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Abstract
Uncovering the general principles that govern the architecture of metabolic networks is key to 
understanding the emergence and evolution of living systems. Artificial chemistries, in silico 
representations of chemical reaction networks arising from a defined set of mathematical rules, 
can help address this challenge by enabling the exploration of alternative chemical universes 
and the possible metabolic networks that could emerge within them. Here we focus on artificial 
chemistries in which strings of characters represent simplified molecules, and string 
concatenation and splitting represent possible chemical reactions. We study string chemistries 
using tools borrowed from the field of stoichiometric constraint-based modeling of organismal 
metabolic networks, through a novel Python package, ARtificial CHemistry NEtwork Toolbox 
(ARCHNET). In addition to exploring the complexity and connectivity properties of different 
string chemistries, we developed a network-pruning algorithm that can generate minimal 
metabolic networks capable of producing a specified set of biomass precursors from a given 
assortment of environmental molecules within the string chemistry framework. We found that 
the identities of the metabolites in the biomass reaction wield much more influence over the 
structure of the minimal metabolic networks than the identities of the nutrient metabolites — a 
notion that could help us better understand the rise and evolution of biochemical organization. 
Our work provides a bridge between artificial chemistries and stoichiometric modeling, which 
can help address a broad range of open questions, from the spontaneous emergence of an 
organized metabolism to the structure of microbial communities.

Introduction
Metabolism occupies a central role in the functioning of biological systems, yet much 

remains unclear about the degree to which basic features of metabolic networks reflect 
evolutionary accidents or optimal network structures [1–4]. In parallel to analyses focused on 
metabolism as we know it in individual organisms [5,6] or in the whole biosphere [2,7,8], multiple
studies have explored the utility of abstract models of chemistry to investigate particular features
of chemical networks. These models, also known as artificial chemistries, have the benefit of 
being unconstrained by the limits of what is known about extant metabolism and about its 
possible intermediate states lost through evolutionary history [9–11]. Artificial chemistry has 
been used to study various aspects of the origin of life from abiotic chemistry [9,11,12], common
structural features of metabolic networks (e.g. hub metabolites) [13–15], the general behavior of
chemical (not necessarily biochemical) reaction networks [10,16], the optimality (or lack thereof)
of metabolic networks [17,18], among other questions [9]. The artificial chemistry models used 
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in these studies typically employ highly abstracted representations of chemistry [9,11,17]. 
However, more precise and realistic models involving either string rules based on formalization 
of real chemistry (like SMILES [19] and variants thereof [20,21]), or de novo approximate 
quantum mechanics computations [10], have been used to explore the full space of possible 
real-life chemistry up to a certain degree of complexity [22]. Artificial chemistry approaches have
yielded many insights into general features of metabolism, but these findings have remained 
largely disconnected from the large body of metabolism research focused on characterizing real
metabolic networks. We believe that many novel insights into metabolism will be enabled by 
combining artificial chemistry with techniques commonly used to study real metabolic networks. 

The field of stoichiometric constraint-based modelling has provided many approaches 
that can be particularly useful for quantitatively understanding the structure and function of 
metabolic networks [23–26]. In particular, Flux Balance Analysis (FBA) is a common technique 
for studying metabolic networks at the level of a whole organism. FBA estimates the space of 
possible fluxes through the network at steady-state, and is generally employed to identify 
metabolic regimes closed to a biologically meaningful optimum [27]. FBA has been used to 
simulate multiple types of experiments and phenotypes, such as growth rates and metabolic 
phenotypes of gene knockouts, growth efficiency on different media, and identification of 
potential drug targets [27–29]. While FBA and stoichiometric constraint-based modeling have 
been widely used on real organism’s metabolic networks, these techniques have only rarely 
been applied to artificial chemistry networks.
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Figure 1. Three simple string chemistry networks. Square nodes represent chemicals and oval 
nodes represent reactions. Edges connect chemicals to the reactions they participate in, either 
as reactants or products. A. A network with only one type of monomer and a maximum string 
length of 2. B. A network with two types of monomers and a maximum string length of 2. C. A 
network with two types of monomers and a maximum string length of 3.

In the present work, we use a specific type of artificial chemistry known as a string 
chemistry, where each molecule is represented by a string of characters (Figure 1) [9,11,17]. 
Our string chemistry model is relatively simple: all strings (i.e. metabolites) are linear sequences
of characters (i.e. monomers, atoms, functional groups) that may react by either concatenating 
end-to-end or splitting into two smaller strings (see Methods). A particular string chemistry 
network is defined by the set of different characters each metabolite can be composed of and 
the maximum length a metabolite can reach. While these rules are much simpler than those 
governing real chemical reactions, Riehl et al. managed to find structural similarities between 
real metabolic networks and string chemistry networks with only one type of character (i.e. the 
only difference between any two metabolites is their length) [17], so we expect that string 
chemistries chemistry with more than one monomer type may yield further insights into the 
general properties of metabolic networks.

In this manuscript, we describe the ARtificial CHemistry NEtwork Toolbox (ARCHNET), 
a Python package we created for generating string chemistry networks of arbitrary size and 
implementing stoichiometric modeling algorithms (including FBA) on those networks. Using this 
string chemistry framework, we created an algorithm for determining the minimal metabolic 
network capable of producing a given set of metabolites (“biomass precursors”) from another 
set of metabolites (“environmental nutrients”). Our analysis of random choices of nutrients and 
biomass precursors in different string chemistry networks provides new insight into the rules 
governing the structures of these minimal metabolic networks and suggests possible 
implications for the study of real metabolic networks.

Methods
Artificial Chemistry Model

The artificial chemistry model used here is an extension of the one used in [17] and is 
similar to previously used artificial chemistries (e.g. [9,11,14]): each “chemical” is a string of
characters of some arbitrary length, where each character represents an individual 
atom (or functional group, or monomer). A chemical may condense with one other 
chemical to produce a longer chemical; the two strings are simply concatenated 
(e.g. ab + aa → abaa). A chemical may also split into two smaller chemicals at any 
point along its length (e.g. ababb → ab + abb). Only pairwise 
condensation/dissociation reactions were considered due to the rarity of 
termolecular and higher reactions in real chemistry [30–32]. For simplicity, all reactions 
are modeled as being completely reversible, even though in principle further constraints on 
reversibility could easily be added. The numbers of chemicals and allowed reactions in the 
model are functions of the number of unique characters (“monomers”) and the maximum 
chemical length. These functions can be obtained analytically by enumerating the sizes of 
various string chemistry networks and examining the resulting series:
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where A is the number of unique characters (monomers) and L is the maximum chemical 
length. We will refer below to a specific complete set of metabolites and reactions generated for 
a given choice of A and L as a “chemical universe”. This will allow us to clearly distinguish such 
complete sets from subsets generated by pruning algorithms (see below).

Flux Balance Analysis
Flux Balance Analysis (FBA) is a mathematical framework for computing steady-state 

fluxes through chemical reactions in a given network of reactions subject to linear constraints 
[27]. The network of reactions is represented as a stoichiometric matrix S, where each column 
contains all of the stoichiometric coefficients for an individual reaction (negative for substrates, 
positive for products) and each row indicates how much of an individual metabolite is produced 
or consumed by each reaction (see Figure 3 for an example of a string chemistry network and 
its associated stoichiometric matrix). The reaction fluxes to be computed are represented by a 
vector v. In order for the network to be at steady-state, v must be in the null space of S:

 

The resulting system of equations is underdetermined for nearly all nontrivial networks. 
Additional constraints may be specified that limit the values of fluxes through specific reactions, 
typically reflecting known thermodynamic constraints on certain reactions. These constraints 
typically reduce the space of feasible solutions, but still leave the problem underdetermined. 
Thus, a linear combination of reactions Z (the objective function) through which flux should be 
maximized is also typically specified:

where c is a vector indicating which reactions are to be included in the objective function Z. As 
FBA is usually applied to biochemical reaction networks, the objective function frequently is set 
to correspond to a single reaction that produces the right proportion of all precursors necessary 
for the generation of cellular macromolecules and key metabolites, representing growth of 
cellular biomass. While FBA was originally developed for studying and engineering microbial 
metabolic networks, its formalism is easily adaptable to any chemistry, provided that its 
chemical reactions can be represented as columns of a stoichiometric matrix (Figure 3). 

The ARtificial CHemistry NEtwork Toolbox (ARCHNET) Package
We created a Python package to facilitate the creation and handling of string chemistry 

networks (as defined above) of arbitrary size and the application of FBA to such networks. All 
FBA computations were performed using the COBRApy Python package [24]. This package, 
along with all scripts used to generate data and create figures are available in a GitHub 
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repository: https://github.com/segrelab/string-chemistry. The package contains tools for 
generating and analyzing string chemistry networks of arbitrary size, given the set of characters 
to use as monomers and the maximum string length. The networks can be returned as a 
stoichiometric matrix and/or a COBRApy model (to facilitate doing FBA or any other 
stoichiometric modelling technique). 

Network Pruning Algorithm
We implemented an algorithm that takes a complete string chemistry network as an 

input (e.g. the network of all possible reactions and metabolites when there are A = 2 and L = 
5), and generates as an output a subnetwork that has been pruned to satisfy specific criteria. 
Specifically, given (i) a string chemistry network, (ii) a biomass composition (i.e. a set of 
molecules that have to be produced at stoichiometrically fixed proportions) and a (iii) set of 
available environmental resources, the algorithm iteratively removes reactions from the network 
until there is no flux through the output reaction (Figure S1). In particular, it repeatedly runs FBA
to assign fluxes to all reactions and removes reactions with no flux and the reaction with the 
smallest nonzero flux. Once there is no flux through the output reaction, the last reaction that 
was removed is added back to the network and the network is “pruned”. The pruning algorithms 
are part of the Python package described above. Several other assorted scripts provide 
examples of applications of this pruning algorithm to string chemistry networks. 

Results
A Python Package for Creating and Analyzing Arbitrary String Chemistries

We have created the ARtificial CHemistry NEtwork Toolbox (ARCHNET), a Python 
package capable of generating string chemistry networks of arbitrary sizes given the number of 
unique characters (A) and the maximum length of a string (L) (Figure 1). For simplicity, the only 
types of reactions allowed in these networks are pairwise string concatenation and splitting (see
Methods for more details). Even with this restriction on reaction complexity, the networks 
increase in size very rapidly as A and/or L increase (Figure 2AB and Methods). For example, a 
basic chemistry with A = 3 and L = 2 would have 12 metabolites and 9 reactions. If we increase 
A by 1, the network would involve 20 metabolites and 16 reactions. If we instead increased L by 
one, there would be 39 metabolites and 63 reactions. Clearly, the network sizes depend very 
differently on these two parameters (see Methods). One of the important features of the 
package is that it can output networks both as a simple text file containing the stoichiometric 
matrix and as a COBRApy model [24], which can be exported as an SMBL file [33], so most 
tools developed to study real metabolism, including standard FBA calculations (Figure 3), are 
straightforward to apply to our string chemistries.
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Figure 2. Comparison of size and connectivity of string chemistry networks (colored lines) to 
real metabolic networks (black lines). A. Network sizes measured by metabolite counts. B. 
Network sizes measured by reaction counts. C. Network connectivities measured by ratio of 
reactions to metabolites. Ratios for networks pruned from the chemical universe with A = 2 and 
L = 5 are shown as a boxplot.

Figure 3. Flux-Balance Analysis on string chemistry networks. A. String chemistry network with 
A = 2 and L = 3. Metabolites are represented by blue rectangles and reactions are represented 
by red ovals. Edge colors represent reaction fluxes after maximizing flux through the biomass 
reaction: green edges are exchange fluxes (import/export/biomass production), black edges 
represent nonzero fluxes, and grey edges represent fluxes of zero. The direction of non-grey 
edges corresponds to the direction of flux; directions on grey edges are arbitrary. B. 
Stoichiometric matrix of network in A.

While real metabolic networks are much more complex than our string chemistry 
networks, both in terms of the underlying molecular structures and of the possible types of 
reactions, there are specific metrics that can be computed both for real metabolic networks and 
for our string chemistry networks. By comparing such metrics between these two systems, one 
can appreciate that artificial chemistries, despite their apparent simplicity, can quickly approach 
sizes and complexities comparable to those of real metabolic networks (see also [17]). By 
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evaluating (numerically or analytically; see Methods) the numbers of metabolites and reactions 
in various string chemistry networks, we see that even string chemistry networks with few 
unique characters and short maximum lengths (e.g. A = 4, L = 5; A = 2, L = 10) reach sizes 
comparable to those of the human, yeast and E. coli metabolic networks (Figure 2A,B). 
However, as seen in Figure 2C, these artificial networks have a much higher connectivity (ratio 
of reactions to metabolites) than the real organisms’ metabolic networks. Conversely, a simple 
network with A = 1 and L = 3 would already reach a connectivity similar to the one of real 
metabolic networks, but would obviously be much smaller. One could then ask whether it is 
possible to create string chemistry networks that are both of similar size and connectivity to 
those of real metabolic networks. Indeed, one should view the complete string chemistries 
depicted here as analogous to “complete chemical universes”, out of which a single organism’s 
metabolic network would constitute a small subset. As shown below, this concept can be 
explored in artificial chemistries by devising algorithms that can prune complete chemical 
networks to obtain subnetworks that resemble individual organisms’ metabolic networks.

Pruned Networks as Proxies for Evolved Organisms
After demonstrating the capacity of our package to create stoichiometric matrices usable

by standard modeling tools and comparing properties of string chemistry networks to real 
metabolic networks, we explored the properties of string chemistry subnetworks that more 
closely resemble the metabolic networks of individual organisms. We modeled organism-scale 
metabolic networks as “minimal” (i.e. using the fewest reactions) networks capable of producing 
a given set of metabolites (i.e. biomass precursors), which is consistent with a simple 
parsimonious evolutionary assumption. To identify these minimal networks, we implemented a 
“pruning” algorithm that iteratively applies FBA to string chemistry networks. Briefly, the 
algorithm works by running FBA on a string chemistry network (initially set to the whole 
chemical universe given particular values of A and L) with some specified nutrient uptake 
reactions (i.e. generate individual metabolites from nothing) and a “biomass” reaction (i.e. 
consuming specific —in this case, equal— ratios of a given set of metabolites), removing all 
reactions that have no flux, testing whether or not the reaction with the smallest nonzero flux 
can be removed without eliminating flux through the biomass reaction, and repeating until no 
reactions can be removed (see Methods and Figure S1). We explored two variants of this 
pruning algorithm: one that allowed “export” of any metabolic reaction as a waste product 
throughout the pruning process (i.e. each metabolite has a reaction that consumes it and 
produces nothing and it is never removed during the pruning process) and one that did not allow
any metabolites other than the biomass precursors to be “exported”. Pruned networks tend to 
have slightly fewer reactions when all metabolites can be exported than when there are no 
export reactions, due to the fact that any excess metabolite can be secreted (similar to costless 
byproducts predicted to be secreted in real metabolic networks [34]), rather than recycled 
internally.

Biomass Precursors Shape Network Architecture More Than Environmental Composition
Using this pruning algorithm, we investigated the relative importance of the choice of 

nutrients and the choice of biomass precursors on the structure of pruned networks. We 
generated the string chemistry universe with A = 2 and L = 5, then created different biomass 
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compositions (100 different sets of 5 randomly-chosen biomass precursors) and different sets of
nutrients (100 random pairs of nutrients) using the metabolites contained within this chemical 
universe. Note that upon choosing the biomass composition, a growth flux was added to 
produce all chosen biomass precursors in equal proportions (see Methods). We then ran the 
pruning algorithm on all possible combinations of these nutrients and biomass precursors 
(Figure 4A). In order to compare the structures of the pruned networks, each network was 
represented as a binary vector with as many elements as there were reactions in the chemical 
universe. In this binary vector, a 1 represents a reaction that was kept in the pruned network 
and a 0 represents a reaction that was removed during pruning. These binary vectors were 
visualized on UMAP [35] plots (Figure 4B-G). The main outcome of this analysis is that, 
regardless of whether or not export reactions are allowed, networks with the same biomass 
reaction typically cluster together, while networks with the same nutrient sources frequently 
have very different structures (Figure 4B, C). The clustering is generally a bit weaker in the 
networks pruned without export reactions—there are more isolated networks and distinct small 
clusters—but the pruned networks still noticeably by biomass reaction (Figure 4E, F). Note that 
the clustering of networks doesn’t seem to display any clear pattern in terms of achievable 
growth rates (Figure 4D,G), which are highly variable and roughly distributed around an 
intermediate value between zero and the maximum. In other words, networks with similar 
architecture, as dictated by the biomass composition, may achieve substantially different growth
rates, suggesting that while biomass composition dictates network structure, environmental 
constraints affect efficiency of production. 
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Figure 4. Choice of biomass precursors impacts structure of pruned networks more than choice
of available nutrients. A. Cartoon representation of how data shown in panels B-G were 
generated. B. UMAP scatterplot of pruned networks with export reactions (see main text) 
generated as described in A. Each point represents a different pruned network and the color of 
each point indicates the biomass reaction of that network. C. Same as B but colors indicate 
which set of nutrients the network was pruned with. D. Same as B but colors indicate growth 
rate of pruned network. E-G. Same as B-D but networks were pruned without export reactions 
(see main text). All pruned networks were derived from the universal string chemistry network 
with A = 2 and L = 5.

To assess the possibility that these results were just an artifact of the arbitrarily-chosen 
number of nutrients and biomass precursors, we investigated how the proportion of pruned 
reactions and connectivity of pruned networks change as the numbers of nutrients and biomass 
precursors vary (Figures S2 and S3). While the proportion of pruned reactions clearly decreases
as the number of biomass precursors increases, as one might expect, it does not appear to be 
affected by the number of available nutrients. Figure S3 indicates that the metabolite to reaction 
ratio is always around 1 in pruned networks. These values are all slightly lower than those 
observed in real metabolic networks (see arrow in Figure 2), which likely reflects the fact that 
real metabolic networks must be capable of sustaining growth on multiple different 
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environments, while the pruned networks are only required to sustain growth on one particular 
environment (see Methods). While we expect that the number of biomass precursors and 
nutrients may affect the structure of pruned networks in other more subtle ways, these findings 
support the idea that the results shown in Figure 4 do not depend on the number of biomass 
precursors or nutrients used during the pruning process.

Discussion
We have created ARCHNET, a Python package capable of performing stoichiometric 

modeling on string chemistry networks of arbitrary size and complexity, and we devised an 
algorithm that identifies minimal metabolic networks necessary for converting a given set of 
environmental metabolites into a specific combination  of “biomass” precursors within this 
framework. By running this pruning algorithm on many string chemistry networks, we found that 
the choice of the biomass metabolites wields much more influence over the structure of the 
minimal network than the choice of nutrients. Beyond this finding, our package could be used to 
further quantitatively explore any aspect of the complex relationship between metabolic network 
structure, environmental complexity, and biomass composition with minimal additional effort. 

The biomass compositions of our string chemistry networks shed light on the processes 
underlying those in real metabolic networks. Many bacterial Genome-Scale Models (GEMs) are 
often created using “template” biomass reactions for key taxa, given the challenges of 
obtainingas opposed to having biomass compositions based on organism-specific experimental 
data [6,36]. While this is an open and fast-developing research area, one may wonder to what 
extent bacterial GEMs’ biomass reactions based on templates from a few organisms may affect 
the specificity of the model fluxes [36]. Our finding about the importance of biomass composition
in string chemistry networks underscores the importance of careful reconstruction of biomass 
reactions in real metabolic networks [6,36,37].

The pruning algorithm is reminiscent of algorithms for identifying Elementary Flux Modes
(EFMs) [38] and, identifying Minimal Balanced Pathways [17], and of certain gap-filling 
algorithms [39,40]. However, unlike EFMs, our pruned networks represent a single minimal set 
of reactions for transforming an arbitrary set of input metabolites into an arbitrary set of 
stoichiometrically constrained output metabolites, rather than a description of the entire steady 
state flux space. Gap-filling algorithms are increasingly developed and used to transform initial 
drafts of genome-scale metabolic reconstructions obtained from automated genome annotation 
into well-connected metabolic networks capable of producing the organism’s biomass from 
precursors, in a way that is compatible with experimental observations [40–44]. Gap-filling 
algorithms often approach this problem by adding to the initial network specific reactions from a 
large pool iteratively converging to an optimally gap-filled network [44–46]. Alternative 
algorithms have proposed carving the gap-filled network from a super-set of reactions [5]. Both 
gap-filling approaches bear some similarities to our pruning algorithm, suggesting that string 
chemistries could be used to simulate and further enhance these approaches, taking advantage
of the tunable level of complexity of artificial networks, and on the complete knowledge of the 
underlying chemical universes.

Several previous studies used artificial chemistry as an avenue for addressing questions
related to the origin of life or to general mathematical properties of biochemical networks [9–
11,16,47]. Conversely, FBA has been applied mostly to the study of metabolic networks of real 
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organisms [27–29]. There is likely great untapped potential available from combining the two 
approaches. In particular, the recent application of stoichiometric approaches to the study of 
early metabolism [49] and of ecosystem-level biochemical networks [50–52] could greatly 
benefit from additional creative usage of artificial chemistries. For example, the capacity to 
handle artificial string chemistries of arbitrary complexity using these same stoichiometric tools 
makes it possible to explore evolutionary processes and ecosystem-level metabolism under 
simulated scenarios in which the whole chemical universe is fully known. This will make it 
possible to shed light on the role of historical contingency and optimality principles in shaping 
the architecture of metabolic networks.
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Figure S1. Description of the pruning algorithm.
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Figure S2. Number of biomass precursors affects the percentage of pruned reactions more 
than the number of nutrients. U2,5 was pruned with 100 different combinations of each number 
of food sources and biomass precursors shown on the graph. Each point is the mean pruned 
percentage with error bars indicating the standard deviation.
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Figure S3. Number of biomass precursors affects the ratio of reactions to metabolites in pruned
networks more than the number of nutrients. All networks were pruned from the chemical

universe where A = 2 and L = 5 with export reactions allowed. Each point is the mean reaction-
to-metabolite ratio with error bars indicating the standard deviation.

References

1. Pál C, Papp B, Lercher MJ, Csermely P, Oliver SG, Hurst LD. Chance and necessity in 
the evolution of minimal metabolic networks. Nature. 2006;440: 667–670.

2. Barve A, Wagner A. A latent capacity for evolutionary innovation through exaptation in 
metabolic systems. Nature. 2013;500: 203–206.

3. Noor E, Eden E, Milo R, Alon U. Central carbon metabolism as a minimal biochemical 
walk between precursors for biomass and energy. Mol Cell. 2010;39: 809–820.

4. Ebenhöh O, Heinrich R. Evolutionary optimization of metabolic pathways. Theoretical 
reconstruction of the stoichiometry of ATP and NADH producing systems. Bull Math Biol. 
2001. Available: https://link.springer.com/article/10.1006/bulm.2000.0197

5. Machado D, Andrejev S, Tramontano M, Patil KR. Fast automated reconstruction of 
genome-scale metabolic models for microbial species and communities. Nucleic Acids Res.
2018;46: 7542–7553.

6. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL. High-throughput 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.09.16.300491doi: bioRxiv preprint 

http://paperpile.com/b/LFiWMP/Yf1T
http://paperpile.com/b/LFiWMP/Teib
http://paperpile.com/b/LFiWMP/Teib
http://paperpile.com/b/LFiWMP/Teib
https://link.springer.com/article/10.1006/bulm.2000.0197
http://paperpile.com/b/LFiWMP/K9UJ
http://paperpile.com/b/LFiWMP/K9UJ
http://paperpile.com/b/LFiWMP/K9UJ
http://paperpile.com/b/LFiWMP/lYLv
http://paperpile.com/b/LFiWMP/lYLv
http://paperpile.com/b/LFiWMP/Jmo1
http://paperpile.com/b/LFiWMP/Jmo1
http://paperpile.com/b/LFiWMP/m9zp
http://paperpile.com/b/LFiWMP/m9zp
https://doi.org/10.1101/2020.09.16.300491
http://creativecommons.org/licenses/by-nc-nd/4.0/


generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol. 
2010;28: 977–982.

7. Raymond J, Segrè D. The effect of oxygen on biochemical networks and the evolution of
complex life. Science. 2006;311: 1764–1767.

8. Handorf T, Ebenhöh O, Heinrich R. Expanding metabolic networks: scopes of 
compounds, robustness, and evolution. J Mol Evol. 2005;61: 498–512.

9. Banzhaf W, Yamamoto L. Artificial Chemistries. MIT Press; 2015.

10. Benkö G, Flamm C, Stadler PF. A graph-based toy model of chemistry. J Chem 
Inf Comput Sci. 2003;43: 1085–1093.

11. Kauffman SA, Member of the Santa Fe Institute and Professor of Biochemistry 
Stuart A Kauffman. The Origins of Order: Self-organization and Selection in Evolution. 
Oxford University Press; 1993.

12. Guseva E, Zuckermann RN, Dill KA. Foldamer hypothesis for the growth and 
sequence differentiation of prebiotic polymers. Proc Natl Acad Sci U S A. 2017;114: 
E7460–E7468.

13. Friedlander T, Mayo AE, Tlusty T, Alon U. Evolution of bow-tie architectures in 
biology. PLoS Comput Biol. 2015;11: e1004055.

14. Fontana W, Buss LW. What would be conserved if “the tape were played twice”? 
Proc Natl Acad Sci U S A. 1994;91: 757–761.

15. Pfeiffer T, Soyer OS, Bonhoeffer S. The evolution of connectivity in metabolic 
networks. PLoS Biol. 2005;3: e228.

16. Fontana W, Buss LW. “The arrival of the fittest”: Toward a theory of biological 
organization. Bull Math Biol. 1994;56: 1–64.

17. Riehl WJ, Krapivsky PL, Redner S, Segrè D. Signatures of arithmetic simplicity in
metabolic network architecture. PLoS Comput Biol. 2010;6: e1000725.

18. Soyer OS, Pfeiffer T. Evolution under fluctuating environments explains observed
robustness in metabolic networks. PLoS Comput Biol. 2010;6. 
doi:10.1371/journal.pcbi.1000907

19. Weininger D. SMILES, a chemical language and information system. 1. 
Introduction to methodology and encoding rules. J Chem Inf Comput Sci. 1988;28: 31–36.

20. Arús-Pous J, Johansson SV, Prykhodko O, Bjerrum EJ, Tyrchan C, Reymond J-
L, et al. Randomized SMILES strings improve the quality of molecular generative models. J 
Cheminform. 2019;11: 71.

21. Lin T-S, Coley CW, Mochigase H, Beech HK, Wang W, Wang Z, et al. 
BigSMILES: A Structurally-Based Line Notation for Describing Macromolecules. ACS Cent 
Sci. 2019;5: 1523–1531.

22. Lee AA, Yang Q, Sresht V, Bolgar P, Hou X, Klug-McLeod JL, et al. Molecular 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.09.16.300491doi: bioRxiv preprint 

http://paperpile.com/b/LFiWMP/Wcii
http://paperpile.com/b/LFiWMP/9X6X
http://paperpile.com/b/LFiWMP/9X6X
http://paperpile.com/b/LFiWMP/9X6X
http://paperpile.com/b/LFiWMP/s47u
http://paperpile.com/b/LFiWMP/s47u
http://paperpile.com/b/LFiWMP/s47u
http://paperpile.com/b/LFiWMP/WgMS
http://paperpile.com/b/LFiWMP/WgMS
http://dx.doi.org/10.1371/journal.pcbi.1000907
http://paperpile.com/b/LFiWMP/MERz
http://paperpile.com/b/LFiWMP/MERz
http://paperpile.com/b/LFiWMP/MERz
http://paperpile.com/b/LFiWMP/xAAK
http://paperpile.com/b/LFiWMP/xAAK
http://paperpile.com/b/LFiWMP/euwO
http://paperpile.com/b/LFiWMP/euwO
http://paperpile.com/b/LFiWMP/Sbpj
http://paperpile.com/b/LFiWMP/Sbpj
http://paperpile.com/b/LFiWMP/kOUl
http://paperpile.com/b/LFiWMP/kOUl
http://paperpile.com/b/LFiWMP/VieL
http://paperpile.com/b/LFiWMP/VieL
http://paperpile.com/b/LFiWMP/aI4G
http://paperpile.com/b/LFiWMP/aI4G
http://paperpile.com/b/LFiWMP/aI4G
http://paperpile.com/b/LFiWMP/8iNX
http://paperpile.com/b/LFiWMP/8iNX
http://paperpile.com/b/LFiWMP/8iNX
http://paperpile.com/b/LFiWMP/Z9s6
http://paperpile.com/b/LFiWMP/Z9s6
http://paperpile.com/b/LFiWMP/6tMQ
http://paperpile.com/b/LFiWMP/yh9D
http://paperpile.com/b/LFiWMP/yh9D
http://paperpile.com/b/LFiWMP/Fqo9
http://paperpile.com/b/LFiWMP/Fqo9
http://paperpile.com/b/LFiWMP/Yf1T
http://paperpile.com/b/LFiWMP/Yf1T
https://doi.org/10.1101/2020.09.16.300491
http://creativecommons.org/licenses/by-nc-nd/4.0/


Transformer unifies reaction prediction and retrosynthesis across pharma chemical space. 
Chem Commun . 2019;55: 12152–12155.

23. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, et al. 
Creation and analysis of biochemical constraint-based models using the COBRA Toolbox 
v.3.0. Nat Protoc. 2019;14: 639–702.

24. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. COBRApy: COnstraints-Based
Reconstruction and Analysis for Python. BMC Syst Biol. 2013;7: 74.

25. Gottstein W, Olivier BG, Bruggeman FJ, Teusink B. Constraint-based 
stoichiometric modelling from single organisms to microbial communities. J R Soc Interface.
2016;13. doi:10.1098/rsif.2016.0627

26. O’Brien EJ, Monk JM, Palsson BO. Using Genome-scale Models to Predict 
Biological Capabilities. Cell. 2015;161: 971–987.

27. Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol. 
2010;28: 245–248.

28. Gu C, Kim GB, Kim WJ, Kim HU, Lee SY. Current status and applications of 
genome-scale metabolic models. Genome Biol. 2019;20: 121.

29. Kauffman KJ, Prakash P, Edwards JS. Advances in flux balance analysis. Curr 
Opin Biotechnol. 2003;14: 491–496.

30. Chang R. Physical Chemistry for the Biosciences. University Science Books; 
2005.

31. Laidler KJ, Glasstone S. Rate, order and molecularity in chemical kinetics. J 
Chem Educ. 1948;25: 383.

32. Compton RG, Bamford CH, Tipper† CFH. The Theory of Kinetics. Elsevier; 2012.

33. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, et al. The systems
biology markup language (SBML): a medium for representation and exchange of 
biochemical network models. Bioinformatics. 2003;19: 524–531.

34. Pacheco AR, Moel M, Segrè D. Costless metabolic secretions as drivers of 
interspecies interactions in microbial ecosystems. Nat Commun. 2019;10: 103.

35. McInnes L, Healy J, Melville J. UMAP: Uniform Manifold Approximation and 
Projection for Dimension Reduction. arXiv [stat.ML]. 2018. Available: 
http://arxiv.org/abs/1802.03426

36. Xavier JC, Patil KR, Rocha I. Integration of Biomass Formulations of Genome-
Scale Metabolic Models with Experimental Data Reveals Universally Essential Cofactors in 
Prokaryotes. Metab Eng. 2017;39: 200–208.

37. Lachance J-C, Lloyd CJ, Monk JM, Yang L, Sastry AV, Seif Y, et al. BOFdat: 
Generating biomass objective functions for genome-scale metabolic models from 
experimental data. PLoS Comput Biol. 2019;15: e1006971.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.09.16.300491doi: bioRxiv preprint 

http://paperpile.com/b/LFiWMP/IzvH
http://paperpile.com/b/LFiWMP/IzvH
http://paperpile.com/b/LFiWMP/IzvH
http://paperpile.com/b/LFiWMP/oPsP
http://paperpile.com/b/LFiWMP/oPsP
http://paperpile.com/b/LFiWMP/oPsP
http://arxiv.org/abs/1802.03426
http://paperpile.com/b/LFiWMP/bIcu
http://paperpile.com/b/LFiWMP/bIcu
http://paperpile.com/b/LFiWMP/Qy8t
http://paperpile.com/b/LFiWMP/Qy8t
http://paperpile.com/b/LFiWMP/wU1o
http://paperpile.com/b/LFiWMP/wU1o
http://paperpile.com/b/LFiWMP/wU1o
http://paperpile.com/b/LFiWMP/tqO6
http://paperpile.com/b/LFiWMP/H4CN
http://paperpile.com/b/LFiWMP/H4CN
http://paperpile.com/b/LFiWMP/ndQT
http://paperpile.com/b/LFiWMP/ndQT
http://paperpile.com/b/LFiWMP/cBRP
http://paperpile.com/b/LFiWMP/cBRP
http://paperpile.com/b/LFiWMP/rpx9
http://paperpile.com/b/LFiWMP/rpx9
http://paperpile.com/b/LFiWMP/6jlO
http://paperpile.com/b/LFiWMP/6jlO
http://paperpile.com/b/LFiWMP/wWhF
http://paperpile.com/b/LFiWMP/wWhF
http://dx.doi.org/10.1098/rsif.2016.0627
http://paperpile.com/b/LFiWMP/YFTC
http://paperpile.com/b/LFiWMP/YFTC
http://paperpile.com/b/LFiWMP/YFTC
http://paperpile.com/b/LFiWMP/dCTJ
http://paperpile.com/b/LFiWMP/dCTJ
http://paperpile.com/b/LFiWMP/oTDl
http://paperpile.com/b/LFiWMP/oTDl
http://paperpile.com/b/LFiWMP/oTDl
http://paperpile.com/b/LFiWMP/Wcii
http://paperpile.com/b/LFiWMP/Wcii
https://doi.org/10.1101/2020.09.16.300491
http://creativecommons.org/licenses/by-nc-nd/4.0/


38. Schuster S, Fell DA, Dandekar T. A general definition of metabolic pathways 
useful for systematic organization and analysis of complex metabolic networks. Nat 
Biotechnol. 2000;18: 326–332.

39. Orth JD, Palsson BØ. Systematizing the generation of missing metabolic 
knowledge. Biotechnol Bioeng. 2010;107: 403–412.

40. Satish Kumar V, Dasika MS, Maranas CD. Optimization based automated 
curation of metabolic reconstructions. BMC Bioinformatics. 2007;8: 212.

41. Thiele I, Vlassis N, Fleming RMT. fastGapFill: efficient gap filling in metabolic 
networks. Bioinformatics. 2014;30: 2529–2531.

42. Prigent S, Frioux C, Dittami SM, Thiele S, Larhlimi A, Collet G, et al. Meneco, a 
Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic 
Networks. PLoS Comput Biol. 2017;13: e1005276.

43. Christian N, May P, Kempa S, Handorf T, Ebenhöh O. An integrative approach 
towards completing genome-scale metabolic networks. Mol Biosyst. 2009;5: 1889–1903.

44. Vitkin E, Shlomi T. MIRAGE: a functional genomics-based approach for 
metabolic network model reconstruction and its application to cyanobacteria networks. 
Genome Biol. 2012;13: R111.

45. Reed JL, Patel TR, Chen KH, Joyce AR, Applebee MK, Herring CD, et al. 
Systems approach to refining genome annotation. Proc Natl Acad Sci U S A. 2006;103: 
17480–17484.

46. Pharkya P, Burgard AP, Maranas CD. OptStrain: a computational framework for 
redesign of microbial production systems. Genome Res. 2004;14: 2367–2376.

47. Peng Z, Plum AM, Gagrani P, Baum DA. An ecological framework for the 
analysis of prebiotic chemical reaction networks. J Theor Biol. 2020; 110451.

48. Goldford JE, Hartman H, Marsland R 3rd, Segrè D. Environmental boundary 
conditions for the origin of life converge to an organo-sulfur metabolism. Nat Ecol Evol. 
2019. doi:10.1038/s41559-019-1018-8

49. Goldford JE, Segrè D. Modern views of ancient metabolic networks. Current 
Opinion in Systems Biology. 2018. Available: https://www.sciencedirect.com/science/article/
pii/S2452310017302196

50. Carlson RP, Beck AE, Phalak P, Fields MW, Gedeon T, Hanley L, et al. 
Competitive resource allocation to metabolic pathways contributes to overflow metabolisms
and emergent properties in cross-feeding microbial consortia. Biochem Soc Trans. 
2018;46: 269–284.

51. Klitgord N, Segrè D. Environments that induce synthetic microbial ecosystems. 
PLoS Comput Biol. 2010;6: e1001002.

52. Harcombe WR, Riehl WJ, Dukovski I, Granger BR, Betts A, Lang AH, et al. 
Metabolic resource allocation in individual microbes determines ecosystem interactions and
spatial dynamics. Cell Rep. 2014;7: 1104–1115.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.09.16.300491doi: bioRxiv preprint 

http://paperpile.com/b/LFiWMP/9OGT
http://paperpile.com/b/LFiWMP/9OGT
http://paperpile.com/b/LFiWMP/9OGT
http://paperpile.com/b/LFiWMP/oP17
http://paperpile.com/b/LFiWMP/oP17
http://paperpile.com/b/LFiWMP/C76g
http://paperpile.com/b/LFiWMP/C76g
http://paperpile.com/b/LFiWMP/C76g
https://www.sciencedirect.com/science/article/pii/S2452310017302196
https://www.sciencedirect.com/science/article/pii/S2452310017302196
http://paperpile.com/b/LFiWMP/rYGV
http://paperpile.com/b/LFiWMP/rYGV
http://dx.doi.org/10.1038/s41559-019-1018-8
http://paperpile.com/b/LFiWMP/jFpu
http://paperpile.com/b/LFiWMP/jFpu
http://paperpile.com/b/LFiWMP/jFpu
http://paperpile.com/b/LFiWMP/QpLM
http://paperpile.com/b/LFiWMP/QpLM
http://paperpile.com/b/LFiWMP/ozCg
http://paperpile.com/b/LFiWMP/ozCg
http://paperpile.com/b/LFiWMP/paNd
http://paperpile.com/b/LFiWMP/paNd
http://paperpile.com/b/LFiWMP/paNd
http://paperpile.com/b/LFiWMP/TSZd
http://paperpile.com/b/LFiWMP/TSZd
http://paperpile.com/b/LFiWMP/TSZd
http://paperpile.com/b/LFiWMP/rATt
http://paperpile.com/b/LFiWMP/rATt
http://paperpile.com/b/LFiWMP/6IWU
http://paperpile.com/b/LFiWMP/6IWU
http://paperpile.com/b/LFiWMP/6IWU
http://paperpile.com/b/LFiWMP/m2XY
http://paperpile.com/b/LFiWMP/m2XY
http://paperpile.com/b/LFiWMP/qleM
http://paperpile.com/b/LFiWMP/qleM
http://paperpile.com/b/LFiWMP/1atW
http://paperpile.com/b/LFiWMP/1atW
http://paperpile.com/b/LFiWMP/0vrJ
http://paperpile.com/b/LFiWMP/0vrJ
http://paperpile.com/b/LFiWMP/0vrJ
https://doi.org/10.1101/2020.09.16.300491
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.09.16.300491doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.300491
http://creativecommons.org/licenses/by-nc-nd/4.0/

