
A framework to efficiently smooth L1 penalties for linear regression

Georg Hahn, Sharon M. Lutz, Nilanjana Laha, and Christoph Lange

Abstract

Penalized linear regression approaches that include an L1 term have become an important

tool in day-to-day statistical data analysis. One prominent example is the least absolute shrink-

age and selection operator (Lasso), though the class of L1 penalized regression operators also

includes the fused and graphical Lasso, the elastic net, etc. Although the L1 penalty makes

their objective function convex, it is not differentiable everywhere, motivating the development

of proximal gradient algorithms such as Fista, the current gold standard in the literature. In

this work, we take a different approach based on smoothing. The methodological contribution

of our article is threefold: (1) We introduce a unified framework to compute closed-form smooth

surrogates of a whole class of L1 penalized regression problems using Nesterov smoothing. The

surrogates preserve the convexity of the original (unsmoothed) objective functions, are uniformly

close to them, and have closed-form derivatives everywhere for efficient minimization via gradi-

ent descent; (2) We prove that the estimates obtained with the smooth surrogates can be made

arbitrarily close to the ones of the original (unsmoothed) objective functions, and provide explic-

itly computable bounds on the accuracy of our estimates; (3) We propose an iterative algorithm

to progressively smooth the L1 penalty which increases accuracy and is virtually free of tuning

parameters. The proposed methodology is applicable to a large class of L1 penalized regression

operators, including all the operators mentioned above. Using simulation studies, we compare

our framework to current gold standards such as Fista, glmnet, gLasso, etc. Our simulation

results suggest that our proposed smoothing framework provides estimates of equal or higher

accuracy than the gold standards while keeping the aforementioned theoretical guarantees and

having roughly the same asymptotic runtime scaling.

Keywords: Elastic net; Fista; Fused Lasso, Glmnet; Graphical Lasso; L1 penalty; Lasso; Nesterov;

Penalized linear regression; Smoothing.

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

1 Introduction

In this communication, we aim to efficiently solve L1 penalized regression problems. Since first

considered around 1800 by Adrien-Marie Legendre and Carl Friedrich Gauss, the least squares

approach has traditionally been used to solve linear regression problems. Nevertheless, least squares

estimates have two major drawbacks, a lack of robustness and a lack of sparsity in high dimensional

settings, i.e. settings characterized by p � n, where p ∈ N denotes the number of covariates and

n ∈ N is the sample size. Those two limitations have motivated the development of new estimation

operators that are more suitable for such settings, e.g. the least absolute shrinkage and selection

operator (Lasso) of Tibshirani (1996), or the least-angle regression (LARS) of Efron et al. (2004).

Many important extensions of the standard Lasso approach have been proposed, such as the elastic

net of Zou and Hastie (2005), the fused Lasso of Tibshirani et al. (2005), or the graphical Lasso of

Friedman et al. (2008). All Lasso approaches involve an L1 penalty on the parameters which are

being estimated to enforce sparseness.

This article focuses on penalized L1 regression, where we model the relationship of a given

design matrix X ∈ Rn×p to an observed response y ∈ Rn with the help of some unknown parameters

β ∈ Rp. In the most general case, we consider any regression operator which can be written as

Φ(β) = u(β) + v (|w1(β)|, . . . , |wm(β)|) , (1)

where u : Rp → R implicitly depends on X and y, v : Rm → R, and wj : Rp → R for m ∈ N and

j ∈ {1, . . . ,m}. The regression estimate is computed accordingly as arg minβ Φ(β).

Amongst others, all the previously mentioned estimation operators can be casted in the form

of eq. (1). For instance, for a fixed design matrix X ∈ Rn×p and response y ∈ Rn, the objective

function of the standard Lasso of Tibshirani (1996) is obtained from eq. (1) by choosing u(β) =

1
n ‖y −Xβ‖

2
2, as well as v(z) = λ

∑p
i=1 zi for z ∈ Rp, and wj(β) = βj for j ∈ {1, . . . , p}.

If the objective function in eq. (1) is convex, steepest descent (quasi-Newton) methods can

be employed to compute arg minβ Φ(β). However, the non-differentiability of the L1 penalty may

cause a loss of accuracy in conventional gradient(-free) solvers. This will be touched upon in greater

detail in our simulations.

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

We address this issue by providing a smooth surrogate Φµ of eq. (1), which depends on a smooth-

ing parameter µ > 0. The smooth surrogate is derived by applying Nesterov smoothing (Nesterov,

2005) to the absolute values in eq. (1). Under the condition that u is differentiable and convex, v

is differentiable and Lipschitz continuous, v preserves strict convexity, and wj are differentiable for

j ∈ {1, . . . , p}, our framework provides the following guarantees:

1. The surrogate Φµ has explicit gradients everywhere.

2. The surrogate Φµ is strictly convex.

3. The surrogate Φµ is uniformly close to Φ, meaning that supβ∈Rp |Φ(β)− Φµ(β)| ≤ Cµ = O(µ)

for a constant Cµ which does not depend on β.

4. We prove explicit bounds on ‖ arg minβ Φ(β) − arg minβ Φµ(β)‖2, that is on the distance

between the minimizers of the unsmoothed objective function and its smooth surrogate.

5. We prove that ‖ arg minβ Φ(β)− arg minβ Φµ(β)‖ → 0 in the supremum norm.

In particular, all these properties hold true for the aforementioned regression operators, thus making

it possible to obtain a unified surrogate with the theoretical guarantees enumerated above for a

class of common regression operators.

To summarize, the contribution of our article is threefold: (1) We introduce the closed-form

surrogate Φµ; (2) We prove the theoretical properties of Φµ enumerated above; (3) Starting with

a high degree of smoothness (i.e., a large value of µ), an iterative algorithm is proposed to pro-

gressively smooth the surrogate in order to facilitate minimization. The choice of the smoothing

parameter does not have a major effect on the performance of our progressive smoothing algorithm,

thus making it virtually free of tuning parameters.

We evaluate our proposed algorithms with respect to both accuracy and runtime in simulation

studies, and compare them to the current gold standards in the literature. First, we use as a bench-

mark the implementation of the Fista algorithm of Beck and Teboulle (2009) that is included in the

fasta R-package on CRAN (Chi et al., 2018). Fista combines the basic iterations of the Iterative

Shrinkage-Thresholding Algorithm of Daubechies et al. (2004) with a Nesterov acceleration step.

The algorithm can be regarded as a proximal gradient version of the method of Nesterov (1983).

Analogously to eq. (1), Fista requires the separate specification of the smooth and non-smooth

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

parts of the objective function and their explicit gradients. For the application of our smoothing

algorithms to the elastic net, we benchmark against the glmnet algorithm of Friedman et al. (2010a)

that is implemented in the R-package glmnet (Friedman et al., 2020). The glmnet algorithm is a

variant of Fista which performs a cyclic update of all coordinates, whereas Fista updates all coordi-

nates per iteration. For the smoothed fused Lasso, we compare with the fused Lasso methodology

in the R-package genlasso (Arnold and Tibshirani, 2020). Finally, we benchmark our smoothed

graphical Lasso against the R-package glasso (Friedman et al., 2019).

Since the least-angle regression (LARS) of Efron et al. (2004) or the group Lasso of Yuan and

Lin (2005) do not involve an L1 penalty on the regression estimates, our smoothing framework does

not apply to them. We provide a detailed literature review in Section A to highlight previous work,

distinguish it from ours, and emphasize the contribution of our article.

This article is structured as follows. Section 2 derives the smooth surrogate objective function.

We also derive the aforementioned theoretical guarantees of our smoothing framework, and state

precise conditions on the quantities involved in eq. (1) which ensure that the theoretical guarantees

hold true. Moreover, we demonstrate how all the aforementioned L1 penalized regression operators

fit in our framework. In Section 3, we refine our approach by proposing a iterative and virtually

tuning-free smoothing procedure. We evaluate the proposed methodology in simulation study in

Section 4. The article concludes with a discussion in Section 5. A literature review, details of

Nesterov smoothing, all proofs, as well as further simulations are provided in the appendix. The

methodology of this article is implemented in the R-package smoothedLasso, available on CRAN

(Hahn et al., 2020).

Throughout the article, the ith entry of a vector v is denoted as vi. The entry (i, j) of a matrix

X is denoted as Xij , while the ith row of X is denoted as Xi,· and the jth column is denoted as

X·,j . The absolute value, the L1 norm, as well as the Euclidean norm are written as |·|, ‖ · ‖1, and

‖ · ‖2, respectively. The Kronecker delta function is written as δij , defined as δij = 1 if i = j and

δij = 0 if i 6= j. The size of a set S is denoted as |S|.

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

2 Computing the smooth surrogate objective function

This section states the precise conditions and results of our smoothing framework for regression

operators with an objective function of the form of eq. (1). The results of this section will be used

in Section 3 to develop an adaptive procedure which iteratively smoothes the objective function

and yields very stable regression estimates.

The smoothing of eq. (1) will be achieved with the help of Nesterov smoothing, which is briefly

summarized in Section 2.1. In Section 2.2 we smooth the L1 contribution in eq. (1), leading to the

smooth surrogate objective function. Section 2.3 states the precise conditions and results of our

smoothing framework. Section 2.4 gives examples of how common regression operators fit into our

framework.

2.1 Summary of Nesterov smoothing

Nesterov (2005) considers the smoothing of a piecewise affine and convex function f : Rq → R,

where q ∈ N. Since f is piecewise affine, it can be represented as f(z) = maxi=1,...,k

(
A[z, 1]>

)
i
,

where k ∈ N is the number of linear pieces (components). Here, the rows of the matrix A ∈ Rk×(q+1)

contain the coefficients of each linear piece, with column q + 1 containing all constant coefficients.

Moreover, [z, 1] ∈ Rq+1 denotes the vector obtained by concatenating z ∈ Rq and the scalar 1.

In Nesterov (2005), an approximation fµ of f is derived which is both smooth and uniformly

close to f . The approximation fµ depends on a so-called proximity (or prox) function, see Sec-

tion B.1, which is parameterized by a smoothing parameter µ > 0 controlling the degree of smooth-

ness. We consider two choices of the prox function, presented in Section B.2. The so-called entropy

prox function yields a closed-form expression of the smooth approximation fµe given by

fµe (z) = µ log

(
1

k

k∑
i=1

e
(A[z,1]>)

i
µ

)
, (2)

which satisfies the uniform approximation bound

sup
z∈Rq
|f(z)− fµe (z)| ≤ µ log(k). (3)

Another choice, introduced in Section B.2, is the squared error prox function, given by ρs(τ) =

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

1
2

∑k
i=1

(
τi − 1

k

)2
for τ ∈ Rk. Let the vector c(z) = (c1(z), . . . , ck(z)) ∈ Rk be defined component-

wise by ci(z) = 1/µ ·
(
A[z, 1]>

)
i
− 1/k for i ∈ {1, . . . , k}. Let ĉ(z) ∈ Rk be the Michelot projection

(Michelot, 1986) of c(z) onto the k-dimensional unit simplex Qk (see Section B.2.2). Nesterov

(2005) shows that

fµs (z) = 〈ĉ(z), A[z, 1]>〉 − µρs(ĉ(z)) (4)

is a smooth approximation of f satisfying the uniform bound

sup
z∈Rq
|f(z)− fµs (z)| ≤ µ

(
1− 1

k

)
. (5)

Further details on the above results can be found in Section B.

2.2 The smooth surrogate

We employ the results of Section 2.1 to smooth the absolute value in eq. (1). In the following

subsections, we always consider k = 2, z ∈ R, and the specific choice of the matrix A ∈ R2×2 given

by

A =

 −1 0

1 0

 . (6)

The specific choice of A allows us to express the (one dimensional) absolute value as a piecewise

affine and convex function f(z) = max{−z, z} = maxi=1,2

(
A[z, 1]>

)
i
.

Simplifying eq. (2) with the specific choice of A of eq. (6) results in the entropy prox approxi-

mation of the absolute value and its explicit derivative, given by

fµe (z) = µ log

(
1

2
e−z/µ +

1

2
ez/µ

)
,

∂

∂z
fµe (z) =

−e−z/µ + ez/µ

e−z/µ + ez/µ
=: gµe (z).

(7)

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

The approximation bound of eq. (3) simplifies to

sup
z∈R
|f(z)− fµe (z)| ≤ µ log(2) =: Cµe . (8)

In a similar fashion, the squared error prox smoothing of eq. (4) with A as in eq. (6) leads to the

following approximation of the absolute value and its explicit derivative:

fµs (z) = 〈ĉ(z), [−z, z]〉 − µρs(ĉ(z)),
∂

∂z
fµs (z) = 〈ĉ(z), [−1, 1]〉 =: gµs (z),

(9)

where ĉ(z) ∈ R2 denotes the Michelot projection of c(z) = 1/µ · [−z, z] − 1/k onto the two-

dimensional unit simplex. A derivation of the derivative of fµs can be found in (Hahn et al., 2017,

Lemma 4). The approximation bound of eq. (5) simplifies to

sup
z∈R
|f(z)− fµs (z)| ≤ 1

2
µ =: Cµs . (10)

With the smooth approximation of the absolute value in place, we define the surrogate of Φ as

Φµ(β) = u(β) + v (fµ(w1(β)), . . . , fµ(wm(β))) , (11)

where in the remainder of Section 2, fµ always denotes either the entropy prox smoothed absolute

value fµe , or the squared error prox smoothed absolute value fµs .

2.3 Theoretical guarantees

Depending on the conditions imposed upon u, v, and wj for j ∈ {1, . . . ,m} in eq. (1), the surrogate

Φµ of eq. (11) has a variety of properties.

Condition 1. The functions u, v and wj of eq. (1) are differentiable everywhere for all j ∈

{1, . . . ,m}.

Proposition 1. Under Condition 1, the surrogate Φµ is differentiable everywhere with explicit

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

gradient

(
∂Φµ

∂βi

)
(β) =

(
∂u

∂βi

)
(β) +

m∑
j=1

[
gµ(wj(β)) ·

(
∂wj
∂βi

)
(β)

]
· (Djv)(θ), (12)

where gµ is the derivative of fµ as given in eq. (7) and eq. (9), Djv is the derivative of v with

respect to its jth argument, and θ = (fµ(w1(β)), . . . , fµ(wm(β))) ∈ Rm.

The proof of Proposition 1 follows from a direct calculation. Subject to the following commonly

satisfied condition, the surrogate Φµ is strictly convex.

Condition 2. In eq. (1), the function u is convex and v preserves strict convexity of its input

arguments.

Proposition 2. Under Condition 2, Φµ is strictly convex.

The proof of Proposition 2 follows from the fact that according to Proposition 6 in Section C,

fµe and fµs are strictly convex. Thus if u is convex and v preserves strict convexity, Φµ is itself

strictly convex as the sum of a convex function and a strictly convex function. Alternatively, if

v only preserves convexity, Φµ will still be convex (given u is convex). However, the results of

Propositions 4 and 5 below do not hold true any more as they require strict convexity.

Next, we consider an approximation bound of Φµ to Φ. Under the following condition, the

bounds on fµe in eq. (8) and fµs in eq. (10) translate to a guaranteed error bound on the surrogate

Φµ.

Condition 3. The function v of eq. (1) is Lipschitz continuous with Lipschitz constant Lv.

Condition 3 can easily be verified. Given Condition 1 is already satisfied, and v is thus dif-

ferentiable, then a bounded derivative (in L1 norm) of v will make v Lipschitz continuous with

Lv := supz∈Rm ‖∇v(z)‖1 <∞.

Condition 3 is used in the following proposition to establish error bounds for Φµ with respect

to Φ.

Proposition 3. Let Cµ denote either Cµe of eq. (8) or Cµs of eq. (10) depending on whether fµe or

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

fµs are employed in Φµ. Under Condition 3,

sup
β∈Rp

|Φµ(β)− Φ(β)| ≤ mLvCµ = O(µ).

In Proposition 3, the dimension m and the Lipschitz constant Lv are fixed for a particular

estimation problem, thus allowing us to make the approximation error arbitrarily small as the

smoothing parameter µ→ 0.

Most importantly, we are not only interested in the error bound between the objective function

Φ and its surrogate Φµ, but moreover in how the minimizer arg minβ∈Rp Φµ(β) compares to the one

obtained had we computed arg minβ∈Rp Φ(β).

Following (Seijo and Sen, 2011, Lemma 2.9), the following proposition shows that continu-

ity, strict convexity and a vanishing approximation error of the surrogate implies that the global

minimizers of Φ and Φµ converge to each other in the supremum norm metric.

Proposition 4. Let F1 : Rs → R be continuous and strictly convex for s ∈ N. Then x1 =

arg minx∈Rs F1(x) is continuous at F1 with respect to the supremum norm.

Under Conditions 1–3, Φµ satisfies the requirements of Proposition 4. Using the result of

Proposition 3, supβ∈Rp |Φµ(β)− Φ(β)| → 0 for µ → 0 implies that the minimizers of Φµ and Φ

converge to each other in the supremum norm. This result is stronger than the one of (Beck and

Teboulle, 2009, Theorem 4.4), who prove that the FISTA method finds a minimizer which is of

similar quality than the true minimizer.

Although Proposition 4 shows convergence, it does not give an explicit error bound on the

distance between the two minimizers. This is done in the next result.

Proposition 5. Let s ∈ N and ε > 0. Let F1 : Rs → R be differentiable and strictly convex.

Let F2 : Rs → R be such that supx∈Rs |F1(x)− F2(x)| ≤ ε. Let xi = arg minx∈Rs Fi(x) be the

two minimizers for i ∈ {1, 2}. Then for any δ > 0 and any y1 ∈ Rs satisfying y1 6= x1 and

‖y1 − x1‖2 ≤ δ, there exist two constants Cδ > 0 and Lδ > 0 independent of x2 such that

‖x1 − x2‖2 ≤ Cδ
[
‖∇F1(y1)‖−1

2 (δLδ + 2ε) + δ
]
. (13)

Note that Proposition 5 does not generalize to non strictly convex functions. Under Condi-

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

tions 1–3, applying Proposition 5 with F1 taken to be the differentiable and strictly convex Φµ and

F2 taken to be Φ immediately gives an explicit bound on the distance between the two minimizers

arg minβ∈Rp Φµ(β) and arg minβ∈Rp Φ(β). This bound can be computed using the minimizer of Φµ

only. We demonstrate the quality of the bound in the simulations of Section 4.3.

2.4 Applications to popular L1 penalized regression operators

Let X ∈ Rn×p, y ∈ Rn, and β ∈ Rp as introduced in Section 1. Additionally, let λ, α, γ ≥ 0.

A variety of popular regression operators can be written in the form of eq. (1) and satisfy the

conditions of Section 2.3.

1. The least absolute shrinkage and selection operator (Lasso) of Tibshirani (1996) is defined as

arg min
β∈Rp

1

n
‖y −Xβ‖22 + λ ‖β‖1 .

It can be expressed in the form of eq. (1) with u(β) = 1
n ‖y −Xβ‖

2
2, as well as v(z) = λ

∑p
i=1 zi

for z ∈ Rp, and wj(β) = βj for j ∈ {1, . . . , p}. Here, ∂u/∂βi = − 2
n〈y −Xβ,X·,i〉, ∂wj/∂βi =

δij , and Djv = λ for i, j ∈ {1, . . . , p}.

2. The elastic net of Zou and Hastie (2005) augments the Lasso with an L2 penalty on the

parameters β, resulting in

arg min
β∈Rp

1

2n
‖y −Xβ‖22 + α ‖β‖1 +

1

2
(1− α) ‖β‖22 ,

where the parameterization is taken from Friedman et al. (2010b), which is also used in the

specification of the R-package glmnet (Friedman et al., 2020). It can be expressed in the form

of eq. (1) with u(β) = 1
2n ‖y −Xβ‖

2
2 + 1

2(1− α) ‖β‖22, as well as v(z) = α
∑p

i=1 zi for z ∈ Rp

and wj as in the previous case of the standard Lasso, where j ∈ {1, . . . , p}. The derivative of

u is ∂u/∂βi = − 1
n〈y −Xβ,X·,i〉+ (1− α)βi.

3. The fused Lasso of Tibshirani et al. (2005) is defined as

arg min
β∈Rp

1

2
‖y −Xβ‖22 + λ ‖β‖1 + λγ

p∑
(i,j)∈E

|βi − βj | ,

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

where E is the edge set of some underlying graph, see Arnold and Tibshirani (2020). Let

E = {e1, . . . , e|E|) in some arbitrary ordering, and ei = (e1
i , e

2
i) for i ∈ {1, . . . , |E|}. The

fused Lasso can be casted in the form of eq. (1) with u(β) defined similarly to the standard

Lasso, as well as v(z) = λ
∑p

i=1 zi + λγ
∑m

i=p+1 zi for m = p+ |E| and z ∈ Rm. Accordingly,

wj(β) = βj for j ∈ {1, . . . , p} and wj(β) = βe1j−p
− βe2j−p

for j ∈ {p + 1, . . . ,m}. Here,

Djv = λ for j ∈ {1, . . . , p} and Djv = λγ for j ∈ {p + 1, . . . ,m}. Moreover, ∂wj/∂βi = δij

for j ∈ {1, . . . , p} and ∂wj/∂βi = δe1j−p,i
− δe2j−p,i for j ∈ {p+ 1, . . . ,m}.

4. The graphical Lasso of Friedman et al. (2008, 2019) considers observations X1, . . . , Xn ∼

N(0,Σ) from a multivariate Gaussian distribution and estimates the precision matrix Θ =

Σ−1 ∈ Rp×p as

arg min
Θ�0

tr(SΘ)− log det(Θ) + λ
∑
i6=j
|Θij | ,

where S is the sample covariance matrix, tr denotes the trace of a matrix, and the arg min

is taken over all positive definite matrices Θ. Define β = (Θ1,1, . . . ,Θ1,p,Θ2,1, . . .) ∈ Rp2

as the vector containing all parameters of Θ stacked together by row. As before, we define

the differentiable part of eq. (1) to include the trace and log terms, thus u(Θ) = tr(SΘ) −

log det(Θ) with derivative ∇u = S> −Θ−1, and v : Rm → R and wi : Rp2 → R with m = p2

as in the case of the standard Lasso.

In all above cases, the functions u, v, and wi are differentiable for i ∈ {1, . . . ,m}, thus satisfying

Condition 1. Their derivatives are given explicitly for convenience.

Moreover, all functions u above, including the one of the graphical Lasso, are convex as they

can be written as the linear combinations of (Euclidean) norms. Importantly, the functions v

are always linear combinations of their inputs with positive coefficients and thus preserve strict

convexity. Therefore, Condition 2 is satisfied.

Finally, the functions v are all differentiable and have a bounded gradient (in L1 norm), thus

making them Lipschitz continuous as required in Condition 3. For instance, v(z) = λ
∑p

i=1 zi for z ∈

Rp in case of the standard Lasso, thus we obtain ∇v = λ[1, . . . , 1] and Lv := supz∈Rp ‖∇v(z)‖1 = λp

using the fact that λ is non-negative.

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

Algorithm 1: Progressive smoothing

input: Φµ, µ0 > 0, N ∈ N;

1 Set β̂N+1 ∈ Rp randomly;
2 for i = N, . . . , 0 do
3 µ← 2iµ0;

4 β̂i ← arg minβ∈Rp Φµ(β) with starting value β̂i+1;

5 end

6 return β̂0;

3 Progressive smoothing algorithm

This section proposes an adaptive smoothing technique for the surrogate Φµ which will be shown

in the simulations of Section 4 to yield stable estimators for linear regression.

Instead of solving the smoothed problem β̂ = arg minβ∈Rp Φµ(β) directly for some µ > 0, we

employ a progressive smoothing procedure along the following rationale: We start with a large

value of the smoothing parameter µ to facilitate the minimization. After computing β̂, we decrease

the smoothing parameter and repeat the minimization using the previously found minimizer as

the new starting value. This approach is based on the heuristic idea that as µ decreases and the

smoothed surrogate Φµ approaches Φ, the found minimizers in each iteration remain close to each

other and converge to the minimizer of Φ.

Algorithm 1 formalizes our approach. The input of the algorithm is the function Φµ, a target

smoothing parameter µ0 > 0, and a number of smoothing steps N ∈ N. After initializing a random

starting value β̂N+1 ∈ Rp for the first minimization, we gradually decrease the degree of smoothness

according to µ = 2iµ0 from i = N to the target level µ0 at i = 0. In each iteration i, we compute a

new estimate β̂i using the current smoothing level µ and the previous estimate β̂i+1 as the starting

value. The output of the algorithm is β̂0, the parameter estimate corresponding to the target

smoothing degree µ0.

Importantly, the advantage of Algorithm 1 consists in the fact that the precise specification of

the smoothing parameter does not play a major role. It suffices to start with any sufficiently large

value (that is, 2Nµ0 � 1) and to end the iteration with any sufficiently small value µ0, for instance

of the order of the machine precision or of the square root of the machine precision. This effectively

makes Algorithm 1 free of tuning parameters.

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

4 Simulation studies

In this section, we evaluate the performance of the regression estimates computed with our pro-

posed smooth surrogate Φµ of eq. (11). We benchmark against the four approaches considered in

Section 2.4: Those are the standard Lasso and the elastic net, as well as the fused Lasso and the

graphical Lasso. The results for the two latter approaches are reported in Appendix D.

All experiments are performed on simulated data. We simulate a regression model of the

type y = Xβ by drawing the rows of the design matrix X ∈ Rn×p from a multidimensional normal

distribution with the following mean vector and covariance matrix. The entries of the p dimensional

mean vector of the multidimensional normal distribution are drawn independently from a uniform

distribution in [0, 1]. To ensure positive definiteness, the p × p dimensional covariance matrix of

the multidimensional normal distribution is drawn from a Wishart distribution with sample size 1,

p degrees of freedom, and scale matrix set to the p× p dimensional identity matrix.

After generating X, we draw the true parameters β independently from a standard normal

distribution. To ensure sparseness, we set all but nz ∈ {0, . . . , p} out of the p entries to zero. We

fix nz = 0.2p in the entire simulation section. Finally, we calculate y ∈ Rn as y = Xβ + ε for some

noise vector ε ∈ Rn. The entries of ε are generated independently from a Normal distribution with

mean zero and some variance σ2. The smaller we choose σ2, the easier the recovery of β will be.

In the entire simulation section we fix σ2 = 0.1.

We implement the three methodologies we developed in this paper:

1. We carry out the minimization of the unsmoothed Φ of eq. (1) using R’s function optim.

Within the optim function, we select the quasi-Newton method BFGS for which we supply

its explicit (though non-smooth) gradient

(
∂Φ

∂βi

)
(β) =

(
∂u

∂βi

)
(β) +

m∑
j=1

[
sign(wj(β)) ·

(
∂wj
∂βi

)
(β)

]
· (Djv)(θ),

where the sign function is defined as sign(z) = 1 for z > 0, sign(z) = −1 for z < 1, and zero

otherwise. This approach will be referred to as unsmoothed Phi.

2. We minimize the smooth surrogate Φµ of eq. (11) using its explicit gradient given in eq. (12)

based on the entropy prox function of Section 2.2. The smoothing parameter of the smooth

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

surrogate Φµ was fixed at µ = 0.1. This approach will be referred to as smoothed Phi.

3. We employ the progressive smoothing approach of Section 3. As suggested at the end of

Section 3, we set the target smoothing parameter to µ0 = 2−6 (roughly the square root of the

machine precision) and employ N = 9 smoothing steps (thus implying an initial value of the

smoothing parameter of µ = 2−6 · 29 = 23).

We benchmark our methods against the gold standards available in the literature for the four

problems we consider:

1. As a general method, we use the Fista algorithm to minimize Φ as implemented in the fasta

R-package (Chi et al., 2018), available on The Comprehensive R Archive Network (CRAN)

(R Core Team, 2014). The main function of the fasta package which implements the Fista

algorithm, also called fasta, requires the separate specification of the smooth and non-smooth

parts of the objective function including their explicit gradients. We follow Example 2 in the

vignette of the fasta R-package in Chi et al. (2018) and supply both as specified in eq. (1).

Moreover, in contrast to our approach, a variety of tuning parameters need to be selected by

the user, e.g. an initial starting value, an initial stepsize, parameters determining the lookback

window for non-monotone line search and a shrinkage parameter for the stepsize. The initial

stepsize for Fista is set to τ = 10 as in Example 2 of Chi et al. (2018). The lookback window

for non-monotone line search and the shrinkage parameter for the stepsize are left at their

default values. We employ a uniformly random starting value for β ∈ Rp (each vector entry

is drawn independently from U [0, 1]) as done for our own approaches.

2. For the elastic net comparison, we benchmark against the glmnet algorithm of Friedman et al.

(2010a), available in the R-package glmnet on CRAN (Friedman et al., 2020). The glmnet

algorithm is a variant of Fista which performs a cyclic update of all coordinates, whereas

Fista updates all coordinates per iteration. To solve an elastic net problem with glmnet, we

set its parameter alpha to 0.5 as specified in the package vignette (Friedman et al., 2020,

page 24).

3. For the fused Lasso, we employ the R-package genlasso on CRAN (Arnold and Tibshirani,

2020) with default parameters. The fused Lasso is implemented in the function fusedlasso.

14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

200 400 600 800 1000

0.
05

0.
10

0.
20

0.
50

n

L2
 n

or
m

 o
f t

ru
th

 to
 e

st
im

at
e

Fista
unsmoothed Phi
smoothed Phi
progressive smoothing

200 400 600 800 1000

0.
99

6
0.

99
7

0.
99

8
0.

99
9

1.
00

0

n

co
rr

el
at

io
n

be
tw

ee
n

tr
ut

h
an

d
es

tim
at

e

Fista
unsmoothed Phi
smoothed Phi
progressive smoothing

100 200 500 1000

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

n

ru
nt

im
e

[s
]

Fista
unsmoothed Phi
smoothed Phi
progressive smoothing

Figure 1: Standard Lasso: L2 norm (left) and correlation (middle) between simulated truth and
parameter estimates as a function of n while p = 100. Runtime in seconds (right) has a log scale on
both axes. The comparison includes Fista, unsmoothed Φ, smoothed surrogate Φµ, and progressive
smoothing.

4. For the graphical Lasso, we employ the R-package glasso on CRAN (Friedman et al., 2019)

with default parameters. The function to run the graphical Lasso is likewise called glasso.

Two algorithms are unconsidered in this article for the following reasons. Since the R-package

SIS accompanying Fan and Li (2001) does itself rely on glmnet for computing regression estimates,

we omit it in this section. The LARS algorithm of Efron et al. (2004) is implemented in the R-

package lars on CRAN (Hastie and Efron, 2013). As remarked in Friedman et al. (2010a), LARS

is slower than glmnet or Fista. Additionally, since the implementation of Hastie and Efron (2013)

always computes a full LASSO path, it is considerably slower than the aforementioned methods.

All results are averages over 100 repetitions. The regularization parameters of Section 2.4 were

fixed at λ = 1, α = 0.5, and γ = 0.5. We evaluate the accuracy of the aforementioned algorithms

using two metrics. First, we report the L2 norm of the true parameters β that we generate to

the estimated ones returned by each method. Second, we report the standard vector correlation

between true and estimated parameters. To assess computational efficiency and runtime scaling,

we report log-log plots of the empirical runtimes we measure.

4.1 Standard Lasso

We start by applying our smoothing framework to the standard Lasso of Tibshirani (1996). To

this end, we employ the choices of u, v, and wj , j ∈ {1, . . . , p}, for the standard Lasso given in

Section 2.4. We generate the regression model as outlined in Section 4, and benchmark our three

15

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

200 400 600 800 1000

0
5

10
15

20

p

L2
 n

or
m

 o
f t

ru
th

 to
 e

st
im

at
e

Fista
unsmoothed Phi
smoothed Phi
progressive smoothing

200 400 600 800 1000

0.
2

0.
4

0.
6

0.
8

1.
0

p

co
rr

el
at

io
n

be
tw

ee
n

tr
ut

h
an

d
es

tim
at

e

Fista
unsmoothed Phi
smoothed Phi
progressive smoothing

100 200 500 1000

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

p

ru
nt

im
e

[s
]

Fista
unsmoothed Phi
smoothed Phi
progressive smoothing

Figure 2: Standard Lasso: L2 norm (left) and correlation (middle) between simulated truth and
parameter estimates as a function of p while n = 100. Runtime in seconds (right) has a log scale on
both axes. The comparison includes Fista, unsmoothed Φ, smoothed surrogate Φµ, and progressive
smoothing.

approaches (unsmoothed Φ, smoothed surrogate Φµ, and progressive smoothing) against the Fista

algorithm. We are interested in accuracy and runtime of all algorithms as a function of n (while

keeping p = 100 fixed) or p (while keeping n = 100 fixed).

Figure 1 shows results for the scaling in n while keeping p = 100 fixed. We observe that,

as expected, estimation becomes easier as n becomes larger. Fista yields the best estimates when

measuring the error in the L2 norm, followed by the unsmoothed Lasso objective (unsmoothed Phi)

and the progressive smoothing algorithm. Minimizing the smoothed Lasso objective (smoothed

Phi) does not seem to have an advantage in this scenario. The correlation of the truth to the

estimate seems equally high for almost all approaches. Moreover, we observe that all approaches

have roughly the same runtime scaling in n. Since the progressive smoothing approach works by

repeatedly minimizing the smoothed surrogate, its runtime is roughly a constant factor higher than

the one for minimizing the smoothed surrogate Φµ.

The more important case is the scenario in which p � n. This scenario, depicted in Figure 2,

shows a different picture. Fista does not seem to approximate the truth well when measuring the

error with the L2 norm, whereas minimizing the smoothed surrogate (smoothed Phi) and progressive

smoothing yield much more accurate results. The picture is confirmed when measuring accuracy

with the correlation between truth and estimate. Here, using Fista and minimizing the unsmoothed

objective function results in estimates with a considerably lower correlation to the true parameter

vector than using both our smoothing approaches (smoothed Phi or progressive smoothing). As can

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

200 400 600 800 1000

0.
1

0.
2

0.
5

1.
0

n

L2
 n

or
m

 o
f t

ru
th

 to
 e

st
im

at
e

Fista
glmnet
unsmoothed Phi
smoothed Phi
progressive smoothing

200 400 600 800 1000

0.
99

0
0.

99
2

0.
99

4
0.

99
6

0.
99

8
1.

00
0

n

co
rr

el
at

io
n

be
tw

ee
n

tr
ut

h
an

d
es

tim
at

e

Fista
glmnet
unsmoothed Phi
smoothed Phi
progressive smoothing

100 200 500 1000

0.
01

0.
05

0.
10

0.
50

1.
00

5.
00

n

ru
nt

im
e

[s
]

Fista
glmnet
unsmoothed Phi
smoothed Phi
progressive smoothing

Figure 3: Elastic net: L2 norm (left) and correlation (middle) between simulated truth and pa-
rameter estimates as a function of n while p = 100. Runtime in seconds (right) has a log scale on
both axes. The comparison includes Fista, glmnet, unsmoothed Φ, smoothed surrogate Φµ, and
progressive smoothing.

be seen from the left and middle panels in Figure 2, minimizing the unsmoothed Lasso objective Φ is

more prone to instabilities due to its non-differentiability. This is to be expected and motivates our

smoothing approach. Not surprisingly, while keeping the data size n fixed, the estimation becomes

more challenging as p increases. The runtime scaling of our three methods is again similar, though

Fista seems to have a slightly more favorable runtime scaling in p.

4.2 Elastic net

We repeat the experiments of Section 4.1 for the elastic net of Zou and Hastie (2005) using the

R-package glmnet (Friedman et al., 2010a). For this, we employ the choices of u, v, and wj ,

j ∈ {1, . . . , p}, for the elastic net given in Section 2.4. We generate models y = Xβ as described

in Section 4, and evaluate Fista, glmnet, unsmoothed Φ, smoothed surrogate Φµ, and progressive

smoothing with respect to their accuracy and scaling behavior in n and p.

Figure 3 shows scaling results for n while keeping p = 100 fixed. We observe that glmnet and the

simple smoothing approach (smoothed Phi) do not seem to perform well in this experiment, while

Fista as well as the minimization of the unsmoothed objective Φ and progressive smoothing perform

notably better. When looking at the correlation between truth and estimate, all methods with the

exception of glmnet and the smoothed surrogate Φµ (smoothed Phi) again perform similarly. The

runtime of all methods does not seem very dependent on n.

Analogously, Figure 4 presents scaling results for the more interesting case that p � n while

17

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

200 400 600 800 1000

0
5

10
15

20

p

L2
 n

or
m

 o
f t

ru
th

 to
 e

st
im

at
e

Fista
glmnet
unsmoothed Phi
smoothed Phi
progressive smoothing

200 400 600 800 1000

0.
2

0.
4

0.
6

0.
8

1.
0

p

co
rr

el
at

io
n

be
tw

ee
n

tr
ut

h
an

d
es

tim
at

e

Fista
glmnet
unsmoothed Phi
smoothed Phi
progressive smoothing

100 200 500 1000

0.
02

0.
05

0.
20

0.
50

2.
00

5.
00

20
.0

0
50

.0
0

p

ru
nt

im
e

[s
]

Fista
glmnet
unsmoothed Phi
smoothed Phi
progressive smoothing

Figure 4: Elastic net: L2 norm (left) and correlation (middle) between simulated truth and pa-
rameter estimates as a function of p while n = 100. Runtime in seconds (right) has a log scale on
both axes. The comparison includes Fista, glmnet, unsmoothed Φ, smoothed surrogate Φµ, and
progressive smoothing.

keeping n = 100 fixed. These results confirm the observations made for the case of the standard

Lasso in Figure 2. As expected, the estimation of the parameters becomes more challenging for all

methods as p increases while n stays fixed.

Fista seems to yield estimates of poorest quality when assessing accuracy with the L2 distance

between truth and estimate, while the other approaches perform more favorably. Regarding the

correlation between truth and estimate, Fista again performs suboptimally, while glmnet and the

minimization of the unsmoothed Φ (unsmoothed Phi) perform better. Using our smoothed sur-

rogate (smoothed Phi) and the progressive smoothing algorithm perform best in that they retain

the largest correlation between their estimates to the true parameters. As expected, the runtime

scaling in p of Fista and glmnet is roughly similar, and the asymptotic runtimes of both seem to

be lower than for our methods. Minimizing the unsmoothed objective function and the smooth

surrogate seems to have an almost identical asymptotic runtime, while progressive smoothing is a

constant factor slower as expected.

Further experiments for the fused and graphical Lasso can be found in Section D and broadly

confirm the results of this section.

4.3 Verification of theoretical bounds

Finally, we verify the theoretical bounds derived in Proposition 5 for the case of the standard Lasso.

In this experiment, we therefore again employ the choices of u, v, and wj , j ∈ {1, . . . , p}, for the

18

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

500 1000 1500 2000

0.
5

1.
0

2.
0

5.
0

n

L2
 n

or
m

 o
f t

ru
th

 to
 e

st
im

at
e

an
d

th
eo

re
tic

al
 b

ou
nd

200 400 600 800 1000

1
2

5
10

20

p

L2
 n

or
m

 o
f t

ru
th

 to
 e

st
im

at
e

an
d

th
eo

re
tic

al
 b

ou
nd

Figure 5: True L2 norm between minimizers of unsmoothed and smoothed Lasso (left hand side of
eq. (13)) in black, and theoretical upper bound (right hand side of eq. (13)) in red. Scaling in n
while p = 100 is fixed (left) and scaling in p while n = 100 is fixed (right). Log scale on the y-axis.

standard Lasso given in Section 2.4.

First, we compute regression estimates with the unsmoothed and smoothed Lasso objective

functions as done in Section 4.1. We employ a regularization parameter of λ = 1, and a smoothing

parameter of µ = 1. The generation of the model y = Xβ was done as described in Section 4.

After performing the minimization we record ‖x1 − x2‖2, the left hand side of eq. (13). This

quantity is assumed to be unknown as we aim to avoid the computation of the minimizer x2 of the

unsmoothed objective and solely focus on the minimizer x1 of the smoothed surrogate instead.

Moreover, we compute the right hand side of eq. (13), that is Cδ
[
‖∇F1(y1)‖−1

2 (δLδ + 2ε) + δ
]
.

In the case of the standard Lasso considered here, F1 is the differentiable and strictly convex Φµ,

that is the smooth surrogate for the standard Lasso (see the discussion at the end of Section 2.3).

The parameter δ can be chosen by the user: for more stable results, we compute the bound of

eq. (13) on the grid δ ∈ {0.1, 0.2, . . . , 1} and take the minimal value. The parameter y1 is also

chosen by the user in the δ-neighborhood of x1, the known minimizer of the smoothed objective.

We generate y1 at random according to a uniform distribution in the δ-neighborhood around x1.

The value of ε is given by eq. (8). Last, Cδ can be computed explicitly using a scalar product

between two known quantities as shown in the proof of Proposition 5, and Lδ is taken to be the

19

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

local Lipschitz constant of Φµ at its minimizer x1. This makes the right hand side of eq. (13)

explicitly computable without knowledge of the minimizer x2 of the unsmoothed (original) Lasso

objective.

Results for the left and right hand sides of eq. (13) are shown in Figure 5, once for the scaling in

n while p = 100 is kept fixed, and once for the scaling in p while n = 100 is kept fixed. As expected,

the estimation becomes easier as n increases for a fixed p, and more challenging as p increases for

a fixed n.

Overall, we observe that eq. (13) indeed provides a valid, explicit upper bound on the error

between the unsmoothed and smoothed minimizers for each fixed choice of µ. In the case of the

scaling in n, the bound is conservative, but in the more challenging scenario of the scaling in p, the

bound seems to accurately follow the error we make by using the smoothed surrogate. Note that

by Propositions 3 and 5, this error will go to zero as the smoothing parameter µ→ 0.

5 Discussion

In this paper, we propose a smoothing framework for a general class of L1 penalized regression

operators that includes most common approaches, e.g. the Lasso, elastic net, fused and graphi-

cal Lasso, etc. The framework is based on a closed-form smooth surrogate and its closed-form

gradient. Since the aforementioned regression operators are convex but non-smooth, due to the

non-differentiability of their L1 norm, minimizing the smooth surrogates instead allows for fast and

efficient computation of regression estimates.

Most importantly, we prove a series of theoretical results which apply to the entire class of

regression operators belonging to our framework. Under regularity conditions, we show that the

smooth surrogate is both strictly convex and uniformly close (in supremum norm) to the original

(unsmoothed) objective function. This has the important implication that the regression estimates

obtained by minimizing the smooth surrogate can be made arbitrarily close to the ones of the orig-

inal (unsmoothed) objective function. Additionally, we provide explicitly computable error bounds

on the accuracy of the estimates obtained with the smooth surrogate. Since we can efficiently carry

out the optimization of the smooth surrogate, our approach yields easily computable regression

estimates that are both guaranteed to be close to the estimates of the original objective function,

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

and allow for a priori error estimation. Furthermore, we develop a progressive smoothing algorithm

for iterative smoothing. This approach is virtually free of tuning parameters.

Our simulation studies support our theoretical conclusions that minimizing the proposed smooth

surrogate yields estimates of equal or better quality than many of the gold standard approaches

available in the literature (the Fista, glmnet, gLasso algorithms, etc.). At the same time, our

approach has roughly the same runtime scaling as the established approaches we include in our

comparisons while keeping all aforementioned theoretical guarantees.

A Literature review

Since the seminal publication of the Lasso (Tibshirani, 1996), numerous approaches have focused

on (smoothing) approaches to facilitate the minimization of the Lasso objective function, or other

related objective functions. Nevertheless, the following publications differ from our work in that

they do not consider a unified framework to smooth L1 regularized regression operators, and if they

provide a tailored solution to a particular regression operator, the bounds provided differ from the

ones we establish on the accuracy of the unsmoothed objective and surrogate. Most importantly,

none of the publications we are aware of quantifies the distance between the minimizer of the

unsmoothed objective and the minimizer of the surrogate (as we do with our explicitly computable

bound), and no progressive smoothing procedure yielding stable regression estimates is derived.

Fan and Li (2001) consider smoothing approaches for the Lasso L1 penalty, the SCAD (Smoothly

Clipped Absolute Deviation) penalty, and hard thresholding penalties. However, their smooth-

ing approaches are not based on the Nesterov (2005) framework. Instead, the authors employ a

quadratic approximation at the singularity of the penalties to achieve a smoothing effect, and they

propose a one-step shooting algorithm for minimization. However, their main focus is on root-

n consistency results of the resulting estimators and asymptotic normality results for the SCAD

penalty, results which the authors state do not all apply to the Lasso.

Some smoothing approaches (Belloni et al., 2011; Chen et al., 2010a; Banerjee et al., 2008)

build upon the first-order accelerated gradient descent algorithm of Nesterov (2005). Those vari-

ants of Nesterov’s algorithm are iterative methods which are unrelated to our adaptive smoothing

procedure. A detailed overview of several variants of the first-order accelerated gradient descent

21

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

algorithm can be found in Becker and Candès (2011).

Beck and Teboulle (2012) can be regarded as an extension of the work of Nesterov (2005). The

authors consider a more general smoothing framework which, as a special case, includes the same

smoothing we establish for the absolute value in the L1 penalty of the Lasso. However, in contrast

to our work, the authors do not consider a smooth surrogate of a general form that applies to a

wide range of regression operators, and the theoretical guarantees on the surrogate that we derive

are unconsidered.

Haselimashhadi and Vinciotti (2016) likewise smooth the absolute value in the L1 penalty of

the Lasso using Nesterov’s technique, and they state the same bound on the difference between the

unsmoothed and smoothed Lasso objective functions taken from Nesterov’s results. However, their

results focus on the Lasso only, the general surrogate we provide is unconsidered, and no explicit

bounds on the accuracy of the obtained minimizers are given. Importantly, Haselimashhadi and

Vinciotti (2016) deviate from our work in that they enforce that the smoothed Lasso penalty passes

through zero, leading the focus of their article to be on another smoothed Lasso approach which is

based on the error function of the normal distribution.

Further work available in the literature employs Nesterov’s smoothing techniques for a variety

of specialized Lasso objective functions. For instance, Chen et al. (2010b) consider the group Lasso

and employ Nesterov’s formalism to smooth the Lasso penalty using the squared error proximity

function which we also consider. Nevertheless, they focus on adapting Nesterov’s first-order ac-

celerated gradient descent algorithm in order to compute the Lasso regression estimate, whereas

we focus on deriving theoretical bounds on the smooth surrogate and our progressive smoothing

algorithm. In our work, we do not propose a modification of Nesterov’s first-order accelerated gra-

dient descent algorithm. Chen et al. (2012) also consider the group Lasso, separate out the simple

nonsmooth L1 penalty from the more complex structure-inducing penalties, and only smooth the

latter. This leaves the L1 norm on the parameters unchanged, thus still enforcing individual feature

level sparsity. In contrast to the work of Chen et al. (2012), we always smooth all L1 penalties

which are present in the objective function.

The joint Lasso is considered in Dondelinger and Mukherjee (2020), who state an iterative

minimization procedure which smoothes the Lasso penalty using Nesterov’s techniques. The authors

state closed form derivatives for the minimization, but no other theoretical results are given.

22

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

One variant of the original Lasso which has recently gained attention is the concomitant Lasso.

The concomitant Lasso augments the original Lasso with a term σ/2 for which a second regular-

ization parameter σ is introduced (Ndiaye et al., 2017). The parameter σ is meant to be decreased

to zero. Smoothing the concomitant Lasso has the advantage that Nesterov’s techniques do not

need to be applied to the L1 penalty. Instead, the smooth concomitant Lasso has a closed form ex-

pression which is different from the smoothed Lasso approaches we consider (Ndiaye et al., 2017),

and results in the literature (Massias et al., 2018) are only named in analogy to the smoothing

terminology introduced in Nesterov (2005). Since the concomitant Lasso does not contain an L1

penalty, our results to not apply.

B Nesterov smoothing

This section follows (Nesterov, 2005, Sections 2 and 4). It introduces the basic formalism of Nesterov

smoothing in Section B.1 and concretizes the approach in Section B.2.

B.1 Description of Nesterov smoothing

We are given a piecewise affine and convex function f : Rq → R which we aim to smooth, where

q ∈ N. We assume that f is composed of k ∈ N linear pieces (components). The function f can be

expressed as

f(z) = max
i=1,...,k

(
A[z, 1]>

)
i
, (14)

where A ∈ Rk×(q+1) is a matrix whose rows contain the linear coefficients for each of the k pieces

(with the constant coefficients being in column q+ 1), z ∈ Rq, and [z, 1] ∈ Rq+1 denotes the vector

obtained by concatenating z and the scalar 1 (see Section 2).

Let ‖ · ‖k be a norm on Rk and 〈·, ·〉 be the Euclidean inner product. Define the unit simplex

Qk ⊆ Rk as

Qk =

{
w = (w1, . . . , wk) ∈ Rk :

k∑
i=1

wi = 1, and wi ≥ 0 for all i = 1, . . . , k

}
.

To introduce the smoothing procedure, Nesterov (2005) first defines a proximity function, or prox

23

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

function, on Qk. A prox function ρ is any nonnegative, continuously differentiable, and strongly

convex function (with respect to the norm ‖ · ‖k). The latter means that ρ satisfies

ρ(s) ≥ ρ(t) + 〈∇ρ(t), t− s〉+
1

2
‖t− s‖k

for all s, t ∈ Qk.

For any µ > 0, consider the function

fµ(z) = max
w∈Qk

{
〈A[z, 1]>, w〉 − µρ(w)

}
. (15)

According to (Nesterov, 2005, Theorem 1), the function fµ defined in eq. (15) is convex and

everywhere differentiable in z for any µ > 0. The function fµ depends only on the parameter µ

controlling the degree of smoothness. For µ = 0, we recover the original unsmoothed function since

f0(z) = maxw∈Qk
{
〈A[z, 1]>, w〉

}
= f(z). The gradient z 7→ ∂

∂zf
µ(z) is Lipschitz continuous with a

Lipschitz constant that is proportional to µ−1. A closed form expression of both the gradient and

the Lipschitz constant are given in (Nesterov, 2005, Theorem 1).

Importantly, the function fµ is a uniform smooth approximation of f = f0 since

f0(z)− µ sup
w∈Qk

ρ(w) ≤ fµ(z) ≤ f0(z) (16)

for all z ∈ Rq, meaning that the approximation error is uniformly upper bounded by

sup
z∈Rq
|f(z)− fµ(z)| ≤ µ sup

w∈Qk
ρ(w) = O(µ). (17)

Indeed, eq. (16) holds true since for all z ∈ Rq,

fµ(z) ≥ sup
w∈Qk

〈A[z, 1]>, w〉 − µ sup
w∈Qk

ρ(w) = f0(z)− µ sup
w∈Qk

ρ(w),

fµ(z) = sup
w∈Qk

{
〈A[z, 1]>, w〉 − µρ(w)

}
≤ sup

w∈Qk
〈A[z, 1]>, w〉 = f0(z),

where it was used that both the function ρ and the parameter µ are nonnegative.

24

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

B.2 Two choices for the proximity function

We consider two choices of the prox function ρ.

B.2.1 Entropy prox function

The entropy prox function ρe : Rk → R is given by

ρe(w) =

k∑
i=1

wi log(wi) + log(k)

for w ∈ Rk.

Setting the norm ‖ · ‖k as the L1 norm in Rk, Nesterov (2005) shows that ρe is strongly convex

with respect to the L1 norm and satisfies supw∈Qk ρe(w) = log(k), see (Nesterov, 2005, Lemma 3).

Using eq. (17), we obtain the uniform bound

sup
z∈Rq
|f(z)− fµe (z)| ≤ µ log(k)

for the entropy smoothed function fµe obtained by using ρe in eq. (15). Interestingly, smoothing

with the entropy prox function admits a closed-form expression of fµe given by

fµe (z) = max
w∈Qk

{
k∑
i=1

wi

(
A[z, 1]>

)
i
− µ

(
k∑
i=1

wi log(wi) + log(k)

)}
= µ log

(
1

k

k∑
i=1

e
(A[z,1]>)

i
µ

)
,

see (Nesterov, 2005, Lemma 4).

B.2.2 Squared error prox function

The squared error prox function is given by

ρs(w) =
1

2

k∑
i=1

(
wi −

1

k

)2

.

25

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

Mazumder et al. (2019) show that the optimization in eq. (15) with squared error prox function is

equivalent to the convex program

fµs (z) = min
w∈Qk

(
1

k

k∑
i=1

w2
i −

k∑
i=1

wici(z)

)
, (18)

where ci(z) = 1/µ ·
(
A[z, 1]>

)
i
− 1/k depends on A and µ and is defined for any i ∈ {1, . . . , k}.

The problem in eq. (18) is equivalent to finding the Euclidean projection of the vector c(z) =

(c1(z), . . . , ck(z)) ∈ Rk onto the k-dimensional unit simplex Qk. This projection can be carried

out efficiently using the algorithm of Michelot (1986), for which a computationally more efficient

version was proposed in Wang and Carreira-Perpiñán (2013) that we use in our implementations.

Denoting the Euclidean projection of the vector c(z) onto Qk as vector ĉ(z), the squared error prox

approximation of f can be written as

fµs (z) = 〈ĉ(z), A[z, 1]>〉 − µρs(ĉ(z)).

As supw∈Qk ρs(w) = 1− 1
k (Nesterov, 2005, Section 4.1), we obtain the uniform bound

sup
z∈Rq
|f(z)− fµs (z)| ≤ µ

(
1− 1

k

)

for the squared error smoothing approach.

C Proofs

Proposition 6. The entropy prox smoothed function fµe of eq. (7) and the squared error prox

smoothed fµs of eq. (9) are strictly convex functions.

Proof of Proposition 6. The second derivative of fµe is given by

∂2

∂z2
fµe (z) =

4e2x/µ

µ
(
e2x/µ + 1

)2
and hence always positive, thus making fµe strictly convex. Similar arguments show that fµs is

strictly convex.

26

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

Proof of Proposition 3. Using the fact that according to Condition 3, v is Lipschitz continuous with

Lipschitz constant Lv, we have

sup
β∈Rp

∣∣Φµ(β)− Φ(β)
∣∣ = sup

β∈Rp

∣∣∣v (|w1(β)|, . . . , |wm(β)|)− v (fµ(w1(β)), . . . , fµ(wm(β)))
∣∣∣

≤ sup
β∈Rp

Lv ·
∥∥∥ (|w1(β)|, . . . , |wm(β)|)− (fµ(w1(β)), . . . , fµ(wm(β)))

∥∥∥
1

≤ sup
β∈Rp

Lv ·
m∑
i=1

∣∣∣|wi(β)| − fµ(wi(β))
∣∣∣

≤ mLvCµ,

thus establishing the claimed bound.

Proof of Proposition 4. Since F1 is continuous and strictly convex, it lays in the Skorohod topol-

ogy DK as defined in (Seijo and Sen, 2011, Definition 2.2). According to (Seijo and Sen, 2011,

Lemma 2.9), the argmax functional is continuous at F1 with respect to the supremum norm met-

ric.

Proof of Proposition 5. Since F1 is differentiable, we know that ∇F1 exists. Since F1 is strictly

convex, the minimum x1 is unique and ∇F1(y1) 6= 0 as y1 6= x1. Since F1 is convex, the tangent at

every point stays below the function. Thus considering the tangent at y1 we have for all z0 that

F1(y1) +∇F1(y1)>(z0 − y1) ≤ F1(z0),

and thus we can bound F1 − ε from below as

F1(y1) +∇F1(y1)>(z0 − y1)− ε ≤ F1(z0)− ε.

Observe that at x1 we have F2(x1) ∈ [F1(x1)− ε, F1(x1) + ε], and similarly at x2 we have F2(x2) ∈

[F1(x2)− ε, F1(x2) + ε]. Thus for any z satisfying

F1(y1) +∇F1(y1)>(z − y1)− ε = F1(x1) + ε, (19)

we know that the minimum x2 of F2 cannot be further away from x1 than z, thus ‖x1 − x2‖2 ≤

27

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

‖x1 − z‖2. The quantity z satisfying eq. (19) is not unique, and thus without loss of generality

we choose z such that ∇F1(y1) and z − y1 are not orthogonal. Rewriting z − y1 in eq. (19) as

z − x1 + x1 − y1 and rearranging terms yields

∇F1(y1)>(z − x1) = F1(x1)− F1(y1) + 2ε−∇F1(y1)>(x1 − y1).

Rewriting the non-zero scalar product on the left hand side as ‖∇F1(y1)‖2 ·‖z−x1‖2 ·cos(θ) for some

θ ∈ [0, π/2) and applying the L2 norm on both sides yields, after applying the triangle inequality

on the right hand side,

‖∇F1(y1)‖2 · ‖z − x1‖2 · |cos(θ)| ≤ ‖F1(x1)− F1(y1)‖2 + 2ε+ ‖∇F1(y1)‖2 · ‖x1 − y1‖2,

which after rearranging yields

‖z − x1‖2 ≤
‖F1(x1)− F1(y1)‖2 + 2ε+ ‖∇F1(y1)‖2 · ‖x1 − y1‖2

|cos(θ)| · ‖∇F1(y1)‖2
.

We write |cos(θ)|−1 = Cδ and note that θ is determined by z and y1 but independent of x2.

Since x1 and y1 are fixed, and F1 is differentiable, it is also locally Lipschitz in a ball around

x1 (note that the Lipschitz constant is independent of x2). Thus there exists Lδ > 0 such that

‖F1(x1)− F1(y1)‖2 ≤ Lδ‖x1 − y1‖2. Using that ‖x1 − y1‖2 ≤ δ by construction of y1, we obtain

‖z − x1‖2 ≤ Cδ
[
‖∇F1(y1)‖−1

2 (δLδ + 2ε) + δ
]
.

Since ‖x1 − x2‖2 ≤ ‖x1 − z‖2, the result follows.

D Additional simulation studies

This section presents two additional simulations for the fused Lasso of Tibshirani et al. (2005)

(provided in the fusedlasso function of the R-package genlasso, see Arnold and Tibshirani (2020)),

and the graphical Lasso of Friedman et al. (2008) (provided in the glasso function of the R-package

glasso, see Friedman et al. (2019)). The simulation setup is the one used in Section 4.

28

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

200 400 600 800 1000

0.
05

0.
20

0.
50

2.
00

5.
00

20
.0

0
50

.0
0

n

L2
 n

or
m

 o
f t

ru
th

 to
 e

st
im

at
e

fused Lasso (package genlasso)
unsmoothed Phi
smoothed Phi
progressive smoothing

200 400 600 800 1000

0.
2

0.
4

0.
6

0.
8

1.
0

n

co
rr

el
at

io
n

be
tw

ee
n

tr
ut

h
an

d
es

tim
at

e

fused Lasso (package genlasso)
unsmoothed Phi
smoothed Phi
progressive smoothing

200 400 600 800 1000

2
5

10
20

n

ru
nt

im
e

[s
]

fused Lasso (package genlasso)
unsmoothed Phi
smoothed Phi
progressive smoothing

Figure 6: Fused Lasso: L2 norm (left) and correlation (middle) between simulated truth and
parameter estimates as a function of n while p = 100. Runtime in seconds (right) has a log scale
on both axes. The comparison includes fusedlasso (R-package genlasso), unsmoothed Φ, smoothed
surrogate Φµ, and progressive smoothing.

D.1 Fused Lasso

For the fused Lasso, a dependency structure among the entries of the parameter vector β ∈ Rp has

to be generated. This dependency structure is given by the adjacency matrix E, see Section 2.4.

We generate E at random with edge probability 0.5 in each repetition. In this experiment, we

employ the choices of u, v, and wj , j ∈ {1, . . . , p}, for the fused Lasso given in Section 2.4.

Figure 6 shows scaling results in n while keeping p = 100 fixed. We observe that the function

fusedlasso of the R-package genlasso seems to have troubles finding good estimates, while optimizing

the objective function of the fused Lasso, given in Section 2.4, with our progressive smoothing

algorithm works much better and yields stable regression estimates having a low L2 norm and a

high correlation with the truth. The fusedlasso function and minimizing the unsmoothed objective

yield fastest results, followed by our smoothing approach. Progressive smoothing is a constant

factor slower as expected. Overall, there only seems to be a weak runtime dependence on n.

Figure 7 shows similar results for the scaling in p. Here, the fusedlasso function again yields

estimates with the largest deviation from the generated truth in the L2 norm, and also the lowest

correlation with the true parameters. Progressive smoothing yields the most accurate and stable

results with respect to both L2 norm and correlation, while the other two approaches (unsmoothed

objective and smooth surrogate, denoted as unsmoothed Phi and smoothed Phi) exhibit a more

unstable behavior. The runtime scaling of all methods is roughly similar in p.

29

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

100 200 300 400 500

5e
−

02
5e

−
01

5e
+

00
5e

+
01

p

L2
 n

or
m

 o
f t

ru
th

 to
 e

st
im

at
e

fused Lasso (package genlasso)
unsmoothed Phi
smoothed Phi
progressive smoothing

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

co
rr

el
at

io
n

be
tw

ee
n

tr
ut

h
an

d
es

tim
at

e

fused Lasso (package genlasso)
unsmoothed Phi
smoothed Phi
progressive smoothing

50 100 200 500

5e
−

01
5e

+
00

5e
+

01
5e

+
02

p

ru
nt

im
e

[s
]

fused Lasso (package genlasso)
unsmoothed Phi
smoothed Phi
progressive smoothing

Figure 7: Fused Lasso: L2 norm (left) and correlation (middle) between simulated truth and
parameter estimates as a function of p while n = 100. Runtime in seconds (right) has a log scale
on both axes. The comparison includes fusedlasso (R-package genlasso), unsmoothed Φ, smoothed
surrogate Φµ, and progressive smoothing.

D.2 Graphical Lasso

For the graphical Lasso, we generate a sample covariance matrix S from a Wishart distribution

with sample size 1, p ∈ {5, . . . , 30} degrees of freedom, and scale matrix set to the p×p dimensional

identity matrix, see Sections 2.4 and 4. To define Φ and its smooth surrogate Φµ, we employ the

functions u, v, and wj , j ∈ {1, . . . ,m} with m = p(p + 1)/2, for the graphical Lasso given in

Section 2.4.

We then compute estimates for the unsmoothed graphical Lasso objective function using the R-

package glasso. Additionally, we minimize the unsmoothed Φ for the graphical Lasso as well as our

smooth surrogate Φµ using the BFGS algorithm in R’s function optim, and employ our progressive

smoothing algorithm. To optimize over all positive definite matrices Θ in the objective function of

the graphical Lasso (see Section 2.4), we parametrize Θ with its Cholesky decomposition. To be

precise, we write Θ = CC>, where C is a lower triangular matrix. This ensures that Θ will always

be positive definite. As Θ is fully parametrized via C, and C is lower diagonal, we actually only

optimize over p(p+ 1)/2 parameters.

We report the correlation between the true and estimated precision matrices (for this the ma-

trices are unfolded as vectors), as well as the runtime.

Results are given in Figure 8. The results show that estimates of the precision matrix found with

the glasso R-package and by minimizing the unsmoothed objective function have a lower correlation

with the generated truth than the estimates obtained with our two smoothing approaches. The

30

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

5 10 15 20 25 30

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

p

co
rr

el
at

io
n

be
tw

ee
n

tr
ut

h
an

d
es

tim
at

e
(a

s
ve

ct
or

s)

glasso
unsmoothed Phi
smoothed Phi
progressive smoothing

5 10 15 20 25 30

1e
−

03
1e

−
01

1e
+

01
1e

+
03

p

ru
nt

im
e

[s
]

glasso
unsmoothed Phi
smoothed Phi
progressive smoothing

Figure 8: Graphical Lasso: correlation (left) between simulated truth and parameter estimates as
a function of n. Runtime in seconds (right) has a log scale on both axes. The comparison includes
glasso (R-package glasso), unsmoothed Φ, smoothed surrogate Φµ, and progressive smoothing.

implementation of the graphical Lasso in the R-package glasso seems highly optimized, resulting in

fast runtimes. Our smoothing approaches are not as highly optimized and thus slower than glasso,

though all three exhibit roughly a similar runtime scaling.

References

Arnold, T. B. and Tibshirani, R. J. (2020). genlasso: Path Algorithm for Generalized Lasso

Problems. R-package version 1.5: https://cran.r-project.org/package=genlasso.

Banerjee, O., Ghaoui, L. E., and d’Aspremont, A. (2008). Model Selection Through Sparse Max-

imum Likelihood Estimation for Multivariate Gaussian or Binary Data. Journal of Machine

Learning Research, 9:485–516.

Beck, A. and Teboulle, M. (2009). A Fast Iterative Shrinkage-Thresholding Algorithm for Linear

Inverse Problems. SIAM J Imaging Sciences, 2(1):183–202.

Beck, A. and Teboulle, M. (2012). Smoothing And First Order Methods: A Unified Framework.

Siam J Optim, 22(2):557–580.

31

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://cran.r-project.org/package=genlasso
https://doi.org/10.1101/2020.09.17.301788

Becker, S. R. and Candès, E. J. (2011). Templates for convex cone problems with applications to

sparse signal recovery. Math Prog Comp, 3:165–218.

Belloni, A., Chernozhukov, V., and Wang, L. (2011). Square-root lasso: pivotal recovery of sparse

signals via conic programming. Biometrika, 98(4):791–806.

Chen, X., Kim, S., Lin, Q., Carbonell, J. G., and Xing, E. P. (2010a). Graph-Structured Multi-

task Regression and an Efficient Optimization Method for General Fused Lasso. arXiv:1005.3579,

pages 1–21.

Chen, X., Lin, Q., Kim, S., Carbonell, J. G., and Xing, E. P. (2010b). An efficient proximal gradient

method for general structured sparse learning. Journal of Machine Learning Research, 11.

Chen, X., Lin, Q., Kim, S., Carbonell, J. G., and Xing, E. P. (2012). Smoothing proximal gradient

method for general structured sparse regression. Ann Appl Stat, 6(2):719–752.

Chi, E., Goldstein, T., Studer, C., and Baraniuk, R. (2018). fasta: Fast Adaptive

Shrinkage/Thresholding Algorithm. R-package version 0.1.0: https://cran.r-project.org/

package=fasta.

Daubechies, I., Defrise, M., and Mol, C. (2004). An iterative thresholding algorithm for linear

inverse problems with a sparsity constraint. Comm. Pure Appl. Math., 57(11):1413–1457.

Dondelinger, F. and Mukherjee, S. (2020). The joint lasso: high-dimensional regression for group

structured data. Biostatistics, 21:219–235.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. Ann Stat,

32(2):407–499.

Fan, J. and Li, R. (2001). Variable Selection via Nonconcave Penalized Likelihood and its Oracle

Properties. J Am Stat Assoc, 96(456):1348–1360.

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the

graphical lasso. Biostatistics, 9(3):432–441.

Friedman, J., Hastie, T., and Tibshirani, R. (2010a). Regularization Paths for Generalized Linear

Models via Coordinate Descent. Journal of Statistical Software, 33(1):1–22.

32

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://cran.r-project.org/package=fasta
https://cran.r-project.org/package=fasta
https://doi.org/10.1101/2020.09.17.301788

Friedman, J., Hastie, T., and Tibshirani, R. (2010b). Regularization Paths for Generalized Linear

Modelsvia Coordinate Descent. J Stat Softw, 33:1–22.

Friedman, J., Hastie, T., and Tibshirani, R. (2019). glasso: Graphical Lasso: Estimation of

Gaussian Graphical Models. R-package version 1.11: https://cran.r-project.org/package=

glasso.

Friedman, J., Hastie, T., Tibshirani, R., Narasimhan, B., Tay, K., Simon, N., and Qian, J. (2020).

glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models. R-package version 4.0:

https://cran.r-project.org/package=glmnet.

Hahn, G., Banerjee, M., and Sen, B. (2017). Parameter Estima-

tion and Inference in a Continuous Piecewise Linear Regression Model.

http://www.cantab.net/users/ghahn/preprints/PhaseRegMultiDim.pdf.

Hahn, G., Lutz, S. M., Laha, N., and Lange, C. (2020). smoothedLasso: Smoothed LASSO

Regression via Nesterov Smoothing. R-package version 1.4: https://cran.r-project.org/

package=smoothedLasso.

Haselimashhadi, H. and Vinciotti, V. (2016). A Differentiable Alternative to the Lasso Penalty.

arXiv:1609.04985, pages 1–12.

Hastie, T. and Efron, B. (2013). lars: Least Angle Regression, Lasso and Forward Stagewise.

R-package version 1.2: https://cran.r-project.org/package=lars.

Massias, M., Fercoq, O., Gramfort, A., and Salmon, J. (2018). Generalized Concomitant Multi-Task

Lasso for Sparse Multimodal Regression. In Proceedings of the 21st International Conference on

Artificial Intelligence and Statistics (AISTATS) 2018, Lanzarote, Spain, volume 84. PMLR.

Mazumder, R., Choudhury, A., Iyengar, G., and Sen, B. (2019). A Computational Framework for

Multivariate Convex Regression and Its Variants. J Am Stat Assoc, 114(525):318–331.

Michelot, C. (1986). A finite algorithm for finding the projection of a point onto the canonical

simplex of Rn. J Optimiz Theory App, 50(1):195–200.

33

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://cran.r-project.org/package=glasso
https://cran.r-project.org/package=glasso
https://cran.r-project.org/package=glmnet
https://cran.r-project.org/package=smoothedLasso
https://cran.r-project.org/package=smoothedLasso
https://cran.r-project.org/package=lars
https://doi.org/10.1101/2020.09.17.301788

Ndiaye, E., Fercoq, O., Gramfort, A., Leclère, V., and Salmon, J. (2017). Efficient Smoothed

Concomitant Lasso Estimation for High Dimensional Regression. In 7th International Conference

on New Computational Methods for Inverse Problems.

Nesterov, Y. (1983). A method of solving a convex programming problem with convergence rate

O(1/k2). Dokl Akad Nauk SSSR, 269(3):543–547.

Nesterov, Y. (2005). Smooth minimization of non-smooth functions. Math. Program. Ser. A,

103:127–152.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation

for Stat Comp, Vienna, Austria.

Seijo, E. and Sen, B. (2011). A continuous mapping theorem for the smallest argmax functional.

Electron J Stat, 5:421–439.

Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. J Roy Stat Soc B Met,

58(1):267–288.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005). Sparsity and Smoothness

via the Fused Lasso. J Roy Stat Soc B Met, 67(1):91–108.

Wang, W. and Carreira-Perpiñán, M. (2013). Projection onto the probability simplex: An efficient

algorithm with a simple proof, and an application. arXiv:1309.1541, pages 1–5.

Yuan, M. and Lin, Y. (2005). Model selection and estimation in regression with grouped variables.

J Roy Stat Soc B Met, 68(1):49–67.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. J Roy Stat

Soc B Met, 67(2):301–320.

34

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301788doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.17.301788

	Introduction
	Computing the smooth surrogate objective function
	Summary of Nesterov smoothing
	The smooth surrogate
	Theoretical guarantees
	Applications to popular L1 penalized regression operators

	Progressive smoothing algorithm
	Simulation studies
	Standard Lasso
	Elastic net
	Verification of theoretical bounds

	Discussion
	Literature review
	Nesterov smoothing
	Description of Nesterov smoothing
	Two choices for the proximity function
	Entropy prox function
	Squared error prox function

	Proofs
	Additional simulation studies
	Fused Lasso
	Graphical Lasso

