
Page 1 of 60 
 

 1 

Myeloid cell-associated resistance to PD-1/PD-L1 blockade in 2 
urothelial cancer revealed through bulk and single-cell RNA 3 

sequencing 4 

 5 

Li Wang1,2,3, John P. Sfakianos4, Kristin G. Beaumont1,2, Guray Akturk5, Amir Horowitz5,  6 
Robert Sebra1,2,3,6, Adam M. Farkas5, Sacha Gnjatic5, Austin Hake1,2*, Sudeh 7 

Izadmehr7, Peter Wiklund4, William K Oh7, Peter Szabo8, Megan Wind-Rotolo8, Kezi 8 
Unsal-Kacmaz8, Xin Yao9,  Eric Schadt1,2,3, Padmanee Sharma10, Nina Bhardwaj5,7, Jun 9 

Zhu1,2,3**, Matthew D. Galsky7** 10 
 11 

1Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount 12 
Sinai, New York, NY 13 
2Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New 14 
York, NY 15 
3Sema4, a Mount Sinai venture, Stamford, CT 16 
4Department of Urology; Icahn School of Medicine at Mount Sinai, New York, NY 17 
5Precision Immunology Institute; Icahn School of Medicine at Mount Sinai, New York, NY  18 
6Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 19 
7Department of Medicine, Division of Hematology Oncology, Icahn School of Medicine at Mount 20 
Sinai, Tisch Cancer Institute, New York, NY 21 
8Bristol-Myers Squibb, Princeton, NJ 22 
9Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and 23 
Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention 24 
and Therapy, Tianjin, China 25 
10Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer 26 
Center, Houston, TX 27 
 28 
*Current affiliation: Renaissance School of Medicine at Sony Brook University, Stony Brook, NY 29 
 30 
**Addresses for correspondence: 31 

Dr. Matthew D. Galsky 32 
The Tisch Cancer Institute 33 
Icahn School of Medicine at Mount Sinai 34 
New York, NY 10029 35 
matthew.galsky@mssm.edu 36 

or 37 

Dr. Jun Zhu 38 
Icahn Institute for Genomics and Multiscale Biology 39 
The Tisch Cancer Institute 40 
Icahn School of Medicine at Mount Sinai 41 
New York, NY 10029 42 
jun.zhu@mssm.edu 43 
  44 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.09.16.300111doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.300111
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 2 of 60 
 

Abstract 45 

Adaptive immunity and tumor-promoting inflammation exist in delicate balance in 46 

individual tumor microenvironments; however, the role of this balance in defining 47 

sensitivity and resistance to  PD-1/PD-L1 blockade therapy in urothelial cancer and other 48 

malignancies is poorly understood. We pursued an unbiased systems biology approach 49 

using bulk RNA sequencing data to examine pre-treatment molecular features associated 50 

with sensitivity to PD-1/PD-L1 blockade in patients with metastatic urothelial cancer and 51 

identified an adaptive_immune_response module associated with response and an 52 

inflammatory_response module and stromal module associated with resistance. We 53 

mapped these gene modules onto single-cell RNA sequencing data demonstrating the 54 

adaptive_immune_response module emanated predominantly from T, NK, and B cells, 55 

the inflammatory_response module from monocytes/macrophages, and the stromal 56 

module from fibroblasts. The adaptive_immune_response:inflammatory_response 57 

module expression ratio in individual tumors, reflecting the balance between antitumor 58 

immunity and tumor-associated inflammation and coined the 2IR score, best correlated 59 

with clinical outcomes and was validated in an independent cohort. Individual 60 

monocytes/macrophages with low 2IR scores demonstrated upregulation of 61 

proinflammatory genes including IL1B and downregulation of antigen presentation genes, 62 

were unrelated to classical M1 versus M2 polarization, and were enriched in pre-63 

treatment peripheral blood from patients with PD-L1 blockade-resistant metastatic 64 

urothelial cancer.   65 

 66 
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Single sentence summary:  Proinflammatory monocytes/macrophages, present in 67 

tumor and blood, are associated with resistance to immune checkpoint blockade in 68 

urothelial cancer. 69 

 70 

 71 

  72 
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Introduction 73 

Standard treatment for metastatic urothelial cancer (UC) of the bladder has 74 

historically been limited to platinum-based chemotherapy. However, the treatment 75 

landscape has recently experienced a major shift with the introduction of several PD-76 

1/PD-L1 immune checkpoint inhibitors (CPI) into the armamentarium.(1–5) These 77 

therapies are characterized by durable responses, often measured in years, but achieved 78 

in only a subset of ~15-25% of patients. This therapeutic profile has led to intensive 79 

investigation into mechanisms of intrinsic resistance in pursuit of biomarkers and 80 

combination strategies to extend the benefits of CPI to additional patients.  81 

 Responses to CPI are thought to be predicated on a pre-existing anti-tumor T cell 82 

response restrained due to adaptive immune resistance.(6) Indeed, measures of T cell 83 

infiltration, IFNγ-related gene signatures, and PD-L1 expression, colloquially referred to 84 

as reflecting “hot tumors”, have all been correlated with response to CPI in patients with 85 

UC.(1, 3) These biomarkers are also generally positively correlated with one another, 86 

likely reflecting largely redundant biology.(7) While PD-L1 expression is the only 87 

biomarker integrated into clinical practice to inform CPI treatment in UC to date, PD-L1 88 

testing alone conveys modest predictive information. Several groups have shown that 89 

higher tumor mutational burden (TMB) is associated with an increased likelihood of 90 

response to CPI independent of measures of adaptive immune resistance.(7–9) These 91 

findings suggest that combining multiple cancer cell- and tumor microenvironment (TME)-92 

related features may be required to engender mechanistic insights and refine clinical 93 

decision-making. 94 

Tumor-promoting “chronic” inflammation, now recognized as a hallmark of cancer 95 
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pathogenesis, involves a TME shaped by activated fibroblasts, endothelial cells and 96 

innate immune cells.(10) Monocytes and macrophages, key participants in tumor-97 

promoting inflammation, have been implicated in resistance to various cancer 98 

therapies.(11, 12) Remarkably, despite the widely held notion that subsets of myeloid 99 

cells in the TME impair T cell immunity, there have been relatively few studies involving 100 

human specimens linking a myeloid-inflamed TME with CPI resistance.(13) Further, the 101 

TME is comprised of diverse cell types and/or states orchestrating intricate interactions. 102 

Which of these various cellular populations and interactions underlie dominant 103 

mechanisms of CPI resistance is poorly understood; yet, such a holistic understanding is 104 

critical to prioritizing putative biomarkers and therapeutic targets for further investigation.  105 

To address the aforementioned knowledge gaps, we pursued an unbiased 106 

systems biology approach using bulk RNA sequencing data to examine pre-treatment 107 

molecular features associated with CPI outcomes in metastatic UC and identified three 108 

key gene modules: 1) an adaptive_immune_response module enriched in adaptive 109 

immune response genes and associated with longer survival, 2) an 110 

inflammatory_response module enriched in inflammation and innate immune genes and 111 

associated with shorter survival, and 3) a stromal module enriched in epithelial 112 

mesenchymal transition (EMT)- and extracellular matrix (ECM)-related genes and 113 

associated with shorter survival. The 114 

adaptive_immune_response:inflammatory_response module expression ratio, coined the 115 

2IR score, had the largest effect on clinical outcomes and was validated in an independent 116 

cohort. We then used single-cell RNA sequencing (scRNA-seq) data generated from UC 117 

bladder specimens to uncover the cellular composition underlying the three gene modules 118 
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demonstrating that the adaptive_immune_response module emanated predominantly 119 

from T, NK, and B cells, the inflammatory_response module from 120 

monocytes/macrophages, and the stromal module from cancer associated fibroblasts 121 

(CAFs). Individual monocytes/macrophages with low 2IR scores demonstrated 122 

upregulation of proinflammatory genes including IL1B and downregulation of antigen 123 

presentation genes, were unrelated to classical M1 versus M2 polarization, and were 124 

enriched in the pretreatment blood of patients with CPI-resistant metastatic UC. Thus, the 125 

balance of adaptive immunity and tumor-associated inflammation drives outcomes with 126 

CPI in UC and resistance associated with the latter may be mediated by a population of 127 

proinflammatory monocytes/macrophages detectable in both the TME and peripheral 128 

blood.     129 

  130 

Results 131 

An adaptive_immune_response, inflammatory_response, and stromal gene 132 

module were associated with CPI outcomes in patients with UC. To identify molecular 133 

features associated with survival in CPI-treated patients with metastatic UC, we utilized 134 

bulk RNA sequencing and TMB data from the IMvigor 210 study, a large single arm phase 135 

2 trial testing the PD-L1 inhibitor, atezolizumab (Figure 1a).(1, 7, 14) This cohort has been 136 

previously described and additional details are provided in Table S1; RNA sequencing 137 

and TMB data were available for 348 and 272 patients, respectively.(7) We pursued step-138 

wise identification of consistently co-expressed gene modules, which focused on 139 

identifying gene modules associated with overall survival (OS) and utilizing gene 140 

modularity to enrich for true signals (Figure 1b, Figure S1; see Methods). Given the 141 
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correlation between TMB and response to CPI in UC(7, 15), we explored genes 142 

associated with OS conditioning on TMB (see Methods) and identified a signature 143 

consisting of 1193 genes associated with longer OS. To refine this signature, we 144 

performed meta-analysis of co-expression patterns(16, 17) using both the IMvigor 210 145 

and The Cancer Genome Atlas (TCGA) UC datasets and identified a consistently co-146 

expressed gene module comprised of 483 genes (see Methods and Extended Data). 147 

Gene set enrichment analysis revealed that this module was highly enriched in adaptive 148 

immune response-related genes (Figure 1c and Figure S1) and was therefore labeled the 149 

adaptive_immune_response module.  150 

 In the second step, we further analyzed the IMvigor 210 dataset to identify genes 151 

associated with survival conditioning on both TMB and the adaptive_immune_response 152 

module (Figure 1b). We identified 1498 genes associated with shorter OS. We again 153 

applied meta-analysis of co-expression patterns(18, 19) in the IMvigor 210 and TCGA UC 154 

datasets and identified two consistently co-expressed gene modules for further analysis. 155 

The first module associated with shorter OS, consisting of 437 genes, was enriched in  156 

inflammation and innate immune genes  (Figure 1c, Figure S1, and Extended Data), and 157 

was labeled the inflammatory_response module. The second module associated with 158 

shorter OS, consisting of 287 genes, was enriched in epithelial mesenchymal transition 159 

(EMT)- and extracellular matrix (ECM)-related genes (Figure 1c and Extended Data) and 160 

consistent with our prior work(20) was named the stromal module. Importantly, 161 

expression of the inflammatory_response and stromal modules were both positively 162 

correlated with the adaptive_immune_response module (Figure S2) such that their 163 

disparate impact on OS was only revealed using our stepwise approach (Figure S3) and 164 
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suggesting that the balance of these features in individual tumors may impact CPI 165 

outcomes.  166 

 We next sought to define the independent contribution of the three gene modules 167 

to outcomes with CPI in the IMvigor 210 cohort. Models combining both the 168 

adaptive_immune_response and inflammatory_response modules (see Methods), 169 

particularly the adaptive_Immune_response:Inflammatory_response module expression 170 

Ratio (hereafter referred to as the 2IR score), demonstrated the largest effect size on OS 171 

and similar findings were observed with objective response rate (Figure 2a-c and Table 172 

S2). Importantly, when both the inflammatory_response and stromal modules were 173 

entered into a multivariable model along with the adaptive_immune_response module 174 

and TMB, the stromal module was no longer independently associated with OS (Figure 175 

2a and Table S2). These findings indicated that (a) the balance of cellular and molecular 176 

events underlying the adaptive_immune_response versus inflammatory_response 177 

modules within an individual UC TME may dictate outcomes with CPI and (b) the negative 178 

impact of the stromal module on outcomes may be largely indirect and mediated via the 179 

events underlying the inflammatory_response module (Figure 2a).  180 

Given the potential practical advantages of smaller sets of module genes for 181 

validation and clinical biomarker development, we identified the top-ranked genes within 182 

the three modules (see Methods, Table S3, and Figure S4). Module scores derived from 183 

these smaller gene sets demonstrated similar associations with OS compared with scores 184 

derived from the full gene sets (Table S4).  185 

The three gene modules were validated in an independent dataset of patients with 186 
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metastatic UC treated with PD-1 blockade and conveyed information beyond previously 187 

identified features. For validation, we utilized TMB and RNA sequencing data from the 188 

Checkmate 275 study, a single-arm phase 2 trial evaluating the PD-1 inhibitor, nivolumab, 189 

in patients with metastatic UC (Figure 1d).(3) This cohort has been previously described, 190 

with further detail provided in Table S1; RNA sequencing and TMB data were available 191 

for 72 and 139 patients, respectively.(3)  Gene module expression was defined using the 192 

top-ranked genes identified in the IMvigor 210 cohort. Within the limitations of the smaller 193 

sample size, adaptive_immune_response, inflammatory_response, and stromal module 194 

expression demonstrated similar associations with OS and response rate in the 195 

Checkmate 275 cohort (Table S5). As observed in the IMvigor 210 cohort, the 2IR score 196 

in the Checkmate 275 cohort demonstrated the largest effect on CPI outcomes (Figure 197 

2e,f).  198 

Our two cohorts involving CPI treatment were single arm clinical trials precluding 199 

a full understanding of the predictive versus prognostic nature of the gene modules. 200 

However, the effect of the 2IR score on OS in TCGA UC dataset, a cohort of patients with 201 

muscle-invasive UC of the bladder treated with curative-intent cystectomy, was less 202 

dramatic (Figure S5). Coupled with the correlation with CPI objective response rate in 203 

addition to OS, these findings reinforced that the 2IR score may impart predictive rather 204 

than solely prognostic information.  205 

Other features associated with outcomes with CPI in UC and other cancers have 206 

been reported including PD-L1 protein expression, the tumor immune dysfunction and 207 

exclusion (TIDE) and CD8 effector T cell gene signatures, ARID1A mutation status, and 208 

CXCL13, TGFB1, or CXCL8 (IL8) gene expression (see Figure S6 for correlation between 209 
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these features and the 2IR score).(7, 21–23) Importantly, the 2IR score was associated 210 

with favorable performance characteristics relative to these other measures in both the 211 

IMvigor 210 and Checkmate 275 cohorts (Figure 2d,g). Taken together, the 2IR score, 212 

representing the balance of expression of the adaptive_immune_response and 213 

inflammatory_response gene modules within individual TMEs, is associated with 214 

response rate and OS in CPI-treated patients and conveys information beyond that 215 

achieved with previously identified features.  216 

Lower 2IR scores, and stromal module expression, were associated with a paucity 217 

of T cells in cancer cell nests. To examine the TME of UC defined by the 3 gene modules, 218 

we employed a tissue profiling approach known as multiplexed immunohistochemical 219 

consecutive staining on a single slide (MICSSS)(24, 25) on a subset of 19 specimens 220 

from the Checkmate 275 cohort with available unstained slides and matched RNA 221 

sequencing data. MICSSS revealed that specimens with higher 2IR scores generally 222 

exhibited CD8+ T cell infiltration invading cancer cell nests and occasional tertiary 223 

lymphoid-like structures (Figure 3a,b and Figure S7) whereas specimens with lower 2IR 224 

scores demonstrated dense stroma (Figure 3 c,d). Hence, the 2IR score was associated 225 

with histologic features reminiscent of adaptive immunity versus tumor-associated 226 

inflammation.  227 

We, and others, previously showed that UC specimens with increased stroma-228 

related gene expression were characterized by T cells spatially separated from cancer 229 

cell nests, commonly referred to as the “excluded” phenotype.(7, 20) Therefore, to 230 

quantify the localization of T cells according to gene module expression, we defined 231 

cancer cell and stromal zones based on pan-cytokeratin staining using a machine 232 
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learning segmentation tool and examined CD8+ expression in 76 regions of interest 233 

across the 19 specimens (see Methods and Figure 3e). Lower 2IR scores, or higher 234 

stromal module expression, correlated with decreased CD8+ T cell enumeration in cancer 235 

cell nests (Figure 3f,g). These findings suggested that CPI resistance associated with 236 

lower 2IR scores may be related to impairment of T cell trafficking and/or function 237 

prompting us to further probe the cellular origins of gene module expression. 238 

The three gene modules emanated predominantly from distinct cellular 239 

components of the TME as identified by single cell RNA sequencing. Our gene modules 240 

were derived from bulk RNA sequencing data from archival UC specimens obtained pre-241 

treatment with CPI, the vast majority of which represented invasive primary tumors (Table 242 

S1). Therefore, to map the cellular origins of the three gene modules (Figure 4a), we 243 

performed droplet-based encapsulation single cell RNA sequencing (scRNA-seq) on an 244 

analogous set of eight freshly resected invasive UC bladder specimens as well as two 245 

specimens derived from adjacent grossly normal urothelium using the 10x Genomics 246 

Chromium system (see Methods). The characteristics of the cohort are detailed in Table 247 

S6.  After excluding cells not passing quality control (see Figure S8 for QC plots), 19,708 248 

cells from the 10 samples were analyzed. A median of 1456 genes were detected per 249 

cell. We performed graph-based clustering as implemented in the Seurat package.(26) A 250 

two-stage clustering approach was employed in which cells were first grouped into major 251 

clusters and subsequently further partitioned into minor clusters (see Methods). 252 

Canonical marker genes revealed nine major cell populations including T- and NK cells, 253 

B-cells, myeloid-lineage cells, non-hematopoietic stromal cells, and epithelial cells 254 

(Figure 4b,c). Granulocyte populations were not well captured by 10x Chromium scRNA-255 
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seq as has been noted in prior studies.(27)  256 

To determine the predominant origins of the adaptive_immune response, 257 

inflammatory_response, and stromal modules, the expression pattern of the module 258 

genes was assessed among the major cell populations (see Methods). The 259 

adaptive_immune_response module was enriched among genes overexpressed by T, 260 

NK, and B cells, the inflammatory_response module among genes overexpressed by 261 

monocytes/macrophages, and the stromal module among genes overexpressed by 262 

fibroblasts (Figure 4a,d).  263 

Partitioning of the major cell clusters through a second round of analysis (see 264 

Methods) revealed 50 minor cell clusters (Figures 5a). This high-resolution 265 

characterization of UC specimens demonstrated that while the gene modules were 266 

expressed predominantly by certain cell types, diversity in module expression between 267 

and among cell types was observed suggesting that interplay among different cell types 268 

in the TME contributed to module expression (Figure 5a). Given their key role in 269 

contributing to the inflammatory_response module, the monocyte/macrophage clusters 270 

are described further herein while the remainder of the minor cell clusters are described 271 

in the Supplemental Results and Figures S9-15.  272 

We identified eight monocyte/macrophage clusters (Figure 5a-c). While some 273 

clusters expressed higher expression of M1 versus M2 signature genes (Figure 5d), or 274 

vice versa, heterogeneity of monocyte/macrophage subsets was observed beyond 275 

classical M1 and M2 polarization as has been documented in several analyses.(28, 29) 276 

The macrophage clusters resembled previously described “TAM-like macrophages” with 277 
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increased expression of APOE, C1QA, C1QB, SLC40A1 and TREM2.(28, 30) Two 278 

clusters demonstrated higher expression of S100A family genes, but lower M1 and M2 279 

signature gene expression, and were annotated as monocyte-Jun and monocyte-LYZ. 280 

These clusters resembled previously described “MDSC-like macrophages” with 281 

overexpression of THBS1, S100A8, FCN1 and VCAN.(28)  282 

 Our single-cell analysis reinforced that the cellular events underlying 283 

adaptive_immune_response module expression were characteristic of adaptive immunity 284 

while the cellular events underlying the inflammatory_response and stromal modules 285 

were characteristic of tumor-associated inflammation (Figure 5a). Coupled with our bulk 286 

gene expression data demonstrating that (a) the 2IR score best discriminated outcomes 287 

with CPI and (b) the stromal module did not convey independent information, these 288 

findings reinforced that the balance adaptive immunity and tumor-associated 289 

inflammation in an individual TME may dictate outcomes with CPI and that subsets of 290 

monocytes/macrophages may be key drivers of resistance associated with the latter.   291 

Monocytes/macrophages with low 2IR scores demonstrated increased expression 292 

of proinflammatory genes and decreased expression of antigen presentation genes. We 293 

next sought to better characterize the cellular state of monocytes/macrophages that might 294 

be linked to CPI resistance. Monocytes/macrophages are highly plastic, educated by 295 

cellular and signaling interactions in the TME, and play diverse roles in promoting and 296 

restraining anticancer immunity.(31) Despite inflammatory_response module expression 297 

emanating predominantly from monocytes/macrophages in the UC TME, our single cell 298 

characterization of UC specimens revealed diverse expression of the 299 

inflammatory_response module and adaptive_immune response module across 300 
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individual macrophages/monocytes (Figure 5a and S16). Extending the concept of the 301 

balance of adaptive immunity and tumor-associated inflammation in UC TMEs to the 302 

single cell level, we calculated 2IR scores for each individual monocyte/macrophage 303 

identifying cells with low, intermediate, and high scores (Figure 5e, Figure S16, see 304 

Methods for details). While low 2IR score cells were observed across all 305 

monocyte/macrophage minor clusters, and were unrelated to M1 versus M2 classification, 306 

these cells were highly enriched in the Macrophage-M2-CCL2 cluster (OR=11.0, p-307 

value<1e-16 by fisher’s exact test) and depleted in the Macrophage-M2-C1QA cluster  308 

(OR=0.14, p-value<1e-16 by fisher’s exact test; Figure 5f). Notably, the Macrophage-M2-309 

CCL2 cluster demonstrated high expression of both “MDSC-like” and “TAM-like” 310 

signature genes (Figure 5d), suggesting that this population may represent an 311 

intermediate state between “MDSC-like” and “TAM-like” cells. In two UC specimens with 312 

matched scRNA-seq data from both tumor and adjacent normal tissue, the Macrophage-313 

M2-CCL2 subset was absent from the adjacent normal specimens (N1 and N2) while 314 

present in the corresponding tumor specimens (6.2% and 6.7% for U1 and U2, 315 

respectively; p-value =0.046 by Fisher’s exact test; Figure S17). 316 

Differential gene expression and gene set enrichment analysis of 317 

monocytes/macrophages with low versus high 2IR scores revealed significant 318 

upregulation of inflammatory pathways and top-ranking genes such as IL1B, CXCL8 319 

(IL8), SPP1, and CCL20 in the former while the latter demonstrated significant 320 

upregulation of genes and pathways related to antigen presentation and chemokines 321 

such as CXCL9 and CXCL10 (Figure 5g and S18). 322 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.09.16.300111doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.300111
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 15 of 60 
 

Monocytes derived from the peripheral blood of patients with renal cancer have 323 

been previously shown to express proinflammatory cytokines and chemokines, including 324 

IL1B, TNF, CCL20, and CXCL8 (IL8), through an IL-1β-dependent mechanism.(32) We 325 

sought to define putative therapeutic targets implicated in polarizing 326 

monocytes/macrophages with low 2IR scores and not restrict our analysis to genes 327 

overexpressed in low 2IR score cells but rather seek upstream ligands implicated in 328 

driving the expression of such genes. We therefore used NicheNet (33), an approach that 329 

predicts ligands that modulate target gene expression by leveraging prior knowledge of 330 

signaling pathways and transcriptional regulatory networks (see Methods). Indeed, this 331 

analysis revealed that IL-1α and IL-1β were the top-ranked ligands inferred to regulate 332 

genes overexpressed in low 2IR score monocytes/macrophages (Figure 5h). Both IL1A 333 

and IL1B were predominantly expressed by monocytes/macrophages in our single cell 334 

cohort (Figure S19).  335 

Thus, the balance of adaptive_immune_response and inflammatory_response 336 

module expression, as reflected by the 2IR score, extends to individual 337 

monocytes/macrophages within the TME (Figure 5e). Low 2IR score 338 

monocytes/macrophages, with upregulation of proinflammatory genes and 339 

downregulation of antigen presentation genes and unrelated to classical M1 versus M2 340 

polarization, may play a key role in CPI resistance. 341 

Monocytes with low 2IR scores are enriched in the pre-treatment peripheral blood 342 

of patients with CPI-resistant metastatic UC. We next asked whether similar 343 

heterogeneity in 2IR scores was present in monocytes in the peripheral blood of patients 344 

with metastatic UC and whether these populations were associated with CPI resistance. 345 
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Single-cell RNA sequencing data from peripheral blood mononuclear cells collected prior 346 

to the initiation of treatment with anti-PD-L1 CPI from five patients who achieved an 347 

objective response, and five patients who did not achieve an objective response, were 348 

utilized (see Methods and Figure S20). We calculated 2IR scores in individual monocytes 349 

identifying low, intermediate, and high 2IR score populations. Monocytes with low 2IR 350 

scores were significantly enriched in the peripheral blood of patients with CPI-resistant 351 

versus CPI-responsive metastatic UC (Figure 6a; p value =0.0048 by two-sided t-test). 352 

Alternatively, the five patients who responded to CPI could not be readily distinguished 353 

from the five patients with CPI resistant metastatic UC using monocyte minor subsets 354 

(Figure 6b) or individual genes (Figure 6c). Similar to our findings in the UC TME, low 2IR 355 

score monocytes in the pre-treatment peripheral blood of patients with metastatic UC 356 

demonstrated upregulation of proinflammatory genes and downregulation of antigen 357 

presentation genes (Figure 6d) and IL-1α and IL-1β were the top ranked ligands inferred 358 

to regulate this gene expression program. Therefore, low 2IR score proinflammatory 359 

monocytes/macrophages are present in both the TME and peripheral blood of patients 360 

with UC and are associated with CPI resistance. 361 

 362 

Discussion 363 

Tumor-associated inflammation is now recognized as a hallmark of cancer 364 

pathogenesis and major contributor to cancer treatment resistance.(10, 34, 35) However, 365 

tumor-associated inflammation and antitumor immunity coexist in delicate balance 366 

complicating dissecting the role of the former in mediating CPI resistance in studies using 367 
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human specimens.(13) Using an unbiased systems biology approach, we demonstrated 368 

that an adaptive_immune_response gene module was associated with better CPI 369 

outcomes while an inflammatory_response gene module and stromal gene module were 370 

associated with worse CPI outcomes in patients with metastatic UC. We further 371 

demonstrated that: 1) the cellular origins of the modules were consistent with the 372 

adaptive_immune_response module reflecting key components of adaptive immunity (T 373 

and B-cells) and the inflammatory_response module and stromal modules reflecting key 374 

components of tumor-associated inflammation (monocyte/macrophages and activated 375 

CAFs, respectively),  2) expression of the three gene modules were highly correlated with 376 

one another, consistent with the coexistence and balance between antitumor immunity 377 

and tumor-associated inflammation, and the inflammatory_response and stromal 378 

modules were only discovered using our stepwise approach to module discovery, 3) the 379 

stromal module, linked to activated CAFs and remodeling of the extracellular matrix, did 380 

not convey independent information related to CPI outcomes beyond the 381 

inflammatory_response module suggesting a more indirect role (e.g., recruitment and 382 

education of myeloid cells), 4) the 2IR score, reflecting the balance of antitumor immunity 383 

and tumor-associated inflammation, best correlated with CPI outcomes, and 5) low 2IR 384 

score monocytes/macrophages were characterized by increased expression of 385 

proinflammatory genes and decreased expression of antigen presentation genes, could 386 

not be discerned based on classical M1 versus M2 polarization, and were enriched in the 387 

pre-treatment blood of patients with metastatic UC resistant to CPI. Together, our findings 388 

define a novel monocyte/macrophage population/cellular state associated with CPI 389 

resistance, highlight a potential approach to identify patients for therapies seeking to 390 
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overcome monocyte/macrophage-related CPI-resistance, and delineate putative 391 

therapeutic targets to overcome such resistance. 392 

Monocytes/macrophages have been linked to suppression of antitumor immunity 393 

across a range of malignancies via a variety of mechanisms.(36–38) Clinically tractable 394 

approaches to target myeloid cell-related immune suppression have remained elusive 395 

likely in part related to the plasticity of myeloid cells, redundancy of cytokines, and inability 396 

to identify patients for whom such strategies may be most appropriate. The NLRP3 397 

inflammasome, implicated in the pathogenesis of several chronic inflammatory disorders, 398 

responds to a variety of stimuli leading to the generation of the active forms of the IL-1β 399 

and IL-18.(39) In our analysis, NLRP3 was among the inflammatory_response module 400 

genes most highly associated with CPI resistance (Table S3) and IL1B was highly 401 

expressed in low 2IR score monocytes/macrophages. IL-1β was also among the top-402 

ranked ligands inferred to regulate the low 2IR score monocyte/macrophage gene 403 

program in line with prior experimental data demonstrating that inflammatory cytokine and 404 

chemokine production from monocytes in patients with renal carcinoma was IL-1β-405 

dependent.(32) IL-1β has been considered a “master regulator” of inflammation and 406 

involved in the tumor-promoting and immune suppressive function of myeloid cells.(32, 407 

40, 41) IL-1β-deficient 4T1 mice were shown to harbor low levels of suppressive myeloid 408 

cells whereas in wild-type 4T1 mice, anti-IL-1β combined with anti-PD-1 therapy 409 

abrogated tumor growth.(41) Given the potential role of IL-1β in tumor promoting “chronic” 410 

inflammation, cancer incidence and mortality were analyzed in the Canakinumab 411 

Anti-inflammatory Thrombosis Outcomes Study (CANTOS) which randomized 10,061 412 

patients with elevated serum C-reactive protein post-myocardial infarction to anti-IL-1β 413 
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versus placebo. Anti-IL-1β treatment in CANTOS was associated with significantly lower 414 

total cancer mortality versus placebo leading to prospective clinical trials in lung cancer 415 

including trials combining anti-IL-1β and anti-PD-1 (NCT03631199).(41, 42) Building on 416 

this collective work, our findings raise the hypothesis that targeting the NLRP3 417 

inflammasome or IL-1β may reverse the inflammatory phenotype of low 2IR score 418 

monocytes/macrophages and may represent a rational combination strategy to overcome 419 

CPI resistance in a defined subset of patients with UC. However, the effects of targeting 420 

the inflammasome and specific cytokines may be time and context dependent and 421 

additional preclinical and clinical work is warranted to refine this hypothesis.    422 

Other studies exploring human specimens, often focused on individual 423 

parameters, have linked aspects of tumor-associated inflammation and/or myeloid cells 424 

with resistance to CPI in UC and other malignancies. Features reflecting an activated 425 

tumor stroma, including EMT- and TGFβ-related gene signatures have been correlated 426 

with poor outcomes with CPI treatment.(7, 20) Quantitative assessment of myeloid-427 

derived suppressor cells and/or specific cytokines/chemokines in the peripheral blood 428 

have also been correlated with CPI resistance.(43–45) Recently, elevated levels of IL-8 429 

in peripheral blood and in tumors, traced primarily to the myeloid cell compartment, was 430 

associated with decreased efficacy of CPI across several tumor types.(22, 46) Our results 431 

confirm and extend these findings providing a holistic view of the relative contribution of 432 

various components of the UC TME to CPI outcomes and highlighting the importance of 433 

assessing the balance of measures of adaptive immunity versus tumor-associated 434 

inflammation in individual tumors and cell populations. 435 

There are potential limitations to our study. Given the paucity of human scRNA-436 
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seq data in UC to date, our scRNA-seq dataset contributes to an understanding of the 437 

cellular diversity within the UC TME but a larger cohort is required to establish a definitive 438 

cellular atlas of UC specimens. Still, the main goal of our scRNA-seq cohort in this study 439 

was to uncover the origins our gene modules derived from bulk RNA sequencing data. 440 

Features of urothelial cancer cells are likely associated with sensitivity and resistance to 441 

CPI. However, beyond TMB, on which our three gene modules were conditioned, our 442 

current analysis was focused on the TME given the expression of the module genes when 443 

projected onto our scRNA-seq data. Cancer cell-intrinsic features that contribute to 444 

immune escape and ultimately shape the “chronically” inflamed TME require further 445 

study. Together, these considerations underscore the need for additional studies of UC 446 

specimens profiled at single cell resolution and linked to CPI treatment outcomes.   447 

Our study identified three key gene modules associated with sensitivity or 448 

resistance to CPI in patients with metastatic UC related to the balance of adaptive 449 

immunity versus tumor-associated inflammation, defined the 2IR score as reflecting such 450 

balance in individual UC TMEs and single monocytes/macrophages, and identified 451 

putative therapeutic targets to overcome resistance associated with proinflammatory 452 

monocytes/macrophages. Future work integrating the 2IR score into clinical trials seeking 453 

to overcome monocyte/macrophage-related CPI resistance, further defining “master 454 

regulators” of the low 2IR score monocyte/macrophage phenotype, and dissecting the 455 

dominant mechanisms of immune suppression related to these cells may foster precision 456 

immunotherapy in UC.  457 

  458 
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Materials and Methods 459 

 460 

Identification and validation of gene modules associated with CPI outcomes from 461 

bulk RNA sequencing data 462 

Patient cohorts with tumor mutational burden data and/or bulk RNA sequencing data 463 

Three datasets including bulk RNA sequencing (RNAseq) data from patients with 464 

urothelial cancer were analyzed in this study (Figure 1 and Supplemental Table S1): 465 

IMvigor 210, The Cancer Genome Atlas (TCGA) urothelial bladder cancer dataset, and 466 

the Checkmate 275 study. 467 

IMvigor 210 was a single arm phase 2 study investigating PD-L1 inhibition with 468 

atezolizumab (1200 mg intravenously every 3 weeks) in patients with metastatic urothelial 469 

cancer (NCT01208652, NCT02951767). The primary endpoint of the trial was the 470 

objective response rate according to Response Evaluation Criteria In Solid Tumors v1.1. 471 

Patients with metastatic urothelial cancer progressing despite prior platinum-based 472 

chemotherapy, or chemotherapy-naïve patients who were not eligible for cisplatin-based 473 

chemotherapy, were eligible. The results of IMvigor 210 have previously been reported.(1, 474 

14) Patients enrolled on IMvigor 210 were required to have archival tumor tissue obtained 475 

within two years of study entry submitted for analysis which including bulk RNAseq as 476 

well as targeted next-generation sequencing-based genomic profiling for 395 cancer-477 

related genes (FoundationOne, Foundation Medicine, Cambridge MA). These analyses 478 

were previously reported in detail by the investigators.(7) For the current study, RNAseq 479 

data, TMB (“FMOne mutation burden per MB”), objective response rate, and survival data 480 
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for 348 unique patients were extracted from the R package IMvigor210CoreBiologies 481 

(http://research-pub.gene.com/IMvigor210CoreBiologies/) 482 

The Cancer Genome Atlas bladder cancer dataset includes patients with clinically 483 

localized muscle-invasive urothelial cancer of the bladder who underwent radical 484 

cystectomy. This cohort has previously been described in detail(47) and RNAseq data 485 

(“Level_3_RSEM_genes_normalized”) for 408 unique patients was downloaded from 486 

Firehose (2016_01_28) at the Broad Institute 487 

(https://confluence.broadinstitute.org/display/GDAC/Home/). The updated clinical data 488 

were downloaded from an integrated TCGA pan-cancer clinical data resource.(48) 489 

Checkmate 275 was a single arm phase 2 study investigating PD-1 inhibition with 490 

nivolumab (3 mg/kg intravenously every 3 weeks) in patients with metastatic urothelial 491 

cancer (NCT02387996). The primary endpoint of the trial was the objective response rate 492 

according to Response Evaluation Criteria In Solid Tumors v1.1. Patients with metastatic 493 

urothelial cancer progressing despite prior platinum-based chemotherapy were eligible. 494 

The results of Checkmate 275 have previously been reported.(3) Patients enrolled on 495 

Checkmate 275 were required to have archival tumor tissue submitted for analysis which 496 

including bulk RNAseq and whole exome sequencing. Patients who were consented for 497 

genomic studies and had tumor material that passed quality control were included in the 498 

current analysis. RNAseq and tumor mutational burden data was provided by Bristol 499 

Myers-Squibb and the latter was calculated as the missense mutation count. TMB 500 

(n=139) and/or RNAseq (n=72) data, objective response rate, and survival data was 501 

available with both TMB and RNAseq data available for 54 patients. 502 
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Preprocessing of bulk RNAseq expression datasets 503 

For the IMvigor 210 dataset, only genes with a read count >1 in more than 10% of 504 

the samples were considered. The raw read count data from the IMvigor and Checkmate 505 

275 datasets were first transformed to RPKM and then scaled patient-wise such that the 506 

75% quantile of each sample was equal to 1000 (similar to the RSEM normalization(49)).  507 

To facilitate analysis across datasets, only 16339 genes common among the three 508 

datasets were analyzed in this study. Batch effects were removed across the three 509 

datasets using R package ComBat.(50)  510 

Step-wise identification of consistently co-expressed gene modules (CCGMs) 511 

With the goal of identifying consistently coexpressed gene modules associated 512 

with survival, we first identified genes nominally associated with better overall survival 513 

outcomes in the IMvigor 210 dataset. A bivariable Cox regression model was used to 514 

estimate the association between the expression of each gene, !"#"$, with the overall 515 

survival conditional on TMB:	&'()(+)"#,, ./0")	~	!"#"$ + log(.78). We identified 1193 516 

genes for which higher expression was associated with better survival outcomes (nominal 517 

P-value of two-sided Wald’s test <0.05). We employed a lenient P-value cutoff to be as 518 

inclusive as possible at this initial gene selection step, and then identified consistently co-519 

expressed gene modules (CCGMs) to enrich for true signals and filter out possible noise. 520 

A CCGM is defined as a list of genes that are co-regulated in multiple datasets. Using 521 

weighted correlation network analysis(51) among these 1193 genes, we identified one 522 

co-expression module in the IMvigor 210 dataset (735 genes) and one co-expression 523 

module in the TCGA dataset (600 genes). Significant overlap (575 genes) existed 524 
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between the modules identified in the IMvigor 210 and TCGA datasets ( p<1e-16 by two-525 

sided Fisher’s exact test) and these 575 overlapping genes were considered a CCGM, 526 

referred to as the “adaptive_immune_response” module   527 

Next, we identified genes associated with worse survival outcomes conditioned on 528 

both TMB and the adaptive_immune_response module genes ( 7:;:<,/)"_/00'#") . 529 

Specifically, we assessed the association of each gene (!"#"$) with overall survival using 530 

a multivariable Cox regression model &'()(+)"#,, ./0")	~	!"#"/ +7:;:<,/)"_/00'#"
+531 

log	(.78) ), where 7:;:<,/)"_/00'#"  was calculated for each sample by averaging 532 

expression of the adaptive_immune_response module genes.  A total of 1498 genes were 533 

associated with worse survival outcomes (nominal P-value of two-sided Wald’s test 534 

<0.05). The weighted correlation network analysis was conducted for the 1498 genes in 535 

both the IMvigor 210 and TCGA datasets, followed by the overlapping analysis analogous 536 

to the methodology described for derivation of the adaptive_immune_response module 537 

which resulted in two CCGMs, i.e. the “inflammatory_response” module (437 genes) and 538 

stromal module (287 genes). A third CCGM (50 genes) enriched with 539 

HALLMARK_MYC_targets was not further pursued in this study given its small size. We 540 

further updated the “adaptive_immune_response” module by excluding genes associated 541 

with worse survival in this three variate Cox regression model (Z>1.5), resulting in 483 542 

genes in the module. 543 

To investigate the pathways enriched in each CCGM, we compared the module 544 

genes with the HALLMARK and canonical gene sets in the Molecular Signatures 545 

Database (MSigDB, software.broadinstitute.org/gsea/msigdb)(52) using Fisher’s exact 546 

test (nominal p-value of two-sided test <1e-5). 547 
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Calculation of 2IR score 548 

The expression of the adaptive_immune_response (7:;:<,/)"_/00'#"), inflammatory 549 

response (7/#>?:00:,@(A) , and stromal module for each sample was calculated by 550 

averaging the expression level of corresponding module genes (in the log-scale). The 2IR 551 

score was calculated as 2CD = 7FGFHI$JK_$LLMNK − P ×7$NRSFLLFITUV. The weight P was 552 

estimated by the relative coefficients in the Cox regression model using the IMvigor 210 553 

training dataset: &'()(+)"#,, ./0")	~	P
1
×7:;:<,/)"_/00'#" − P2 ×7/#>?:00:,@(A  and P =554 

PX PY⁄ . Thus, P represents the relative contribution of 7/#>?:00:,@(A and 7:;:<,/)"_/00'#" 555 

to the survival outcome. Interestingly, P can also be interpreted as accounting for the 556 

partial variation of 7:;:<,/)"_/00'#" explained by 7/#>?:00:,@(A score. Particularly, modeling 557 

the relationship between 7:;:<,/)"_/00'#"  and 7/#>?:00:,@(A using linear regression 558 

	7FGFHI$JK_$LLMNK~P
∗ × 7$NRSFLLFITUV the estimated P∗ was very close to P2 P1⁄ . Using 559 

IMvigor 210 dataset, P was estimated to be 0.86 and P∗ was estimated to be 0.84. The 560 

same P	 learned from IMvigor210 dataset was applied to the validation dataset 561 

(Checkmate 275).. 562 

Identifying the top-ranked genes in each module 563 

To select a shorter list of genes in the adaptive_immune_response and 564 

inflammatory_response module with equivalent predictive power, we calculated module 565 

expression using average expression of the top N genes in each module (ranked based 566 

on their individual association with OS), from which the 2IR score was then calculated 567 

(noted as 2IR_topN). To select the optimal number of genes from each module, we plotted 568 

the association of 2IR_topN with OS against N, where N ranged from the top 1 gene in 569 
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the list to the top 200 genes in the module.  We then selected the “elbow point” of the 570 

curve as the optimal number of top-ranked genes for each module (Figure S4). This 571 

resulted in 10, and 39 genes in the adaptive_immune_response and 572 

inflammatory_response, respectively. Similarly, we selected 25 top genes in the stromal 573 

module by evaluating the association of adaptive_immune_response VS stromal module 574 

expression ratio with OS. 575 

Univariable and multivariable models 576 

Cox proportional hazard regression models (coxph() function) were performed 577 

using the R package survival to evaluate the association between the gene modules and 578 

TMB with OS. When module expression and TMB were treated as continuous variables, 579 

they were standardized to N(0,1) before entering the Cox regression model to estimate 580 

hazard ratio and confidence interval, and the significance testing was performed by 581 

Wald’s test. When the 2IR score was discretized into tertiles, the R package survminor 582 

was used to plot the Kaplan Meier curve, and the significance testing for differences in 583 

OS was performed using the log-rank test. Logistic regression models were performed to 584 

evaluate the association between the gene modules and TMB with objective response. 585 

In the logistic regression, a complete response or partial response were treated as 1, and 586 

stable disease or progressive disease were treated as 0. The module expression and 587 

TMB were similarly standardized before entering the logistic regression model to estimate 588 

the coefficient, and the significance testing was performed by Wald’s test. All statistical 589 

analyses and figures were generated in R version 3.6.3. 590 

Comparison with other biomarkers 591 
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The TIDE score was calculated using the web tool (http://tide.dfci.harvard.edu/). 592 

The CD8 effector score was calculated by averaging the CD8 effector genes as previously 593 

described.(7) To derive a combinatory score incorporating both the CD8 effector score 594 

and TGFB1 expression, we used a similar strategy to the calculation of 2IR score. 595 

Specifically, we used the bivariate cox regression model &'()(+)"#,, ./0")	~.!\81 +596 

]^8">>"`,@( to learn the optimal weight for the two variables in IMvigor 210 dataset, and 597 

applied the same weight to the validation dataset of Checkmate275. A similar strategy 598 

was used to combine CXCL13 expression and ARID1A mutation. 599 

Multiplex immunohistochemistry and tissue analysis 600 

Immunohistochemistry 601 

For immunohistochemical staining of a subset of specimens from the Checkmate 602 

275 cohort, we employed a tissue profiling approach known as multiplexed 603 

immunohistochemical consecutive staining on a single slide as we have previously 604 

described.(24) Briefly,  4-μm thick FFPE sections were pre-baked in 60 °C overnight. 605 

Slides were dewaxed manually in xylene. Slides were then loaded onto automated 606 

staining platform (Bond RX, Leica Biosystems) and covered with covertiles (Bond 607 

Universal Covertiles, Leica Biosystems) for the automatic stainer to inject the required 608 

reagents on the tissue. Peroxide block (Bond Polymer Refine Detection Kit [DS9800], 609 

Leica Biosystems) was applied for blocking the tissue endogenous peroxidase activity for 610 

15 mins. Slides then incubated with serum-free protein block (Agilent X090930-2) for 30 611 

mins as an extra blocking step in order to prevent nonspecific antibody binding. After the 612 

first staining cycle, Fab fragments (AffiniPure Fab Fragment Donkey anti-mouse (715-613 
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007-003) or anti-rabbit IgG (711-007-003)) against that primary antibody species were 614 

used for blocking any carry-over staining from previous immunostaining cycles using the 615 

same species of primary antibody whenever there was a repeat of same primary antibody 616 

species. Primary antibody was incubated for a certain period of time depending on its 617 

optimized protocol and a polymer detection system (Bond Polymer Refine Detection Kit 618 

[DS9800], Leica Biosystems) was used afterwards for the secondary antibody and horse 619 

radish peroxidase (HRP) binding. Slides were incubated with AEC (ImmPACT AEC 620 

Peroxide Substrate Kit, Vector Laboratories) for a specified duration defined in optimized 621 

in-house protocols for each marker.  The immunostaining process was performed by an 622 

automatic immunostainer (L Bond RX, Leica Biosystems). Slides were withdrawn from 623 

the immunostainer after the automated immunostaining and counterstaining was 624 

performed manually using Modified Harris Hematoxylin (Sigma-Aldrich HHS16). Slides 625 

were then briefly incubated with ammonia water solution for crisper nuclear details and 626 

bluing purposes. Slides were mounted with Glycergel (Agilent C056330-2) and air-dried 627 

overnight. Air-dried slides were scanned by a slide scanner (NanoZoomer S60, 628 

Hamamatsu, Japan) and whole slide images were generated and stored on a server. As 629 

the preparation step for the next staining cycle on the same slides, coverslips were 630 

removed by placing the slides in a rack and immersed in hot tap water (56oC) until the 631 

mounting media dissolved. Chemical destaining was performed by immersing the slides 632 

in HCl (1%) and gradually diluted EtOH solutions after coverslip removal. The 633 

immunostaining methodology described here were repeated for all markers in the panel 634 

including PD-L1 (1:100, E1L3N, Cell Signaling), CD3 (RTU, 2GV6, Ventana), CD8 (1:100, 635 

C8/144B, Dako), CD68 (1:100, KP1, Dako), Fibronectin (1:100, F1, Abcam), and PanCK 636 
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(1:50, AE1/AE3, Dako). 637 

Image analysis 638 

We imported whole slide images generated by MICSSS staining protocol(24, 639 

25)  into a project in the image analysis software, QuPath 0.2.0(53), and metadata was 640 

generated for each individual whole slide image. Accurate color vectors of hematoxylin, 641 

chromogen color (AEC) and residual color were estimated for each image by selecting a 642 

representative immunostaining zone having nearly equal amounts of all vectors. Whole 643 

section and 4 regions of interest (ROI) were annotated for the analysis. ROIs were 644 

separated into tumor and stroma by using a superpixel segmentation tool and random 645 

forest training of segmented parts. Watershed cell segmentation in combination with 646 

gaussian smoothing, intensity-based thresholding based on hematoxylin color or optical 647 

density, and diameter based cytoplasmic segmentation expansion were used for the cell 648 

segmentation. More than 30 features including minimum, maximum, mean, and standard 649 

deviation values of intensity and shape-based features were calculated and recorded 650 

during the segmentation on nucleus, cytoplasm, and total cellular compartmental area for 651 

each cell. Positive cell detection for CD8 was done by training a random forest algorithm. 652 

Intensity-based features were used with this algorithm and training was done by marking 653 

a set of segmented cells as positive or negative and feeding this training data into the 654 

random forest algorithm for the automatic classification of remainder of the segmented 655 

cells.  656 

Single-cell RNA Sequencing of Urothelial Cancer Specimens  657 

Sample collection and specimen processing 658 
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Primary urothelial bladder cancer tumor tissue was obtained after obtaining 659 

informed consent in the context of an institutional review board approved genitourinary 660 

cancer clinical database and specimen collection protocol (IRB #10-1180) at the Tisch 661 

Cancer Institute, Icahn School of Medicine at Mount Sinai.  Patients undergoing 662 

transurethral resection of bladder tumor had a portion of their tumor placed immediately 663 

into media containing 10% DMSO and 90% FBS in the operating room.  The specimen 664 

was then transferred to the laboratory for further processing. Patients undergoing radical 665 

cystectomy and lymph node dissection had their bladder and lymph nodes sent directly 666 

to the pathology suite upon completion of the lymph node dissection. The bladder was 667 

bivalved and a portion of visible tumor was then placed in media as above. Adjacent 668 

normal tissue was identified in a subset of specimens based on visual inspection. The 669 

specimen was then transferred to the laboratory for further processing. 670 

Tissue specimens were processed immediately upon receipt and dissociated into 671 

single cell suspensions using the GentleMACS Octodissociator with kit matched to the 672 

tissue type (Miltenyi Biotech) following the manufacturer’s instructions. Single-cell RNA 673 

sequencing was performed on these samples using the Chromium platform (10x 674 

Genomics, Pleasanton, CA) with the 3’ gene expression (3’ GEX) V3 kit, using an input 675 

of ~10,000 cells. Briefly, Gel-Bead in Emulsions (GEMs) were generated on the sample 676 

chip in the Chromium controller. Barcoded cDNA was extracted from the GEMs by Post-677 

GEM RT-cleanup and amplified for 12 cycles. Amplified cDNA was fragmented and 678 

subjected to end-repair, poly A-tailing, adapter ligation, and 10X-specific sample indexing 679 

following the manufacturer’s protocol. Libraries were quantified using Bioanalyzer 680 

(Agilent) and QuBit (Thermofisher) analysis. Libraries were sequenced in paired end 681 
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mode on a NovaSeq instrument (Illumina, San Diego, CA) targeting a depth of 50,000-682 

100,000 reads per cell.  Sequencing data was aligned and quantified using the Cell 683 

Ranger Single-Cell Software Suite (version 3.0, 10x Genomics) against the provided 684 

GRCh38 human reference genome.  685 

Preprocessing 686 

Seurat(26) (version 3.0) was used to process the single-cell RNA sequencing data. 687 

After filtering cells with a high percentage (>20%) of mitochondrial reads and cells with 688 

<200 or >6000 genes detected, as well as potential doublets uncovered during 689 

subsequent analysis steps, 19,708 cells from 10 samples and 22,175 genes with nonzero 690 

read counts in > 5 cells were included for further analysis.   691 

Identification of major cell clusters 692 

After the read count data was log-normalized, the most variable 2000 genes were 693 

selected. Then the effect of the unique molecular identifier (UMI) count and percentage 694 

of mitochondria per cell was regressed out, followed by dimensionality reduction using 695 

principle component analysis (PCA). Finally, the cells were clustered using the K-nearest 696 

neighbors graph-based methods as implemented in Seurat (with the top 20 PC and 697 

resolution = 0.5). Cells were grouped into 9 major cell clusters based on the canonical 698 

cell-type-specific markers: T/NK ("CD3E"), B/plasma ("MS4A1","MZB1","CD79A"), DC 699 

("HLA-DQA1", "HLA-DQB1"), Mast ("MS4A2"), Macrophage/Monocyte ("C1QA","LYZ"), 700 

Endothelial ("PLVAP"), Fibroblast-related ("DCN", "ACTA2"),  Epithelial ("KRT19") and 701 

Neuronal cells (NNAT). 702 

Identification of minor cell clusters within major cell clusters 703 
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For each of the major cell clusters identified (except Mast and Neuronal cells), we 704 

further clustered cells into minor cell clusters within each major cluster. To achieve this, 705 

we applied similar steps described above to cells within each major cell cluster separately. 706 

For example, we identified the most variable 2000 genes within the T/NK cell cluster. 707 

These genes differ from the most variable genes across all cells and better reflect the 708 

variation among different subsets of T/NK cells. We then scaled the 2000 genes by 709 

removing the effect of UMI count and percentage of mitochondria per cell, based on which 710 

the top 10 PC were calculated. We used the top 10 PC instead of the top 20 PC in the 711 

minor cell clustering given that less gene variation is expected compared with major cell 712 

clustering. An additional batch effect removal step was included in the minor cell 713 

clustering. Removal of batch effect was not needed for major cell clustering as the 714 

variation among major cell types was sufficiently large to overcome the technical variation 715 

or batch effects among samples. That is, cells clustered according to major cell type rather 716 

than sample. In contrast, batch effect became more prominent in minor cell clustering. A 717 

challenge in batch effect correction is that technical artifact may be confounded by 718 

genuine sample-specific variation. This is particularly relevant for cancer cells as prior 719 

studies have shown that epithelial cancer cells were heterogeneous across different 720 

samples and grouped largely by sample versus immune and stromal cells which grouped 721 

mostly according to cell type.(54) Therefore, automatic batch correlation algorithms were 722 

not employed given concern for over-correlation of genuine sample-specific variation. 723 

Instead, we manually inspected the 10 PCs for each major cell cluster and removed the 724 

PCs driven mostly by sample-specific variation for non-epithelial cells leading to removal 725 

of one PC for the T/NK and one PC for the myeloid cell cluster, respectively. The cell 726 
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clustering was then conducted on the remaining PCs.  727 

To annotate each minor cell subset, marker genes were identified for each cell 728 

subset using the Seurat function FindAllMarkers(). Each cell subset was inspected for 729 

specific markers identified in prior analyses and annotated accordingly. A few minor cell 730 

subsets failed to show obvious subset-specific markers identified except for ribosomal 731 

and/or mitochondrial genes. The number of genes detected per cell in these subsets 732 

(median=678) was much lower compared with other subsets (median=1490). The genes 733 

in these subsets were sufficient to detect major cell cluster identity but insufficient to 734 

unambiguously determine minor cell identity. These cells (1172, 6% of total) were thus 735 

retained in the major cell clusters but removed from the minor cell clusters. Other minor 736 

cell subsets excluded from the analysis set (both major and minor cell clusters) included 737 

those expressing markers from two different major cell clusters (potential doublets, 425 738 

cells). In total, we identified 50 minor cell clusters comprising 18,536 cells. 739 

Association between cell subsets and adaptive_immune_response, 740 

inflammatory_response, and stromal modules. 741 

For each of the 9 major cell clusters, we identified cell type-overexpressed genes 742 

using FindAllMarker() function in Seurat package (with default parameters). The overlap 743 

between each of the adaptive_immune_response, inflammatory_response, and stromal 744 

module genes and overexpressed genes among the major cell clusters was assessed 745 

using odds ratio and p-value (two-sided Fisher’s exact test).  746 

Identifying macrophage/monocytes with low, intermediate and high 2IR score 747 

The AddModuleScore() function in Seurat package was used to calculate the 748 
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module expression for each macrophage/monocyte cell for the adaptive_immune 749 

response (7:;:<,/)"_/00'#") and inflammatory response(7$NRSFLLFITUV), respectively. The 750 

2IR score for each cell was then calculated as 2CD = 7FGFHI$JK_$LLMNK − P ×751 

7$NRSFLLFITUV. Inspired by the interpretation of weight P in 2IR score for bulk samples, P 752 

was estimated by the coefficient P∗  in the linear regression 	7FGFHI$JK_$LLMNK~P
∗	×753 

7$NRSFLLFITUV  among macrophage/monocytes in our tissue scRNA-seq dataset.  2IR 754 

score was then discretized into tertiles to identify macrophage/monocytes with low, 755 

intermediate and high 2IR score.  756 

NicheNet analysis  757 

We employed NicheNet (R package)(33) to infer potential ligands regulating the 758 

genes up-regulated in tissue monocytes/macrophages with low 2IR score (342 genes). 759 

We focused our analysis on the 2022 curated ligand-receptor interactions in the NicheNet 760 

database (consisting of 537 and 510 unique ligands and receptors, respectively). As an 761 

input for NicheNet includes a list of potential ligands, we first derived a list of receptors 762 

expressed in tissue macrophage/monocytes. Specifically, we obtained the average gene 763 

expression profile for each of the 9 major cell clusters using our tumor scRNA-seq dataset 764 

(a 22,175 by 9 expression matrix) and defined a receptor as expressed in 765 

monocytes/macrophages if its corresponding expression value was larger than the 766 

median value of the expression matrix. We obtained 183 (out of the 510) receptors 767 

present in monocytes/macrophages in this manner. A list of 254 ligands interacting with 768 

these receptors, and also present in one of the 9 major cell clusters, were then considered 769 

as potential ligands. We then calculated ligand activity scores for each ligand according 770 
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to its potential to regulate expression of the genes up-regulated in 771 

monocytes/macrophages with low 2IR score. The top 20 ligands were shown in the 772 

results.  773 

Analysis of Peripheral Blood Cell Single-cell RNA Sequencing Cohort 774 

            Single-cell RNA sequencing data for 10 frozen PBMC samples derived from pre-775 

treatment peripheral blood of 5 patients with metastatic UC who achieved an objective 776 

response to treatment with atezolizumab and 5 patients with metastatic urothelial cancer 777 

who did not achieve an objective response to treatment with atezolizumab in the setting 778 

of the IMvigor 210 study were downloaded from GEO (GSE145281). We annotated the 779 

major cell types for each cell using the automatic annotation algorithm implemented in R 780 

package SingleR and the reference profiles obtained from Absolute Deconvolution.(55, 781 

56) Monocytes (including both CD14 and CD16 monocytes) were further annotated into 782 

minor clusters using the strategy of unsupervised cell clustering similar to the above 783 

analysis of the tumor tissue scRNA-seq dataset. Unlike the tumor tissue scRNA-seq 784 

dataset, we observed substantial batch effect within the frozen PBMC scRNA-seq 785 

dataset: cells were clustered according to samples rather than cell types. To remove 786 

potential batch effect and focus on cell subtypes shared across samples, we used the 787 

standard workflow for data integration as recommended by the Seurat package where 788 

“anchors” were used to harmonize different datasets.(26) Monocytes were then clustered 789 

into 4 minor clusters based on the integrated data. 790 

        Monocytes with low, intermediate and high 2IR score were identified following the 791 

similar strategy used in the tumor tissue scRNA-seq analysis. Notably, the 2IR score was 792 
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calculated for each cell using the gene expression value before batch correction or 793 

integration, such that the score was not affected by any integration procedures. 794 

Differentially expressed genes between monocytes with high and low 2IR score were also 795 

derived using the original expression before integration. Ligands regulating genes 796 

upregulated in low 2IR score monocytes were identified using NicheNet in the manner as 797 

described for the tumor tissue scRNA-seq dataset. 798 

Data availability 799 

All relevant data are available from the authors and/or are included in the 800 

manuscript. For TCGA and IMvigor210 cohort (including the peripheral blood scRNA-seq 801 

cohort), the datasets are publicly available (see Methods for details). Bulk RNAseq, TMB 802 

counts, and clinical outcome data from the CheckMate275 from patients who consented 803 

to deposition will be submitted to dbGAP. Single cell RNA-seq data from the 10 UC tumor 804 

specimens will be deposited to GEO.  805 

Code availability 806 

Software and codes used in the data analysis are either publicly available from the 807 

indicated references in the Methods section or available upon request to the authors. 808 

  809 
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 1237 

 1238 
Figure 1. Cohorts and workflow for discovery of gene modules associated with 1239 
sensitivity and resistance to anti-PD-1/PD-L1 treatment in metastatic urothelial 1240 
cancer. A. IMvigor 210 was a single-arm phase 2 study investigating PD-L1 inhibition 1241 
with atezolizumab in patients with metastatic urothelial cancer. The illustration depicts the 1242 
numbers of patients with available pre-PD-L1 inhibition RNA-sequencing (RNA-seq) data, 1243 
tumor mutational burden (TMB) data, or both, derived from archival tumor specimens 1244 
available for the current analysis. B. Step-wise approach to the identification of 1245 
consistently co-expressed gene modules, conditioned on TMB, associated with better 1246 
overall survival or worse overall survival with PD-L1 blockade treatment in patients with 1247 
metastatic urothelial cancer. Data from The Cancer Genome Atlas (TCGA) urothelial 1248 
bladder cancer dataset was used to identify consistently co-expressed gene modules 1249 
(see Methods). C. Hallmark pathways enriched in the adaptive_immune_response, 1250 
inflammatory_response, and stromal gene modules using Fisher’s exact test (nominal 1251 
two-sided p-value <1e-5). Color corresponds to the –log10 of the p-value. D. Checkmate 1252 
275 was a single-arm phase 2 study investigating PD-1 inhibition with nivolumab in 1253 
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patients with metastatic urothelial cancer. The illustration depicts the number of patients 1254 
with available pre-PD-1 inhibition RNA-sequencing data, TMB data, or both derived from 1255 
archival tumor specimens used for validation of the association between the 1256 
adaptive_immune_response, inflammatory_response, and stromal gene modules and 1257 
outcomes with PD-1/PD-L1 blockade in metastatic urothelial cancer.   1258 
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Figure 2. The adaptive_immune_response and inflammatory_response gene modules, and the ratio of module 1260 
expression termed the 2IR score, are associated with clinical outcomes with PD-1/PD-L1 blockade in patients with 1261 
metastatic urothelial cancer. A. Multivariable Cox regression model for overall survival (OS; n=272 patients with RNA 1262 
sequencing and tumor mutational burden (TMB) data) including adaptive_immune response,  inflammatory_response, and 1263 
stromal module expression, as well as TMB from the IMvigor 210 cohort (HR, hazard ratio; 95% CI, 95% confidence interval; 1264 
error bars represent 95% CI of the HRs). Module expression and TMB were standardized before entering the Cox regression 1265 
model. The plot indicates log HRs while annotation provides HRs. Schematic representation of the relationship of the 1266 
adaptive_immune_response, inflammatory_response, and stromal modules and outcomes with atezolizumab indicating 1267 
potential indirect role of the stromal module on resistance mediated more directly through the inflammatory response module 1268 
and the 2IR score representing the adaptive_Immune response:Inflammatory_response module expression Ratio. B. 1269 
Kaplan-Meier curve for overall survival (OS) stratified by the 2IR score cut at tertiles in the IMvigor 210 cohort (n=348 1270 
patients with RNA sequencing data; log-rank p value shown). C. Objective response rate with PD-L1 blockade in the IMvigor 1271 
210 cohort according to the 2IR score (cut at tertiles). For each 2IR score tertile, bar graphs depict the percentage of patients 1272 
achieving a complete response (CR), partial response (PR), stable disease (SD), or progressive disease (PD) as the best 1273 
objective response with PD-L1 blockade.  D. The association between each biomarker (or biomarker combination) and 1274 
overall survival (OS) in the IMvigor 210 cohort was evaluated using the Z-score by univariate Cox regression analysis and 1275 
the p-value by log likelihood ratio test (left). The association between each biomarker and response to PD-L1 blockade 1276 
(CR/PR versus SD/PD) was evaluated using the area under curve (AUC) score and the p-value by the Wald’s test in 1277 
univariate logistic regression (right). E. Kaplan-Meier curves for overall survival (OS) stratified by the 2IR score (cut at 1278 
tertiles) in the Checkmate 275 cohort (n=72 patients with RNA sequencing data; log rank p value shown). F. Objective 1279 
response rate with PD-1 blockade in the Checkmate 275 cohort according to the 2IR score (cut at tertiles). For each 2IR 1280 
score tertile, bar graphs depict the percentage of patients achieving a complete response (CR), partial response (PR), stable 1281 
disease (SD), or progressive disease (PD) as the best objective response with PD-1 blockade. G. The association between 1282 
each biomarker (or biomarker combination) and overall survival (OS) in the Checkmate 275 cohort was evaluated using the 1283 
Z-score by univariate Cox regression analysis and the p-value by log likelihood ratio test (left). The association between 1284 
each biomarker and response to PD-1 blockade (CR/PR versus SD/PD) was evaluated using the area under curve (AUC) 1285 
score and the p-value by the Wald’s test in univariate logistic regression (right). 1286 
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 1287 
Figure 3. The gene modules are associated with spatial organization of immune 1288 
cells in the tumor microenvironment.  A-D. Representative images of multiplexed 1289 
immunohistochemical consecutive staining on a single slide (MICSSS) demonstrating 1290 
abundance of CD8+ T cells (A, B) and tertiary lymphoid-like structures (B) in specimens   1291 
with high 2IR scores and a paucity of CD8+ T cells and prominent stroma (C, D) in 1292 
specimens with a low 2IR scores. Yellow outline in panel A represents demarcation of 1293 
cancer cell nests. All slides were initially scanned at 20x magnification. E. Representative 1294 
image of urothelial cancer specimen demonstrating region of interest (ROI), designated 1295 
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by the square,  and machine learning-based segmentation of cancer cell nest and stromal 1296 
zones to define T cell localization in the tumor microenvironment using pancytokeratin 1297 
immunohistochemical staining, designated by the yellow outline bordering cytokeratin-1298 
expressing cells. F. Spearman’s correlation between enumeration of CD8+ T cells 1299 
localized to cancer cell nests or stromal zones and adaptive_immune_response module, 1300 
inflammatory_response module, 2IR score, or stromal gene module expression. The 1301 
results are based on analysis of 76 ROIs across 19 specimens with both 1302 
immunohistochemistry and RNA sequencing data from the Checkmate 275 cohort. G. 1303 
Correlation between enumeration of CD8+ T cells localized to cancer cell nests and the 1304 
2IR score (left) or stromal module expression (right). The results are based on analysis 1305 
of 76 ROIs across 19 specimens with both immunohistochemistry and RNA sequencing 1306 
data from the Checkmate 275 cohort. Spearman’s correlation was used to determine the 1307 
correlation coefficient R and p value.  1308 

 1309 

  1310 
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 1311 
Figure 4. Defining the cellular origins of adaptive_immune_response, 1312 
inflammatory_response, and stromal module gene expression using single-cell 1313 
RNA sequencing. A. Schematic representation of projection of gene modules identified 1314 
using bulk RNA sequencing data linked to outcomes with anti-PD-1/PD-L1 treatment onto 1315 
single-cell RNA sequencing data generated from a separate cohort of invasive urothelial 1316 
bladder cancer specimens. The illustration depicts nine major cell clusters visualized 1317 
using Uniform Manifold Approximation and Projection (UMAP) across eight urothelial 1318 
cancer specimens and two adjacent normal urothelial cancer specimens profiled using 1319 
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droplet-based encapsulation single-cell RNA sequencing. The 1320 
adaptive_immune_response, inflammatory_response, and stromal modules identified 1321 
using bulk RNA sequencing data from clinical trial cohorts were projected onto the single-1322 
cell RNA sequencing data to define the predominant cellular sources of the respective 1323 
module gene expression. B. Single-cell expression of top 10 overexpressed genes in 1324 
each major cell cluster. Heatmap visualization color-coding the scaled gene expression 1325 
level for selected marker genes (rows). Visualized are 500 randomly selected cells per 1326 
cluster. C. Frequency of cell populations in individual samples included in the single-cell 1327 
RNA sequencing cohort. For each sample, bar graphs depict the percentage of cells in 1328 
clusters associated with each population. Samples were ranked according to T/NK cell 1329 
frequency. Normal indicates samples obtained for urothelial tissue that was considered 1330 
grossly normal by visual inspection adjacent to site of harvested tumor tissue. D. Heatmap 1331 
of overlap between genes comprising the adaptive_immune_response, 1332 
inflammatory_response, and stromal modules and genes overexpressed in each of the 1333 
major cell clusters in the single-cell RNA sequencing cohort. The number in each cell 1334 
corresponds to the odds ratio for the corresponding overlap between genes, the color 1335 
corresponds to the –log10 p-value (for enrichment) or log10 p value (for depletion) by 1336 
two-sided Fisher’s exact test.  1337 

 1338 

 1339 

  1340 
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 1341 
Figure 5. The inflammatory_response module is traced predominantly to monocytes/macrophages and low 2IR 1342 
score monocytes/macrophages are characterized by increased expression of proinflammatory genes and 1343 
decreased expression of antigen presentation genes. A. Heatmap visualizing the expression of 1344 
adaptive_immune_response, inflammatory_response, and stromal module genes across each of the major and minor cell 1345 
clusters, B. Eight minor monocyte/macrophage cell clusters visualized using Uniform Manifold Approximation and Projection 1346 
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(UMAP) across eight urothelial cancer specimens and two adjacent normal urothelial cancer specimens profiled using 1347 
droplet-based encapsulation single-cell RNA sequencing. C. Monocyte/macrophage cell populations in the single-cell RNA 1348 
sequencing cohort. Heatmap visualization color-coding the scaled gene expression level for selected marker genes (rows). 1349 
Visualized are 200 randomly selected cells per cluster or all cells when the cell cluster contained <200 cells. D. Expression 1350 
level of  M1 and M2 macrophage polarization signature genes in the monocyte/macrophage populations as assessed by 1351 
the AddModuleScore() function in the Seurat package. E. Schematic representation of the relationship between the 2IR 1352 
score in the urothelial cancer tumor microenvironment based on bulk RNA sequencing and the 2IR score in individual 1353 
monocytes/macrophages based on single cell RNA sequencing. F. The frequency of cells with low, intermediate and high 1354 
2IR score within each monocyte/macrophage minor population. G. Volcano plot of genes differentially expressed between 1355 
monocytes /macrophages with high versus low 2IR scores. P-value was calculated by Wilcoxon rank-sum test and then 1356 
adjusted by Bonferroni correction. Genes with log fold change (FC) >0.1 and adjusted p-value <0.05 were considered as 1357 
significant. H. Top-ranking ligands inferred to regulate genes upregulated in low 2IR score monocytes/macrophages 1358 
according to NicheNet. Heatmap visualization of ligand activity and downstream target genes inferred to be regulated by 1359 
each respective ligand.  1360 
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Figure 6. Low 2IR score monocytes are enriched in the pre-treatment peripheral blood of patients with metastatic 1363 
urothelial cancer resistant to anti-PD-L1 treatment. Single-cell RNA sequencing data from peripheral blood mononuclear 1364 
cells collected prior to the initiation of treatment from five patients with metastatic urothelial cancer who achieved an objective 1365 
response, and five patients with metastatic urothelial cancer who did not achieve an objective response, to anti-PD-L1 1366 
immune checkpoint inhibition (CPI). A. The frequency of monocytes with low, intermediate and high 2IR scores in the pre-1367 
treatment peripheral blood of patients (n=10 patients) resistant or sensitive to anti-PD-L1 CPI. B. The frequency of monocyte 1368 
minor cell populations in the pre-treatment peripheral blood of patients (n=10 patients) resistant or sensitive to anti-PD-L1 1369 
CPI. C. Dot plot of expression of select genes in monocytes from pre-treatment peripheral blood of patients (n=10 patients) 1370 
resistant or sensitive to anti-PD-L1 CPI. D. Volcano plot of genes differentially expressed between peripheral blood 1371 
monocytes with high and low 2IR score. P-value was calculated by Wilcoxon rank-sum test and then adjusted by Bonferroni 1372 
correction. Genes with log fold change (FC) >0.1 and adjusted p-value <0.05 were considered as significant. E. Top-ranking 1373 
ligands inferred to regulate genes upregulated in low 2IR score peripheral blood monocytes according to NicheNet. Heatmap 1374 
visualization of ligand activity and downstream target genes inferred to be regulated by each respective ligand. 1375 
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