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Abstract 35 

Acute myelogenous leukemia (AML) is one of the major hematological malignancies. In 36 

the human genome, several have been found to originate from retroviruses, and some 37 

of which are involved in progression of various cancers. Hence, to investigate whether 38 

retroviral-like genes are associated with the development of AML, we conducted a 39 

transcriptome sequencing analysis of 12 retroviral-like genes of 150 AML patients using 40 

The Cancer Genome Atlas database. We found high expression of ERV3-1, an 41 

envelope gene of endogenous retrovirus group 3 member 1. In particular, blood and 42 

bone marrow cells of the myeloid lineage in AML patients, exhibited higher expression 43 

of ERV3-1 than those of the monocytic AML lineage. We also examined the protein 44 

expression of ERV3-1 by immunohistochemical analysis and found expression of 45 

ERV3-1 protein in 7 out of 12 AML patients, with a particular concentration observed at 46 

the membrane of some leukemic cells. Transcriptome analysis further suggested that 47 

upregulated ERV3-1 expression may be associated with chromosome 8 trisomy as 48 

anomaly was found to be more common among the high expression group compared to 49 

the low expression group. However, this finding was not corroborated by the 50 

immunohistochemical data. This discrepancy may have been caused, in part, by the 51 

small number of samples analyzed in this study. Although the precise associated 52 

molecular mechanisms remain unclear, our results suggest that ERV3-1 may be 53 

involved in AML development. 54 

(226 words) 55 

 56 

Keywords: endogenous retrovirus, acute myelogenous leukemia, cancer development, 57 

immunosuppression 58 
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Highlights 60 

� Expression of 12 retroviral-like genes in the human genome were analyzed using 61 

transcriptome data of 150 acute myelogenous leukemia (AML) patients. 62 

� ERV3-1, an envelope gene of endogenous retrovirus group 3 member 1, was found 63 

to uniquely show high expression level. 64 

� Morphologic characteristics and chromosomal abnormalities are found to be related 65 

with the expression of ERV3-1. 66 
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1. Introduction 68 

Approximately 8% of the human genome corresponds to retroviral origins 69 

(Lander et al. 2001). These areas of the genome are referred to as long terminal repeat 70 

(LTR) retrotransposons, many of which correspond to human endogenous retroviruses 71 

(HERVs). HERVs originally derived from retroviruses that infected germline cells of the 72 

host species. Therefore, HERVs contain retroviral genetic elements including 73 

cis-regulatory regions (LTRs) in their 5’ and 3’ terminals, as well as several coding 74 

sequences: gag, protease, polymerase, and envelope. The structures of other LTR 75 

retrotransposons are similar to that of HERV except for the absence of an envelope 76 

gene. Generally, HERVs are incapable of generating infectious virions that can 77 

competently replicate in human cells due to the accumulation of multiple mutations 78 

during evolution (Tönjes et al. 1999). Therefore, such retroviral sequences are believed 79 

to be “junk” DNA in the human genome. However, many recent studies showed that 80 

certain sequences, similar to those of retroviruses, have obtained new functions in the 81 

hosts. 82 

In the human genome, at least 12 retroviral-like genes are annotated in the 83 

GRCh38 assembly provided by National Center for Biotechnology Information (NCBI): 84 

ARC, ASPRV1/SASpase, ERV3-1, ERVK13-1, ERVH48-1/Suppressyn, 85 

ERVMER34-1/HEMO, ERVV-1, ERVV-2, ERVW-1/Syncytin-1, ERVFRD-1/Syncytin-2, 86 

PEG10/SIRH1, PEG11/RTL1/SIRH2, RTL4/ ZCCHC16/SIRH11 and SIRH7/LDOC1. 87 

ERVW-1/Syncytin-1 and ERVFRD-1/Syncytin-2 are the most well studied retroviral-like 88 

genes corresponding to retroviral envelope genes (Mi et al. 2000, Blaise et al. 2003), 89 

both of which are involved in human placenta development. Specifically, these genes 90 

are associated with cell-cell fusion and immunosuppression, both of which function are 91 

quite similar to those operated by envelope proteins of retroviruses (Kim et al. 2004). 92 
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Those molecular functions may be also related to cancer progression. Indeed, 93 

Syncytin-1 and Syncytin-2 are reported to be involved in cancer development (Larsen et 94 

al. 2009). In addition, an LTR retrotransposon-derived PEG10/Sirh1 that is similar to a 95 

gag-pro-like gene is involved in placenta development (Ono et al. 2006), as well as in 96 

the progression of various cancers including pancreatic carcinoma, breast cancer, 97 

prostate cancer, gallbladder carcinoma, thyroid cancer, oral squamous cell carcinoma, 98 

colon cancer, enchondromas, and B-cell chronic lymphocytic leukemia (reviewed in Xie 99 

et al. 2018). Indeed, these retroviral-like genes originate from viruses making their 100 

unexpected expression potentially harmful to humans (Gonzalez-Cao et al. 2016). 101 

Acute myelogenous leukemia (AML) is one of the major hematological 102 

malignancies, characterized by overproduction of myeloid progenitor cells in the bone 103 

marrow, which then rapidly migrates to the blood, and in some cases, can spread to 104 

other organs, such as liver and spleen. AML is associated with curative rates of 35 to 105 

40% in patients aged < 60 years (Do�hner et al. 2010); however, the number of AML 106 

patients increase with age, and 70% of patients ≥ 65 years die of the disease within a 107 

year, despite treatment (Meyers et al. 2013). The French-American-British (FAB) 108 

classification system is a standard classification of AML patients that are divided into 109 

eight different subtypes (M0 through M7) based on morphologic characteristics (Bennett 110 

et al. 1976): undifferentiated acute myeloblastic leukemia (M0), acute myeloblastic 111 

leukemia with minimal maturation (M1), acute myeloblastic leukemia with maturation 112 

(M2), acute promyelocytic leukemia (M3), acute myelomonocytic leukemia (M4), acute 113 

monocytic leukemia (M5), acute erythroid leukemia (M6), and acute megakaryoblastic 114 

leukemia (M7).  115 

Although numerous studies suggested relationships between HERVs and 116 

leukemia including AML (Depil et al. 2002; Chen et al. 2013; Bergallo et al. 2017; 117 
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Cuellar et al. 2017; Deniz et al. 2020), details regarding the roles of retroviral-like genes 118 

in AML remain unclear, particularly as they pertain to the different AML subtypes. 119 

Therefore, in this study, we evaluated expression of retroviral-like genes in leukocytes of 120 

AML patients that are potentially harmful to AML. To this end, we first examined 121 

RNA-seq data obtained from 150 AML patients that were downloaded from The Cancer 122 

Genome Atlas (TCGA) database (https://www.cancer.gov/tcga). We then screened the 123 

expression of the abovementioned 12 retroviral-like genes and statistically examined 124 

the relationship between the expression levels and FAB subtypes, with exception of M6 125 

and M7 cases, as they are relatively rare in AML (< 5%) (Bennett et al. 1976). We 126 

further validated the protein expression of the highly expressed retroviral-like gene in 127 

the leukemic cells obtained from AML patients by immunostaining and investigated 128 

whether the gene could be related to the progress of AML. 129 

 130 
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2. Materials and Methods 132 

2.1 Ethics 133 

This study was approved by the Institutional Review Board of Tokai University School of 134 

Medicine, of which protocol numbers are 15-I-26, 18-I-08 and 19-R-323 for 135 

immunohistochemistry and clinical sequencing data analyses of AML patients. Informed 136 

consent was provided according to the Helsinki Declaration in the Tokai University 137 

Hospital.  138 

 139 

2.2 Cancer genome data analysis 140 

Sequence and annotation data of the human genome GRCh38 was downloaded from 141 

the Illumina iGenomes 142 

(https://support.illumina.com/sequencing/sequencing_software/igenome.html). We also 143 

obtained RNA-seq data and clinical record data for 150 AML patients from TCGA-LAML 144 

database (https://portal.gdc.cancer.gov/projects/TCGA-LAML), which are summarized 145 

in the Supplementary data (Table S1 – S3). In this study, we used the RNA-seq data of 146 

which sequences are mapped to the human genome GRCh38 (BAM files) using STAR 147 

2 (Dobin et al. 2013) provided by TCGA-LAML. We counted the mapped reads based 148 

on the gene annotation, and computed expression scores of TPM (transcripts per 149 

million) using StringTie2 version 2.0.6 (Kovaka et al. 2019). We extracted the TPM 150 

scores of 12 retroviral-like genes: ARC, ASPRV1/SASpase, ERV3-1, ERVK13-1, 151 

ERVH48-1/Suppressyn, ERVMER34-1/HEMO, ERVV-1, ERVV-2, ERVW-1/Syncytin-1, 152 

ERVFRD-1/Syncytin-2, PEG10/SIRH1, PEG11/RTL1/SIRH2, RTL4/ ZCCHC16/SIRH11, 153 

and SIRH7/LDOC1, which are also summarized in the Supplementary data (Table S1). 154 

The TPM scores were log-transformed as follows: log2(TPM+1). Using the 155 

log-transformed TPM scores, we generated a heatmap of 12 retroviral-like genes using 156 
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the heatmap.2 program in the gplots package of R (https://github.com/talgalili/gplots). 157 

 158 

2.3 Statistical analysis 159 

Normal variables were assessed by Fisher’s exact test. Continuous variables were 160 

assessed by Mann-Whitney U test or Kruskal-Wallis test for two or multiple groups, 161 

respectively. Data are presented as the mean ± standard deviation (SD). A P value < 162 

0.05 was considered statistically significant. 163 

 164 

2.4 Immunohistochemistry 165 

To confirm ERV3-1 protein expression in AML, immunohistochemical (IHC) staining of 166 

ERV3-1 was performed on 12 cases of AML patients using paraffin-embedded bone 167 

marrow clot sections at Tokai University School of Medicine. Paraffin-embedded tissue 168 

sections were stained with hematoxylin-eosin. For immunostaining, an anti-human 169 

ERV3 antibody (rabbit polyclonal clone; Santa Cruz Biotechnology, CA), as a primary 170 

antibody, and anti-rabbit peroxidase histofine simple stain kit (Nichirei, Tokyo), as a 171 

secondary antibody, were used. The immunostaining tissue slides were observed by 172 

Olympus BX 63 microscope and cellSens software. 173 

  174 
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3. Results 175 

We first examined the expression level of ERV3-1 from 150 RNA-seq data of 176 

blood and bone marrow of AML patients obtained from the TCGA database as 177 

summarized in the Supplementary data (Table S1). All sequencing reads were mapped 178 

to the human genome (GRCh38). Based on the mapped results, we measured the 179 

expression levels of all genes using the human genome annotation. We then compared 180 

the expression levels of 12 retroviral-like genes described in the Materials and Methods 181 

section. Figure 1 shows a heatmap of the expression in 150 samples measured by 182 

log-transformed TPM (transcripts per million) scores (see Materials and Methods). 183 

ERV3-1 was found to exhibit higher expression compared to eleven of the other 184 

retroviral-like genes. Indeed, the average and median TPM scores of ERV3-1 were 46.7 185 

and 39.5, whereas those of the others were 2.4 and 0.2, respectively. We also 186 

examined the expression level of ERV3-1 in the GTEx database 187 

(https://www.gtexportal.org/), which collects various RNA-seq data from healthy people, 188 

and found that the median TPM score of whole blood is 4.6, and the highest expression 189 

score (27.3) was observed in adrenal gland. These results further indicate an 190 

upregulated expression of ERV3-1 in blood-bone marrow of AML patients. 191 

We then evaluated relationship between ERV3-1 expression and clinical data, 192 

such as age, gender, cytogenetic risk, white cell count, and French-American-British 193 

(FAB) classification, as summarized in the Supplementary data (Table S2). We selected 194 

patients in the upper 20 and lower 20 percentiles of ERV3-1 expression (designated as 195 

the ERV3-1 high and low groups, respectively). In total, 60 patients were analyzed, the 196 

results for which are shown in Table 1 and the Supplementary data (Table S3). We 197 

found that ERV3-1 expression was not associated with age, gender, or white blood cell 198 

count, using the Mann-Whitney U test. Meanwhile, the cytogenetic risk is found to differ 199 
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between the ERV3-1 high and low groups (P = 0.016). Moreover, the expression of 200 

ERV3-1 in AML FAB M0-M3 (myeloid phenotype) was higher than that of FAB M4-M5 201 

(monocytic phenotype) (P < 0.001, Table 1 and Figure 2A). We then confirmed these 202 

observations using the whole 150 TCGA-LAML cases. All clinical data, excluding FAB 203 

classification, were not statistically associated with ERV3-1 expression (Figure S1). 204 

Hence, only FAB classification was statistically associated (P < 0.001, Figure 2B). 205 

Collectively, our transcriptome data analysis suggests that the blood and bone marrow 206 

of myeloid phenotype (FAB M0-M3) AML patients show higher expression levels of 207 

ERV3-1 than those of monocytic phenotype (FAB M4-M5). 208 

To examine the protein expression of ERV3-1 in bone marrow from AML 209 

patients, we conducted an immunohistochemical analysis for 12 AML patients at the 210 

Tokai University School of Medicine in Japan. Patients’ characteristics are summarized 211 

in Table 2. A previous study reported the expression of ERV3, including ERV3-1, in 212 

U-937 cells, which are one of AML cell lines classified as monocytic phenotype of AML 213 

(Larsson et al. 1996). Thus, we selected AML patients shown monocytic component 214 

classified as FAB M4-M5. In more than half of the cases (7/12), expression of ERV3-1 215 

was detected, and, in particular, ERV3-1 was expressed at some of the leukemic cell 216 

membrane (Figure 3). The results clearly suggest that ERV3-1 RNA in blood-bone 217 

marrow of AML patients was translated and expressed as protein. Moreover, 218 

considering that our transcriptome analysis revealed low expression of ERV3-1 in 219 

M4-M5 group compared to M0-M3 group in the TCGA-LAML data (Figure 2), most 220 

M0-M3 probably cases likely contain ERV3-1 protein in tumor cells as well. 221 

We also evaluated association between ERV3-1 expression and chromosomal 222 

abnormalities and genetic mutations, which are considered to be involved in AML 223 

progression (Short et al. 2018). Specifically, chromosomal abnormalities, such as 224 
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translocation chromosomes t (15;17) and t (8;21), and trisomy of chromosome 8, are 225 

reportedly associated with AML (Vickers et al. 2000). We, therefore, focused on these 226 

anomalies in our analysis. Results show that trisomy 8 was more common in the 227 

ERV3-1 high group compared to those of the low group (Table S1, P = 0.0232). In our 228 

immunostaining analysis, however, the prevalence of trisomy 8 has not been a clear 229 

difference in both ERV3-1 positive (only Patient 9) and negative (Patient 10) cases 230 

(Table 2). We also evaluated three major mutations that related with AML: fms-related 231 

tyrosine kinase 3 (FLT3), isocitrate dehydrogenase 1 (IDH1), and nucleophosmin 1 232 

(NPM1); however, no significant associations were detected between these mutations 233 

and ERV3-1 expression, as shown in the Supplementary data (Table S4). 234 

 235 
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4. Discussion 237 

Although many retroviral-like genes have been shown to be related to cancer 238 

development (Gonzalez-Cao et al. 2016), here we specifically found that ERV3-1 shows 239 

exclusively a high expression level in blood and bone marrow of all of AML patients 240 

using TCGA database (Figure 1). We also confirmed that ERV3-1 protein was detected 241 

in more than half of AML M4-M5 patients (7/12) (Figure 3). Although we have not 242 

examined the protein expression of ERV3-1 in blood-bone marrow of AML M0-M3, we 243 

found that mRNA expression level is higher in AML M0-M3 than in AML M4-M5 (Figure 244 

2) suggesting that patients of AML M0-M3 may express the ERV3-1 protein as well. 245 

Those results indicate that ERV3-1 protein as well as mRNAs may be expressed in 246 

blood-bone marrow of most of AML patients. 247 

ERV3-1 is an envelope gene of the endogenous retrovirus group 3 member 1, 248 

which belongs to the HERV-R family. It is known that retroviral envelope gene is 249 

involved in various biological processes, including infection and immunosuppression. 250 

Indeed, ERV3-1 was reportedly expressed in placenta (Venables et al. 1995; Lin et al. 251 

2000; Blaise et al. 2007) and in colorectal cancers (Lee et al. 2014). Although ERV3-1 252 

lost its fusogenic activity (Blaise et al. 2007), it contains an immunosuppressive region 253 

in the transmembrane domain, termed p15E, of C-type retroviruses, suggesting that 254 

ERV3-1 may serve to suppress immune response (Venables et al. 1995). Indeed, 255 

immunosuppressive region of another retroviral envelope-derived gene, syncytin-2, 256 

supports the injection of MCA205 mouse fibrosarcoma cell line in mice (Mangeney et al. 257 

2007). Therefore, immunosuppressive activity of ERV3-1 could potentially be related to 258 

the progress of AML. 259 

AML forms an immunosuppressive microenvironment by increasing the 260 

number of myeloid-derived suppressor cells in the peripheral blood, as well as 261 
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regulatory T cells in both the peripheral blood and bone marrow (Beyar-Katz et al. 2018). 262 

In fact, allogeneic hematopoietic cell transplantation, one of the T-cell based 263 

immunotherapy, is the most effective in post-remission therapy, and is commonly used 264 

for AML treatment (Koreth et al. 2009). AML cell spontaneously fused with murine 265 

macrophages, endothelial, and dendritic cells, which may lead to dissemination of the 266 

disease (Martin-Padura et al. 2012). This observation suggests that 267 

immunosuppressive function of ERV3-1 might be involved in AML progression. 268 

Although 150 cases show high ERV3-1 mRNA expression levels (Figure 1), we 269 

were unable to confirm the protein expression of ERV3-1 in 5 of 12 cases (Figure 3). We 270 

were also unable to identify an association of ERV3-1 expression with chromosomal 271 

abnormalities and genetic mutations (Table S1). These results might suggest that 272 

ERV3-1 is not an essential factor in AML development, but rather plays a supportive role. 273 

Therefore, the factor that affects ERV3-1 expression of AML, as well as the role of 274 

ERV3-1 in AML, should be further investigated. Moreover, considering that many 275 

viral-derived sequences have been described in eukaryote genomes that have not yet 276 

been annotated in the genome database (Nakagawa and Takahashi 2016; Pertea et al. 277 

2018; Kryukov et al. 2019) and that these viral-derived genes are dynamically altered 278 

during evolution (Imakawa et al. 2015; Imakawa and Nakagawa 2017; Pastuzyn et al. 279 

2018). Therefore, not only ERV3-1 but also other unknown viral-derived genes could be 280 

also involved in the progress of AML. 281 

 282 
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Figure legends 435 

 436 

Figure 1. Transcriptome analysis of retroviral-like gene expression 437 

Heatmap of 12 retroviral-like genes 150 RNA-seq data is shown. Log-transformed TPM 438 

scores are used to compare the mRNA expression. Red or blue indicates the high or 439 

low expression levels, respectively. 440 

 441 

Figure 2. ERV3-1 expression in AML M0-M3 is higher than that of M4-M5 442 

(A) Case distribution of FAB M0-M3 or M4-M5 in both ERV3-1 high (n = 30) and low 443 

groups (n = 30). (B) Comparison of ERV3-1 expression in both AML M0-M3 (n = 102) 444 

and M4-M5 (n = 44) in all cases of TCGA data. Statistical analysis was assessed by 445 

Mann-Whitney U test. Boxes denote the median, and the first and third quartile. The 446 

upper and lower whiskers represent the 90th and 10th percentile, respectively. *P < 447 

0.001. 448 

 449 

Figure 3. More than half of AML M4-M5 patients express ERV3-1 protein in tumor 450 

cells 451 

Immunohistochemical staining of ERV3-1 was performed using patient bone marrow 452 

samples. Tumor cells occupy the majority of bone marrow tissue. Representative of 453 

ERV3-1 (A) negative and (B) positive patients (left: low power field, right: high power 454 

field) corresponding to Table 2 are shown. 455 

 456 

 457 
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Figure 1. Transcriptome analysis of expression levels of retroviral-like genes

Heatmap of 11 retroviral-like genes 150 RNA-seq data is shown. Log-transformed TPM scores are 
used to compare the mRNA expression. Color in red or blue indicates the high or low expression 
levels, respectively.
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Figure 2. ERV3-1 expression of AML M0-M3 is higher than that of M4-M5

(A) Case distribution of FAB M0-M3 or M4-M5 in both ERV3-1 High (n= 30) and low groups (n=30) are 
shown. (B) Comparison of ERV3-1 expression of both AMLM0-M3 (n = 102) and M4-M5 (n = 44) in all 
cases of the TCGA data. Statistical analysis was assessed by Mann-Whitney U test. The boxes denote 
the median, and the first and third quartile. The upper and lower whiskers represent the 90% and 10%, 
respectively. *P < 0.001.
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Figure 3. More than half of AML M4-M5 patients express ERV3-1 protein in tumor cells. 

Immunohistochemical staining of ERV3-1 was performed using bone marrow of patient samples. Tumor 
cells were occupied in the majority of bone marrow tissue. Representative of ERV3-1 (A) negative and (B) 
positive patients (left: low power field, right: high power field) corresponding to Table 2 are shown.

50μm

a) ERV3-1 negative (Patient No3) 

20μm50μm

b) ERV3-1 positive (Patient No2)
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Table 1. Characteristics of the TCGA-LAML patients in both ERV High (>20%) and low (<20%) groups.

Patients Total (n=60) ERV3 High (n=30) ERV3 low (n=30) P

Age: range (median) 21-81 (56.5) 21-81 (56.5) 31-81 (56.5) 0.706

Gender
Male
Female

32
28

17
13

15
15

0.796

FAB classification
M0 
M1
M2
M3
M4
M5

7
18
15
4
10
6

5
11
9
4
1
0

2
7
6
0
9
6

<0.001

Cytogenetic risk
Favorable
Intermediate
Poor
Unknown

12
31
15
2

8
10
11
1

4
21
4
1

0.016

FAB classification    
M0-M3
M4-M5

44
16

29
1

15
15

<0.001

Diagnostic WBC:
range (median)

1-58.5 (18) 1-46 (12) 1-58.5 (28.5) 0.265

ERV3-1 expression:
range (median)

2.50-7.38 (5.36) 6.13-7.38 (6.44) 2.50-4.58 (4.02) <0.001

WBC: white blood cell count
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Patients
Age at 

diagnosis
gender FAB Biopsy Status

Diagnostic
White cell 

count
Cytogenetic

Cytogenetic 
risk

ERV3-1 
expression

1 79 male M4 Primary 2000 45, X, -Y [20/20] Intermediate +

2 78 male M4 Primary 27700 46,XY [20/20] Intermediate ++

3 60 female M4 Primary 17900 45, XX, -7 [20/20] poor −

4 68 female M4 Primary 34700
46, XX, 

t(7;11)(p15;p15) 
[20/20]

Intermediate −

5 69 male M4 Primary 1500
46,XY,der(7)(q31), 
Inv(16)(p13.1q22) 

[20/20]
favorable ＋

6 53 male M5 Relapse 48600 46,XY [20/20] Intermediate ++

7 70 male M5 Primary 33800
46,XY, inv(9)(p12q13) 

[10/20]
Intermediate +

8 65 male M5 Primary 61000
47, XY, -8, +i(8)(q10) 

×2 [20/20]
Intermediate −

9 64 male M5 Primary 50500
49,XY,+5,add(7)(q32),

+8,+mar [8/20] 
/50,idem,+20[3/20]

Poor ++

10 58 male M5 Primary 17400 47,XY,+8 [18/20] Intermediate −

11 56 male M5 Primary 169800 46,XY [20/20] Intermediate ＋

12 71 male M5 Primary 5700 46,XY [20/20] Intermediate −

Table 2. Characteristics of AMLM4-M5 patients in in our immunostaining analysis
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