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Abstract

Although they are staple foods in cuisines globally, commercial fruit varieties have become progres-
sively less flavorful over time. Due to the cost and difficulty associated with flavor phenotyping, many
breeding programs have long been challenged in selecting for this complex trait. To address this issue,
we leveraged targeted metabolomics of diverse tomato and blueberry accessions and their correspond-
ing consumer panel ratings to create statistical and machine learning models that can predict sensory
perceptions of fruit flavor. Using these models, a breeding program can assess flavor ratings for a large
number of varieties, previously limited by the low-throughput and high cost of consumer sensory panels.
The ability to predict consumer ratings of liking, sweet, sour, umami, and flavor intensity was evaluated
by a 10-fold cross-validation and the accuracies of 18 different models are assessed. The best performing
models were used to infer the flavor compounds (sugars, acids, and volatiles) that contribute most to
each flavor attribute. The prediction accuracies were high for most attributes in both blueberries and
tomatoes. We expect that these models will enable an earlier incorporation of flavor as breeding targets
and encourage selection and release of more flavorful fruit varieties.

1 Introduction

Plant breeders and geneticists have made continuous and substantial progress in the development of varieties
that are more resilient and higher yielding - much to the benefit of producers worldwide. Yet, during this
extended period of progress, consumer-oriented quality traits such as flavor have been neglected or treated
as low priority breeding targets, contributing to widespread consumer dissatisfaction with modern fruit and
vegetable varieties (1). An important reason for this low priority is a reward system that pays growers based
on crop yield, leading to prioritization of breeding targets that are mainly producer oriented. However, as
consumer willingness to pay premiums for higher quality products rises, demand for consumer-oriented traits
in food production systems is increasing (2). Accordingly, a reemerging interest in fruit and vegetable flavor
quality creates the need for high-yielding varieties with exceptional flavor profiles.

Fruit flavor is the product of the complex interactions between the chemical composition of a fruit, and
the taste, olfaction, and psychology of the consumer (3; 4; 5). To breed and develop varieties with improved
flavor properties, the genetic complexities of fruit flavor must be captured and assessed. Flavor is currently
evaluated by consumer sensory panels or individually by breeders. Field evaluations are generally subjective
and error-prone as they typically consist of the sensory preferences of one or few individuals. However, field
evaluation has an advantage in that many varieties can be evaluated in a given day. In contrast, sensory
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panels are more objective, accurate, and well established, but they can be costly, time consuming, and
difficult to scale to a large breeding program. The difficulties associated with accurate flavor phenotyping
have contributed to the lack of selection for fruit flavor, and thereby contributed to the widespread consumer
belief that commercial fruit flavor has declined (6; 7). Cheap and scalable flavor selection methods would
greatly benefit the breeding process.

The main driver of fruit flavor perception is its chemical composition. Fruits contain a diverse array of
sugars, acids, and volatiles whose concentrations are driven by genetic and environmental effects. Sugars
and acids are largely perceived by taste receptors on the tongue, and the volatiles by receptors located in
the olfactory epithelium (8). We hypothesized that by quantifying the chemical profile of a fruit and its
corresponding consumer perception, models predicting consumer flavor preferences can be created. By elim-
inating the cost associated with consumer sensory panels, these prediction models can increase throughput
of flavor phenotyping, allowing a breeder to make selections for improved flavor on hundreds of varieties
per season. Leveraging the trained models for inference, specific metabolites that underlie consumer flavor
preferences can also be elucidated, identifying targets for breeding and the food industry to enhance flavor
in their products. This approach is analogous to the concept of genomic selection (9), where DNA markers
are used in plant breeding programs to predict highly complex traits. Here, we propose the use of statistical
methods to model the metabolomic profile in a breeding population and predict flavor perception.

In flavor studies, the most widespread statistical modeling approaches to date include multiple linear
regression and partial least squares regression (10).However, the process of developing metabolomic-based
prediction models can be challenging due to the large number of chemical compounds present in a fruit,
and the fact that the concentrations of many of the flavor-associated chemicals are correlated with one
another due to shared biosynthetic pathways. Fortunately, breeders and quantitative geneticists are already
dealing with similar types of data in the area of genomic selection (GS) to make selection of complex traits
using genomic information. Thus, there are several statistical and machine learning prediction models that
have been tested in GS and other prediction areas. Based on the model assumptions and specifications,
different prediction accuracies and abilities to infer the contributing features are expected. With the advent
of genomic selection, for example, a variety of Bayesian linear regression models with different priors were
proposed to predict complex phenotypes using DNA markers. These models included Bayes A and Bayes
B (9), Bayes Cr (11), Bayesian LASSO (12), and Bayesian Ridge Regression (13; 14). Recently, there has
been increasing interest in machine learning models for genomic and bioinformatic applications. However,
few studies have applied these models at the metabolome level, or specifically for the enhancement of fruit
flavor.

Here we address the limitations in flavor phenotyping and propose a phenotyping approach that has sig-
nificantly higher throughput compared to current standards. We assessed a range of statistical and machine
learning models that take the chemotype of a fruit and make predictions of its consumer flavor perception.
To this end, we combined information at the metabolome and sensory panel level for two important horticul-
tural crops, tomato and blueberry, and demonstrate that metabolomic prediction models can be employed
in a breeding program to make simpler and more accurate selections for flavorful varieties. Additionally,
we leverage the trained models to infer the contributions of volatiles, sugars and acids to sensory percep-
tions and consumer likeability. Our results suggest that up to 55% of the variance associated with overall
consumer liking can be attributed to volatile compounds. Furthermore, we demonstrate that machine learn-
ing approaches are generally the best predictors of consumer flavor preferences, and metabolomic selection
accuracies are superior to genomic selection models, highlighting the potential in breeding applications.

2 Results
2.1 The data

In order to study the capacity of different prediction models and the importance of different metabolites
in flavor perception, we performed an analysis of previously published data (15; 16; 4; 5) with new data
added in this study, for two fruit species: tomato (Solanum lycopersicum) and blueberry (Vaccinium spp.).
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For each fruit, targeted sets of sugars, acids, and volatiles were quantified in diverse accessions including
commercial cultivars, heirloom varieties, and germplasm selections from the University of Florida tomato
and blueberry breeding programs. For tomato, 68 sugars, acids, and volatiles were analyzed in 147 genotypes
grown and evaluated in multiple seasons, for a total of 209 samples. For blueberry, 63 accessions evaluated
in multiple seasons for a total of 244 samples, were analyzed for firmness and 55 sugars, acids, and volatiles.
In addition, consumer sensory panels rated each accession for flavor attributes including sweetness, sourness,
flavor intensity, and overall liking. Additionally, sensory perceptions of umami were quantified solely for
tomato.

2.2 Network analysis recapitulates metabolic pathways

A weighted correlation network analysis was performed on the metabolite contents across all fruit accessions
for tomato and blueberry (Figure 1A and Figure 2A). The results are largely consistent with knowledge of
the individual biosynthetic pathways and provide new insights into the relationships between pathways. For
example, there are strong associations between the apocarotenoid volatiles (e.g., geranial and S-cyclocitral)
and the fatty acid-derived volatiles (e.g., 1-pentanol and E-2-heptenal). Apocarotenoid volatiles are de-
rived from precursors localized in plastids and their contents substantially increase during the conversion of
chloroplasts to chromoplasts (17), while the precursors of fatty-acid-derived volatiles are membrane lipids.
TOMLoxC is an essential enzyme for the synthesis of five and six carbon fatty acid-derived volatiles (18; 19).
Recently, a potential link between these pathways was recently proposed with a QTL analysis that implicated
a role for TOMLoxzC in apocarotenoid synthesis possibly by co-oxidation mechanism (20).

2.3 Contributions of sugars, acids, and volatiles to flavor perceptions

In order to determine if the fruit metabolome could explain variation in sensory panel ratings, we first
partitioned the metabolome into two main groups: sugars/acids and volatiles. We separated the consumer
sensory variance into aggregated components explained by each group. In both tomato and blueberry, a large
proportion of the variance was explained by sugars/acids and volatiles, while little variance was attributed
to the residuals (Figure 3). These results suggest that the fruit metabolome is predictive of corresponding
consumer taste panel ratings. Furthermore, the proportion of variance explained by sugars/acids varied
across the flavor attributes and contrasted between the two species. For instance, 77% of the tomato sourness
variance was explained by the content of sugars/acids while these compounds only explained 42% of blueberry
sourness. Similarly, while sugars/acids predominantly (60%) explained blueberry sweetness, a larger portion
of the tomato phenotypic variance (59%) could be explained by the volatiles. As previously described (3), the
results indicate the large influence that volatile compounds can have on sensory attributes in both species,
which in turn, highlights how important these compounds are to breeding programs for improvement of fruit
flavor. For example, the variance decomposition of overall liking score estimates that 41% and 55% of the
variance was explained by volatile organic compounds in tomato and blueberry, respectively.

To further understand how the fruit chemical profile affected consumer flavor, we partitioned the metabo-
lites into modules according to their biochemical classifications (Figures 1, 2; Supplemental Tables 1 and
2).A linear mixed model was fitted considering each module as a random effect and their corresponding
proportions of variance were obtained (Figure 3; Supplemental Figure 1). The sugar module was a strong
driver of liking (43% in tomato and 19% in blueberry) and sweetness (32% in tomato and 27% in blueberry),
while the module representing acids drove sourness (49% in tomato and 38% in blueberry) in both fruits.
Some volatile modules were found to make large contributions to flavor ratings. For instance, phenylalanine-
derived and lipid-derived compounds contributed to sweetness perception (25 and 23% respectively) and
overall liking score (15 and 12% respectively) in tomato. Lipid derived volatiles and compounds grouped
as carotenoid/terpenes explained 15 and 21% of blueberry overall liking score, respectively. These results
are consistent with previous results that showed strong positive correlations of specific volatiles with fruit
sweetness (16; 4).


https://doi.org/10.1101/2020.09.17.302802

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.17.302802; this version posted September 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Volatile Profile

a) b)
Metabolite 51 52
Network &2 53
63 & & = & 54
&3 49 38 55 56 100
37 44
50 36 39 & 75
33 3a 57 & .
3 5 E’ 5.0
41
30 40 42 59 25
32 23 60
27 61 0.0
31 28
1 10 26 25 24
11
9
2 &5 20
1 2 19 23
3 21
@ ® o
16 18
22
4
@ o o
15
Legend:

Non-aro
(18) 2-methyl
(19) 2-methyl-2-butenal
(20) propy! acetate

(21) 2-methylbutyl acetate
(22) 2-methylbutyraldehyde
(23) isobutyl acetate

(24) prenyl acetate

(25) 3-methyl-2-butenal
(26) butyl acetate

(27) isopentyl acetate

(28) 3-methyl-1-butanol
(29) isovaleraldehyde

(30) 1-nitro-3-methylbutane
(31) 2-isobutylthiazole

(32) isovaleronitrile

(33) isovaleric acid

(1) glutamic acid
(2) malic acid
(3) citric:malic
(4) citric acid

Sugars

(5) sugar:acid
(6) soluble solids
(7) glucose

(8) fructose

(9) benzyl alcohol

(10) methylsalicylate

(11) guaiacol

(12) salicylaldehyde

(13) 1-nitro-2-phenylethane
(14) benzyl cyanide

(15) 2-phenyl ethanol

(16) phenylacetaldehyde
(17) benzaldehyde

(34) heptaldehyde

(35) (E)-3-hexen-1-ol
(36) (2)-3-hexenal

(37) hexanal

(38) (2)-4-decenal

(39) (2)-3-hexen-1-ol
(40) (2)-2-penten-1-ol
(41) 3-methyl-1-pentanol
(42) (2)-3-hexenyl acetate
(43) hexyl alcohol

(44) 1-penten-3-ol

(45) 1-pentanol

(46) (E)-2-hexenal

(47) 1-octen-3-one

(48) (E)-2-heptenal

(49) 3-pentanone

(50) 1-penten-3-one
(51) (E,E)-2,4-decadienal
(52) (E)-2-pentenal

(53) hexyl acetate

(54) nonyl aldehyde

Volatile Classes

D Non-aromatic AA derived I:l Lipid derived
D Carotenoid/Terpenes I:l Phe derived

Sugar/Acids

I:I Acids
. Sugars

|:| Other

(55) b-ionone

(56) b-cyclocitral

(57) geranial

(58) 6-methyl-5-hepten-2-ol
(59) neral

(60) 6-methyl-5-hepten-2-one
(61) geranylacetone

Other

(62) 2,5-dimethyl-4-hydroxy-3(2H)-furanone
(63) 4-carene

(64) methional

(65) eugenol

Figure 1: (a) Weighted correlation network analysis of tomato metabolites and their assigned clusters based
on their known biochemical classification. The size of each metabolite node indicates betweenness centrality.
The size of each edge indicates correlation. The identity of each metabolite is denoted by number in the
legend. (b) Distribution of metabolite concentrations for each group across tomato accessions.

2.4 Predicting consumer preference

Eighteen statistical and machine learning methods were employed to predict sensory traits from sugar, acid,
and volatile concentrations. Each model was evaluated in a 10-fold cross validation and each fold was assessed
by the correlation between predicted and observed consumer taste panel ratings (Figure 4A, Supplemental
Figure 1). The cross validation was repeated 10 times and results were averaged for the final prediction
accuracies. We observed the highest prediction accuracies from the XGBoost, gradient boosting machines,
and neural network models. The XGBoost model showed an average improvement of 19% over the linear
regression and 11% over partial least squares, models traditionally used in food science applications. The
accuracy for the best model (XGBoost) ranged from 0.62 to 0.87 across all traits and in both species. We
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(a) Weighted correlation network analysis of blueberry metabolites and their assigned clusters

based on their known biochemical classification. The size of each metabolite node indicates betweenness
centrality. The size of each edge indicates correlation. The identity of each metabolite is denoted by number
in the legend. (b) Distribution of metabolite concentrations for each group across blueberry accessions.

found the most predictable traits in tomato to be sweetness (0.8), flavor intensity (0.78), and sourness (0.69),
and the most predictable traits in blueberry to be sourness (0.87) and sweetness (0.75).

To further evaluate the opportunity to use metabolomic selection in breeding and to understand its
prediction potential compared to traditional genomic selection (GS) methods, we compiled information from
70 varieties of tomato for which we had whole genome sequence, chemical profile, and sensory panel data
(5). Using a 10-fold cross validation, we applied the genomic selection GBLUP method (21) to predict
the consumer sensory ratings from a subset of 70,000 SNPs (Figure 4B). We then used the metabolomic
information for the same 70 varieties and the same cross validation partitioning to predict the panel ratings.
These 70 varieties represent a subset of the total 147 accessions. We found that metabolomic selection
outperformed genomic selection in the prediction of all these complex traits, especially for sweetness and
overall flavor liking. For these traits, the accuracies of metabolomic selection using 70 varieties were 0.68
and 0.45 for sweetness and overall flavor liking, respectively. These traits were poorly predicted by GBLUP
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Figure 3: Variation in sensory panel ratings explained by sugars/acids and volatiles overall, and by groups
of metabolites of known biochemical classification in tomato and blueberry

with accuracies of 0.18 and -0.11 for sweetness and overall flavor liking, respectively. While these results
are not surprising, given that the metabolite data is capturing both genetic and environmental components
of fruit flavor, they highlight the complexity of flavor perception as a breeding target, and the potential of
metabolomic selection as a phenotyping tool to support breeding programs compared with other available
methods such as GS, for example. The accuracies of metabolomic selection in a model trained with 70
genotypes were slightly lower than the accuracies from the full dataset using 209 observations and 147
genotypes. The exception was for flavor intensity where the subset of 70 reached accuracies of 0.77 and was
more predictive than the full dataset. This result can be explained by a smaller variety panel that is less
variable and easier to be predicted or by the fact that multiple sensory panels were averaged in the subset
analysis resulting in a more precise phenotype.

2.5 Metabololites associated with desirable flavor

In order to find sugars, acids, and volatiles that enhance or suppress consumer sensory perceptions of flavor,
models for each fruit were trained using all samples for which we had metabolome and sensory panel data (209
for tomato and 244 for blueberry). Two contrasting modeling approaches, BayesA and Gradient Boosting
Machines, were chosen for further inference analysis. In BayesA, the 3 coefficients indicate the individual
additive effect of that chemical free of interactions. This coefficient predicts if a chemical is important
for enhancing the flavor attribute (positive value) or decreasing the flavor attribute (negative value). For
Gradient Boosting Machines the variable importance represents the marginal effect of that chemical including
the interaction effects with other chemicals. Its value was measured by calculating the difference in prediction
accuracy between the models trained using all the predictors and models trained with all predictors except
one, permuted across all predictors. This value is then scaled between 0 and 100 where 0 is a not an important
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Figure 4: (a) Accuracy of predicting flavor ratings from metabolome data across the follow range of statis-

tical and machine learning models for tomato and blueberry: linear regression(LR), Linear Support Vector
Machine (SVMI), Kernel Partial Least Squares (KPLS), Bayesian Neural Net (BNN), Elastic Net (EN),
Bayesian Rigge Regression (BRR), BayesA, BayesB, BayesC, Bayesian Lasso (BL), Reproducing Kernel
Hilbert Space (RKHS), Support Vector Machine Radial (SVMr), Support Vector Machine Radial Sigma
(SVMrs), Relevant Vector Machine (RVM), Random Forest (RF), Neural Network (NN), Gradient Boost
Machine (GBM)and X Gradient Boost (XGB). Refer to the “Material and Methods” section for an overview
of the methods compared. (b) Accuracy of predicting perception traits for tomato using 70 individuals
with genomic (Genomic 70) and metabolomic (Metabolomic 70) data, as well as all 209 individuals with
metabolomic data (Metabolomic All).

predictor and 100 is an important predictor. Importance values for Gradient Boosting Machines indicate
solely whether a metabolite is important for a given sensory trait while importance values (5’s) for Bayes A
models indicate whether a metabolite is important for a given trait and if it induces or suppresses the trait
responses (Figure 5).

For sweetness in tomato, we found glucose and fructose to be the most important sensory perception
enhancers. The Gradient Boosting Machines also estimated 1-penten-3-one and 2-phenylethanol to be impor-
tant for perceived sweetness, while the BayesA model highly ranked two volatiles (E-2-pentenal and 4-carene)
o be important for sweetness enhancement. E-2-pentenal was also found to be an important contributor to
overall flavor intensity and umami (Supplemental Figure 1). In blueberry, components important for liking
included soluble solids, fructose, and glucose. Additionally, volatiles found to be important for enhancing
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with BayesA (y-axis) of each metabolite in predicting ratings of flavor attributes in blueberry and tomato.
Colors indicate the type of metabolite. TA, titratable acidity.

liking included 2-undecanone, 2-hexenyl-butyrate, and ethyl propionate, while volatiles that were negative
to liking included eucalyptol and phenylacetaldehyde. Interestingly, two lipid derived volatiles (2-hexen-1-al
and 2-pentenal) had a high positive contribution and the highest negative contributions to sourness in blue-
berry, respectively. Glutamic acid was highly ranked by both methods as influencing umami perception for
tomato, which by definition represents the taste of the amino acid L-glutamate. Two phenylalanine-derived
compounds (benzyl cyanide and 2-phenyl ethanol) and one isoleucine/leucine-derived volatile (1-nitro-2-
phenylethane) were also highly ranked by Gradient Boosting Machines as umami influencers (Supp. Figure
1). It is important to note, however, that this targeted metabolomic panel is enriched for putative sugar-
enhancing compounds and may be limited in the characterization of compounds affecting umami.
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3 Discussion

Fruit flavor is a complex trait at the intersection between the fruit biochemistry and the consumer sensory
perception. Quantification of sensory perception using consumer flavor panels is time and resource consuming
and not readily amenable to a high throughput assay, which has hindered plant breeders from selecting for
fruit flavor for many years. This has contributed to the widespread decline of consumer satisfaction of many
commercial fruit varieties (7; 2). Recently, different high-throughput phenotyping applications were proposed
to use 2-D visible light imaging as proxies for plant biomass (Golzarian et al., 2011), reflectance ratios as
proxies for yield (22), hyperspectral reflectance as proxies for leaf chlorophyll and nitrogen content (23), and
canopy temperature as proxies for drought response (24). Here, and in order to create higher throughput
flavor phenotyping methods, we applied statistical and machine learning models that can predict consumer
sensory panel ratings from the chemistry of a fruit.

3.1 Chemical profiling of a fruit

The cost of targeted and untargeted metabolomics has decreased in recent years (25). In addition, the
throughput for metabolite profiling has also increased, which in turn reduces the labor cost per sample.
Currently, we are able to analyze 150 samples per day using a purge and trap gas chromatography—mass
spectrometry (GC-MS) system. The largest cost in this system is labor to process the fruit and to analyze
the data. For the panel generated in this work, we estimate an in-house cost per sample of $10-$20 for
GC-MS characterization. This cost allows the characterization of 3 replicates per genotype for costs ranging
from $30 - $60 per variety, which is equivalent to the per sample genotyping costs used for genomic selection
in many species. If we assume the costs of a flavor sensory panel to be ~ $5000.00 with the evaluation of 5
products ($1000/variety), flavor phenotyping through chemical profiling can be more than 30 times cheaper
than sensory evaluations. While these cost estimates assume an in-house analysis and do not consider the
capital expenditure to acquire the instrumentation, it highlights the per sample cost reduction over the years
and the feasibility of its application in plant breeding programs. Furthermore, with the identification of
a set of candidate metabolites that have more influence in a specific flavor attribute of interest, targeted
metabolomics could be utilized to further reduce the cost.

3.2 Applications of metabolomic selection to breeding of fruits and vegetables

One alternative to phenotype fruits and vegetables for flavor attributes is the establishment of consumer
sensory panels. This approach is expensive with low throughput because a sensory panel can usually only
taste a limited number of samples (4 to 6) per day. The tomato and blueberry breeding programs at the
University of Florida have been using consumer sensory panels to guide breeding decisions for several years
(16; 5).To do this, fruit varieties ranging from heirloom and commercial cultivars to varieties currently in
development by the breeding programs are subjected to biochemical analysis and simultaneous consumer
evaluations each year. However, due to the low throughput of the assay, sensory characterization is only
performed in the final stages of selection prior to release. Alternatively, flavor traits can be incorporated to
the breeding program using the breeder’s ‘bite test’, which consists on the individual breeder’s evaluation
and scoring of flavors. The major drawback is the fact that the rating generally comes from a single person
(n=1), which may not be predictive of the average population overall liking score.

The use of metabolomic profiling as a phenotyping assay can enable accurate characterization of flavor
profiles in earlier stages of a breeding program, when more genetic variability is available for selection.
For example, the expenditure of $10,000 from a breeding program to run sensory panels in 10 varieties
per year, prior to variety release, would allow nearly 200 samples to be phenotyped using metabolomic
selection (Figure 6). Metabolic profiling at earlier stages of the breeding program opens up the possibility
of identification of superior flavor genotypes that may otherwise have been discarded. Chemical profiling
of fruits can capture the genetic potential of the variety as well environmental variability. To reduce this
variability and generate a phenotype that better represents the genetic potential of the individual, the
breeder can characterize replicates from different environments and/or harvests. Replicates within plots in a
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single experiment, within harvest dates within a season, or even within environments can be pooled prior to
running the instrument, reducing the per sample cost and resulting in an average prediction of the genotypic
effect. Furthermore, the use of metabolomic selection would complement a molecular breeding program
using genomic selection given that it can better predict sensory attributes using small training sizes derived
from sensory panel evaluations. One alternative to combine these approaches would be the application of
GS in early stages of the program, for production traits such as yield and adaptability, followed by the
application of metabolomic selection in advanced stages that still retain enough genetic variability to select
flavorful cultivars (Figure 6). Finally, genes involved in the biosynthesis of inferred volatiles can be targets
for further genetic enhancement of fruit flavor. Using the biochemical data along with genomic tools such as
genome wide association studies (GWAS) (15), breeding targets can be identified and used to select superior
germplasm by marker assisted selection or for gene editing.
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Figure 6: Schematic representation of how the use of metabolomic selection could be applied in earlier stages
of a breeding program, when compared to sensory panels.

3.3 Machine learning and linear regression models can accurately predict flavor
attributes

The use of metabolomics to predict flavor attributes has important implications not only in plant breeding
but also in food science and genetics research. Flavor perception is a complex trait as it depends on human
preferences. Prediction using metabolomics is challenging due to the correlated nature of the metabolomic
predictors since it requires a large number of sensory panels for model calibration. Flavor prediction has been
attempted before using linear regression models (26; 27), random forest models (28), and partial least square
regression (16), achieving variable levels of prediction accuracies. One of the objectives of our work was to
evaluate a range of statistical and machine learning models to determine the best performers for metabolite-
based phenotype prediction of flavor quality traits. Importantly, we wanted to access the predictive power
of methods known to handle well correlated predictors and thus simultaneously predict the effect of all
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the variables (metabolites). Identification of the most accurate predictive models provides a simple way
to improve phenotyping accuracy with the same dataset available. Here, machine learning models such as
gradient boosting machines and XGBoost were the most predictive across all the traits and in both species,
whereas multiple linear regression and partial least squares methods were found to be the least predictive.
Considering that partial least squares (PLS) is still the standard in food science applications (10), these
proposed predictive models show marked improvements with increases relative to PLS ranging from 3.3%
for sweetness in blueberry to 44.6% for umami in tomato. These models will increase flavor phenotyping
throughput and thereby help to make more informed flavor selections in fruit breeding programs.

The predictive models were used to infer which volatiles contribute to each flavor attribute. For this
determination, a Bayesian model (BayesA) and a machine learning model (gradient boosting machines) were
chosen. For gradient boosting machines, the importance of each metabolite was quantified by the reduction
in accuracy from a model trained on all metabolites to a model trained on all metabolites except for one. This
approach allows us to infer which metabolites are important for flavor, but not whether they are important
because they are enhancers or suppressors. Each metabolite’s importance in BayesA is measured by the
coefficient betas which are either positive or negative depending on whether the metabolite is an important
enhancer, or an important repressor.

To better understand the factors affecting flavor perception in each fruit species, we grouped compounds
based on their biochemical classification and estimated a proportion of the phenotypic variance associated
with each group. Biochemical pathways that were represented by a small number of chemicals were also
grouped to minimize the effect of sampling variance in the creation of distance (variance/covariance) matrices
(29). As would be expected, sugars (glucose, fructose, soluble solids) were important predictors of sweetness
as well as overall liking in both crops, while acids explained a large portion of the sourness variance. By
grouping volatiles by their biochemical pathway, we were able to estimate a proportion of the total variance
jointly explained by the chemicals within each group. Phenylalanine- and lipid-derived volatiles explained
a large fraction of flavor variance in tomato, while lipid-derived, esters, and carotenoid/terpenoid volatiles
explained most of the blueberry variance for liking score. Interestingly, ester compounds were shown to
be negatively selected in red-fruited tomato as compared to related green-fruited species (30; 31), which
potentially explains the lack of contribution to liking score in tomato contrasting to blueberry. Although
tomato is botanically a fruit, it is not used as such in most cuisines. Thus, the fruity esters that are so
important for flavor in most fruits, do not serve the same function in a tomato.

Multiple regression analysis of volatiles associated with sweetness identified three that contributed to
sweetness independently of sugars, but the relative contribution of these volatiles was not determined (4).
By grouping volatiles by biochemical pathway and using a linear mixed model, the important role of volatiles
in sweetness perception was highlighted. These results also emphasize the need to include volatile detection
in breeding programs because by focusing only on sugars and acids during breeding, a large part of the
flavor profile is lost (Figure 3). On the other hand, the results suggest that the magnitude of the effect
of each individual volatile is much smaller than the individual effect of sugar compounds, highlighting the
complexity of breeding for fruit flavor and the challenges to improve flavor using marker-assisted selection.
The important contribution of volatiles to overall liking of tomatoes is illustrated by the negative effects
of extended refrigeration on volatile contents and consumer preferences (32). Refrigeration substantially
reduces volatile contents but not sugars or acids (33).

3.4 Conclusions and future directions

In this work we demonstrate the comparison of different algorithms to predict consumer preferences. This
information can benefit plant breeding programs to improve flavor perception of new varieties. It is impor-
tant to note that while we believe that the approach outlined here is generally utile, the specific chemical
contributions to overall liking will likely vary with the ethnic and geographic makeup of the consumer panel.
While flavor perception is complex due to the subjectivity of the consumers, there are metabolites whose
contents can be increased or decreased to improve flavor perception. Future extensions of this could include
the modeling of information and parameters for each individual in the panel, such as the inclusion of de-
mographic parameters to predict more nuanced variations in taste preferences. In summary, by creating
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predictive models for consumer perceptions of flavor we are able to increase the throughput of flavor phe-
notyping and provide new tools to make more informed, flavorful selections in breeding programs. Through
inference, candidate flavor enhancers and suppressors were identified, indicating the possibility of their use
as natural food additives in the food industry. Furthermore, genes involved in biosynthesis of these flavor
enhancing/suppressing metabolites can now be targets for marker assisted selection or direct engineering of
more flavorful fruit varieties.

4 Materials and Methods

4.1 Data

Prediction analysis was carried in two fruit species: tomato (Solanum lycopersicum) and blueberry ( Vac-
cinium spp.). For tomato, 68 sugars, acids, and volatiles were analyzed in 147 genotypes grown and evaluated
in multiple seasons. A total of 209 samples were used, with 160 samples having been previously evaluated (4)
(5). For blueberry, firmness and 55 sugars, acids, and volatiles were analyzed. Sixty-three were grown and
evaluated in multiple seasons for a total of 244 samples, of which 164 were evaluated previously (16). Fruit
flavor of tomato and blueberry accessions was assessed by consumer sensory panels. Flavor attributes in-
cluding sweetness, sourness, flavor intensity, and overall liking were rated. Additionally, sensory perceptions
of umami were quantified solely for tomato. Overall liking was rated on a scale from -100 to 100 while the
remaining attributes were rated from 0 to 100 (3). All data were normalized to a mean of 0 and a variance of
1 for further analyses. Volatiles concentrations were quantified by gas chromatography as described in (17)
while sugars, soluble solids, and acids were quantified as described in (34). Sensory analysis was conducted
as described in (4) and raw data can be found in Supplemental Data 1 and 2. All blueberry data collection
was described in (16) . Network analysis was performed using the R package WGCNA (35) . Briefly, the
pairwise Pearson correlation coefficient between each pair of metabolites was used to construct a weighted
metabolite co-expression network. The process assumed an unsigned network and the network was visualized
and represented using CYTOSCAPE 3.7.1 (36).

4.2 Calculating contributions of metabolites to flavor ratings

To estimate the proportion of variance in flavor ratings that each metabolite group explains, we divided the
metabolites identified in tomato and blueberry in six (non-aromatic amino acid derived, Carotenoid/Terpenes,

Lipid derived, Phe derived, Sugar and Acids) and seven groups (non-aromatic amino acid derived, Carotenoid/Terpenes,
Lipid derived, Ester, Phe derived, Sugar, and Acids), respectively. In tomato, for example, we fit a linear

model in which:

Yi = W+ Ziur + Zoug + Zzug + Zyus + Zsus + Zeug + €

where y; is the averaged consumer rating for cultivar 4, p is the fixed model intercept, € is a normally
and independent random effect; Z are design matrices for random effects associated to each biochemical
group; and u are the random terms associated to the chemical groups. For each random term u we assumed
u ~ MVN(0,Go?), where G(.) represents the Gaussian kernel matrices built as the pairwise Euclidean
distance between each chemical in a given group. T;he proportion of the variance explained by a given

Oc

———<— ; where 62 is the variance component estimated
6% + 62 ¢
€
for a given metabolomic group; and the denominator is the variance represented by the sum of the variance
explained by all other chemical groups (67) and the residual term (62) . To further represent the contribution
of sugar/acids versus volatiles, we also presented it separately by summing the variance components estimated

within each group. All analyses were carried out using the ASReml-R package (37).

metabolomic group was determined by PME =
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4.3 Comparing genomic and metabolomic selection

In order to compare prediction performed via genomic and metabolomic, we organized a group of 70 tomato
accessions where whole genome sequencing data, metabolomic evaluation, and sensory data were performed.
The genomic data comprised 20 million SNPs, which were mapped to the Solanum lycopersicum reference
genome as described in (5). We applied additional quality filters and retained only biallelic SNPs with minor
alleles frequencies > 0.1, excluded markers mapped on the chromosome 0, and considered no more than 30%
missing data and 20% of heterozygosity rate. Using SNPRELATE R package (38) we removed redundant
SNPs by pruning markers defined as 72 > 0.9 in a 100 kilobase (kb) genome windows. After this step, we
retained 79,000 SNPs used in the genomic prediction steps.

Sensory traits were predicted using genomic best linear unbiased prediction (GBLUP) models and com-
pared to metabolomic predictions. The general model for genetic values is y = u 4+ Zg + €, where y is the
vector of observed values, i is the fixed model intercept, Z is a design matrix that relates the vector g of
random genetic effects. For genomic prediction, the g random effect has null mean and a kernel covariance
matrix (G) that represents the realized relationship among individuals computed as described by (21) . For
metabolomic prediction, the kernel kernel was defined in the Euclidean space as described by (39). Residuals
were defined as normally and independent distributed. As the number of accessions with metabolomic data
is larger than the number of genotyped individuals, we considered two scenarios for the metabolomic data:
the Metabolomic70 represents prediction performances considering the same number of individuals for the
genomic and metabolomic prediction (70 individuals) and MetabolomicAll represent metabolomic predictions
with more individuals (200 individuals). To evaluate the prediction performance of each model, a 10-fold
cross-validation was employed, as described in the sequence.

4.4 Cross-Validation

To evaluate the predictive performance of each model, a 10-fold cross-validation was employed. In this way,
the dataset was randomly split into ten equal groups of varieties. For each of the ten iterations, nine groups
of varieties are used to train the model (training set), and one unseen group of varieties is used as a “holdout”
group to test the model (test set). During training, a secondary, nested 10-fold cross-validation was used to
calibrate the tuning parameters of the machine learning models. The RMSE between predicted and observed
flavor ratings in the secondary test set was minimized to obtain the optimal parameter values for the primary
model. The trained models were then applied to the metabolite concentrations of the varieties within the
primary test set and predicted flavor ratings were obtained. The correlation of the predicted flavor ratings
with that of the observed flavor ratings for those varieties is recorded. The average correlation of predicted
and observed flavor ratings in the test set is referred to here as the accuracy of the model.

4.5 Models

A diverse sample of 18 statistical and machine learning models representing a range of regression, regu-
larization, genomic selection, decision tree, and neural network models were chosen for assessment. These
include a linear model and partial least squares as our baseline models; regularization methods such as ridge
regression, elastic net, and lasso; kernel methods such as support vector machines, relevant vector machines,
and reproducing kernel Hilbert space; neural network models such as a multi-layer perceptron neural network
and a Bayesian neural network; decision tree models such as random forest, gradient boosting machines, and
XGBoost; and models frequently used in genomic selection such as BayesA, BayesB, and BayesCpi. Each
model has their individual strengths, weaknesses, and assumptions. Here we assess which models are most
useful for the application of flavor phenotyping by metabolomic selection. All models were implemented
in R (40). The Bayesian models were implemented in BGLR (41) and the machine learning models were
implemented with CARET (42) and a package specific to each model.
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4.5.1 Model Descriptions

In this section, we provide a brief overview of the statistical and machine learning methods applied in our
case study emphasizing conceptual differences and similarities between approaches. To simplify exposition,
the methods have been combined in six classes. For i = 1,...,n, the model for the i-th observation of the
response variable y; corresponding to the vector of features x; may be typically written as y; = f(x;) + 5,
where f(.) is the unknown mean function that needs to be learned from the training data, and ¢;, is the i-th
error. In many instances (particularly, in likelihood-based methods), one often makes parametric assumption
about the joint distribution of ¢;’s, e.g., multivariate normal with mean 0 and covariance matrix equal to a
multiple of the identity matrix). We assume that the dimension of features is p.

4.5.2 Classical (frequentist) multiple linear regression with dimension reduction (LM, PLS

Classical (frequentist) multiple linear regression (MLR) approach assumes that the mean function f(x,,)
is linear in the covariate coefficients beta, i.e., f(z;) = z;6. Estimation is typically achieved by ordinary
least squares. Dimensionality reduction in the variable selection is achieved by exhaustive enumeration (all
subsets when p is small) and by heuristic approaches (such as forward or backward selection) otherwise.
Partial least squares (PLS) is a method that is closely related to the principal components regression, with
the critical difference that the newly engineered features that are orthonormal linear combination of the
original features are created in a supervised fashion, i.e., in explaining the variation in the response vector
Y, rather than the original design matrix X.

4.5.3 Classical (frequentist) penalized /regularized regression

Regularized regression may be viewed as an extension of unpenalized regression that is particularly appro-
priate when the number of covariates is large. Specifically, the objective function for minimization in order
to estimate the model parameters is the SSE plus a regularization penalty on the beta coefficients, which
has an effect of shrinking the coefficient toward zero. Specific examples are ridge regression, lasso regression
and elastic net. One attractive operating characteristic of the lasso regression is that it often results in the
exact shrinkage of a subset of the coeflicients to zero, which achieves variable selection.

4.5.4 Bayesian regression for Genomic Selection

The methods presented in this subsection may be viewed as the Bayesian extensions of the penalized re-
gression approaches presented earlier. In the Bayesian approaches, information about parameters and latent
variables (such as random effects) is expressed using prior densities on those parameters. Inference is typi-
cally performed numerically using Bayesian computation machinery via Markov Chain Monte Carlo sampling.
These inference schemes require the specification of the joint density of the data given the parameters and
latent variables, as well as the priors on the latent variables and the model parameters (typically, on the
log-scale for reasons of numerical stability). It is notable that the ridge regression method is equivalent to
placing a multivariate normal prior on beta, while the lasso penalty is equivalent to the Laplace (double
exponential) prior on beta. To replicate the model/variable selection capability of the frequentist lasso, one
often considers spike-and-slab priors on the vector of coefficients beta; these are a mixture of a multivariate
normal (or Student’s t) or Laplace prior on beta (the slab part) and a point mass at zero (the spike part).
These choices are implemented in the BGLR package as Bayesian lasso and ridge regression, and Bayes A, B
and C. We additionally evaluate the BGLR implementation of the Reproducing Kernel Hilbert Space model
which is effectively a Gaussian process model with a covariance function induced by the kernel function
K(.,.).

4.5.5 Ensembles of simple regression trees (random forest, gradient boosting)

Regression tree is a decision tree algorithm aiming at partitioning the predictor space as a union of disjoint
hyper-rectangular regions, with the prediction on the j-th region being the sample mean of the responses
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from the training data whose features fall into the j-th region. While individual regression trees are often in-
terpretable, predictions from single trees are generally not competitive with other machine learning methods.
This deficiency is often overcome with ensembles of trees, where hundreds or thousands of simple trees (with
low depth of interactions/small number of splits) are fitted to the training data, and a consensus prediction
from the entire ensemble is used. Random forests fit the collection of trees to bootstrap resamples of the
training data subject to constraints on the choice of splitting variables for each split, in order to “decorre-
late” the trees in the ensemble. Gradient-boosted regression trees proceed iteratively, by “underfitting” the
residual from the fit in the previous iteration using a shrunken version of a newly fitted tree; the rate of
underfitting is controlled by a separate tuning parameter known as the “learning rate”. Unlike single-tree
models, trees in the ensemble need not be deep, and in many instances one or two splits per tree outperform
deeper models.

4.5.6 Separating hyperplanes/support vector machines

In the simplest case, separating hyperplane methods aim at constructing a linear decision boundary to
separate two classes in the binary classification problem. Maximum margin classifiers allow one to extend
the formulation to allow one, “softly” and in a more stable fashion, to separate the classes when a limited
amount of constraint violation is allowed. Basis expansions and kernel methods such as the classical support
vector machines (with nonlinear kernels, e.g., radial basis function with polynomial and Gaussian bases) allow
more flexible separation of the classes thanks to the nonlinear decision boundaries that they provide. Further
extensions to address the regression (as opposed to the classification) problem have been implemented in
the R library KERNLAB (43); here, the mean function of the quantitative response y; is modeled as a linear
combination of basis functions expressed using the kernel, in a fashion similar to the splines. Relevance
vector machine further extends this specification using a Bayesian framework, allowing the basis function
coefficients and hyperparameters to be calibrated in a Bayesian fashion.
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