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ABSTRACT 19 

 Marine Group II Euryarchaeota (Candidatus Poseidoniales) are abundant members of 20 

marine microbial communities. They are thought to be (photo)heterotrophs that metabolize 21 

components of dissolved organic matter (DOM) such as lipids and peptides, but little is known 22 

about their transcriptional activity. We mapped reads from metatranscriptomes collected off 23 

Sapelo Island, GA to metagenome-assembled genomes to determine the diversity of 24 

transcriptionally-active Ca. Poseidoniales. Summer metatranscriptomes had the highest 25 

abundance of Ca. Poseidoniales transcripts, mostly from the O1 and O3 genera within Ca. 26 

Thalassarchaeaceae (MGIIb). In contrast, transcripts from fall and winter samples were 27 

predominantly from Ca. Poseidoniaceae (MGIIa). Genes encoding proteorhodopsin, membrane-28 

bound pyrophosphatase, peptidase/proteases, and part of the ß-oxidation pathway were highly 29 

transcribed across abundant genera. Highly transcribed genes specific to Ca. Thalassarchaeaceae 30 

included xanthine/uracil permease and receptors for amino acid transporters. Enrichment of Ca. 31 

Thalassarchaeaceae transcript reads related to protein/peptide, nucleic acid, and amino acid 32 

transport and metabolism, as well as transcript depletion during dark incubations, provided 33 

further evidence of heterotrophic metabolism. Quantitative PCR analysis of South Atlantic Bight 34 

samples indicated consistently abundant Ca. Poseidoniales in nearshore and inshore waters. 35 

Together, our data suggest Ca. Thalassarchaeaceae are important photoheterotrophs potentially 36 

linking DOM and nitrogen cycling in coastal waters. 37 

  38 
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INTRODUCTION  39 

Since the initial discovery of Marine Group II (MGII) Euryarchaeota [1,2], definitive 40 

determination of their physiology and ecological roles has remained challenging due to the lack 41 

of a cultivated isolate. Nonetheless, as data describing MGII distributions throughout the oceans 42 

have increased, several patterns have emerged: MGII are often highly abundant in the euphotic 43 

zone and in coastal waters, reach high abundance following phytoplankton blooms, and are 44 

largely comprised of two subclades, MGIIa and MGIIb [3,4]. Early metagenomic studies 45 

provided the first evidence that MGII may be aerobic (photo)heterotrophs [5-7], a hypothesis 46 

supported by incubation experiments [8-10] and by the gene content of diverse metagenome-47 

assembled genomes (MAGs) [11-14]. Two recent studies deepened our understanding of the 48 

phylogenomics and metabolic potential of MGII by analyzing hundreds of MAGs, highlighting 49 

clade-specific differences in genomic potential for transport and degradation of organic 50 

molecules, light harvesting proteorhodopsins, and motility [15,16]. Here, we refer to MGII as the 51 

putative order “Candidatus Poseidoniales,” MGIIa and MGIIb as the putative families “Ca. 52 

Poseidoniaceae” and “Ca. Thalassarchaeaceae,” respectively, and putative genera as specified by 53 

Rinke et al. [15]. We occasionally use “MGIIa” and “MGIIb” for consistency with previous 54 

literature. 55 

Metatranscriptomics is one strategy for gleaning information about microbial activity in 56 

the environment. Ca. Poseidoniales transcripts can be abundant in marine metatranscriptomes, 57 

suggesting transiently high transcriptional activity [17,18]. When metatranscriptome reads from 58 

the Gulf of Aqaba were mapped to metagenomic contigs from the Mediterranean Sea, genes 59 

involved in amino acid transport, carbon metabolism, and cofactor synthesis were highly 60 

transcribed in the aggregate euryarchaeal community [19,20]. In another study, mapping deep-61 
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sea metatranscriptome reads to novel Ca. Poseidoniales MAGs indicated transcription of genes 62 

related to protein, fatty acid, and carbohydrate transport and metabolism, likely fueling aerobic 63 

heterotrophy [21]. Finally, a metaproteomics study found that euryarchaeal transport proteins for 64 

L-amino acids, branched-chain amino acids, and peptides were present throughout the Atlantic 65 

Ocean [22]. Despite these advances, little is known about similarities or differences in gene 66 

transcription between Ca. Poseidoniales and Thalassarchaeaceae.    67 

We report MAG-resolved metatranscriptomic analyses of Ca. Poseidoniales in coastal 68 

waters near Sapelo Island (GA, USA). Prior work suggested Ca. Poseidoniales are sporadically 69 

active at Sapelo Island [23] and may comprise the majority of archaea in mid-shelf surface 70 

waters of the South Atlantic Bight (SAB) [24]. Since other studies thoroughly described the 71 

genomic content of Ca. Poseidoniales MAGs, our focus instead was determining which clades 72 

were transcriptionally active and identifying highly or differentially transcribed genes. We used 73 

two Sapelo Island MAGs [25] combined with recent marine MAG collections [15,16] to 74 

competitively recruit reads from a metatranscriptomic time series [26] and an incubation 75 

experiment [23] to determine which clades were active over time. We then used representative 76 

MAGs from highly active genera to determine which Ca. Poseidoniales genes were transcribed. 77 

Finally, we used quantitative PCR (qPCR) to measure the abundance of Ca. Poseidoniales 16S 78 

rRNA genes in DNA samples throughout the SAB to assess the prevalence Ca. Poseidoniales in 79 

this region.  80 

 81 

MATERIALS AND METHODS 82 

PHYLOGENOMICS 83 
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Phylogenomic analyses compared SIMO Bins 19-2 and 31-1 (ref. 25) to previously-84 

reported Ca. Poseidoniales MAGs [15,16]. Average nucleotide identity (ANI) was calculated 85 

using fastANI [27] to compare the set of non-redundant MAGs from Tully [16] to 15 Port 86 

Hacking MAGs [15] and the two SIMO MAGs; MAGs with ANI <98.5% were added to the 87 

non-redundant set. Phylogenomic analysis was conducted using a set of sixteen ribosomal 88 

proteins [28] within anvi’o v4 (ref. 29). All genomes were converted to contig databases and 89 

ribosomal proteins were identified using HMMER [30]. These proteins were concatenated, 90 

aligned using MUSCLE [31], and used to build a phylogenomic tree using FastTree [32] within 91 

anvi’o. 92 

 93 

COMPETITIVE READ MAPPING 94 

 We used competitive read mapping [33] to determine which Ca. Poseidoniales genera 95 

were transcriptionally active in free-living Sapelo Island metatranscriptomes [23,26]. Analyses 96 

of “field” communities included Gifford et al. metatranscriptomes (iMicrobe Accession 97 

CAM_P_0000917) [26] and the T0 metatranscriptomes from Vorobev et al. [23], while dark 98 

incubation analyses included only Vorobev et al. samples (T0 and T24; NCBI BioProject 99 

PRJNA419903). Temperature, salinity, dissolved oxygen, pH, and turbidity data corresponding 100 

to metatranscriptome sampling times were downloaded from the NOAA National Estuarine 101 

Research Reserve System website (http://cdmo.baruch.sc.edu; last accessed 16 July 2020).  102 

Contigs from all MAGs from the phylogenomic analysis were used as a database for read 103 

mapping using Bowtie2 v.2.2.9 (ref. 34) with the “very-sensitive” flag. Samtools v.1.3.1 (ref. 35) 104 

was used to index resulting BAM files, which were then profiled and summarized in anvi’o. 105 

Contig genus identity was imported to the anvi’o contig database as an external collection. The 106 
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number of transcripts L–1 was calculated by scaling the number of mapped reads by the volume 107 

of water filtered and the recovery of internal standards (reported in [23,26]) as previously 108 

described [36]. Seasonal transcript abundances were compared using a one-way ANOVA test in 109 

R [37] with data log-transformed as necessary to improve normality. When ANOVA results were 110 

significant, groupings were defined post-hoc with Tukey’s Honest Significant Difference (HSD) 111 

test using the agricolae R package [38]. 112 

 Non-metric multidimensional scaling (NMDS) analysis of metatranscriptome hits was 113 

conducted using the vegan R package [39]. NMDS input was a distance matrix constructed by 114 

Hellinger-transforming the table of transcript hits and calculating Euclidean distance between 115 

samples [40]. Genus vectors were calculated using the envfit command. Significance of 116 

groupings were tested by permutational multivariate analysis of variance (the adonis command) 117 

with 999 permutations.  118 

 119 

MAG-SPECIFIC ANNOTATION AND TRANSCRIPT ANALYSIS 120 

 Gene-specific analyses focused on three MAGs: two from the SIMO collection (SIMO 121 

Bin 19-2, Genbank: VMDE00000000; SIMO Bin 31-1, VMBU00000000; [25]) and one (RS440, 122 

PBUZ00000000; [41]) binned from TARA Oceans metagenomes [42]. These MAGs represented 123 

genera O1, O3, and M, respectively, which were highly abundant in metatranscriptomes (see Fig. 124 

1). RS440 was selected due to a high number of transcripts recruited when genus M was 125 

abundant (data not shown).  126 

MAGs were annotated using the archaeal database in Prokka v.1.13 (ref. 43), using 127 

DIAMOND [44] to search against all orthologous groups in eggNOG-mapper v.1 (refs. 45, 46), 128 

and using the online BlastKOALA portal (https://www.kegg.jp/blastkoala/, last accessed 6 129 
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March 2019) [47]. Putative genes for carbohydrate-active enzymes, peptidases, and membrane 130 

transport proteins were identified using HMMER searches of dbCAN2 (HMMdb v.7) [48,49], 131 

MEROPS v.12.0 (ref. 50), and the Transporter Classification Database [51], respectively.  132 

Transcript reads were mapped to MAGs (combined into a single database such that each 133 

read mapped to only one MAG) to identify Ca. Poseidoniales genes that were highly or 134 

differentially transcribed. Coverage was calculated by profiling BAM files in anvi’o and 135 

normalized to coverage per million reads (CPM) by dividing by the total number of reads per 136 

sample. For each MAG, “highly transcribed” genes were the 5% of putative genes with the 137 

highest median CPM across metatranscriptomes (SIMO Bin 19-2: 63 genes, SIMO Bin 31-1: 70 138 

genes, RS440: 77 genes).  139 

DESeq2 v.3.11 (ref 52) was used to identify genes from each MAG that were 140 

differentially transcribed when each genus was highly transcriptionally active. For each MAG, 141 

“treatment” samples in DESeq2 were those where the respective genus recruited ≥50% of Ca. 142 

Poseidoniales reads from the metatranscriptome. Thus, positive fold-change values are genes 143 

transcribed at higher levels when the genus is highly transcriptionally active (compared to other 144 

metatranscriptomes). DESeq2 was also used to identify differentially transcribed genes for each 145 

MAG between T0 and T24 samples in high tide (HT) dark incubations [23]. Since T24 samples 146 

were the “treatment” condition in DESeq2, positive fold-change values here are genes 147 

transcribed at higher levels in T24 compared to T0 samples. In all DESeq2 analyses, genes with 148 

Benjamini-Hochberg adjusted p<0.1 were counted as having significantly different transcription.  149 

 150 

16S rRNA QUANTITATIVE PCR  151 
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 DNA samples from SAB field campaigns in 2014 and 2017 [24,53] were used as 152 

templates for qPCR reactions targeting the Ca. Poseidoniales 16S rRNA gene. Samples included 153 

the variety of shelf habitats (inshore, nearshore, mid-shelf, shelf-break, and oceanic as previously 154 

defined [24]; Fig. S1). Primers were GII-554-f [54] and Eury806-r [55] with cycling conditions 155 

as previously reported [56] (Table S1). Reactions (25 µL, triplicate) used iTaq Universal Green 156 

SYBR Mix (Bio-Rad, Hercules, CA) in a C1000 Touch Thermal Cycler/CFX96 Real-Time 157 

System (Bio-Rad, Hercules, CA). Each plate included a no-template control and a standard curve 158 

(serial dilutions of a linearized plasmid containing a previously-sequenced, cloned amplicon). 159 

Abundance of Ca. Poseidoniales 16S rRNA genes was compared to published bacterial 16S 160 

rRNA gene abundance from the same samples [24,53]. Regional variability of gene abundance 161 

was assessed using a one-way ANOVA and a post-hoc HSD test as described above. Model II 162 

regressions of log-transformed qPCR data were estimated using the lmodel2 R package [57] as 163 

previously described [53]. All plots were constructed with anvi’o or the ggplot2 R package [58].  164 

 165 

RESULTS 166 

EURYARCHAEOTAL MAGs 167 

 SIMO Bins 19-2 and 31-1 were estimated as 82.5-92.3% and 77.5-96.2% complete, 168 

respectively, with redundancy <0.6% [25]. Phylogenomics placed both in the putative family Ca. 169 

Thalassarchaeaceae (MGIIb) and genera O1 (SIMO Bin 19-2) and O3 (SIMO Bin 31-1; Fig. S2). 170 

Phylogenomic groupings were generally consistent with previous findings [15,16].  171 

 Both SIMO MAGs contained a proteorhodopsin gene. Presence of a methionine residue 172 

at position 315 suggested absorption of green light [59,60], and both proteorhodopsin genes 173 

grouped in “Archaea Clade B” [11,16,61] (Fig. S3). Both MAGs included partial or complete 174 
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pathways indicating aerobic heterotrophic growth, such as glycolysis, the TCA cycle, and 175 

electron transport chain components (Table S2). Pathways for metabolism of compounds such as 176 

fatty acids, peptides, and proteins were also present, as were transport systems and metabolic 177 

pathways for amino acids and nucleotides.  178 

 179 

DOMINANT GENERA IN FIELD METATRANSCRIPTOMES 180 

 There were significant seasonal differences in transcript recruitment by the combined set 181 

of Ca. Poseidoniales MAGs (F3,28=4.9, p=0.007): most summer samples had >1010 Ca. 182 

Poseidoniales transcripts L–1, significantly more than in other seasons (Fig. 1A,C; Table S3). The 183 

diversity of transcriptionally-active Ca. Poseidoniales also changed seasonally. Genera O1 and 184 

O3 accounted for most reads mapped from summer samples (typically 89.5-99.5% of Ca. 185 

Poseidoniales reads), with most mapping to O1 (Fig. 1A,B). HT (and not low tide; LT) 186 

metatranscriptomes from July 2014 also had a moderate fraction of reads (37.5-39.6%) mapped 187 

to Ca. Poseidoniaceae. In contrast to summer samples, November 2008 and May 2009 transcripts 188 

were predominantly O3, while those from February 2009 and October 2014 were mostly Ca. 189 

Poseidoniaceae genera M, L1, or L2 (Fig. 1A, Table S3). NMDS analysis showed clear seasonal 190 

groupings (PERMANOVA: r2=0.693, p=0.001; Fig. S4).  191 
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 192 

 193 

Fig. 1A) Relative abundance of Ca. Poseidoniales genera in Sapelo Island metatranscriptomes (n=24). The 
dendrogram (top) shows grouping by similarity. Season is indicated by color beneath sample names. The bar 
chart shows the abundance of Ca. Poseidoniales transcripts L–1 and the stacked bar charts show the relative 
abundance of genera (% total Ca. Poseidoniales transcripts), colored by genus. Dominant genera are indicated 
below the stacked bar chart. “Highly active” samples for each genus are marked and were used for analysis of 
differential transcription. B) Relative abundance of genera in Sapelo Island metagenomes (n=4), as described 
above. Since internal standards were not included in metagenomes, total Ca. Poseidoniales reads are shown as a 
percentage of the total metagenome. C) Boxplots of Ca. Poseidoniales reads L–1, grouped by season (winter, n=4; 
spring, n=3; summer, n=10; fall, n=7). Values from individual metatranscriptomes are overlain. Results of an 
ANOVA are indicated; letters at the top indicate post-hoc groups according to Tukey’s HSD test.  
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HIGHLY TRANSCRIBED CA. POSEIDONIALES GENES  194 

 Many highly transcribed Ca. Thalassarchaeaceae (MGIIb) genes were involved in 195 

translation, transcription, replication/repair, or post-translation protein modification (Fig. 2). 196 

Genes encoding proteins involved in energy production or conservation (ATPases, a 197 

pyrophosphate-energized proton pump, and proteorhodopsin) were also highly transcribed. 198 

Notably, the aapJ and livK genes, encoding substrate-binding proteins of L-amino acid and 199 

branch-chain amino acid transporters, respectively, were among the most highly transcribed 200 

genes in both Ca. Thalassarchaeaceae MAGs (Fig. 2, Table S2).  201 

Many of the highly transcribed genes mapping to the Ca. Poseidoniaceae (MGIIa) MAG 202 

were not highly transcribed by Ca. Thalassarchaeaceae, including genes encoding a carbamoyl 203 

phosphate synthetase subunit (carA), a family 2 glycosyl transferase, chromosomal protein 204 

MC1b, and a ftsX-like permease. The carA gene had the highest median coverage of Ca. 205 

Poseidoniaceae genes across coastal metatranscriptomes (Fig. 2, Table S2). While both Ca. 206 

Thalassarchaeaceae MAGs also contained the carbamoyl phosphate synthetase genes, neither 207 

transcribed carA at high levels (Table S2).  208 

Twelve genes were highly transcribed by Ca. Thalassarchaeaceae and not by Ca. 209 

Poseidoniaceae, including genes encoding ATP synthase, transcription initiation factor IIB, 210 

halocyanin, phytoene desaturase, protein translocase, xanthine/uracil permease, and receptors for 211 

amino acid transporters (Fig. 2, Table S2). Other than those encoding ribosomal proteins, only 212 

six genes were highly transcribed in all three MAGs: a chaperone protein, a ribonucleoside-213 

diphosphate reductase, translation elongation factor 1A, 3-hydroxyacyl-CoA dehydrogenase, a 214 

membrane-bound pyrophosphatase (hppA), and proteorhodopsin (Fig. 2).  215 
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 216 

  217 

Fig. 2 Boxplots of highly-transcribed MAG genes (top 5%) in Sapelo Island field metatranscriptomes. Overlain 
points show CPM for individual metatranscriptomes (n=24). Shading indicates COG functional category 
assigned by eggNOG-mapper (genes assigned to group S were similar to proteins of unknown function in the 
COG database, while genes with no COG assignment did not match proteins in the COG database). Diamonds 
indicate genes highly transcribed in all MAGs (pink), in Ca. Thalassarchaeaceae (MGIIb) MAGs only (gray), or 
in the Ca. Poseidoniaceae (MGIIa) MAG and one Ca. Thalassarchaeaceae MAG (green).  
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DIFFERENTIAL GENE TRANSCRIPTION 218 

 We were interested in identifying genes with variable transcription levels when genera 219 

O1, O3, and M were highly transcriptionally active in the ocean. Twenty-three genes were 220 

differentially transcribed in O1-active samples (Fig. 3, Table S4), sixteen of which had higher 221 

abundance in O1-active metatranscriptomes compared to other metatranscriptomes. These highly 222 

transcribed genes encoded proteorhodopsin, two copper-containing redox proteins (halocyanin 223 

and plastocyanin), and proteins involved in lipid metabolism (3-hydroxyacyl-CoA 224 

dehydrogenase and oligosaccharyltransferase), nucleotide transport/metabolism (ribonucleotide-225 

diphosphate reductase and xanthine/uracil permease), and amino acid transport (ligand-binding 226 

receptor for a L-amino acid transporter, 227 

aapJ). Differentially transcribed genes 228 

mapping to the O3 MAG were mostly 229 

depleted in O3-active 230 

metatranscriptomes and largely encoded 231 

proteins of unknown function; only the 232 

gene encoding ribosomal protein L12 233 

was enriched in O3-active samples (Fig. 234 

S5, Table S4). Only four genes 235 

mapping to the M MAG were 236 

differentially transcribed in M-active metatranscriptomes. Annotated genes encoded 237 

chromosomal protein MC1b, an ATPase subunit, and a glycosyl transferase, which all had 238 

significantly fewer transcripts in M-rich samples (Fig. S6, Table S4). One gene of unknown 239 

function was enriched compared to other samples.  240 

Fig. 3 Log2-fold change of SIMO Bin 19-2 (genus O1) genes 
differentially transcribed in field metatranscriptomes where 
transcriptional activity of Ca. Poseidoniales was dominated by 
genus O1 (see Fig. 1, Table S3), calculated with DESeq2. Error bars 
show estimated standard error. Only genes with adjusted p-values 
<0.1 are shown. Color indicates COG functional category (see Fig. 
2). Bold indicates genes in the top 5% median transcript coverage 
across field metatranscriptomes (Fig. 2). 
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 241 

DARK INCUBATION METATRANSCRIPTOMES 242 

 Incubation had little effect on transcription by the dominant genera in LT samples (Fig. 4, 243 

Table S3). In contrast, there were distinct shifts in transcriptionally active populations during 244 

incubations of all HT samples. July HT metatranscriptomes initially contained 60.4-62.5% Ca. 245 

Thalassarchaeaceae (MGIIb) while hits from the corresponding T24 samples were 98.1-99.3% 246 

Ca. Thalassarchaeaceae, due to increased transcript hits to genus O1 (Fig. 4, Table S3). 247 

Likewise, October 2014 HT samples initially contained 65.0-66.6% hits to Ca. Poseidoniaceae 248 

(MGIIa) but changed to 78.3-98.8% hits to Ca. Thalassarchaeaceae at T24 due to an increase in 249 

hits to O1 (Fig. 4).  250 

 DESeq2 identified 40 differentially 251 

transcribed genes mapping to the O1 MAG 252 

between HT T0 and T24 metatranscriptomes. 253 

Four O1 genes had higher transcription at 254 

T24, including xanthine/uracil permease 255 

(pbuG) and an amino acid transporter 256 

substrate-binding domain (aapJ; Fig. 5, 257 

Table S5). The 36 O1 genes transcribed 258 

at lower levels encoded proteins 259 

involved in repair of UV-damaged 260 

DNA, amino acid or nucleotide metabolism, coenzyme synthesis, peptidases or proteases, 261 

transcription, DNA replication, and lipid biosynthesis, as well as phytoene desaturase (crtD) and 262 

multiple subunits of pyruvate dehydrogenase (pdhC, pdhA). None of the genes mapping to the 263 

Fig. 4 Comparisons of competitive read mapping to Ca. 
Poseidoniales genera at the beginning and end of 24-hour 
incubations of Sapelo Island water conducted by [23]. The 
dendrogram (top) shows grouping by similarity. The bar 
chart below the dendrogram is the abundance of Ca. 
Poseidoniales transcripts L–1. Stacked bar charts show the 
relative abundance of genera (% total Ca. Poseidoniales 
transcript reads), colored by genus. 
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O3 or M MAGs were transcribed at significantly different levels between HT incubation 264 

timepoints (p>0.1 for all genes; Table S5).  265 

 266 

16S rRNA GENE ABUNDANCE 267 

 Ca. Poseidoniales 16S rRNA genes were detected in all SAB DNA samples (n=208), 268 

with a range from 1.6´104 to 7.6´108 genes L–1 (Table S6). Standard curves for the Ca. 269 

Poseidoniales assay always had r2>0.99 (mean ± standard deviation: 0.99±0.001) and the mean 270 

efficiency was 93.4% (±2.0%; Table S1). When data from all cruises were combined, Ca. 271 

Poseidoniales genes were most abundant throughout inshore and nearshore waters and least 272 

abundant in shelf-break and oceanic samples (F4,204=18.5, p<0.001; Fig. 6A). There was a strong 273 

linear relationship between log-transformed bacterial and Ca. Poseidoniales 16S rRNA gene 274 

abundances, with bacterial abundances 2-3 orders of magnitude higher (Fig. 6B).  275 

Fig. 5 Log2-fold change of SIMO Bin 19-2 (genus O1) 
genes differentially abundant in T24 versus T0 
metatranscriptomes from Sapelo Island high tide 
waters. Error bars show estimated standard error. Only 
genes with adjusted p-values<0.1 are shown. Color 
indicates COG functional category (see Fig. 2). Bold 
indicates genes in the top 5% median transcript 
coverage across field metatranscriptomes (Fig. 2). 
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 276 

DISCUSSION 277 

ABUNDANCE OF CA. POSEIDONIALES GENES IN THE SOUTH ATLANTIC BIGHT 278 

The abundance of Ca. Poseidoniales 16S rRNA genes in the coastal SAB is among the 279 

highest measured in the ocean, with nearly 109 genes L–1 in some samples. Typical Ca. 280 

Poseidoniales abundance is 106-107 genes or cells L–1 in oligotrophic waters [62-66] and 107-108 281 

genes or cells L–1 in coastal waters [9,54,56,67-69]. Greater gene abundance in inshore, 282 

nearshore, and mid-shelf waters indicates Ca. Poseidoniales are more abundant over the shallow 283 

shelf than further offshore (Fig. 6A), matching clone library data from the SAB [24] and data 284 

from the Central California Current and the Black Sea [9,68]. The DOM in productive, turbid 285 

Fig. 6 A) Violin plots of log-transformed Ca. Poseidoniales 
16S rRNA gene abundances across regions in the SAB, with 
overlain boxplots. Width of the violin plot corresponds to 
data probability density. Color denotes sampling region. 
Letters above boxes denote post-hoc grouping according to 
Tukey’s HSD test. B) Scatterplot of bacterial and Ca. 
Poseidoniales 16S rRNA gene abundances in the SAB. The 
solid line shows the best fit of a model II (major axis) linear 
regression, with dashed lines showing a 95% confidence 
interval of the slope. Regression parameters are shown on 
the plot. 
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SAB coastal waters supports highly active heterotrophic microbial populations [70,71]. Our data 286 

suggest large populations of Ca. Poseidoniales are part of this heterotrophic community, and the 287 

correlation between Ca. Poseidoniales and bacterial abundance (Fig. 6B) suggests common 288 

factors influence the abundance of these populations.  289 

 290 

TRANSCRIPTIONALLY ACTIVE CA. POSEIDONIALES 291 

 While numerous studies have demonstrated high abundance of Ca. Poseidoniales in the 292 

coastal ocean (e.g., [56,69]), little is known about which clades are transcriptionally active in 293 

these regions. At Sapelo Island, the striking dominance of the Ca. Thalassarchaeaceae (MGIIb) 294 

genera O1 and O3 in summer samples, which also contained the highest amount of aggregate Ca. 295 

Poseidoniales transcripts (Fig. 1), indicates that Ca. Thalassarchaeaceae are highly-active during 296 

the summertime. Outliers to this pattern were July 2014 HT samples, which contained abundant 297 

Ca. Poseidoniaceae (MGIIa) transcripts (though Ca. Thalassarchaeaceae still comprised the 298 

majority of their Ca. Poseidoniales reads). A previous study found relatively high salinity and 299 

DOM enriched in marine-origin molecules over the mid-shelf SAB during July 2014 [72]. Our 300 

data suggest Ca. Poseidoniaceae were relatively active over the shelf during this time and were 301 

transported inshore during flood tides, leading to shifts in transcriptional diversity between LT 302 

waters (dominated by Ca. Thalassarchaeaceae) and HT waters (which included a higher number 303 

of Ca. Poseidoniaceae).   304 

Ca. Poseidoniaceae (MGIIa) are the predominant euryarchaeal family in many coastal 305 

ecosystems, particularly in summer (e.g., [9,14,56,73,74]), but it is unclear what general patterns 306 

govern Ca. Poseidoniales distributions in coastal waters worldwide. Studies of Ca. Poseidoniales 307 

ecology often focus on distributions with depth, typically finding abundant Ca. 308 
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Thalassarchaeaceae (MGIIb) in deeper waters and Ca. Poseidoniaceae (MGIIa) more prevalent 309 

in euphotic waters (e.g., [12,54,75-77]). A recent mapping of global ocean metagenome reads 310 

showed that coastal populations of Ca. Poseidoniales were primarily Ca. Poseidoniaceae, though 311 

Ca. Thalassarchaeaceae MAGs recruited a substantial number of reads from some coastal 312 

metagenomes [16]. Our data match this latter pattern, with Ca. Poseidoniales populations in 313 

surface waters off Sapelo Island dominated by highly active Ca. Thalassarchaeaceae (Fig. 1). 314 

The higher abundance of MAGs from genera O1 and O3 (also referred to as MGIIb.12 and 315 

MGIIb.14) in some mesopelagic and coastal samples with relatively high temperature (~23–316 

30°C; [16]) may explain the unusual pattern found in SAB waters: these genera peaked in 317 

summer at Sapelo Island, when water temperatures were 29–30°C (Table S2), suggesting they 318 

may be adapted to growth at relatively low light and high temperature.  319 

 320 

CA. POSEIDONIALES GENE TRANSCRIPTION PATTERNS 321 

Sapelo Island metatranscriptome reads that mapped to Ca. Poseidoniales were analyzed 322 

in three ways: 323 

(1)  We determined sets of “highly transcribed” genes mapping to MAGs of 324 

transcriptionally-active Ca Poseidoniales genera (5% of MAG genes with the highest 325 

median transcript coverage);  326 

(2) We identified genes mapping to Ca Poseidoniales MAGs that were differentially 327 

transcribed when its genus was highly active (≥50% of Ca. Poseidoniales transcripts 328 

in a sample; Fig. 1, Table S2); 329 

(3) We identified genes mapping to Ca Poseidoniales MAGs that were differentially 330 

transcribed at the beginning versus end of dark incubations. Since dark incubation 331 
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separates indigenous microbes from light and sources of short-lived substrates, 332 

transcription of corresponding transporters and metabolic genes ceases during 333 

incubations as substrates are consumed. We therefore assume transcript depletion in 334 

T24 compared to T0 metatranscriptomes indicates genes that were transcriptionally 335 

active in the field [23]. This interpretation was bolstered by significant transcript 336 

depletions for genes involved in repairing UV damage to DNA (uvrA, uvrC, and 337 

cofH; Fig. 5), an expected result given alleviation of UV stress in dark incubations.  338 

 339 

In the following sections, we synthesize these analyses to discuss Ca. Poseidoniales 340 

transcriptional activity related to metabolism of labile DOM, transport/metabolism of amino 341 

acids and nucleotides, and basic energetic processes. Though lack of a cultivated representative 342 

limits the analysis to computationally-inferred functions, these data provide hypotheses 343 

regarding the activity of Ca. Poseideniales families in the coastal ocean.  344 

 345 

PROTON GRADIENTS AND ELECTRON TRANSPORT 346 

 Our analysis revealed that Ca Poseidoniales genes involved in establishing 347 

transmembrane proton gradients were highly transcribed in our samples. Genes encoding 348 

proteorhodopsin were among the most highly transcribed by both Ca. Thalassarchaeaceae MAGs 349 

and were highly transcribed in O1-active samples (Figs. 2,3). Proteorhodopsins consist of a 350 

retinal chromophore linked to a transmembrane protein and use light energy to pump protons 351 

across the cell membrane [78]. The resulting energy can be coupled to ATP production or other 352 

chemiosmotic processes and often supports photoheterotrophy, though its function varies widely 353 

[61]. Proteorhodopsin genes are highly transcribed in the photic zone of both open ocean and 354 
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coastal waters (e.g., [79-81]) and our data indicate coastal Ca. Poseidoniales conform to this 355 

pattern, consistent with recent evidence from other regions [20,82,83]. High transcription of 356 

proteorhodopsin supports the photoheterotrophic lifestyle hypothesized for Ca. Poseidoniales 357 

(e.g., [9,11,12,15,16]).  358 

Since O1 proteorhodopsin transcript abundance did not differ between the beginning and 359 

end of dark incubations (Fig. 5), light may not regulate Ca. Thalassarchaeaceae proteorhodopsin 360 

transcription. However, depletion of O1 crtD (carotenoid 3,4-desaturase) transcripts during dark 361 

incubation (Fig. 5) suggests light may regulate retinal synthesis. Whether proteorhodopsin 362 

transcription responds to light varies among marine bacteria [60,84,85], and the function of 363 

constitutive transcription is not straightforward: while some bacteria use proteorhodopsin to 364 

produce ATP when carbon-limited [86], high amounts of proteorhodopsin in other bacteria can 365 

physically stabilize membranes even when inactive [87]. The high proteorhodopsin transcription 366 

in our data emphasizes, but provides little mechanistic clarification of, the physiological role for 367 

proteorhodopsin in Ca. Poseidoniales (Table 1).  368 

 369 

 Numerous genes encoding putative electron transport proteins were highly transcribed by 370 

at least one Ca. Poseidoniales family (Fig. 2). Like proteorhodopsin, a halocyanin gene was 371 

Putative function Relevant gene(s) Distribution Evidence

Proteorhodopsin Proteorhodopsin gene Both families Highly transcribed (Fig. 2); enriched when O1 
active (Fig. 3)

Pyrophosphatase hppA Both families Highly transcribed (Fig. 2)

Protease/peptidase pepF , lonB , pepA , pip , 
carboxypeptidase A, subtilase Both families Highly transcribed (Fig. 2); depletion during 

dark incubation (Fig. 5)

ß-oxidation 3-hydroxyacyl-CoA dehydrogenase Both families Highly transcribed (Fig. 2); enriched when O1 
active (Fig. 3)

Proteorhodopsin retinal 
synthesis crtI , crtD Ca. Thalassarchaeaceae only Highly transcribed in SIMO MAGs (Fig. 2); 

depletion during dark incubation (Fig. 5)

Electron transport Halocyanin gene Ca. Thalassarchaeaceae only Highly transcribed in SIMO MAGs (Fig. 2); 
enriched when O1 active (Fig. 3)

Amino acid 
transport/metabolism aapJ , livK , aroA , trpE Ca. Thalassarchaeaceae only Highly transcribed (Fig. 2); depletion during 

dark incubation (Fig. 5)

Xanthine/uracil permease pbuG Ca. Thalassarchaeaceae only
Highly transcribed (Fig. 2); enriched when O1 
active (Fig. 3); depletion during incubations 
(Fig. 5)

Amino acid synthesis carA Ca. Poseidoniaceae only Highly transcribed (Fig. 2)
Carbohydrate synthesis Family 2 glycosyl transferase Ca. Poseidoniaceae only Highly transcribed (Fig. 2)

Table 1 Transcriptional traits shared or distinct among euryarchaeal families1

1Putative Ca. Poseidoniales families are Ca. Poseidoniaceae (MGIIa; MAG RS440) and Ca. Thalassarchaeaceae (MGIIb; SIMO Bins 19-2, 31-1).
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among the most highly transcribed Ca. Thalassarchaeaceae genes and was enriched when genus 372 

O1 was transcriptionally active (Fig. 3). Halocyanins are involved in the electron transport chain 373 

and have been posited to increase the energy yield of aerobic respiration in Ca. 374 

Thalassarchaeaceae to stimulate rapid growth [12]. The similar transcription patterns of 375 

proteorhodopsin and halocyanin suggests proteorhodopsin activity in coastal Ca. 376 

Thalassarchaeaceae may function to increase growth rates during respiration, aiding rapid 377 

population growth when conditions permit.   378 

The hppa gene from all Ca Poseidoniales MAGs was highly transcribed (Fig. 2; Table 1). 379 

The gene putatively encodes a membrane-bound pyrophosphatase, which generates a proton 380 

gradient via hydrolysis of pyrophosphate, a byproduct of numerous cellular processes [88]. In 381 

metatranscriptomes from a phytoplankton bloom, enrichment of hppA transcripts suggested high 382 

pyrophosphate-based energy conservation in oligotrophic waters [89]. Similarly, hppA was 383 

abundant in metatranscriptomes from Lake Llebreta, particularly at night [90]. Although hppA is 384 

widespread in MAGs from Ca. Poseidoniales [15] it has not been recognized as a potentially 385 

important part of their metabolism. Our data suggest Ca. Poseidoniales may be capable of using 386 

pyrophosphatase (along with proteorhodopsin) to generate a protonmotive force (Table 1). 387 

  388 

POTENTIAL IMPORTANCE OF MARINE DOM IN CA. POSEIDONIALES METABOLISM  389 

Although the T0 metatranscriptomes from summer versus fall were dominated by 390 

transcripts from different Ca. Poseidoniales families, a 24-hour dark incubation consistently 391 

favored transcription by Ca. Thalassarchaeaceae when samples were collected at HT (Fig. 4). 392 

This tidal stage-linked increase in Ca. Thalassarchaeaceae transcription could relate to 393 

differences in DOM availability between HT and LT, consistent with numerous studies 394 
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implicating DOM in shaping Ca. Poseidoniales populations [9,10,91]. The HT Sapelo Island 395 

DOM pool is primarily of marine origin while LT DOM is more riverine- and marsh-derived 396 

[72], which may select for growth of different Ca. Poseidoniales families in the water masses 397 

present at different tidal stages. Furthermore, the depletion of transcripts encoding two pyruvate 398 

dehydrogenase subunits (pdhA and pdhC) during incubations (Fig. 5) suggests Ca. Poseidoniales 399 

were metabolizing phytoplankton photosynthate in situ. Alternatively, these tidal stage-driven 400 

transcriptional patterns may relate to differential light adaptation in populations originating in 401 

offshore versus nearshore waters. Inshore populations, potentially adapted to life in turbid 402 

waters, may increase transcription upon dark enclosure, whereas offshore populations 403 

(transported shoreward during flood tide) may be adapted to clearer waters and reduce 404 

transcription in dark conditions. 405 

Multiple lines of evidence indicate coastal Ca. Poseidoniales were metabolizing proteins 406 

and fatty acids. High transcription of genes encoding proteases or peptidases mapping to all Ca. 407 

Poseidoniales MAGs (Fig. 2) suggests metabolism of proteins or peptides by both families 408 

(Table 1). Furthermore, decreased transcription of protease genes mapping to the O1 MAG 409 

during dark incubations (Fig. 5) suggests protein metabolism by Ca. Thalassarchaeaceae was 410 

active in situ prior to incubation. While some of these genes could be involved in intracellular 411 

recycling (particularly lon protease and cytosol aminopeptidase), active protein metabolism is 412 

consistent with previous experiments demonstrating protein assimilation [10] and high 413 

transcription of Ca. Poseidoniales peptidase genes in other marine regions [20,21].  414 

In addition to genes encoding protein catabolism, high transcription of the 3-415 

hydroxyacyl-CoA dehydrogenase gene from all three MAGs (Fig. 2), and its enrichment in O1-416 

active field samples (Fig. 3), suggests the importance of fatty acid metabolism for both Ca. 417 
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Poseidoniales families (Table 1). This conclusion fits with the widespread occurrence of ß-418 

oxidation genes in Ca. Poseidoniales MAGs [15,16], as well as transcriptional data from the 419 

deep ocean [21]. 420 

 421 

DISTINCT PATTERNS OF AMINO ACID AND NUCLEOTIDE UPTAKE AND 422 

METABOLISM 423 

Transcription of livK and aapJ appears to differentiate Ca. Poseidoniales families in the 424 

coastal ocean (Table 1). These genes putatively encode ligand-binding receptors for ABC 425 

transporters: aapJ for a general L-amino acid transporter and livK for a branched-chain amino 426 

acid transporter [92]. Both are commonly present in Ca. Thalassarchaeaceae (MGIIb) but not Ca. 427 

Poseidoniaceae (MGIIa) [16] and were among the most highly transcribed Ca. 428 

Thalassarchaeaceae genes (Fig. 2). Previous studies noted high transcription of euryarchaeal livK 429 

and aapJ genes in the water column of the Red Sea [19,20], at the Mid-Cayman Rise [21], and 430 

throughout the Atlantic Ocean [22]. Our data suggest this activity was probably associated with 431 

Ca. Thalassarchaeaceae.  432 

The aapJ and livK genes were collocated with genes putatively encoding the full 433 

transporters in the Ca. Thalassarchaeaceae MAGs (Table S1). Unfortunately, it is difficult to 434 

guess their substrates from sequence data alone: AAP transporters are typically capable of 435 

transporting a range of L-amino acids [92] while LIV transporters can be highly specific for 436 

leucine, specific for branched-chain amino acids, or transport diverse amino acids [92-94]. In soil 437 

bacteria grown under inorganic nitrogen limitation, elevated transcription of aapJ is linked to 438 

organic nitrogen use [95], but it is unclear whether this mechanism translates to Ca. 439 

Thalassarchaeaceae since amino acids could be used for numerous anabolic or catabolic 440 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.16.299958doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.299958
http://creativecommons.org/licenses/by-nc-nd/4.0/


Euryarchaeal transcriptomes in the coastal ocean 

 - 24 - 

processes. In addition to these binding proteins, the depletion of transcripts from O1 genes 441 

putatively involved in the shikimate pathway of aromatic amino acid synthesis (3-442 

phosphoshikimate 1-carboxyvinyltransferase and anthranilate synthase) during incubations (Fig. 443 

5) suggests these archaea were synthesizing aromatic amino acids in situ.  444 

 The combination of high pbuG transcription by Ca. Thalassarchaeaceae (MGIIb) with the 445 

high numbers of O1 pbuG transcripts in O1-active samples and dark incubation endpoints (Figs. 446 

2,3,5) suggests an important role for xanthine/uracil permease (the putative product of pbuG) in 447 

Ca. Thalassarchaeaceae metabolism. In some phytoplankton, pbuG is transcribed during 448 

nitrogen-stressed growth [96-98], potentially allowing access to DON. However, pbuG and 449 

xanthine dehydrogenase (xdh) are also transcribed when xanthine is catabolized by marine 450 

bacteria [99]. Both Ca. Thalassarchaeaceae MAGs contain putative xanthine dehydrogenase 451 

genes (xdhC and yagS; Table S1), suggesting the ability to catabolize xanthine (Table 1).  452 

Transcription levels of carA, putatively encoding part of carbamoyl phosphate synthetase, 453 

appears to be a distinct trait of Ca. Poseidoniaceae (MGIIa): while all three MAGs contained this 454 

gene (Table S1), only Ca. Poseidoniaceae carA transcription was high. Since carbamoyl 455 

phosphate synthetase is a key enzyme for arginine and pyrimidine synthesis from bicarbonate, 456 

high carA transcription suggests these pathways may be important components of Ca. 457 

Poseidoniaceae growth or survival. 458 

 459 

CONCLUSIONS 460 

Our metatranscriptomic data and associated experiments provide a window into the 461 

activity of Ca. Poseidoniales families (formerly “MGIIa” and “MGIIb”).  They indicate an 462 

important role for Ca. Thalassarchaeaceae (MGIIb) as coastal photoheterotrophs, particularly in 463 
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warm waters. High transcription of proteorhodopsin and membrane-bound pyrophosphatase 464 

genes suggested common methods for establishing proton gradients. Furthermore, high 465 

transcription of genes involved in protein/peptide metabolism and ß-oxidation of fatty acids 466 

confirmed peptide and lipid metabolism as a common trait. However, high transcription of Ca. 467 

Thalassarchaeaceae genes encoding amino acid binding proteins and nucleotide transporters 468 

suggests uptake of these substrates may distinguish the two families. These data confirm the 469 

importance of DOM metabolism by Ca. Poseidoniales and suggest a potential role for organic 470 

nitrogen in Ca. Thalassarchaeaceae metabolism. 471 
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