1	Transcriptional activity differentiates families of Marine Group II Euryarchaeota in the
2	coastal ocean
3	
4	Julian Damashek ^{1,3} , Aimee O. Okotie-Oyekan ^{1,4} , Scott M. Gifford ² , Alexey Vorobev ^{1,5} , Mary
5	Ann Moran ¹ , James T. Hollibaugh ¹
6	
7	¹ Department of Marine Sciences, University of Georgia, Athens, GA, USA
8	² Department of Marine Sciences, University of North Carolina, Chapel Hill, NC, USA
9	³ Present address: Department of Biology, Utica College, Utica, NY, USA
10	⁴ Present address: Environmental Studies Program, University of Oregon, Eugene, OR, USA
11	⁵ Present address: INSERM U932, PSL University, Institut Curie, Paris, France
12	
13	Corresponding author:
14	Julian Damashek
15	Utica College
16	1600 Burrstone Road, Utica, NY 30602
17	(315) 223-2326; judamash@utica.edu
18	

Euryarchaeal transcriptomes in the coastal ocean

19 ABSTRACT

Marine Group II Eurvarchaeota (Candidatus Poseidoniales) are abundant members of 20 21 marine microbial communities. They are thought to be (photo)heterotrophs that metabolize 22 components of dissolved organic matter (DOM) such as lipids and peptides, but little is known 23 about their transcriptional activity. We mapped reads from metatranscriptomes collected off 24 Sapelo Island, GA to metagenome-assembled genomes to determine the diversity of 25 transcriptionally-active Ca. Poseidoniales. Summer metatranscriptomes had the highest 26 abundance of Ca. Poseidoniales transcripts, mostly from the O1 and O3 genera within Ca. 27 Thalassarchaeaceae (MGIIb). In contrast, transcripts from fall and winter samples were 28 predominantly from Ca. Poseidoniaceae (MGIIa). Genes encoding proteorhodopsin, membrane-29 bound pyrophosphatase, peptidase/proteases, and part of the β -oxidation pathway were highly 30 transcribed across abundant genera. Highly transcribed genes specific to Ca. Thalassarchaeaceae 31 included xanthine/uracil permease and receptors for amino acid transporters. Enrichment of Ca. 32 Thalassarchaeaceae transcript reads related to protein/peptide, nucleic acid, and amino acid 33 transport and metabolism, as well as transcript depletion during dark incubations, provided 34 further evidence of heterotrophic metabolism. Quantitative PCR analysis of South Atlantic Bight 35 samples indicated consistently abundant *Ca*. Poseidoniales in nearshore and inshore waters. 36 Together, our data suggest *Ca*. Thalassarchaeaceae are important photoheterotrophs potentially 37 linking DOM and nitrogen cycling in coastal waters.

38

Euryarchaeal transcriptomes in the coastal ocean

39 INTRODUCTION

Since the initial discovery of Marine Group II (MGII) Eurvarchaeota [1,2], definitive 40 41 determination of their physiology and ecological roles has remained challenging due to the lack 42 of a cultivated isolate. Nonetheless, as data describing MGII distributions throughout the oceans 43 have increased, several patterns have emerged: MGII are often highly abundant in the euphotic 44 zone and in coastal waters, reach high abundance following phytoplankton blooms, and are 45 largely comprised of two subclades, MGIIa and MGIIb [3,4]. Early metagenomic studies provided the first evidence that MGII may be aerobic (photo)heterotrophs [5-7], a hypothesis 46 47 supported by incubation experiments [8-10] and by the gene content of diverse metagenome-48 assembled genomes (MAGs) [11-14]. Two recent studies deepened our understanding of the 49 phylogenomics and metabolic potential of MGII by analyzing hundreds of MAGs, highlighting 50 clade-specific differences in genomic potential for transport and degradation of organic 51 molecules, light harvesting proteorhodopsins, and motility [15,16]. Here, we refer to MGII as the 52 putative order "Candidatus Poseidoniales," MGIIa and MGIIb as the putative families "Ca. 53 Poseidoniaceae" and "Ca. Thalassarchaeaceae," respectively, and putative genera as specified by 54 Rinke et al. [15]. We occasionally use "MGIIa" and "MGIIb" for consistency with previous 55 literature.

Metatranscriptomics is one strategy for gleaning information about microbial activity in the environment. *Ca.* Poseidoniales transcripts can be abundant in marine metatranscriptomes, suggesting transiently high transcriptional activity [17,18]. When metatranscriptome reads from the Gulf of Aqaba were mapped to metagenomic contigs from the Mediterranean Sea, genes involved in amino acid transport, carbon metabolism, and cofactor synthesis were highly transcribed in the aggregate euryarchaeal community [19,20]. In another study, mapping deep-

- 3 -

Euryarchaeal transcriptomes in the coastal ocean

62	sea metatranscriptome reads to novel Ca. Poseidoniales MAGs indicated transcription of genes
63	related to protein, fatty acid, and carbohydrate transport and metabolism, likely fueling aerobic
64	heterotrophy [21]. Finally, a metaproteomics study found that euryarchaeal transport proteins for
65	L-amino acids, branched-chain amino acids, and peptides were present throughout the Atlantic
66	Ocean [22]. Despite these advances, little is known about similarities or differences in gene
67	transcription between Ca. Poseidoniales and Thalassarchaeaceae.
68	We report MAG-resolved metatranscriptomic analyses of Ca. Poseidoniales in coastal
69	waters near Sapelo Island (GA, USA). Prior work suggested Ca. Poseidoniales are sporadically
70	active at Sapelo Island [23] and may comprise the majority of archaea in mid-shelf surface
71	waters of the South Atlantic Bight (SAB) [24]. Since other studies thoroughly described the
72	genomic content of Ca. Poseidoniales MAGs, our focus instead was determining which clades
73	were transcriptionally active and identifying highly or differentially transcribed genes. We used
74	two Sapelo Island MAGs [25] combined with recent marine MAG collections [15,16] to
75	competitively recruit reads from a metatranscriptomic time series [26] and an incubation
76	experiment [23] to determine which clades were active over time. We then used representative
77	MAGs from highly active genera to determine which Ca. Poseidoniales genes were transcribed.
78	Finally, we used quantitative PCR (qPCR) to measure the abundance of Ca. Poseidoniales 16S
79	rRNA genes in DNA samples throughout the SAB to assess the prevalence Ca. Poseidoniales in
80	this region.

81

82 MATERIALS AND METHODS

83 PHYLOGENOMICS

Euryarchaeal transcriptomes in the coastal ocean

84	Phylogenomic analyses compared SIMO Bins 19-2 and 31-1 (ref. 25) to previously-
85	reported Ca. Poseidoniales MAGs [15,16]. Average nucleotide identity (ANI) was calculated
86	using fastANI [27] to compare the set of non-redundant MAGs from Tully [16] to 15 Port
87	Hacking MAGs [15] and the two SIMO MAGs; MAGs with ANI <98.5% were added to the
88	non-redundant set. Phylogenomic analysis was conducted using a set of sixteen ribosomal
89	proteins [28] within anvi'o v4 (ref. 29). All genomes were converted to contig databases and
90	ribosomal proteins were identified using HMMER [30]. These proteins were concatenated,
91	aligned using MUSCLE [31], and used to build a phylogenomic tree using FastTree [32] within
92	anvi'o.
93	
94	COMPETITIVE READ MAPPING
95	We used competitive read mapping [33] to determine which Ca. Poseidoniales genera
96	were transcriptionally active in free-living Sapelo Island metatranscriptomes [23,26]. Analyses
97	of "field" communities included Gifford et al. metatranscriptomes (iMicrobe Accession
98	<u>CAM_P_0000917</u>) [26] and the T_0 metatranscriptomes from Vorobev et al. [23], while dark
99	incubation analyses included only Vorobev et al. samples (T ₀ and T ₂₄ ; NCBI BioProject
100	PRJNA419903). Temperature, salinity, dissolved oxygen, pH, and turbidity data corresponding
101	to metatranscriptome sampling times were downloaded from the NOAA National Estuarine
102	Research Reserve System website (<u>http://cdmo.baruch.sc.edu</u> ; last accessed 16 July 2020).
103	Contigs from all MAGs from the phylogenomic analysis were used as a database for read
104	mapping using Bowtie2 v.2.2.9 (ref. 34) with the "very-sensitive" flag. Samtools v.1.3.1 (ref. 35)
105	was used to index resulting BAM files, which were then profiled and summarized in anvi'o.
106	Contig genus identity was imported to the anvi'o contig database as an external collection. The

- 5 -

Euryarchaeal transcriptomes in the coastal ocean

107	number of transcripts L^{-1} was calculated by scaling the number of mapped reads by the volume
108	of water filtered and the recovery of internal standards (reported in [23,26]) as previously
109	described [36]. Seasonal transcript abundances were compared using a one-way ANOVA test in
110	R [37] with data log-transformed as necessary to improve normality. When ANOVA results were
111	significant, groupings were defined post-hoc with Tukey's Honest Significant Difference (HSD)
112	test using the agricolae R package [38].
113	Non-metric multidimensional scaling (NMDS) analysis of metatranscriptome hits was
114	conducted using the vegan R package [39]. NMDS input was a distance matrix constructed by
115	Hellinger-transforming the table of transcript hits and calculating Euclidean distance between
116	samples [40]. Genus vectors were calculated using the envfit command. Significance of
117	groupings were tested by permutational multivariate analysis of variance (the adonis command)
118	with 999 permutations.
119	
120	MAG-SPECIFIC ANNOTATION AND TRANSCRIPT ANALYSIS
121	Gene-specific analyses focused on three MAGs: two from the SIMO collection (SIMO
122	Bin 19-2, Genbank: <u>VMDE00000000</u> ; SIMO Bin 31-1, <u>VMBU00000000</u> ; [25]) and one (RS440,
123	PBUZ0000000; [41]) binned from TARA Oceans metagenomes [42]. These MAGs represented
124	genera O1, O3, and M, respectively, which were highly abundant in metatranscriptomes (see Fig.
125	1). RS440 was selected due to a high number of transcripts recruited when genus M was
126	abundant (data not shown).
127	MAGs were annotated using the archaeal database in Prokka v.1.13 (ref. 43), using
128	DIAMOND [44] to search against all orthologous groups in eggNOG-mapper v.1 (refs. 45, 46),
129	and using the online BlastKOALA portal (https://www.kegg.jp/blastkoala/, last accessed 6

- 6 -

Euryarchaeal transcriptomes in the coastal ocean

130	March 2019) [47]. Putative genes for carbohydrate-active enzymes, peptidases, and membrane
131	transport proteins were identified using HMMER searches of dbCAN2 (HMMdb v.7) [48,49],
132	MEROPS v.12.0 (ref. 50), and the Transporter Classification Database [51], respectively.
133	Transcript reads were mapped to MAGs (combined into a single database such that each
134	read mapped to only one MAG) to identify Ca. Poseidoniales genes that were highly or
135	differentially transcribed. Coverage was calculated by profiling BAM files in anvi'o and
136	normalized to coverage per million reads (CPM) by dividing by the total number of reads per
137	sample. For each MAG, "highly transcribed" genes were the 5% of putative genes with the
138	highest median CPM across metatranscriptomes (SIMO Bin 19-2: 63 genes, SIMO Bin 31-1: 70
139	genes, RS440: 77 genes).
140	DESeq2 v.3.11 (ref 52) was used to identify genes from each MAG that were
141	differentially transcribed when each genus was highly transcriptionally active. For each MAG,
142	"treatment" samples in DESeq2 were those where the respective genus recruited \geq 50% of <i>Ca</i> .
143	Poseidoniales reads from the metatranscriptome. Thus, positive fold-change values are genes
144	transcribed at higher levels when the genus is highly transcriptionally active (compared to other
145	metatranscriptomes). DESeq2 was also used to identify differentially transcribed genes for each
146	MAG between T_0 and T_{24} samples in high tide (HT) dark incubations [23]. Since T_{24} samples
147	were the "treatment" condition in DESeq2, positive fold-change values here are genes
148	transcribed at higher levels in T_{24} compared to T_0 samples. In all DESeq2 analyses, genes with
149	Benjamini-Hochberg adjusted $p < 0.1$ were counted as having significantly different transcription.
150	
151	16S rRNA QUANTITATIVE PCR

- 7 -

Euryarchaeal transcriptomes in the coastal ocean

152	DNA samples from SAB field campaigns in 2014 and 2017 [24,53] were used as
153	templates for qPCR reactions targeting the Ca. Poseidoniales 16S rRNA gene. Samples included
154	the variety of shelf habitats (inshore, nearshore, mid-shelf, shelf-break, and oceanic as previously
155	defined [24]; Fig. S1). Primers were GII-554-f [54] and Eury806-r [55] with cycling conditions
156	as previously reported [56] (Table S1). Reactions (25 μ L, triplicate) used iTaq Universal Green
157	SYBR Mix (Bio-Rad, Hercules, CA) in a C1000 Touch Thermal Cycler/CFX96 Real-Time
158	System (Bio-Rad, Hercules, CA). Each plate included a no-template control and a standard curve
159	(serial dilutions of a linearized plasmid containing a previously-sequenced, cloned amplicon).
160	Abundance of Ca. Poseidoniales 16S rRNA genes was compared to published bacterial 16S
161	rRNA gene abundance from the same samples [24,53]. Regional variability of gene abundance
162	was assessed using a one-way ANOVA and a post-hoc HSD test as described above. Model II
163	regressions of log-transformed qPCR data were estimated using the lmodel2 R package [57] as
164	previously described [53]. All plots were constructed with anvi'o or the ggplot2 R package [58].
165	
166	RESULTS
167	EURYARCHAEOTAL MAGs
168	SIMO Bins 19-2 and 31-1 were estimated as 82.5-92.3% and 77.5-96.2% complete,
169	respectively, with redundancy <0.6% [25]. Phylogenomics placed both in the putative family <i>Ca</i> .
170	Thalassarchaeaceae (MGIIb) and genera O1 (SIMO Bin 19-2) and O3 (SIMO Bin 31-1; Fig. S2).
171	Phylogenomic groupings were generally consistent with previous findings [15,16].
172	Both SIMO MAGs contained a proteorhodopsin gene. Presence of a methionine residue
173	at position 315 suggested absorption of green light [59,60], and both proteorhodopsin genes
174	grouped in "Archaea Clade B" [11,16,61] (Fig. S3). Both MAGs included partial or complete

- 8 -

175	pathways indicating aerobic heterotrophic growth, such as glycolysis, the TCA cycle, and
176	electron transport chain components (Table S2). Pathways for metabolism of compounds such as
177	fatty acids, peptides, and proteins were also present, as were transport systems and metabolic
178	pathways for amino acids and nucleotides.
179	
180	DOMINANT GENERA IN FIELD METATRANSCRIPTOMES
181	There were significant seasonal differences in transcript recruitment by the combined set
182	of <i>Ca</i> . Poseidoniales MAGs ($F_{3,28}$ =4.9, p =0.007): most summer samples had >10 ¹⁰ <i>Ca</i> .
183	Poseidoniales transcripts L ⁻¹ , significantly more than in other seasons (Fig. 1A,C; Table S3). The
184	diversity of transcriptionally-active Ca. Poseidoniales also changed seasonally. Genera O1 and
185	O3 accounted for most reads mapped from summer samples (typically 89.5-99.5% of Ca.
186	Poseidoniales reads), with most mapping to O1 (Fig. 1A,B). HT (and not low tide; LT)
187	metatranscriptomes from July 2014 also had a moderate fraction of reads (37.5-39.6%) mapped
188	to Ca. Poseidoniaceae. In contrast to summer samples, November 2008 and May 2009 transcripts
189	were predominantly O3, while those from February 2009 and October 2014 were mostly Ca.
190	Poseidoniaceae genera M, L1, or L2 (Fig. 1A, Table S3). NMDS analysis showed clear seasonal
191	groupings (PERMANOVA: r ² =0.693, p=0.001; Fig. S4).

Euryarchaeal transcriptomes in the coastal ocean

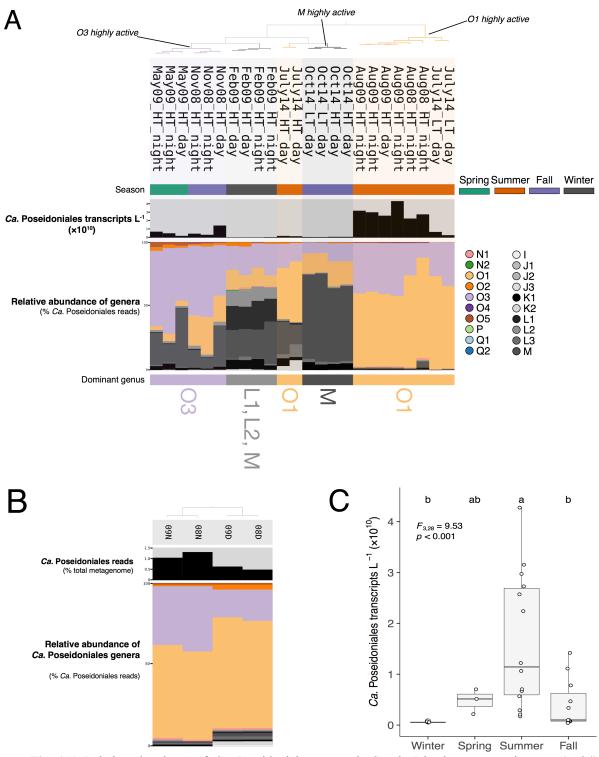


Fig. 1A) Relative abundance of Ca. Poseidoniales genera in Sapelo Island metatranscriptomes (n=24). The dendrogram (top) shows grouping by similarity. Season is indicated by color beneath sample names. The bar chart shows the abundance of Ca. Poseidoniales transcripts L⁻¹ and the stacked bar charts show the relative abundance of genera (% total Ca. Poseidoniales transcripts), colored by genus. Dominant genera are indicated below the stacked bar chart. "Highly active" samples for each genus are marked and were used for analysis of differential transcription. B) Relative abundance of genera in Sapelo Island metagenomes (n=4), as described above. Since internal standards were not included in metagenomes, total Ca. Poseidoniales reads are shown as a percentage of the total metagenome. C) Boxplots of Ca. Poseidoniales reads L^{-1} , grouped by season (winter, n=4; spring, n=3; summer, n=10; fall, n=7). Values from individual metatranscriptomes are overlain. Results of an ANOVA are indicated; letters at the top indicate post-hoc groups according to Tukey's HSD test. - 10 -

192

193

Eurvarchaeal transcriptomes in the coastal ocean

194 HIGHLY TRANSCRIBED CA. POSEIDONIALES GENES

195 Many highly transcribed *Ca*. Thalassarchaeaceae (MGIIb) genes were involved in

- translation, transcription, replication/repair, or post-translation protein modification (Fig. 2).
- 197 Genes encoding proteins involved in energy production or conservation (ATPases, a
- 198 pyrophosphate-energized proton pump, and proteorhodopsin) were also highly transcribed.
- 199 Notably, the *aapJ* and *livK* genes, encoding substrate-binding proteins of L-amino acid and
- 200 branch-chain amino acid transporters, respectively, were among the most highly transcribed
- 201 genes in both *Ca*. Thalassarchaeaceae MAGs (Fig. 2, Table S2).

202 Many of the highly transcribed genes mapping to the *Ca*. Poseidoniaceae (MGIIa) MAG

203 were not highly transcribed by *Ca*. Thalassarchaeaceae, including genes encoding a carbamoyl

204 phosphate synthetase subunit (*carA*), a family 2 glycosyl transferase, chromosomal protein

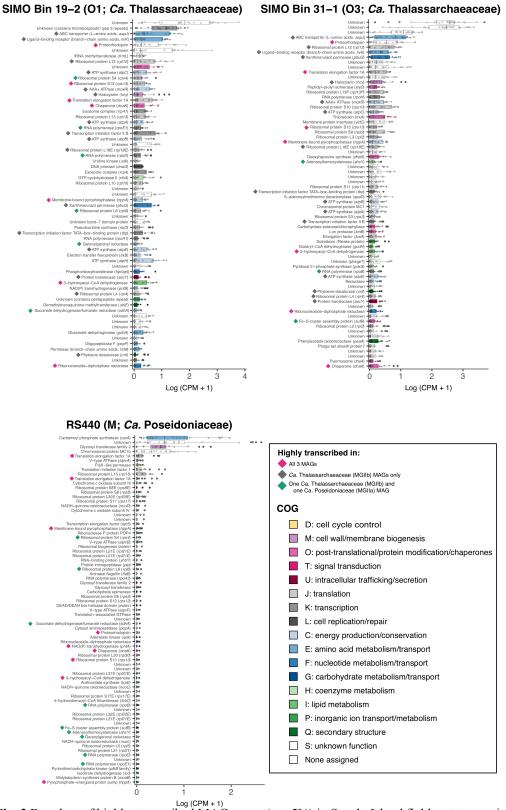
205 MC1b, and a ftsX-like permease. The *carA* gene had the highest median coverage of *Ca*.

206 Poseidoniaceae genes across coastal metatranscriptomes (Fig. 2, Table S2). While both *Ca*.

207 Thalassarchaeaceae MAGs also contained the carbamoyl phosphate synthetase genes, neither

transcribed *carA* at high levels (Table S2).

209 Twelve genes were highly transcribed by *Ca*. Thalassarchaeaceae and not by *Ca*.


210 Poseidoniaceae, including genes encoding ATP synthase, transcription initiation factor IIB,

211 halocyanin, phytoene desaturase, protein translocase, xanthine/uracil permease, and receptors for

amino acid transporters (Fig. 2, Table S2). Other than those encoding ribosomal proteins, only

six genes were highly transcribed in all three MAGs: a chaperone protein, a ribonucleoside-

- diphosphate reductase, translation elongation factor 1A, 3-hydroxyacyl-CoA dehydrogenase, a
- 215 membrane-bound pyrophosphatase (*hppA*), and proteorhodopsin (Fig. 2).

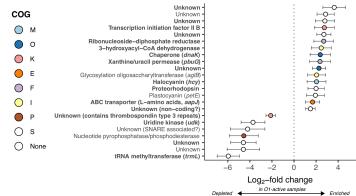


Fig. 2 Boxplots of highly-transcribed MAG genes (top 5%) in Sapelo Island field metatranscriptomes. Overlain points show CPM for individual metatranscriptomes (n=24). Shading indicates COG functional category assigned by eggNOG-mapper (genes assigned to group S were similar to proteins of unknown function in the COG database, while genes with no COG assignment did not match proteins in the COG database). Diamonds indicate genes highly transcribed in all MAGs (pink), in *Ca.* Thalassarchaeaceae (MGIIb) MAGs only (gray), or in the *Ca.* Poseidoniaceae (MGIIa) MAG and one *Ca.* Thalassarchaeaceae MAG (green).

Euryarchaeal transcriptomes in the coastal ocean

218 DIFFERENTIAL GENE TRANSCRIPTION

- 219 We were interested in identifying genes with variable transcription levels when genera
- 220 O1, O3, and M were highly transcriptionally active in the ocean. Twenty-three genes were
- differentially transcribed in O1-active samples (Fig. 3, Table S4), sixteen of which had higher
- abundance in O1-active metatranscriptomes compared to other metatranscriptomes. These highly
- transcribed genes encoded proteorhodopsin, two copper-containing redox proteins (halocyanin
- and plastocyanin), and proteins involved in lipid metabolism (3-hydroxyacyl-CoA
- 225 dehydrogenase and oligosaccharyltransferase), nucleotide transport/metabolism (ribonucleotide-
- diphosphate reductase and xanthine/uracil permease), and amino acid transport (ligand-binding
- 227 receptor for a L-amino acid transporter,
- 228 *aapJ*). Differentially transcribed genes
- 229 mapping to the O3 MAG were mostly
- 230 depleted in O3-active
- 231 metatranscriptomes and largely encoded
- 232 proteins of unknown function; only the
- 233 gene encoding ribosomal protein L12
- 234 was enriched in O3-active samples (Fig.
- 235 S5, Table S4). Only four genes

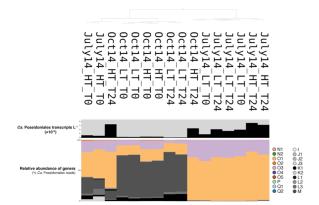
SIMO Bin 19-2 (O1) - Field

Fig. 3 Log₂-fold change of SIMO Bin 19-2 (genus O1) genes differentially transcribed in field metatranscriptomes where transcriptional activity of *Ca.* Poseidoniales was dominated by genus O1 (see Fig. 1, Table S3), calculated with DESeq2. Error bars show estimated standard error. Only genes with adjusted *p*-values <0.1 are shown. Color indicates COG functional category (see Fig. 2). Bold indicates genes in the top 5% median transcript coverage across field metatranscriptomes (Fig. 2).

- 236 mapping to the M MAG were
- 237 differentially transcribed in M-active metatranscriptomes. Annotated genes encoded
- chromosomal protein MC1b, an ATPase subunit, and a glycosyl transferase, which all had
- significantly fewer transcripts in M-rich samples (Fig. S6, Table S4). One gene of unknown
- 240 function was enriched compared to other samples.

Euryarchaeal transcriptomes in the coastal ocean

241

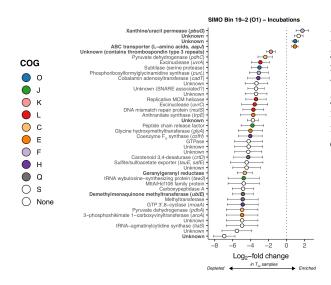

242 DARK INCUBATION METATRANSCRIPTOMES

- Incubation had little effect on transcription by the dominant genera in LT samples (Fig. 4,
- Table S3). In contrast, there were distinct shifts in transcriptionally active populations during
- incubations of all HT samples. July HT metatranscriptomes initially contained 60.4-62.5% *Ca.*
- Thalassarchaeaceae (MGIIb) while hits from the corresponding T_{24} samples were 98.1-99.3%
- 247 *Ca.* Thalassarchaeaceae, due to increased transcript hits to genus O1 (Fig. 4, Table S3).
- Likewise, October 2014 HT samples initially contained 65.0-66.6% hits to *Ca*. Poseidoniaceae

249 (MGIIa) but changed to 78.3-98.8% hits to Ca. Thalassarchaeaceae at T₂₄ due to an increase in

250 hits to O1 (Fig. 4).

- 251 DESeq2 identified 40 differentially
- transcribed genes mapping to the O1 MAG
- **253** between HT T_0 and T_{24} metatranscriptomes.
- 254 Four O1 genes had higher transcription at
- 255 T₂₄, including xanthine/uracil permease
- 256 (*pbuG*) and an amino acid transporter
- substrate-binding domain (*aapJ*; Fig. 5,
- Table S5). The 36 O1 genes transcribed
- at lower levels encoded proteins
- 260 involved in repair of UV-damaged


Fig. 4 Comparisons of competitive read mapping to *Ca.* Poseidoniales genera at the beginning and end of 24-hour incubations of Sapelo Island water conducted by [23]. The dendrogram (top) shows grouping by similarity. The bar chart below the dendrogram is the abundance of *Ca.* Poseidoniales transcripts L^{-1} . Stacked bar charts show the relative abundance of genera (% total *Ca.* Poseidoniales transcript reads), colored by genus.

- 261 DNA, amino acid or nucleotide metabolism, coenzyme synthesis, peptidases or proteases,
- transcription, DNA replication, and lipid biosynthesis, as well as phytoene desaturase (*crtD*) and
- 263 multiple subunits of pyruvate dehydrogenase (*pdhC*, *pdhA*). None of the genes mapping to the

Euryarchaeal transcriptomes in the coastal ocean

264 O3 or M MAGs were transcribed at significantly different levels between HT incubation

timepoints (p>0.1 for all genes; Table S5).

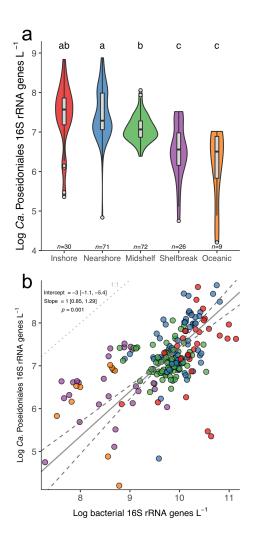
Fig. 5 Log₂-fold change of SIMO Bin 19-2 (genus O1) genes differentially abundant in T_{24} versus T_0 metatranscriptomes from Sapelo Island high tide waters. Error bars show estimated standard error. Only genes with adjusted *p*-values<0.1 are shown. Color indicates COG functional category (see Fig. 2). Bold indicates genes in the top 5% median transcript coverage across field metatranscriptomes (Fig. 2).

266

267 16S rRNA GENE ABUNDANCE

268 *Ca.* Poseidoniales 16S rRNA genes were detected in all SAB DNA samples (*n*=208),

with a range from 1.6×10^4 to 7.6×10^8 genes L⁻¹ (Table S6). Standard curves for the *Ca*.


270 Poseidoniales assay always had $r^2 > 0.99$ (mean ± standard deviation: 0.99±0.001) and the mean

efficiency was 93.4% (±2.0%; Table S1). When data from all cruises were combined, *Ca*.

272 Poseidoniales genes were most abundant throughout inshore and nearshore waters and least

- abundant in shelf-break and oceanic samples ($F_{4,204}$ =18.5, p<0.001; Fig. 6A). There was a strong
- 274 linear relationship between log-transformed bacterial and *Ca*. Poseidoniales 16S rRNA gene
- abundances, with bacterial abundances 2-3 orders of magnitude higher (Fig. 6B).

Euryarchaeal transcriptomes in the coastal ocean

Fig. 6 A) Violin plots of log-transformed *Ca.* Poseidoniales 16S rRNA gene abundances across regions in the SAB, with overlain boxplots. Width of the violin plot corresponds to data probability density. Color denotes sampling region. Letters above boxes denote post-hoc grouping according to Tukey's HSD test. B) Scatterplot of bacterial and *Ca.* Poseidoniales 16S rRNA gene abundances in the SAB. The solid line shows the best fit of a model II (major axis) linear regression, with dashed lines showing a 95% confidence interval of the slope. Regression parameters are shown on the plot.

276

277 DISCUSSION

278 ABUNDANCE OF CA. POSEIDONIALES GENES IN THE SOUTH ATLANTIC BIGHT

279 The abundance of *Ca*. Poseidoniales 16S rRNA genes in the coastal SAB is among the

highest measured in the ocean, with nearly 10^9 genes L⁻¹ in some samples. Typical *Ca*.

Poseidoniales abundance is 10^{6} - 10^{7} genes or cells L⁻¹ in oligotrophic waters [62-66] and 10^{7} - 10^{8}

- genes or cells L^{-1} in coastal waters [9,54,56,67-69]. Greater gene abundance in inshore,
- 283 nearshore, and mid-shelf waters indicates Ca. Poseidoniales are more abundant over the shallow
- shelf than further offshore (Fig. 6A), matching clone library data from the SAB [24] and data
- from the Central California Current and the Black Sea [9,68]. The DOM in productive, turbid

Euryarchaeal transcriptomes in the coastal ocean

286	SAB coastal waters supports highly active heterotrophic microbial populations [70,71]. Our data
287	suggest large populations of Ca. Poseidoniales are part of this heterotrophic community, and the
288	correlation between Ca. Poseidoniales and bacterial abundance (Fig. 6B) suggests common
289	factors influence the abundance of these populations.
290	
291	TRANSCRIPTIONALLY ACTIVE CA. POSEIDONIALES
292	While numerous studies have demonstrated high abundance of Ca. Poseidoniales in the
293	coastal ocean (e.g., [56,69]), little is known about which clades are transcriptionally active in
294	these regions. At Sapelo Island, the striking dominance of the Ca. Thalassarchaeaceae (MGIIb)
295	genera O1 and O3 in summer samples, which also contained the highest amount of aggregate Ca.
296	Poseidoniales transcripts (Fig. 1), indicates that Ca. Thalassarchaeaceae are highly-active during
297	the summertime. Outliers to this pattern were July 2014 HT samples, which contained abundant
298	Ca. Poseidoniaceae (MGIIa) transcripts (though Ca. Thalassarchaeaceae still comprised the
299	majority of their Ca. Poseidoniales reads). A previous study found relatively high salinity and
300	DOM enriched in marine-origin molecules over the mid-shelf SAB during July 2014 [72]. Our
301	data suggest Ca. Poseidoniaceae were relatively active over the shelf during this time and were
302	transported inshore during flood tides, leading to shifts in transcriptional diversity between LT
303	waters (dominated by Ca. Thalassarchaeaceae) and HT waters (which included a higher number
304	of Ca. Poseidoniaceae).
305	Ca. Poseidoniaceae (MGIIa) are the predominant euryarchaeal family in many coastal
306	ecosystems, particularly in summer (e.g., [9,14,56,73,74]), but it is unclear what general patterns

307 govern *Ca*. Poseidoniales distributions in coastal waters worldwide. Studies of *Ca*. Poseidoniales
308 ecology often focus on distributions with depth, typically finding abundant *Ca*.

- 17 -

309	Thalassarchaeaceae (MGIIb) in deeper waters and Ca. Poseidoniaceae (MGIIa) more prevalent				
310	in euphotic waters (e.g., [12,54,75-77]). A recent mapping of global ocean metagenome reads				
311	showed that coastal populations of Ca. Poseidoniales were primarily Ca. Poseidoniaceae, though				
312	Ca. Thalassarchaeaceae MAGs recruited a substantial number of reads from some coastal				
313	metagenomes [16]. Our data match this latter pattern, with Ca. Poseidoniales populations in				
314	surface waters off Sapelo Island dominated by highly active Ca. Thalassarchaeaceae (Fig. 1).				
315	The higher abundance of MAGs from genera O1 and O3 (also referred to as MGIIb.12 and				
316	MGIIb.14) in some mesopelagic and coastal samples with relatively high temperature (~23-				
317	30°C; [16]) may explain the unusual pattern found in SAB waters: these genera peaked in				
318	summer at Sapelo Island, when water temperatures were 29–30°C (Table S2), suggesting they				
319	may be adapted to growth at relatively low light and high temperature.				
320					
321	CA. POSEIDONIALES GENE TRANSCRIPTION PATTERNS				
322	Sapelo Island metatranscriptome reads that mapped to Ca. Poseidoniales were analyzed				
323	in three ways:				
324	(1) We determined sets of "highly transcribed" genes mapping to MAGs of				
325	transcriptionally-active Ca Poseidoniales genera (5% of MAG genes with the highest				
326	median transcript coverage);				
327					
	(2) We identified genes mapping to <i>Ca</i> Poseidoniales MAGs that were differentially				
328	(2) We identified genes mapping to Ca Poseidoniales MAGs that were differentially transcribed when its genus was highly active (\geq 50% of Ca. Poseidoniales transcripts				
328 329					
	transcribed when its genus was highly active (\geq 50% of <i>Ca</i> . Poseidoniales transcripts				

332	separates indigenous microbes from light and sources of short-lived substrates,
333	transcription of corresponding transporters and metabolic genes ceases during
334	incubations as substrates are consumed. We therefore assume transcript depletion in
335	T ₂₄ compared to T ₀ metatranscriptomes indicates genes that were transcriptionally
336	active in the field [23]. This interpretation was bolstered by significant transcript
337	depletions for genes involved in repairing UV damage to DNA (uvrA, uvrC, and
338	<i>cofH</i> ; Fig. 5), an expected result given alleviation of UV stress in dark incubations.
339	
340	In the following sections, we synthesize these analyses to discuss Ca. Poseidoniales
341	transcriptional activity related to metabolism of labile DOM, transport/metabolism of amino
342	acids and nucleotides, and basic energetic processes. Though lack of a cultivated representative
343	limits the analysis to computationally-inferred functions, these data provide hypotheses
344	regarding the activity of Ca. Poseideniales families in the coastal ocean.
345	
346	PROTON GRADIENTS AND ELECTRON TRANSPORT
347	Our analysis revealed that Ca Poseidoniales genes involved in establishing
348	transmembrane proton gradients were highly transcribed in our samples. Genes encoding
349	proteorhodopsin were among the most highly transcribed by both Ca. Thalassarchaeaceae MAGs
350	and were highly transcribed in O1-active samples (Figs. 2,3). Proteorhodopsins consist of a
351	retinal chromophore linked to a transmembrane protein and use light energy to pump protons
352	across the cell membrane [78]. The resulting energy can be coupled to ATP production or other
353	chemiosmotic processes and often supports photoheterotrophy, though its function varies widely
354	[61]. Proteorhodopsin genes are highly transcribed in the photic zone of both open ocean and

Euryarchaeal transcriptomes in the coastal ocean

355	coastal waters (e.g., [79-81]) and our data indicate coastal Ca. Poseidoniales conform to this
356	pattern, consistent with recent evidence from other regions [20,82,83]. High transcription of
357	proteorhodopsin supports the photoheterotrophic lifestyle hypothesized for Ca. Poseidoniales
358	(e.g., [9,11,12,15,16]).
359	Since O1 proteorhodopsin transcript abundance did not differ between the beginning and
360	end of dark incubations (Fig. 5), light may not regulate Ca. Thalassarchaeaceae proteorhodopsin
361	transcription. However, depletion of O1 crtD (carotenoid 3,4-desaturase) transcripts during dark
362	incubation (Fig. 5) suggests light may regulate retinal synthesis. Whether proteorhodopsin
363	transcription responds to light varies among marine bacteria [60,84,85], and the function of
364	constitutive transcription is not straightforward: while some bacteria use proteorhodopsin to
365	produce ATP when carbon-limited [86], high amounts of proteorhodopsin in other bacteria can
366	physically stabilize membranes even when inactive [87]. The high proteorhodopsin transcription
367	in our data emphasizes, but provides little mechanistic clarification of, the physiological role for
368	proteorhodopsin in Ca. Poseidoniales (Table 1).
	Table 1 Transcriptional traits shared or distinct among euryarchaeal families ¹

Putative function	Relevant gene(s)	Distribution	Evidence
Proteorhodopsin	Proteorhodopsin gene	Both families	Highly transcribed (Fig. 2); enriched when O1 active (Fig. 3)
Pyrophosphatase	hppA	Both families	Highly transcribed (Fig. 2)
Protease/peptidase	<pre>pepF, lonB, pepA, pip, carboxypeptidase A, subtilase</pre>	Both families	Highly transcribed (Fig. 2); depletion during dark incubation (Fig. 5)
ß-oxidation	3-hydroxyacyl-CoA dehydrogenase	Both families	Highly transcribed (Fig. 2); enriched when O1 active (Fig. 3)
Proteorhodopsin retinal synthesis	crtI, crtD	Ca. Thalassarchaeaceae only	Highly transcribed in SIMO MAGs (Fig. 2); depletion during dark incubation (Fig. 5)
Electron transport	Halocyanin gene	Ca. Thalassarchaeaceae only	Highly transcribed in SIMO MAGs (Fig. 2); enriched when O1 active (Fig. 3)
Amino acid transport/metabolism	aapJ, livK, aroA, trpE	Ca. Thalassarchaeaceae only	Highly transcribed (Fig. 2); depletion during dark incubation (Fig. 5)
Xanthine/uracil permease	pbuG	Ca. Thalassarchaeaceae only	Highly transcribed (Fig. 2); enriched when O1 active (Fig. 3); depletion during incubations (Fig. 5)
Amino acid synthesis	carA	Ca. Poseidoniaceae only	Highly transcribed (Fig. 2)
Carbohydrate synthesis	Family 2 glycosyl transferase	Ca. Poseidoniaceae only	Highly transcribed (Fig. 2)

¹Putative Ca. Poseidoniales families are Ca. Poseidoniaceae (MGIIa; MAG RS440) and Ca. Thalassarchaeaceae (MGIIb; SIMO Bins 19-2, 31-1).

369

370 Numerous genes encoding putative electron transport proteins were highly transcribed by371 at least one *Ca.* Poseidoniales family (Fig. 2). Like proteorhodopsin, a halocyanin gene was

Euryarchaeal transcriptomes in the coastal ocean

372	among the most highly transcribed Ca. Thalassarchaeaceae genes and was enriched when genus
373	O1 was transcriptionally active (Fig. 3). Halocyanins are involved in the electron transport chain
374	and have been posited to increase the energy yield of aerobic respiration in Ca.
375	Thalassarchaeaceae to stimulate rapid growth [12]. The similar transcription patterns of
376	proteorhodopsin and halocyanin suggests proteorhodopsin activity in coastal Ca.
377	Thalassarchaeaceae may function to increase growth rates during respiration, aiding rapid
378	population growth when conditions permit.
379	The <i>hppa</i> gene from all <i>Ca</i> Poseidoniales MAGs was highly transcribed (Fig. 2; Table 1).
380	The gene putatively encodes a membrane-bound pyrophosphatase, which generates a proton
381	gradient via hydrolysis of pyrophosphate, a byproduct of numerous cellular processes [88]. In
382	metatranscriptomes from a phytoplankton bloom, enrichment of hppA transcripts suggested high
383	pyrophosphate-based energy conservation in oligotrophic waters [89]. Similarly, hppA was
384	abundant in metatranscriptomes from Lake Llebreta, particularly at night [90]. Although hppA is
385	widespread in MAGs from Ca. Poseidoniales [15] it has not been recognized as a potentially
386	important part of their metabolism. Our data suggest Ca. Poseidoniales may be capable of using
387	pyrophosphatase (along with proteorhodopsin) to generate a protonmotive force (Table 1).
388	
389	POTENTIAL IMPORTANCE OF MARINE DOM IN CA. POSEIDONIALES METABOLISM
390	Although the T ₀ metatranscriptomes from summer versus fall were dominated by
391	transcripts from different Ca. Poseidoniales families, a 24-hour dark incubation consistently
392	favored transcription by Ca. Thalassarchaeaceae when samples were collected at HT (Fig. 4).
393	This tidal stage-linked increase in Ca. Thalassarchaeaceae transcription could relate to
394	differences in DOM availability between HT and LT, consistent with numerous studies

- 21 -

Eurvarchaeal transcriptomes in the coastal ocean

395 implicating DOM in shaping Ca. Poseidoniales populations [9,10,91]. The HT Sapelo Island 396 DOM pool is primarily of marine origin while LT DOM is more riverine- and marsh-derived 397 [72], which may select for growth of different *Ca*. Poseidoniales families in the water masses 398 present at different tidal stages. Furthermore, the depletion of transcripts encoding two pyruvate 399 dehydrogenase subunits (pdhA and pdhC) during incubations (Fig. 5) suggests Ca. Poseidoniales 400 were metabolizing phytoplankton photosynthate *in situ*. Alternatively, these tidal stage-driven 401 transcriptional patterns may relate to differential light adaptation in populations originating in 402 offshore versus nearshore waters. Inshore populations, potentially adapted to life in turbid 403 waters, may increase transcription upon dark enclosure, whereas offshore populations 404 (transported shoreward during flood tide) may be adapted to clearer waters and reduce 405 transcription in dark conditions. 406 Multiple lines of evidence indicate coastal *Ca*. Poseidoniales were metabolizing proteins 407 and fatty acids. High transcription of genes encoding proteases or peptidases mapping to all Ca. 408 Poseidoniales MAGs (Fig. 2) suggests metabolism of proteins or peptides by both families 409 (Table 1). Furthermore, decreased transcription of protease genes mapping to the O1 MAG 410 during dark incubations (Fig. 5) suggests protein metabolism by Ca. Thalassarchaeaceae was 411 active *in situ* prior to incubation. While some of these genes could be involved in intracellular 412 recycling (particularly lon protease and cytosol aminopeptidase), active protein metabolism is 413 consistent with previous experiments demonstrating protein assimilation [10] and high 414 transcription of *Ca*. Poseidoniales peptidase genes in other marine regions [20,21].

416 hydroxyacyl-CoA dehydrogenase gene from all three MAGs (Fig. 2), and its enrichment in O1-

In addition to genes encoding protein catabolism, high transcription of the 3-

415

417 active field samples (Fig. 3), suggests the importance of fatty acid metabolism for both *Ca*.

- 22 -

Euryarchaeal transcriptomes in the coastal ocean

418	Poseidoniales families (Table 1). This conclusion fits with the widespread occurrence of ß-
419	oxidation genes in Ca. Poseidoniales MAGs [15,16], as well as transcriptional data from the
420	deep ocean [21].
421	
422	DISTINCT PATTERNS OF AMINO ACID AND NUCLEOTIDE UPTAKE AND
423	METABOLISM
424	Transcription of <i>livK</i> and <i>aapJ</i> appears to differentiate <i>Ca</i> . Poseidoniales families in the
425	coastal ocean (Table 1). These genes putatively encode ligand-binding receptors for ABC
426	transporters: <i>aapJ</i> for a general L-amino acid transporter and <i>livK</i> for a branched-chain amino
427	acid transporter [92]. Both are commonly present in Ca. Thalassarchaeaceae (MGIIb) but not Ca.
428	Poseidoniaceae (MGIIa) [16] and were among the most highly transcribed <i>Ca</i> .
429	Thalassarchaeaceae genes (Fig. 2). Previous studies noted high transcription of euryarchaeal <i>livK</i>
430	and <i>aapJ</i> genes in the water column of the Red Sea [19,20], at the Mid-Cayman Rise [21], and
431	throughout the Atlantic Ocean [22]. Our data suggest this activity was probably associated with
432	Ca. Thalassarchaeaceae.
433	The <i>aapJ</i> and <i>livK</i> genes were collocated with genes putatively encoding the full
434	transporters in the Ca. Thalassarchaeaceae MAGs (Table S1). Unfortunately, it is difficult to
435	guess their substrates from sequence data alone: AAP transporters are typically capable of
436	transporting a range of L-amino acids [92] while LIV transporters can be highly specific for
437	leucine, specific for branched-chain amino acids, or transport diverse amino acids [92-94]. In soil
438	bacteria grown under inorganic nitrogen limitation, elevated transcription of <i>aapJ</i> is linked to
439	organic nitrogen use [95], but it is unclear whether this mechanism translates to Ca.

440 Thalassarchaeaceae since amino acids could be used for numerous anabolic or catabolic

- 23 -

Euryarchaeal transcriptomes in the coastal ocean

441	processes. In addition to these binding proteins, the depletion of transcripts from O1 genes
442	putatively involved in the shikimate pathway of aromatic amino acid synthesis (3-
443	phosphoshikimate 1-carboxyvinyltransferase and anthranilate synthase) during incubations (Fig.
444	5) suggests these archaea were synthesizing aromatic amino acids in situ.
445	The combination of high <i>pbuG</i> transcription by <i>Ca</i> . Thalassarchaeaceae (MGIIb) with the
446	high numbers of O1 <i>pbuG</i> transcripts in O1-active samples and dark incubation endpoints (Figs.
447	2,3,5) suggests an important role for xanthine/uracil permease (the putative product of $pbuG$) in
448	Ca. Thalassarchaeaceae metabolism. In some phytoplankton, pbuG is transcribed during
449	nitrogen-stressed growth [96-98], potentially allowing access to DON. However, <i>pbuG</i> and
450	xanthine dehydrogenase (xdh) are also transcribed when xanthine is catabolized by marine
451	bacteria [99]. Both Ca. Thalassarchaeaceae MAGs contain putative xanthine dehydrogenase
452	genes (<i>xdhC</i> and <i>yagS</i> ; Table S1), suggesting the ability to catabolize xanthine (Table 1).
453	Transcription levels of <i>carA</i> , putatively encoding part of carbamoyl phosphate synthetase,
454	appears to be a distinct trait of Ca. Poseidoniaceae (MGIIa): while all three MAGs contained this
455	gene (Table S1), only Ca. Poseidoniaceae carA transcription was high. Since carbamoyl
456	phosphate synthetase is a key enzyme for arginine and pyrimidine synthesis from bicarbonate,
457	high <i>carA</i> transcription suggests these pathways may be important components of <i>Ca</i> .
458	Poseidoniaceae growth or survival.
459	
460	CONCLUSIONS

461 Our metatranscriptomic data and associated experiments provide a window into the
462 activity of *Ca*. Poseidoniales families (formerly "MGIIa" and "MGIIb"). They indicate an
463 important role for *Ca*. Thalassarchaeaceae (MGIIb) as coastal photoheterotrophs, particularly in

- 24 -

464	warm waters. High transcription of proteorhodopsin and membrane-bound pyrophosphatase		
465	genes suggested common methods for establishing proton gradients. Furthermore, high		
466	transcription of genes involved in protein/peptide metabolism and ß-oxidation of fatty acids		
467	confirmed peptide and lipid metabolism as a common trait. However, high transcription of Ca.		
468	Thalassarchaeaceae genes encoding amino acid binding proteins and nucleotide transporters		
469	suggests uptake of these substrates may distinguish the two families. These data confirm the		
470	importance of DOM metabolism by Ca. Poseidoniales and suggest a potential role for organic		
471	nitrogen in Ca. Thalassarchaeaceae metabolism.		
472			
473	ACKNOWLEDGMENTS		
474	We thank Qian Liu, Bradley Tolar, the Georgia Coastal Ecosystems LTER field team, the		
475	University of Georgia Marine Institute at Sapelo Island staff, and the captain and crew of the		
476	R/V Savannah for assistance with original field sampling. This work was funded in part by NSF		
477	OCE grant 1538677 and OPP grant 1643466 (to JTH), NSF Grant IOS1656311 (to MAM), and		
478	NSF OCE grant 1832178 (to the Georgia Coastal Ecosystems LTER), as well as by resources		
479	and technical expertise from the Georgia Advanced Computing Resource Center, a partnership		
480	between the University of Georgia's Office of the Vice President for Research and Office of the		
481	Vice President for Information Technology.		
482	The authors declare no competing financial interests.		
483	REFERENCES		
484 485	1. Fuhrman JA, McCallum K, Davis AA. Novel major archaebacterial group from marine plankton. Nature 1992;356:148–9.		
486 487	2. DeLong EF. Archaea in coastal marine environments. Proceedings of the National Academy of Sciences 1992;89:5685–9.		
488 489	3. Zhang CL, Xie W, Martín-Cuadrado A-B, Rodriguez-Valera F. Marine Group II Archaea, potentially important players in the global ocean carbon cycle. Frontiers in Microbiology 2015;6:1108.		
490 491	4. Santoro AE, Richter RA, Dupont CL. Planktonic marine archaea. Annual Review of Marine Science 2019;11:131–58.		

492 493 494	5.	Béjà O, Suzuki MT, Koonin EV, Aravind L, Hadd A, Nguyen LP, et al. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environmental Microbiology 2000;2:516–29.
495 496 497	6.	Moreira D, Rodriguez-Valera F, López-García P. Analysis of a genome fragment of a deep-sea uncultivated Group II euryarchaeote containing 16S rDNA, a spectinomycin-like operon and several energy metabolism genes. Environmental Microbiology 2004;6:959–69.
498 499 500 501	7.	Martín-Cuadrado A-B, Rodriguez-Valera F, Moreira D, Alba JC, Ivars-Martínez E, Henn MR, et al. Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions. The ISME Journal 2008;2:865–86.
502 503	8.	Alonso C, Pernthaler J. Concentration-dependent patterns of leucine incorporation by coastal picoplankton. Applied and Environmental Microbiology 2006;72:2141–7.
504 505 506	9.	Orsi WD, Smith JM, Wilcox HM, Swalwell JE, Carini P, Worden AZ, et al. Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter. The ISME Journal 2015;9:1747–63.
507 508	10.	Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. The ISME Journal 2016;10:2158–73.
509 510	11.	Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV. Untangling genomes from metagenomes: revealing an uncultured class of marine <i>Euryarchaeota</i> . Science 2012;335:587–90.
511 512 513	12.	Martín-Cuadrado A-B, Garcia-Heredia I, Gonzaga Moltó A, López-Ubeda R, Kimes N, López-Garcia P, et al. A new class of marine Euryarchaeota group II from the mediterranean deep chlorophyll maximum. The ISME Journal 2015;9:1619–34.
514 515 516	13.	Thrash JC, Seitz KW, Baker BJ, Temperton B, Gillies LE, Rabalais NN, et al. Metabolic roles of uncultivated bacterioplankton lineages in the northern Gulf of Mexico "dead zone." mBio 2017;8:e01017–17.
517 518	14.	Orellana LH, Francis TB, Krüger K, Teeling H, Müller M-C, Fuchs BM, et al. Niche differentiation among annually recurrent coastal Marine Group II Euryarchaeota. The ISME Journal 2019;13:3024–36.
519 520 521	15.	Rinke C, Rubino F, Messer LF, Youssef N, Parks DH, Chuvochina M, et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (<i>Ca.</i> Poseidoniales ord. nov.). The ISME Journal 2019;13:663–75.
522 523	16.	Tully BJ. Metabolic diversity within the globally abundant Marine Group II Euryarchaea offers insight into ecological patterns. Nature Communications 2019;10:271.
524 525 526	17.	Baker BJ, Sheik CS, Taylor CA, Jain S, Bhasi A, Cavalcoli JD, et al. Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling. The ISME Journal 2013;7:1962–73.
527 528	18.	Ottesen EA, Young CR, Gifford SM, Eppley JM, Marin R, Schuster SC, et al. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science 2014;345:207–12.
529 530	19.	Miller D, Pfreundt U, Hou S, Lott SC, Hess WR, Berman-Frank I. Winter mixing impacts gene expression in marine microbial populations in the Gulf of Aqaba. Aquatic Microbial Ecology 2017;80:223–42.
531 532	20.	Hou S, Pfreundt U, Miller D, Berman-Frank I, Hess WR. mdRNA-Seq analysis of marine microbial communities from the northern Red Sea. Scientific Reports 2016;6:35470.
533 534 535	21.	Li M, Baker BJ, Anantharaman K, Jain S, Breier JA, Dick GJ. Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea. Nature Communications 2015;6:8933.
536 537 538	22.	Bergauer K, Fernandez-Guerra A, Garcia JAL, Sprenger RR, Stepanauskas R, Pachiadaki MG, et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proceedings of the National Academy of Sciences 2018;115:E400–8.
539 540 541	23.	Vorobev A, Sharma S, Yu M, Lee J, Washington BJ, Whitman WB, et al. Identifying labile DOM components in a coastal ocean through depleted bacterial transcripts and chemical signals. Environmental Microbiology 2018;20:3012–30.

542 543 544	24.	Liu Q, Tolar BB, Ross MJ, Cheek JB, Sweeney CM, Wallsgrove NJ, et al. Light and temperature control the seasonal distribution of thaumarchaeota in the South Atlantic bight. The ISME Journal 2018;12:1473–85.
545 546 547	25.	Damashek J, Edwardson CF, Tolar BB, Gifford SM, Moran MA, Hollibaugh JT. Coastal ocean metagenomes and curated metagenome-assembled genomes from Marsh Landing, Sapelo Island (Georgia, USA). Microbiology Resource Announcements 2019;8:e00934–19.
548 549	26.	Gifford SM, Sharma S, Moran MA. Linking activity and function to ecosystem dynamics in a coastal bacterioplankton community. Frontiers in Microbiology 2014;5:185.
550 551	27.	Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications 2018;9:5114.
552 553	28.	Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nature Microbiology 2016;1:16048.
554 555	29.	Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ 2015;3:e1319.
556	30.	Eddy SR. Accelerated profile HMM searches. PLoS Computational Biology 2011;7:e1002195.
557 558	31.	Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 2004;32:1792–7.
559 560	32.	Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 2010;5:e9490.
561 562 563	33.	Santoro AE, Dupont CL, Richter RA, Craig MT, Carini P, McIlvin MR, et al. Genomic and proteomic characterization of " <i>Candidatus</i> Nitrosopelagicus brevis": An ammonia-oxidizing archaeon from the open ocean. Proceedings of the National Academy of Sciences 2015;112:1173–8.
564	34.	Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods 2012;9:357–9.
565 566	35.	Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25:2078–9.
567 568 569	36.	Satinsky BM, Gifford SM, Crump BC, Moran MA. Use of Internal Standards for Quantitative Metatranscriptome and Metagenome Analysis. In: DeLong EF, editor. Methods in Enzymology Microbial Metagenomics, Metatranscriptomics, and Metaproteomics. Elsevier Inc; 2013. pages 237–50.
570 571	37.	R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. 2019;
572 573	38.	de Mendiburu F. agricolae: Statistical procedures for agricultural research. R package version 1.3-1. https://CRAN.R-project.org/package=agricolae. 2019;
574 575	39.	Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community ecology package. R package version 2.5-5. https://CRAN.R-project.org/package=vegan. 2019;
576	40.	Legendre P, Legendre L. Numerical Ecology. 3rd ed. Elsevier; 2012.
577 578	41.	Tully BJ, Graham ED, Heidelberg JF. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Scientific Data 2018;5:170103.
579 580	42.	Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science 2015;348:1261359.
581	43.	Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–9.
582 583	44.	Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nature Methods 2014;12:59–60.
584 585 586	45.	Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Research 2016;44:D286–93.
587 588 589	46.	Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Mering von C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Molecular Biology and Evolution 2017;34:2115–22.
590 591 592	47.	Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. Journal of Molecular Biology 2016;428:726–31.

Euryarchaeal transcriptomes in the coastal ocean

593 48. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes 594 database (CAZv) in 2013. Nucleic Acids Research 2014:42:D490-5. 595 49. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated 596 carbohydrate-active enzyme annotation. Nucleic Acids Research 2018;46:W95-W101. 597 50. Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The MEROPS database of 598 proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the 599 PANTHER database. Nucleic Acids Research 2017;46:D624-32. 600 Saier MH Jr, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The Transporter Classification 51. 601 Database (TCDB): recent advances. Nucleic Acids Research 2016;44:D372-9. 602 52. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with 603 DESeq2. Genome Biology 2014;15:550. 604 Damashek J. Tolar BB, Liu O. Okotie Ovekan AO, Wallsgrove NJ, Popp BN, et al. Microbial oxidation of 53. 605 nitrogen supplied as selected organic nitrogen compounds in the South Atlantic Bight. Limnology and 606 Oceanography 2019;64:982-95. 607 54. Massana R, Murray AE, Preston CM, DeLong EF. Vertical distribution and phylogenetic characterization 608 of marine planktonic Archaea in the Santa Barbara Channel. Applied and Environmental Microbiology 609 1997;63:50-6. 610 55. Teira E, Reinthaler T, Pernthaler A, Pernthaler J, Herndl GJ, Combining catalyzed reporter deposition-611 fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and 612 archaea in the deep ocean. Applied and Environmental Microbiology 2004;70:4411-4. 613 56. Galand PE, Gutiérrez-Provecho C, Massana R, Gasol JM, Casamayor EO. Inter-annual recurrence of 614 archaeal assemblages in the coastal NW Mediterranean Sea (Blanes Bay Microbial Observatory). 615 Limnology and Oceanography 2010;55:2117-25. 616 Legendre P. Imodel2: Model II regression. R package version 1.7-3. 57. 617 https://CRAN.R-project.org/package=lmodel2. 2018; 618 58. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer; 2016. 619 59. Man D, Wang W, Sabehi G, Aravind L, Post AF, Massana R, et al. Diversification and spectral tuning in 620 marine proteorhodopsins. The EMBO Journal 2003;22:1725-31. 621 60. Gómez-Consarnau L, González JM, Coll-Lladó M, Gourdon P, Pascher T, Neutze R, et al. Light 622 stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 2007;445:210-3. 623 Pinhassi J, DeLong EF, Beja O, González JM, Pedrós-Alio C. Marine bacterial and archaeal ion-pumping 61. 624 rhodopsins: genetic diversity, physiology, and ecology. Microbiology and Molecular Biology Reviews 625 2016;80:929-54. 626 62. Church MJ, DeLong EF, Ducklow HW, Karner MB, Preston CM, Karl DM. Abundance and distribution 627 of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnology and 628 Oceanography 2003;48:1893-902. 629 63. Herndl GJ, Reinthaler T, Teira E, van Aken H, Veth C, Pernthaler A, et al. Contribution of Archaea to 630 total prokaryotic production in the deep Atlantic Ocean. Applied and Environmental Microbiology 631 2005;71:2303-9. 632 Galand PE, Lovejoy C, Hamilton AK, Ingram RG, Pedneault E, Carmack EC. Archaeal diversity and a 64. 633 gene for ammonia oxidation are coupled to oceanic circulation. Environmental Microbiology 634 2009;11:971-80. 635 65. Lincoln SA, Wai B, Eppley JM, Church MJ, Summons RE, DeLong EF. Planktonic Euryarchaeota are a 636 significant source of archaeal tetraether lipids in the ocean. Proceedings of the National Academy of 637 Sciences 2014;111:9858-63. 638 Liu H, Zhang CL, Yang C, Chen S, Cao Z, Zhang Z, et al. Marine Group II dominates planktonic archaea 66. 639 in water column of the northeastern South China Sea. Frontiers in Microbiology 2017;8:1098. 640 67. Mincer TJ, Church MJ, Taylor LT, Preston C, Karl DM, DeLong EF. Quantitative distribution of 641 presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. 642 Environmental Microbiology 2007;9:1162-75.

643 644	68.	Stoica E, Herndl GJ. Contribution of <i>Crenarchaeota</i> and <i>Euryarchaeota</i> to the prokaryotic plankton in the coastal northwestern Black Sea. Journal of Plankton Research 2007;29:699–706.
645 646 647	69.	Xie W, Luo H, Murugapiran SK, Dodsworth JA, Chen S, Sun Y, et al. Localized high abundance of Marine Group II archaea in the subtropical Pearl River Estuary: implications for their niche adaptation. Environmental Microbiology 2018;20:734–54.
648 649 650	70.	Wang ZA, Cai W-J, Wang Y, Ji H. The southeastern continental shelf of the United States as an atmospheric CO ₂ source and an exporter of inorganic carbon to the ocean. Continental Shelf Research 2005;25:1917–41.
651 652 653	71.	Letourneau ML, Medeiros PM. Dissolved organic matter composition in a marsh-dominated estuary: response to seasonal forcing and to the passage of a hurricane. Journal of Geophysical Research: Biogeosciences 2019;124:1545–59.
654 655 656	72.	Medeiros PM, Babcock Adams L, Seidel M, Castelao RM, Di Iorio D, Hollibaugh JT, et al. Export of terrigenous dissolved organic matter in a broad continental shelf. Limnology and Oceanography 2017;62:1718–31.
657 658 659	73.	Herfort L, Schouten S, Abbas B, Veldhuis MJW, Coolen MJL, Wuchter C, et al. Variations in spatial and temporal distribution of Archaea in the North Sea in relation to environmental variables. FEMS Microbiology Ecology 2007;62:242–57.
660 661 662	74.	Hugoni M, Taib N, Debroas D, Domaizon I, Jouan Dufournel I, Bronner G, et al. Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proceedings of the National Academy of Sciences 2013;110:6004–9.
663 664 665	75.	Bano N, Ruffin S, Ransom B, Hollibaugh JT. Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with Antarctic assemblages. Applied and Environmental Microbiology 2004;70:781–9.
666 667	76.	Parada AE, Fuhrman JA. Marine archaeal dynamics and interactions with the microbial community over 5 years from surface to seafloor. The ISME Journal 2017;11:2510–25.
668 669	77.	Pereira O, Hochart C, Auguet J-C, Debroas D, Galand PE. Genomic ecology of Marine Group II, the most common marine planktonic Archaea across the surface ocean. MicrobiologyOpen 2019;8:e852.
670 671	78.	Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 2000;289:1902–6.
672 673 674	79.	Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, et al. Microbial community gene expression in ocean surface waters. Proceedings of the National Academy of Sciences 2008;105:3805–10.
675 676 677	80.	Poretsky RS, Hewson I, Sun S, Allen AE, Zehr JP, Moran MA. Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environmental Microbiology 2009;11:1358–75.
678 679 680	81.	Satinsky BM, Crump BC, Smith CB, Sharma S, Zielinski BL, Doherty M, et al. Microspatial gene expression patterns in the Amazon River Plume. Proceedings of the National Academy of Sciences 2014;111:11085–90.
681 682	82.	Alonso-Sáez L, Morán XAG, González JM. Transcriptional patterns of biogeochemically relevant marker genes by temperate marine bacteria. Frontiers in Microbiology 2020;11:465.
683 684 685	83.	Arandia-Gorostidi N, González JM, Huete-Stauffer T, Ansari MI, Morán XAG, Alonso-Sáez L. Light supports cell-integrity and growth rates of taxonomically diverse coastal photoheterotrophs. Environmental Microbiology 2020;
686 687	84.	Giovannoni SJ, Bibbs L, Cho J-C, Stapels MD, Desiderio R, Vergin KL, et al. Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 2005;438:82–5.
688 689	85.	Kimura H, Young CR, Martinez A, DeLong EF. Light-induced transcriptional responses associated with proteorhodopsin-enhanced growth in a marine flavobacterium. The ISME Journal 2011;5:1641–51.
690 691 692	86.	Steindler L, Schwalbach MS, Smith DP, Chan F, Giovannoni SJ. Energy starved <i>Candidatus</i> Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLoS ONE 2011;6:e19725.

693 694 695	87.	Song Y, Cartron ML, Jackson PJ, Davison PA, Dickman MJ, Zhu D, et al. Proteorhodopsin overproduction enhances the long-term viability of <i>Escherichia coli</i> . Applied and Environmental Microbiology 2020;86:e02087–19.
696 697	88.	Baykov AA, Malinen AM, Luoto HH, Lahti R. Pyrophosphate-fueled Na+ and H+ transport in prokaryotes. Microbiology and Molecular Biology Reviews 2013;77:267–76.
698 699	89.	Rinta-Kanto JM, Sun S, Sharma S, Kiene RP, Moran MA. Bacterial community transcription patterns during a marine phytoplankton bloom. Environmental Microbiology 2012;14:228–39.
700 701	90.	Vila-Costa M, Sharma S, Moran MA, Casamayor EO. Diel gene expression profiles of a phosphorus limited mountain lake using metatranscriptomics. Environmental Microbiology 2013;15:1190–203.
702 703	91.	Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nature Microbiology 2016;1:16005.
704 705	92.	Hosie AHF, Poole PS. Bacterial ABC transporters of amino acids. Research in Microbiology 2001;152:259–70.
706 707 708	93.	Anderson JJ, Oxender DL. <i>Escherichia coli</i> transport mutants lacking binding protein and other components of the branched-chain amino acid transport systems. Journal of Bacteriology 1977;130:384–92.
709 710 711	94.	Montesinos ML, Herrero A, Flores E. Amino acid transport in taxonomically diverse cyanobacteria and identification of two genes encoding elements of a neutral amino acid permease putatively involved in recapture of leaked hydrophobic amino acids. Journal of Bacteriology 1997;179:853–62.
712 713	95.	Walshaw DL, Reid CJ, Poole PS. The general amino acid permease of <i>Rhizobium leguminosarum</i> strain 3841 is negatively regulated by the Ntr system. FEMS Microbiology Letters 1997;152:57–64.
714 715 716	96.	Berg GM, Shrager J, Glöckner G, Arrigo KR, Grossman AR. Understanding nitrogen limitation in <i>Aureococcus anophagefferens</i> (Pelagophyceae) through cDNA and qRT-PCR analysis. Journal of Phycology 2008;44:1235–49.
717 718 719	97.	Wurch LL, Gobler CJ, Dyhrman ST. Expression of a xanthine permease and phosphate transporter in cultures and field populations of the harmful alga <i>Aureococcus anophagefferens</i> : tracking nutritional deficiency during brown tides. Environmental Microbiology 2014;16:2444–57.
720 721	98.	Cooper JT, Sinclair GA, Wawrik B. Transcriptome analysis of <i>Scrippsiella trochoidea</i> CCMP 3099 reveals physiological changes related to nitrate depletion. Frontiers in Microbiology 2016;7:639.
722 723	99.	Cunliffe M. Purine catabolic pathway revealed by transcriptomics in the model marine bacterium <i>Ruegeria pomeroyi</i> DSS-3. FEMS Microbiology Ecology 2016;92:fiv150.
724		