequence of positive selection to high altitude (Huerta-Sánchez et al., 2014). A different46

high-frequency EPAS1 variant is also uniquely found in Tibetan Mastiffs, and appears to also47

have introgressed into this gene pool via admixture with a different species, in this case Tibetan48

wolves (Miao et al., 2016), likely due to the same selective pressures.49

To detect AI, researchers can look for regions of the genome with a particularly high fre-50

quency of introgressed haplotypes from a donor species or population into a recipient species or51

population. These haplotypes are often detected assuming neutrality of archaic alleles since the52

introgression event (Vernot et al., 2016; Vernot & Akey, 2014; Sankararaman et al., 2016, 2014).53

Other studies have designed statistics that are sensitive to characteristic patterns left by AI,54

using simulations incorporating both admixture and selection (Gittelman et al., 2016; Racimo55

et al., 2017b). More recently, Setter et al. (2020) developed a likelihood framework to look for56

local alterations to the site frequency spectrum that are consistent with adaptive introgression,57

using only data from the recipient species. The main challenge that these studies face is that it58

is hard to jointly model selection from material introduced via admixture (Racimo et al., 2015).59

To overcome the need to compress data into summary statistics (which might miss important60

features) or solve complex analytical theory, deep learning techniques are increasingly becoming61

a popular solution to address problems in population genetics. These problems include the infer-62

ence of demographic histories (Sheehan & Song, 2016; Flagel et al., 2018; Villanea & Schraiber,63

2019; Mondal et al., 2019; Sanchez et al., 2020), admixture (Blischak et al., 2020), recombination64

(Chan et al., 2018; Flagel et al., 2018; Adrion et al., 2020b) and natural selection (Schrider &65

Kern, 2018; Sheehan & Song, 2016; Torada et al., 2019; Isildak et al., 2020). Deep learning is a66

branch of machine learning that relies on algorithms structured as multi-layered networks, which67

are trained using known relationships between the input data and the desired output. They can68

be used for classification, prediction or data compression (Aggarwal et al., 2018). Among the69

techniques in this field, convolutional neural networks (CNNs) are a family of methods originally70

designed for image recognition and segmentation (LeCun et al., 1995; Krizhevsky et al., 2012),71

which have been recently applied to population genetic data (Chan et al., 2018; Flagel et al.,72

2018; Torada et al., 2019; Isildak et al., 2020; Blischak et al., 2020; Sanchez et al., 2020). A CNN73

can learn complex spatial patterns from large datasets that may be informative for classification74

or prediction, using a series of linear operations known as convolutions, to compress the data75

into features that are useful for inference.76

Despite the recent advances in deep learning for population genetics, no significant attempts77

have been proposed to identify AI from population genomic data. Here, we develop a deep78

learning method called genomatnn that jointly models archaic admixture and positive selection,79

in order to identify regions of the genome under adaptive introgression. We trained a CNN80
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to learn relevant features directly from a genotype matrix at a candidate region, containing81

data from the donor population, the recipient population and a unadmixed outgroup. The82

method has >88% precision to detect AI, and is effective on both ancient and recently selected83

introgressed haplotypes. We then applied our method to population genomic datasets where84

the donor population is either Neanderthals or Denisovans and the recipient populations are85

Europeans or Melanesians, respectively. In each case, we used the Yoruba population as a86

unadmixed outgroup and we were able to both recover previously identified AI regions and87

unveil new candidates for AI in human history.88

Results89

A CNN for detecting adaptive introgression90

In our method, we assumed we have sequence data from multiple populations: the donor popu-91

lation and the recipient population in an admixture event, as well as an unadmixed population92

that is a sister group to the recipient (Fig. 1A). We constructed an n × m matrix for n hap-93

lotypes (or diploid genotypes, for unphased data), where each entry corresponds to the count94

of minor alleles in an individual’s haplotype (or diploid genotype), for a 100
m kbp region of the95

genome. Within each population, we sorted these pseudo-haplotypes (or genotypes) according96

to similarity to the donor population, and concatenated the matrices for each of the populations97

into a single pseudo-genotype matrix (Fig. 1B).98

We designed a CNN (Fig. 1C) that takes this concatenated matrix as input to distinguish99

between adaptive introgression scenarios and other types of neutral or selection scenarios. The100

CNN was trained using simulations, and uses a series of convolution layers with successively101

smaller outputs, to extract increasingly higher-level features of the genotype matrices—features102

which are simultaneously informative of introgression and selection. The CNN outputs the prob-103

ability that the input matrix comes from a genomic region that underwent adaptive introgression.104

As our simulations used a wide range of selection coefficients and times of selection onset, the105

network does not assume these parameters are known a priori, and is able to detect complete or106

incomplete sweeps at any time after gene flow.107

Our method has several innovative features relative to previous population genetic imple-108

mentations of CNNs (described extensively in the Methods section). For example, when loading109

the genotype matrices as input, we implemented an image resizing scheme that leads to fast110

training times, while avoiding the drawbacks of similar methods (Torada et al., 2019), by pre-111

serving inter-allele distances and thus the local density of segregating sites. Additionally, instead112

of using pooling layers, we used a 2x2 step size when performing convolutions. This has the113

same effect as pooling, in that the output size is smaller than the input, so the accuracy of the114

model is unaffected relative to traditional implementations of CNNs, but it has a much lower115

computational burden (Springenberg et al., 2015).116

Furthermore, we incorporated a framework to visualise the features of the input data that117

draw the most attention from the CNN, by plotting saliency maps from the keras-vis library118

(Kotikalapudi & contributors, 2017). Saliency maps can help to understand which regions of the119

genotype matrix contribute the most toward the CNN prediction score (Fig. 3).120

We also provide downloadable pre-trained CNNs as well as a pipeline for training new CNNs121

(see Methods). These interface with a new selection module that we designed and incorporated122

into the stdpopsim framework (Adrion et al., 2020a), using the forwards-in-time simulator SLiM123

(Haller & Messer, 2019). We believe this will facilitate the application of the method to other124

datasets, allowing users to modify its parameters according to the specific requirements of the125

biological system under study.126
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Performance on simulations127

We aimed to assess the performance of our method on simulations. We performed simulations128

under two different demographic models:129

• Demographic model A: a three-population model including an African, a European and a130

Neanderthal population, with Neanderthal gene flow into Europeans (Fig. 1A)131

• Demographic model B: a more complex model, including an African, a Melanesian, a132

Neanderthal and a Denisovan population, with two pulses of Denisovan gene flow into133

Melanesians, plus a pulse of Neanderthal gene flow into non-Africans, based on Jacobs134

et al. (2019) (Fig. S1).135

When training a CNN on Demographic Model A using phased data, we obtained a precision136

of 90.2% (proportion of AI predictions that were AI simulations) and 97.9% negative predictive137

value (NPV; proportion of “not-AI” predictions that were either neutral or sweep simulations)138

(Figs. 2 and S8). The network output higher probabilities for AI simulations with larger selection139

coefficients, and for older times of onset of selection. We also observed that the network falsely140

classified neutral simulations as AI more frequently than it falsely classified sweep simulations.141

When the CNN was trained on this same demographic model assuming genotypes were unphased,142

the results were very similar, with 88.1% precision and 98.7% NPV (Fig. S7).143

When training a CNN on Demographic Model B (assuming unphased genotypes, as accurately144

phased data is not readily available for Melanesian genomes), we obtained 88.8% precision and145

82.5% NPV (Figs. S10 and S11). We note here that the network had greater precision when146

detecting AI derived from the more ancient pulse of Denisovan gene flow than the younger pulse.147

Kim et al. (2018) and Zhang et al. (2020) recently suggested that introduced genetic material148

can mask deleterious recessive variation and produce a signal very similar to adaptive introgres-149

sion. To assess whether heterosis following introgression affects the false positive rates in our150

CNN, we simulated a distribution of fitness effects (DFE) with recessive dominance for 70% of151

derived mutations (the rest were simulated as neutral), and found this only slightly increases the152

false positive rate (Figs. 2, S8, S10 and S11).153

We further tested whether the method was robust to demographic misspecification, by evalu-154

ating the CNN trained on Demographic Model A against simulations for Demographic Model B.155

As there are more Melanesian individuals than European individuals in our simulations (because156

we aimed to mimic the real number of genomes available in our data analysis below), we down-157

sampled the Melanesian genomes to match the number of European genomes, so as to perform158

a fair misspecification comparison. In this case, we found the precision dropped to 65.3% and159

the NPV to 74.4% (Fig. S6).160

Network attention161

To understand which features of the input matrices were used by the CNN to make its predictions,162

we constructed saliency maps (Simonyan et al., 2014). This technique works by computing the163

gradient of a network’s output with respect to a single input. Thus, highlighted regions from the164

saliency map indicate where small changes in the input matrix have a relatively large influence165

over the CNN output prediction. We calculated an average saliency map for each output category166

predicted by the network (AI or not-AI), for a CNN trained on Demographic Model A (Fig. 3).167

Our results show that when the network was presented with an AI matrix, it focused most of168

the attention on the Neanderthal and European haplotypes, while not putting much emphasis169

on the African haplotypes. In non-AI scenarios, the network focused sharply on the Neanderthal170

and left-most European haplotypes. The saliency maps also show a concentration of attention in171
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the central region of the genomic window, around where the selected mutation was drawn (even172

though this mutation was removed before constructing genotype matrices; see Methods).173

Calibration174

We implemented a score calibration scheme to account for the fact that our simulation categories175

(neutrality, sweep and AI) will be highly imbalanced in real data applications (Guo et al., 2017;176

Kull et al., 2017). CNN classifiers sometimes produce improperly calibrated probabilities (Guo177

et al., 2017). In our case, this occurs because the proportion of each category is not known in178

reality, and thus does not match the simulated proportion. For this reason, we fitted our calibra-179

tion procedure using training data resampled with various ratios of neutral:sweep:AI simulations180

(Fig. 4). We tested different calibration methods by fitting the calibrator to the training dataset,181

and inspecting reliability plots and the sum of residuals on a validation dataset (see Methods).182

Candidates for Neanderthal adaptive introgression in European genomes183

We applied our method to a combined genomic panel of archaic hominins (Prüfer et al., 2017,184

2014; Meyer et al., 2012) and present-day humans (The 1000 Genomes Project Consortium, 2015;185

Jacobs et al., 2019), to look for regions of the genome where Non-African humans show signatures186

of AI from archaic hominins. First, we looked for Neanderthal introgression into the ancestors187

of Northwestern Europeans (CEU panel), using Yoruba Africans (YRI panel) as the unadmixed188

sister population. We used two different beneficial-allele frequency cutoffs for training: 5% and189

25% (Tables 1 and S2). We focus here on describing the results from the 25% condition (Figs. S12190

to S25). We found several candidate genes for AI that have been reported before (Sankararaman191

et al., 2014, 2016; Vernot & Akey, 2014; Gittelman et al., 2016; Racimo et al., 2017b), including192

BNC2, KCNQ2/EEF1A2 WRD88/GPATCH1 and TANC1.193

However, the candidate region we identify on chromosome 2 around TANC1 extends farther194

downstream of this gene, also overlapping BAZ2B (Fig. S14). This codes for a protein related to195

chromatin remodelling, and may have a role in transcriptional activation. Mutations in BAZ2B196

have recently been associated with neurodevelopmental disorders, including developmental de-197

lay, autism spectrum disorder and intellectual disability (Scott et al., 2020). Additionally, we198

found two novel candidates for AI that have not been previously reported, spanning the regions199

chr6:28.18Mb–28.32Mb (Fig. S18) and chr20:62.1Mb–62.28Mb (Fig. S24), including multiple200

genes encoding zinc finger proteins.201

Candidates for Denisovan adaptive introgression in Melanesian genomes202

We then looked for Denisovan AI in Melanesian genomes from the IGDP panel (Jacobs et al.,203

2019), also using Yoruba Africans as the unadmixed sister group, using two different beneficial-204

allele frequency cutoffs for training: 5% and 25% (Tables 2 and S3). Again, we focus on describing205

the results from the 25% condition (Figs. S26 to S47). Among the top candidates, we found a206

previously reported candidate for AI in Melanesians: TNFAIP3 (Vernot et al., 2016; Gittelman207

et al., 2016). Denisovan substitutions carried by the introgressed haplotype in this gene have208

been found to enhance the immune response by tuning the phosphorylation of the encoded A20209

protein, which is an immune response inhibitor (Zammit et al., 2019).210

We found evidence for Denisovan AI in Melanesians at several other candidate regions. A211

few of these regions (or contiguous regions) were previously reported by Sankararaman et al.212

(2016) but not extensively described, possibly because the previously reported sections of those213

regions deemed to be introgressed were intergenic. One of the regions with strong evidence for AI214
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(chr7:25.1Mb–25.2Mb; Fig. S33) overlaps the CYCS gene. This gene codes for cytochrome C: a215

small heme protein that plays a crucial role in the electron transport chain in mitochondria, and216

has been associated with various blood-related diseases, like thrombocytopenia (Morison et al.,217

2008; De Rocco et al., 2014; Uchiyama et al., 2018). Another top candidate region (chr12:108.24-218

108.34Mb, Fig. S38) is upstream of PRDM4 and ASCL4. The former gene codes for a transcrip-219

tion factor that may be involved in the nerve growth factor cell survival pathway and play a role220

in tumour suppression (Yang & Huang, 1999). The latter gene codes for a different transcription221

factor that may be involved in skin development (Jonsson et al., 2004).222

We detected signatures of Denisovan AI in a region in chromosome 3 near SUMF1 and LRNN1223

(Fig. S27), which was also identified in Jacobs et al. (2019). SUMF1 codes for an enzyme involved224

in the hydrolysis of sulfate esters, which has been associated with sulfatase deficiency (Cosma225

et al., 2003), while LRNN1 encodes a protein involved in neuronal differentiation, which has been226

associated with neuroblastoma and Alzheimer’s disease (Bai et al., 2014; Hossain et al., 2012).227

Another candidate region is in chromosome 7 and is upstream of SFRP4 (Fig. S34), which228

encodes a protein associated with diabetes (Mahdi et al., 2012) and Pyle’s disease (Simsek Kiper229

et al., 2016). Moreover, there is also a candidate region upstream of RAB27A, in chromosome 15230

(Fig. S43). Mutations in this gene cause Griscelli syndrome, which results in pigmentary dilution231

in the hair and skin, as well as melanosome accumulation in melanocytes (Ménasché et al., 2000).232

Finally, we found evidence for Denisovan AI in two nearby regions in chromosome 14 (Figs. S40233

and S41). One of these overlaps with PRKCH—encoding a protein kinase associated with234

cerebral infarction (Kubo et al., 2007). The other overlaps with KCNH5—coding for a potassium235

channel that may be associated with epileptic encephalopathy (Veeramah et al., 2013).236

Discussion237

We have developed a new method to detect adaptive introgression along the genome using con-238

volutional neural networks. The method has high precision when reporting candidate AI loci,239

and high negative predictive value when rejecting loci as not-AI: we obtain greater than 90%240

accuracy under a variety of different selection scenarios (Table S4), with low false positive rates.241

As reported previously (Kim et al., 2018; Zhang et al., 2020), heterosis following introgression242

can produce patterns very similar to AI, and we found this can inflate false positive detection of243

AI by our CNN. However, we simulated a DFE with recessive dominance for all mutations, which244

is not realistic in general, so our results in this regard represent a worse case scenario. A possible245

future improvement would be to train the CNN on simulations incorporating heterosis. We did246

not attempt this here because realistic DFE simulations represent a substantial computational247

burden.248

The CNN took approximately 15 minutes to train on one NVIDIA Tesla T4 GPU, which249

amounts to 60 CPU hours for an equivalent CPU-only training procedure. All data were loaded250

into memory, which required approximately 120 GB RAM during training. The computational251

bottleneck lay in the generation of SLiM forward simulations: 300,000 simulations took approx-252

imately 80 weeks of CPU time for each of the demographic models. In the future, considerable253

speedups could potentially be obtained by optimising the simulation step, perhaps by imple-254

menting an adaptive introgression simulation framework that takes advantage of the backwards255

coalescent (e.g. building on the work by Setter et al., 2020).256

We applied the method to human data, to look for adaptive introgression from archaic hu-257

mans into the ancestors of present-day human genomes. When looking for Neanderthal AI258

in European genomes, we find previously found candidate genes (BNC2, WRD88/GPATCH1,259

KCNQ2/EEF1A2, TANC1/BAZ2B). We also recover candidates for adaptive introgression from260
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Denisovans by applying our method to unphased Melanesian genomes. The top candidates in-261

clude TNFAIP3, which has been reported before, but also include other, novel regions, contain-262

ing genes involved in blood diseases (CYCS ), neurological diseases (PRKCH, KCNH5, LRNN1 ),263

metabolism (SFRP4, SUMF1 ) and skin development (ASCL4, RAB27A).264

We note, however, that, as with previous methods, visual inspection of the haplotypes or265

genotypes of the top candidate regions remains a necessary criterion to accurately assess whether266

a region may have been under adaptive introgression. For example, in the scans we performed,267

we found a few candidate regions for Neanderthal AI in Europeans that are likely to be false268

positives, e.g. chr2:109360001–109460000; chr4:54240001–54340000; chr8:143440001–143540000.269

These appear to be the result of shared ancestral variation with African populations, and yet270

are classified as having high probability of being under AI. Thus, our method allows for a rapid271

scan and prioritisation of potential targets, but these need to be further assessed for veracity and272

any functional consequence. Inclusion of more complex selection scenarios, involving positive or273

balancing selection on ancestral variation, as well as linked selection, might serve to ameliorate274

the rate of false positives in the future.275

Furthermore, our simulation procedure does not model genotype errors or data missingness.276

Not explicitly accounting for this may negatively impact the robustness of the minor allele density277

computation and the subsequent haplotype sorting procedure, and, in turn, affect the accuracy278

of the CNN.279

The precision of our method necessarily depends upon the demographic history of the pop-280

ulations involved. We found it more challenging to detect AI when the timing of gene flow is281

younger or the introgressing population is more diverged from the panel that is used to represent282

it. This is apparent when comparing results for the Neanderthal-into-European demographic283

scenario and the Denisovan-into-Melanesian demographic scenario. In the former, gene flow is284

more recent (∼55 kya versus ∼50 kya and ∼30 kya) (Sankararaman et al., 2016; Jacobs et al.,285

2019) and sequences are available for a population closely related to the putative source, which286

increases power. Furthermore, for the two putative pulses of Denisovan gene flow (Jacobs et al.,287

2019), we find our model has greater precision with AI for the more ancient pulse (94% versus288

83.6%; Fig. S11), likely because haplotypes from the older pulse have more time to rise in fre-289

quency. We also found that distinguishing AI from a selective sweep (hard or soft), is relatively290

easier than distinguishing AI from neutral variation, and that the time of onset of selection in291

an AI scenario has little bearing on accuracy unless the onset is very recent.292

Our method requires sequencing data from the population from which the introgression event293

originated. This may be problematic in cases where the source of introgression may be distantly294

related to the population genomic panel that is used to represent it. Future work could involve295

developing a CNN that can detect adaptive introgression from a ghost (unsampled) population,296

for cases in which genomic data from the source is unavailable (e.g. see Setter et al., 2020).297

The method can take either phased or unphased data as input. This flexibility allows for its298

application to a range of study systems in the future, in which phasing may not be financially299

or methodologically feasible. It does, however, require called genotypes and is therefore not yet300

suitable for genomes sequenced at low coverage. One could envision extending the framework301

developed here to low-coverage genomes by working with matrices of genotype likelihoods (Kor-302

neliussen et al., 2014) rather than matrices of genotypes or haplotypes. A CNN could learn the303

relationship between the observed likelihoods under a given model and the model parameters304

that generated those likelihoods, but we leave that to a future work.305

Future studies could also address the fact that we must use simulations to train the network,306

which involves an implicit amount of supervision by the user. The range of parameters and models307

that are simulated during training are necessarily hand-selected a priori, and misspecification does308

negatively affect CNN performance. Progress in this regard could involve the use of generative309
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adversarial networks (GANs), which appears to be a fruitful way to address this. Indeed, recent310

work suggests that one can train a GAN to learn to generate realistic population genomic data311

for any population (Wang et al., 2020).312

The attention analyses performed here allowed only a posteriori reasoning on how the network313

learned to predict AI, so further work is encouraged in this area. For instance, interpretabil-314

ity of neural networks can be assessed using symbolic metamodelling (Alaa & van der Schaar,315

2019) with reinforcement learning algorithms deployed to identify the subset of most informative316

features of input data (Yoon et al., 2019). In this context, such approaches should be able to317

pinpoint the important characteristics of genomic data, and possibly derive more informative318

summary statistics to predict complex evolutionary events.319

In summary, we have shown that CNNs are a powerful approach to detecting adaptive in-320

trogression and can recover both known and novel selection candidates that were introduced321

via admixture. As in previous applications to other problems in the field (Sheehan & Song,322

2016; Flagel et al., 2018; Schrider & Kern, 2018; Villanea & Schraiber, 2019; Mondal et al.,323

2019; Torada et al., 2019; Isildak et al., 2020), this exemplifies how deep learning can serve as324

a very powerful tool for population genetic inference. This type of technique may thus be a325

useful resource for future studies aiming to unravel our past history and that of other species, as326

statistical methodologies and computational resources continue to improve.327

Methods328

Simulations329

For CNN training, we performed simulations under three scenarios: neutral mutations only;330

positive selection of a de novo mutation in the recipient population (selective sweep); and positive331

selection of a derived mutation that was transferred via gene flow from the donor population to332

the recipient population (adaptive introgression, AI). In the sweep and AI scenarios, the selection333

coefficient was drawn log-uniformly from between 0.0001 and 0.1 for Europeans and between 0.001334

and 0.1 for Melanesians. The uniformly distributed time of mutation was decoupled from the335

uniformly distributed time of selection onset (thus allowing for soft sweeps). For the selective336

sweep scenario, the mutation and selection times could occur at any time older than 1 kya but337

more recent than the split between the recipient population and its unadmixed sister population,338

with the constraint that the mutation must be introduced before the onset of selection. For the339

AI scenario, a neutrally evolving mutation was introduced to the donor population any time340

more recent than the split between the donor and the ancestor of recipient and unadmixed341

sister population, but older than 1 kya before the introgression event. Then, this mutation was342

transmitted to the recipient population, whereupon selection could start to act on it at any time343

after introgression but before 1 kya.344

We further evaluated our trained CNNs using an additional 10,000 simulations that incorpo-345

rated a DFE using the parameters estimated in Kim et al. (2017) and used in Kim et al. (2018).346

We considered two mutation types: 30% neutral and 70% deleterious. The deleterious portion347

of introduced mutations had a selection coefficient drawn from a reflected gamma distribution348

with shape parameter 0.186, and expected value -0.01314833. We approximated the dominance349

scheme from Kim et al. (2018), using a fixed dominance coefficient for deleterious mutations of350

0.5/(1 − 7071.07 ∗ E[s]) where E[s] is the expected value from the gamma distribution (i.e. all351

deleterious mutations were effectively recessive).352

To incorporate selection, we implemented a new module in stdpopsim (Adrion et al., 2020a)353

(available from https://github.com/popsim-consortium/stdpopsim/pull/462), which lever-354

ages the forwards-in-time simulator SLiM (Haller & Messer, 2019) for simulating selection. For355
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consistency, we also used stdpopsim’s SLiM engine for neutral simulations. stdpopsim uses356

SLiM’s ability to output tree sequences (Haller et al., 2019), which retains complete information357

about the samples’ marginal genealogies. Further, stdpopsim recapitates the tree sequences (en-358

suring that all sampled lineages have a single common ancestor), and applies neutrally evolving359

mutations to the genealogies, using the coalescent framework of msprime (Kelleher et al., 2016).360

We simulated 100 kbp regions, with a mutation rate of 1.29 × 10−08 per site per genera-361

tion (Tian et al., 2019), an empirical recombination map drawn uniformly at random from the362

HapMapII genetic map (Frazer et al., 2007), and the selected mutation introduced at the re-363

gion’s midpoint. For both the sweep scenario and the AI scenario, we used a rejection-sampling364

approach to condition on the selected allele’s frequency being ≥ 1% in the recipient population365

at the end of the simulation. This was done by saving the simulation state prior to the intro-366

duction of the selected mutation (and saving again after successful transmission to the recipient367

population, for the AI scenario), then restoring simulations to the most recent save point if the368

mutation was lost, or if the allele frequency threshold was not met at the end of the simulation.369

To speed up simulations, we applied a scaling factor of Q = 10. Scaling divides population370

sizes (N) and event times (T ) by Q, and multiplies the mutation rate µ, recombination rate r371

and selection coefficient s by Q, such that the population genetic parameters θ = 4Nµ, ρ = 4Nr,372

and Ns remain approximately invariant to the applied scaling factor (Haller & Messer, 2019).373

After simulating, we further filtered our AI scenario simulations to exclude those that ended374

with a minor beneficial allele frequency less than a specific cutoff. We tried two cutoffs—5% and375

25%—and present results for both. Rejection sampling within SLiM was not possible at these376

higher thresholds, as simulations often had low probability of reaching the threshold, particularly377

for recently introduced mutations.378

To investigate Neanderthal gene flow into Europeans, we simulated an out-of-Africa demo-379

graphic model with a single pulse of Neanderthal gene flow into Europeans but not into African380

Yoruba (Fig. 1A), using a composite of previously published model parameters (Table S1). The381

number of samples to simulate for each population was chosen to match the YRI and CEU panels382

in the 1000 Genomes dataset (The 1000 Genomes Project Consortium, 2015), and the two high383

coverage Neanderthal genomes (Prüfer et al., 2014, 2017). The two simulated Neanderthals were384

sampled at times corresponding to the estimated ages of the samples as reported in Prüfer et al.385

(2017).386

To investigate Denisovan gene flow into Melanesian populations, we simulated an out-of-387

Africa demographic history incorporating two pulses of Denisovan gene flow (Malaspinas et al.,388

2016; Jacobs et al., 2019) implemented as the PapuansOutOfAfrica_10J19 model in stdpopsim389

(Adrion et al., 2020a). For this demographic model we sampled a single Denisovan and a single390

Neanderthal (with sampling time of the latter corresponding to the Altai Neanderthal’s estimated391

age). The number of Melanesian samples was chosen to match a subset of the IGDP panel (Jacobs392

et al., 2019). The Baining population of New Britain was excluded at the request of the IGDP393

data access committee, and we also excluded first degree relatives, resulting in a total of 139394

Melanesian individuals used in the analysis. As this demographic model includes two pulses of395

Denisovan admixture, we simulated half of our AI simulations to correspond with gene flow from396

the first pulse, and half from the second pulse.397

Conversion of simulations to genotype matrices398

We converted the tree sequence files from the simulations into genotype matrices using the tskit399

Python API (Kelleher et al., 2016). Major alleles (those with sample frequency greater than 0.5400

after merging all individuals) were encoded in the matrix as 0, while minor alleles were encoded401

as 1. In the event of equal counts for both alleles, the major allele was chosen at random.402
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Only sites with a minor allele frequency > 5% were retained. For sweep and AI simulations, we403

excluded the site of the selected mutation.404

We note that different simulations result in different numbers of segregating sites, but a405

requirement for CNN training is that each datum in a batch must have the same dimensions.406

Existing approaches to solve this problem are to use only a fixed number of segregating sites407

(Chan et al., 2018), to pad the matrix out to the maximum number of observed segregating sites408

(Flagel et al., 2018), or to use an image-resize function to constrain the size of the input data409

(Torada et al., 2019). Each approach discards spatial information about the local density of410

segregating sites, although this may be recovered by including an additional vector of inter-site411

distances as input to the network (Flagel et al., 2018).412

To obtain the benefits of image resizing (fast training times for reduced sizes and easy ap-413

plication to genomic windows of a fixed size), while avoiding its drawbacks, we chose to resize414

our input matrices differently, and only along the dimension corresponding to sites. To resize415

the genomic window to have length m, the window was partitioned into m bins, and for each416

individual haplotype we counted the number of minor alleles observed per bin. Compared with417

interpolation-based resizing (Torada et al., 2019), binning is qualitatively similar, but preserves418

inter-allele distances and thus the local density of segregating sites. Furthermore, as we do not419

resize along the dimension corresponding to individuals, this also permits the use of permutation-420

invariant networks (Chan et al., 2018), although we do not pursue that network architecture here.421

We report results for m = 256, but also tried m = 32, 64, and 128 bins. Preliminary results422

indicated greater training and validation accuracy for CNNs trained with more bins, around 1%423

difference between both 32 and 64, and 64 and 128, although only marginal improvement for 256424

compared with 128 bins. When matching unphased data, we combined genotypes by summing425

minor allele counts between the chromosomes of each individual. We note that all data were426

treated as either phased, or unphased, and no mixed phasing was considered.427

We then partitioned the resized genotype matrix into submatrices by population. Subma-428

trices were ordered left-to-right according to the donor, recipient, and unadmixed populations429

respectively. For genotype matrices including both Neanderthals and Denisovans, we placed430

the non-donor archaic population to the left of the donor. To ensure that a non-permutation-431

invariant CNN could learn the structure in our data, we sorted the haplotypes (Flagel et al.,432

2018; Torada et al., 2019). The resized haplotypes/individuals within each submatrix were or-433

dered left-to-right by decreasing similarity to the donor population, calculated as the Euclidean434

distance to the average minor-allele density of the donor population (analogous to a vector of435

the donor allele frequencies). An example (phased) genotype matrix image for an AI simulation436

is shown in Fig. 1B.437

438

Conversion of empirical data to genotype matrices439

Using bcftools (Li, 2011), we performed a locus-wise intersection of the following VCFs: 1000440

Genomes (The 1000 Genomes Project Consortium, 2015), IGDP (Jacobs et al., 2019), the high441

coverage Denisovan genome (Meyer et al., 2012), and the Altai and Vindija Neanderthal genomes442

(Prüfer et al., 2014, 2017). All VCFs corresponded to the GRCh37/hg19 reference sequence.443

Genotype matrices were constructed by parsing the output of bcftools query over 100 kbp444

windows, filtering out sites with sample allele frequency < 5% or with more than 10% of geno-445

types missing, then excluding windows with fewer than 20 segregating sites. Each genotype446

matrix was then resized and sorted as described for simulations. When data were considered to447

be phased, as for the CEU/YRI populations, we also treated the Neanderthal genotypes as if they448

were phased according to REF/ALT columns in the VCF. While this is equivalent to random449
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phasing, both high-coverage Neanderthal individuals are highly inbred, so this is unlikely to be450

problematic in practice.451

452

CNN model architecture and training453

We implemented the CNN model in Keras (Chollet et al., 2015), configured to use the Tensorflow454

backend (Abadi et al., 2015). To save disk space and memory, the input matrices were stored455

as 8 bit integers rather than floating point numbers, and were not mean-centred or otherwise456

normalised prior to input into the network. We instead made the first layer of our network a457

batch normalisation layer, which converts the input layer to floating point numbers and learns458

the best normalisation of the data for the network.459

The CNN architecture (Fig. 1C) consists of k convolution blocks each comprised of a batch460

normalisation layer followed by a 2D convolution layer with 2x2 stride, 16 filters of size 4x4, and461

leaky ReLU activation. The k blocks are followed by a single fully-connected output node of462

size one, with sigmoid activation. We do not include pooling layers, as is common in a CNN463

architecture (e.g. Torada et al., 2019), and instead use a 2x2 stride size to reduce the output464

size of successive blocks (Springenberg et al., 2015). This is computationally cheaper and had no465

observable difference in network performance. We sought to maximise the depth of the network,466

but the size of the input layer constrains the maximum number of blocks in the network due to467

successive halving of the dimensionality in each block. For m = 256 resizing bins, we used k = 7468

blocks.469

We partitioned 100,000 independent simulations for each of the three selection scenarios470

into training and validation sets (approximate 90%/10% split). The model was trained for471

three epochs, with model weights updated after batches of 64, using the Adam optimiser and472

cross-entropy for the loss function. We evaluated model fit by inspecting loss and accuracy473

terms at end of training (Table S4). Preliminary analyses indicated three epochs were sufficient474

for approximate convergence between training and validation metrics, but we did not observe475

divergence (likely indicating overfitting) even when training for additional epochs.476

Calibration477

CNNs may produce improperly calibrated probabilities (Guo et al., 2017). For a well calibrated478

output, we expect proportion x of the output probabilities with Pr[AI] ∼ x to be true positives.479

To calibrate our CNN output, we applied beta calibration (Kull et al., 2017) by fitting a logistic480

regression model to our validation data after model training. Beta and other calibration methods481

were assessed by fitting the calibrator to the training dataset and inspecting reliability plots on482

a validation dataset (Figs. S2 to S5). We also checked if the sum of the residuals was normally483

distributed, following the approach of Turner et al. (2019). Both beta calibration and isotonic484

regression gave well-calibrated probabilities compared with uncalibrated model outputs, and we485

chose to apply beta calibration due to its relative simplicity (Kull et al., 2017).486

The proportion of predictions which are false positives or false negatives depends upon the487

relative ratios of AI versus not-AI windows of the genome. This ratio is not known, so we fitted488

our calibration procedure using resampled training data with multiple ratios for neutral:sweep:AI489

(Fig. 4).490

Saliency maps491

Saliency maps were computed on, and then averaged over, a set of 100 simulated genotype492

matrices for each simulated scenario, using keras-vis (Kotikalapudi & contributors, 2017). We493
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applied the visualize_saliency function on a a pre-trained CNN, and we configured it to494

use the guided backpropagation modifier. A sharper image was obtained by exchanging the495

CNN output layer’s sigmoid activation with linear activation, as recommended in the keras-vis496

documentation.497

Application of trained CNN to empirical datasets498

We show Manhattan plots where each data point is a 100 kbp window that moves along the499

genome in steps of size 20 kbp. Gene annotations were extracted from the Ensembl release 87500

GFF3 file (with GRCh37/hg19 coordinates), obtained via ensembl’s ftp server. We extracted the501

columns with source=“ensembl_havana” and type=“gene”, and report the genes which intersected502

with the 30 top ranking CNN predictions or a 100 kbp flanking region. Adjacent regions were503

merged together prior to intersection, so that genes were reported only once.504

Compute resources505

All simulations and results reported here were obtained on an compute server with two Intel Xeon506

6248 CPUs (80 cores total), 768 GB RAM, and five NVIDIA Tesla T4 GPUs. 300,000 SLiM507

simulations took approximately 80 weeks of CPU time for each of Demographic Model A and B.508

Each simulation executes independently, and is readily distributed across cores or compute nodes.509

This produced 450 GB of tree sequence files. The resized genotype matrices were compressed510

into a Zarr cache (Zarr Development Team, 2020) with size 2.8 GB, for faster loading. Training511

a single CNN on one GPU took approximately 15 minutes, or 60 CPU hours for an equivalent512

CPU-only training procedure. We did not attempt to optimise memory usage, and thus all data513

were loaded into memory, requiring approximately 120 GB RAM during training. Predicting AI514

for all genomic windows on an empirical dataset (22 single-chromosome BCF files) took 1 CPU515

hour. However, our prediction pipeline uses multiprocessing and efficiently scales to 80 cores.516

Code availability517

The source code for performing simulations, training and evaluating a CNN, and applying a CNN518

to empirical VCF data, were developed in a new Python application called genomatnn, avail-519

able at https://github.com/grahamgower/genomatnn. This work currently depends upon in-520

development selection extensions to stdpopsim available from https://github.com/grahamgower/521

stdpopsim/tree/selection, and progress related to merging this into stdpopsim can be tracked522

at https://github.com/popsim-consortium/stdpopsim/pull/462. Python code for visualis-523

ing the trained models can be found at https://github.com/pabloswfly/CNN-vis.524
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Table 1: Top ranking gene candidates corresponding to Neanderthal AI in Europeans. We show
genes which overlap, or are within 100 kbp of, the 30 highest ranked 100 kbp intervals. Adjacent
intervals have been merged. The CNN was trained using only AI simulations with selected
mutation having allele frequency > 0.25, and subsequently calibrated with resampled
neutral:sweep:AI ratios of 1:0.1:0.02.

chrom start end genes

1 104500001 104600000
2 109360001 109460000 LIMS1; RANBP2; CCDC138; EDAR
2 160160001 160280000 TANC1; WDSUB1; BAZ2B
3 114480001 114620000 ZBTB20
4 54240001 54340000 SCFD2; FIP1L1; LNX1
5 39220001 39320000 FYB; C9; DAB2
6 28180001 28320000 ZSCAN16-AS1; ZSCAN16; ZKSCAN8; ZS-

CAN9; ZKSCAN4; NKAPL; PGBD1; ZS-
CAN31; ZKSCAN3; ZSCAN12; ZSCAN23

8 143440001 143560000 TSNARE1; BAI1
9 16700001 16820000 BNC2
12 85780001 85880000 ALX1
19 20220001 20380000 ZNF682; ZNF90; ZNF486
19 33580001 33740000 RHPN2; GPATCH1; WDR88; LRP3; SLC7A10
20 62100001 62280000 CHRNA4; KCNQ2; EEF1A2; PPDPF; PTK6;

SRMS; C20orf195; HELZ2; GMEB2; STMN3;
RTEL1; TNFRSF6B; ARFRP1; ZGPAT;
LIME1; SLC2A4RG; ZBTB46

21 25840001 25940000
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Table 2: Top ranking gene candidates corresponding to Denisovan AI in Melanesians. We show
genes which overlap, or are within 100 kbp of, the 30 highest ranked 100 kbp intervals. Adjacent
intervals have been merged. The CNN was trained using only AI simulations with selected
mutation having allele frequency > 0.25, and subsequently calibrated with resampled
neutral:sweep:AI ratios of 1:0.1:0.02.

chrom start end genes

2 129960001 130060000
3 3740001 3840000 SUMF1; LRRN1
4 41980001 42080000 TMEM33; DCAF4L1; SLC30A9; BEND4
5 420001 520000 PDCD6; AHRR; C5orf55; EXOC3; CTD-

2228K2.5; SLC9A3; CEP72
6 74640001 74740000
6 81960001 82060000
6 137920001 138120000 TNFAIP3
7 25100001 25200000 OSBPL3; CYCS; C7orf31; NPVF
7 38020001 38120000 EPDR1; NME8; SFRP4; STARD3NL
7 121160001 121260000
8 3040001 3140000 CSMD1
12 84640001 84740000
12 108240001 108340000 PRDM4; ASCL4
12 114020001 114280000 RBM19
14 61860001 61960000 PRKCH
14 63120001 63220000 KCNH5
14 96700001 96820000 BDKRB2; BDKRB1; ATG2B; GSKIP; AK7
15 55260001 55400000 RSL24D1; RAB27A
16 62600001 62700000
16 78360001 78460000 WWOX
18 22060001 22160000 OSBPL1A; IMPACT; HRH4
22 19040001 19140000 DGCR5; DGCR2; DGCR14; TSSK2; GSC2;

SLC25A1; CLTCL1
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Figure 1: A schematic overview of how genomatnn detects adaptive introgression. We first
simulate a demographic history, such as the HomininComposite_4G20 model shown in Fig. 1A,
using the SLiM engine in stdpopsim. Parameter values for this model are given in Table S1.
Three distinct scenarios are simulated for a given demographic model: neutral mutations only,
a sweep in the recipient population, and adaptive introgression. The tree sequence file from
each simulation is converted into a genotype matrix for input to the CNN. Fig. 1B shows a
genotype matrix from an adaptive introgression simulation, where lighter pixels indicate a
higher density of minor alleles, and haplotypes within each population are sorted left-to-right
by similarity to the donor population (Nea). In this example, haplotype diversity is low in the
recipient population (CEU), which closely resembles the donor (Nea). Thousands of
simulations are produced for each simulation scenario, and their genotype matrices are used to
train a binary-classification CNN (Fig. 1C). The CNN is trained to output Pr[AI], the
probability that the input matrix corresponds to adaptive introgression. Finally, the trained
CNN is applied to genotype matrices derived from a VCF/BCF file (Fig. 1D).
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Figure 2: CNN performance on validation simulations for Demographic Model A. The CNN
was trained using only AI simulations with selected mutation having allele frequency > 0.25.
Fig. 2A: Confusion matrix. For the two prediction categories, either "not AI" or AI, we show
the proportion attributed to each of the true (simulated) scenarios. Fig. 2B: Average CNN
prediction for AI scenarios, binned by selection coefficient, s, and time of onset of selection Tsel.
Fig. 2C: ROC curves, precision-recall curves and True Negative Rate vs. Negative Predictive
Value (TNR-NPV) curves. The positive condition is AI. The negative conditions are shown
using different line styles/colours. The circles indicate the point in ROC-space (respectively
Precision-Recall-space, and TNR-NPV-space) when using the threshold Pr[AI] > 0.5 for
classifying a genotype matrix as AI. DFE: distribution of fitness effects. TP: true positives; FP:
false positives; TPR: true positive rate; FPR: false positive rate; ROC: Receiver operating
characteristics; TNR: true negative rate; TPR: true positive rate.
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Figure 3: Saliency maps, showing the CNN’s attention across the input matrices for AI and
not-AI inputs, calculated for the CNN trained on Demographic Model A, filtered for beneficial
allele frequency > 0.25. Each panel shows the average gradient over input matrices encoding AI
(top) or not-AI (bottom). Brighter colours indicate larger gradients, where small changes in the
genotype matrix have a relatively larger influence over the CNN’s prediction. Columns in the
input matrix correspond to haplotypes from the populations labelled at the bottom.
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(C) Model A, AF>5%,
ratios 1:0.1:0.02
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(E) Model A, AF>25%,
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(F) Model A, AF>25%,
ratios 1:0.1:0.02
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(G) Model B, AF>5%,
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(H) Model B, AF>5%,
ratios 1:0.1:0.1
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(I) Model B, AF>5%,
ratios 1:0.1:0.02
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(L) Model B, AF>25%,
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Figure 4: Comparison of Manhattan plots using beta-calibrated output probabilities for
different class ratios. Each row indicates a single CNN, with equivalent data filtering. Each
column indicates a different ratio of scenarios used for calibration. AF = Minimum beneficial
allele frequency.
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Figure 5: Application of the trained CNN to the Vindija and Altai Neanderthals, and 1000
genomes populations YRI and CEU. The CNN was applied to overlapping 100 kbp windows,
moving along the chromosome in steps of size 20 kbp. The CNN was trained using only AI
simulations with selected mutation having allele frequency > 25%, and subsequently calibrated
with resampled neutral:sweep:AI ratios of 1:0.1:0.02.
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Figure 6: Application of the trained CNN to the Altai Denisovan and Altai Neanderthal, 1000
genomes YRI populations, and IGDP Melanesians. The CNN was applied to overlapping
100 kbp windows, moving along the chromosome in steps of size 20 kbp. The CNN was trained
using only AI simulations with selected mutation having allele frequency > 25%, and
subsequently calibrated with resampled neutral:sweep:AI ratios of 1:0.1:0.02.
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Supplementary Tables787

Table S1: Parameter values used for simulating the HomininComposite_4G20 demographic
model, with parameters corresponding to Fig. 1A.

Parameter Description Value Units Source

N0 ancestral pop. size 18500 Kuhlwilm et al. (2016)
N1 Neanderthal pop. size 3400 Kuhlwilm et al. (2016)
N2 European pop. size 13377 NT3 exp(1000 r T3/g)
N3 African pop. size 27600 Kuhlwilm et al. (2016)
NB bottleneck pop. size 1080 Ragsdale & Gravel (2019)
NT3 1450 Ragsdale & Gravel (2019)
r exp rate 0.00202 Ragsdale & Gravel (2019)
T0 archaic split time 550 kya Prüfer et al. (2017)
T1 Afr-Eur split time 65.7 kya Ragsdale & Gravel (2019)
T2 time of gene flow 55 kya Prüfer et al. (2017)
T3 time at end of bottleneck 31.9 kya Ragsdale & Gravel (2019)

g generation time 29 years Prüfer et al. (2017)
α migration rate 2.25 % Prüfer et al. (2017)

TAltai sampling time 115 kya Prüfer et al. (2017)
TVindija sampling time 55 kya Prüfer et al. (2017)
nNean sample size 2 diploid

individuals
nAfr sample size 108 diploid

individuals
nEur sample size 99 diploid

individuals

s selection coefficient 10**(Unif(-4,-1))
Tsel1 selection onset (sweep) Unif(1, T1) kya
Tmut1 mutation (sweep) Unif(Tsel1, T1) kya
Tsel2 selection onset (AI) Unif(1, T2) kya
Tmut2 mutation (AI) Unif(T2, T0) kya
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Table S2: Top ranking gene candidates corresponding to Neanderthal AI in Europeans. We
show genes which overlap, or are within 100 kbp of, the 30 highest ranked 100 kbp intervals.
Adjacent intervals have been merged. The CNN was trained using only AI simulations with
selected mutation having allele frequency > 5%, and subsequently calibrated with resampled
neutral:sweep:AI ratios of 1:0.1:0.02.

chrom start end genes

1 39420001 39520000 RRAGC; MYCBP; GJA9; RHBDL2; AKIRIN1;
NDUFS5; MACF1

2 159880001 160280000 TANC1; WDSUB1; BAZ2B
2 180060001 180160000 SESTD1
2 227800001 227900000 RHBDD1; COL4A4
2 238820001 238960000 LRRFIP1; RBM44; RAMP1; UBE2F; SCLY;

ESPNL; KLHL30
3 114500001 114600000 ZBTB20
5 57960001 58060000 RAB3C
6 28160001 28380000 ZSCAN16-AS1; ZSCAN16; ZKSCAN8; ZS-

CAN9; ZKSCAN4; NKAPL; PGBD1; ZS-
CAN31; ZKSCAN3; ZSCAN12; ZSCAN23;
GPX6

8 17060001 17160000 MICU3; ZDHHC2; CNOT7; VPS37A; MTMR7
8 91840001 91940000 TMEM64; NECAB1; TMEM55A
9 16700001 16860000 BNC2
10 11800001 11900000 ECHDC3; PROSER2; UPF2
11 37740001 37840000
19 20260001 20360000 ZNF90; ZNF486
19 33580001 33700000 RHPN2; GPATCH1; WDR88; LRP3; SLC7A10
20 14340001 14440000 MACROD2; FLRT3

30

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.09.18.301069doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.301069
http://creativecommons.org/licenses/by-nd/4.0/


Table S3: Top ranking gene candidates corresponding to Denisovan AI in Melanesians. We
show genes which overlap, or are within 100 kbp of, the 30 highest ranked 100 kbp intervals.
Adjacent intervals have been merged. The CNN was trained using only AI simulations with
selected mutation having allele frequency > 5%, and subsequently calibrated with resampled
neutral:sweep:AI ratios of 1:0.1:0.02.

chrom start end genes

1 2880001 2980000 ACTRT2; LINC00982; PRDM16
1 220080001 220180000 SLC30A10; EPRS; BPNT1; IARS2
2 221040001 221140000
3 15400001 15500000 SH3BP5; METTL6; EAF1; COLQ
4 41960001 42100000 TMEM33; DCAF4L1; SLC30A9; BEND4
5 135440001 135540000 TGFBI; SMAD5-AS1; SMAD5; TRPC7
6 81980001 82120000 FAM46A
7 121160001 121260000
9 95500001 95600000 IPPK; BICD2; ZNF484
10 59660001 59760000
12 80780001 80880000 OTOGL; PTPRQ
12 84620001 84740000
14 57620001 57760000 EXOC5; AP5M1; NAA30
17 29480001 29720000 NF1; OMG; EVI2B; EVI2A; RAB11FIP4
18 38180001 38320000
20 54340001 54440000

Table S4: Loss and accuracy for CNNs after training for three epochs, as reported by
Keras/Tensorflow, for the training and validation datasets. Binary cross-entropy was used for
the loss function.

Demographic
Model

Hyperparameters Training Validation

Loss Accuracy Loss Accuracy

A AF>0.05 0.1592 0.9458 0.1618 0.9468
A AF>0.25 0.1224 0.9585 0.1265 0.9578
A AF>0.25; unphased 0.1347 0.9537 0.1368 0.9530
B AF>0.05; unphased 0.3415 0.8439 0.3441 0.8439
B AF>0.25; unphased 0.3546 0.8372 0.3583 0.8376
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Supplementary Figures788
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Figure S1: Overview of the Jacobs et al. (2019) demographic model, featuring two pulses of
Denisovan gene flow into Papuans, which we implemented as the PapuansOutOfAfrica_10J19
model in stdpopsim. Black lines show ancestor/descendent relations and red dotted lines show
pulses of admixture with the indicated proportion. DenA and NeaA are the sampled
populations corresponding to Altai Denisovan and Altai Neanderthal, while Den1, Den2, and
Nea1 correspond to introgressing lineages.
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Figure S2: Reliability of probabilities produced by the CNN, for the validation dataset, with
and without calibration, for Demographic Model A with a minimum beneficial allele frequency
of 5%. The variance-normalised sum of residuals is inset in the upper left corner of each of the
reliability plots (Z), which for well-calibrated predictions is approximately normally distributed
(Turner et al., 2019).
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Figure S3: Reliability of probabilities produced by the CNN, for the validation dataset, with
and without calibration, for Demographic Model A with a minimum beneficial allele frequency
of 25%. The variance-normalised sum of residuals is inset in the upper left corner of each of the
reliability plots (Z), which for well-calibrated predictions is approximately normally distributed
(Turner et al., 2019).
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(B) ratios 1:0.1:0.1
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Figure S4: Reliability of probabilities produced by the CNN, for the validation dataset, with
and without calibration, for Demographic Model B with a minimum beneficial allele frequency
of 5%. The variance-normalised sum of residuals is inset in the upper left corner of each of the
reliability plots (Z), which for well-calibrated predictions is approximately normally distributed
(Turner et al., 2019).
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(B) ratios 1:0.1:0.1
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(C) ratios 1:0.1:0.02
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Figure S5: Reliability of probabilities produced by the CNN, for the validation dataset, with
and without calibration, for Demographic Model B with a minimum beneficial allele frequency
of 25%. The variance-normalised sum of residuals is inset in the upper left corner of each of the
reliability plots (Z), which for well-calibrated predictions is approximately normally distributed
(Turner et al., 2019).
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Figure S6: CNN performance on validation simulations for Demographic Model B, after
training using Demographic Model A. The CNN was trained using only AI simulations with
selected mutation having allele frequency > 0.25. A) Confusion matrix. For the two prediction
categories, either "not AI" or AI, we show the proportion attributed to each of the true
(simulated) scenarios. B) Average CNN prediction for AI scenarios, binned by selection
coefficient, s, and time of onset of selection Tsel. C) ROC curves, precision recall curves and
True Negative Rate vs. Negative Predictive Value (TNR-NPV) curves. The positive condition
is AI. The negative conditions are shown using different line styles/colours. The circles indicate
the point in ROC-space (respectively Precision-Recall-space, and TNR-NPV-space) when using
the threshold Pr[AI] > 0.5 for classifying a genotype matrix as AI. DFE: distribution of fitness
effects. TP: true positives; FP: false positives; TPR: true positive rate; FPR: false positive rate;
ROC: Receiver operating characteristics; TNR: true negative rate; TPR: true positive rate.
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Figure S7: CNN performance on validation simulations for Demographic Model A with
unphased data. The CNN was trained using only AI simulations with selected mutation having
allele frequency > 25%. A) Confusion matrix. For the two prediction categories, either "not
AI" or AI, we show the proportion attributed to each of the true (simulated) scenarios. B)
Average CNN prediction for AI scenarios, binned by selection coefficient, s, and time of onset of
selection Tsel. C) ROC curves, precision recall curves and True Negative Rate vs. Negative
Predictive Value (TNR-NPV) curves. The positive condition is AI. The negative conditions are
shown using different line styles/colours. The circles indicate the point in ROC-space
(respectively Precision-Recall-space, and TNR-NPV-space) when using the threshold Pr[AI] >
0.5 for classifying a genotype matrix as AI. DFE: distribution of fitness effects. TP: true
positives; FP: false positives; TPR: true positive rate; FPR: false positive rate; ROC: Receiver
operating characteristics; TNR: true negative rate; TPR: true positive rate.
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Figure S8: CNN performance on validation simulations for Demographic Model A with phased
data. The CNN was trained using only AI simulations with selected mutation having allele
frequency > 5%. A) Confusion matrix. For the two prediction categories, either "not AI" or
AI, we show the proportion attributed to each of the true (simulated) scenarios. B) Average
CNN prediction for AI scenarios, binned by selection coefficient, s, and time of onset of
selection Tsel. C) ROC curves, precision recall curves and True Negative Rate vs. Negative
Predictive Value (TNR-NPV) curves. The positive condition is AI. The negative conditions are
shown using different line styles/colours. The circles indicate the point in ROC-space
(respectively Precision-Recall-space, and TNR-NPV-space) when using the threshold Pr[AI] >
0.5 for classifying a genotype matrix as AI. DFE: distribution of fitness effects. TP: true
positives; FP: false positives; TPR: true positive rate; FPR: false positive rate; ROC: Receiver
operating characteristics; TNR: true negative rate; TPR: true positive rate.
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Figure S9: CNN performance on validation simulations for Demographic Model A with phased
data. The CNN was trained using only AI simulations with selected mutation having allele
frequency > 25%. A) Confusion matrix. For the two prediction categories, either "not AI" or
AI, we show the proportion attributed to each of the true (simulated) scenarios. B) Average
CNN prediction for AI scenarios, binned by selection coefficient, s, and time of onset of
selection Tsel. C) ROC curves, precision recall curves and True Negative Rate vs. Negative
Predictive Value (TNR-NPV) curves. The positive condition is AI. The negative conditions are
shown using different line styles/colours. The circles indicate the point in ROC-space
(respectively Precision-Recall-space, and TNR-NPV-space) when using the threshold Pr[AI] >
0.5 for classifying a genotype matrix as AI. DFE: distribution of fitness effects. TP: true
positives; FP: false positives; TPR: true positive rate; FPR: false positive rate; ROC: Receiver
operating characteristics; TNR: true negative rate; TPR: true positive rate.
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Figure S10: CNN performance on validation simulations for Demographic Model B with
unphased data. The CNN was trained using only AI simulations with selected mutation having
allele frequency > 5%. A) Confusion matrix. For the two prediction categories, either "not AI"
or AI, we show the proportion attributed to each of the true (simulated) scenarios. B) Average
CNN prediction for AI scenarios, binned by selection coefficient, s, and time of onset of
selection Tsel. C) ROC curves, precision recall curves and True Negative Rate vs. Negative
Predictive Value (TNR-NPV) curves. The positive condition is AI. The negative conditions are
shown using different line styles/colours. The circles indicate the point in ROC-space
(respectively Precision-Recall-space, and TNR-NPV-space) when using the threshold Pr[AI] >
0.5 for classifying a genotype matrix as AI. DFE: distribution of fitness effects. TP: true
positives; FP: false positives; TPR: true positive rate; FPR: false positive rate; ROC: Receiver
operating characteristics; TNR: true negative rate; TPR: true positive rate.
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Figure S11: CNN performance on validation simulations for Demographic Model B with
unphased data. The CNN was trained using only AI simulations with selected mutation having
allele frequency > 25%. A) Confusion matrix. For the two prediction categories, either "not
AI" or AI, we show the proportion attributed to each of the true (simulated) scenarios. B)
Average CNN prediction for AI scenarios, binned by selection coefficient, s, and time of onset of
selection Tsel. C) ROC curves, precision recall curves and True Negative Rate vs. Negative
Predictive Value (TNR-NPV) curves. The positive condition is AI. The negative conditions are
shown using different line styles/colours. The circles indicate the point in ROC-space
(respectively Precision-Recall-space, and TNR-NPV-space) when using the threshold Pr[AI] >
0.5 for classifying a genotype matrix as AI. DFE: distribution of fitness effects. TP: true
positives; FP: false positives; TPR: true positive rate; FPR: false positive rate; ROC: Receiver
operating characteristics; TNR: true negative rate; TPR: true positive rate.
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Figure S12: Haplotype plot for the candidate region chr1:104500001-104600000 in the
Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates
major allele. Haplotypes within populations are sorted left-to-right by similarity to
Neanderthals.
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Figure S13: Haplotype plot for the candidate region chr2:109360001-109460000 in the
Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates
major allele. Haplotypes within populations are sorted left-to-right by similarity to
Neanderthals.
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Figure S14: Haplotype plot for the candidate region chr2:160160001-160280000 in the
Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates
major allele. Haplotypes within populations are sorted left-to-right by similarity to
Neanderthals.
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Figure S15: Haplotype plot for the candidate region chr3:114480001-114620000 in the
Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates
major allele. Haplotypes within populations are sorted left-to-right by similarity to
Neanderthals.
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Figure S16: Haplotype plot for the candidate region chr4:54240001-54340000 in the
Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates
major allele. Haplotypes within populations are sorted left-to-right by similarity to
Neanderthals.
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Figure S17: Haplotype plot for the candidate region chr5:39220001-39320000 in the
Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates
major allele. Haplotypes within populations are sorted left-to-right by similarity to
Neanderthals.
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Figure S18: Haplotype plot for the candidate region chr6:28180001-28320000 in the
Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates
major allele. Haplotypes within populations are sorted left-to-right by similarity to
Neanderthals.
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Figure S19: Haplotype plot for the candidate region chr8:143440001-143560000 in the
Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates
major allele. Haplotypes within populations are sorted left-to-right by similarity to
Neanderthals.
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Figure S20: Haplotype plot for the candidate region chr9:16700001-16820000 in the
Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates
major allele. Haplotypes within populations are sorted left-to-right by similarity to
Neanderthals.
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Figure S21: Haplotype plot for the candidate region chr12:85780001-85880000 in the
Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates
major allele. Haplotypes within populations are sorted left-to-right by similarity to
Neanderthals.
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Figure S22: Haplotype plot for the candidate region chr19:20220001-20380000 in the
Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates
major allele. Haplotypes within populations are sorted left-to-right by similarity to
Neanderthals.
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Figure S23: Haplotype plot for the candidate region chr19:33580001-33740000 in the
Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates
major allele. Haplotypes within populations are sorted left-to-right by similarity to
Neanderthals.
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Figure S24: Haplotype plot for the candidate region chr20:62100001-62280000 in the
Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates
major allele. Haplotypes within populations are sorted left-to-right by similarity to
Neanderthals.
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Figure S25: Haplotype plot for the candidate region chr21:25840001-25940000 in the
Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates
major allele. Haplotypes within populations are sorted left-to-right by similarity to
Neanderthals.
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Figure S26: Genotype plot for the candidate region chr2:129960001-130060000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S27: Genotype plot for the candidate region chr3:3740001-3840000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S28: Genotype plot for the candidate region chr4:41980001-42080000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S29: Genotype plot for the candidate region chr5:420001-520000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S30: Genotype plot for the candidate region chr6:74640001-74740000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S31: Genotype plot for the candidate region chr6:81960001-82060000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S32: Genotype plot for the candidate region chr6:137920001-138120000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S33: Genotype plot for the candidate region chr7:25100001-25200000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S34: Genotype plot for the candidate region chr7:38020001-38120000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S35: Genotype plot for the candidate region chr7:121160001-121260000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.

67

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.09.18.301069doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.301069
http://creativecommons.org/licenses/by-nd/4.0/


3041502

3139503

SN
P 

po
sit

io
n

8:3040001-3140000

Major/Major

Major/Minor

Minor/Minor

Ge
no

ty
pe

Melanesian YRI
IndividualsNeaA DenA

Figure S36: Genotype plot for the candidate region chr8:3040001-3140000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S37: Genotype plot for the candidate region chr12:84640001-84740000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S38: Genotype plot for the candidate region chr12:108240001-108340000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S39: Genotype plot for the candidate region chr12:114020001-114280000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S40: Genotype plot for the candidate region chr14:61860001-61960000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S41: Genotype plot for the candidate region chr14:63120001-63220000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S42: Genotype plot for the candidate region chr14:96700001-96820000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S43: Genotype plot for the candidate region chr15:55260001-55400000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S44: Genotype plot for the candidate region chr16:62600001-62700000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S45: Genotype plot for the candidate region chr16:78360001-78460000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S46: Genotype plot for the candidate region chr18:22060001-22160000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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Figure S47: Genotype plot for the candidate region chr22:19040001-19140000 in the
Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue =
heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted
left-to-right by similarity to the Denisovan.
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