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Abstract 

Introduction: Current and future applications of genomic data may raise ethical and privacy             

concerns. Processing and storing genomic data introduces a risk of abuse by a potential              

adversary since the human genome contains information about sensitive personal traits. For            

this reason, we developed a privacy preserving method, called Varlock, for secure storage             

and dissemination of sequenced genomic data. 

Materials and methods: The Varlock uses a set of population allele frequencies to mask              

personal alleles detected in genomic reads. Each detected allele is replaced by a randomly              

selected population allele concerning its frequency. Masked alleles are preserved in an            

encrypted confidential file that can be shared, in whole or in part, using public-key              

cryptography. 

Results: Our method masked personal variants and introduced new variants called on an             

individual's genome, while alternative alleles with lower population frequency were masked           

and introduced more often. We performed joint PCA analysis of personal and masked VCFs,              

showing that the VCFs between the two groups can not be trivially mapped. Moreover, the               

method is reversible; therefore, personal alleles can be unmasked in specific genomic            

regions on demand. 
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Conclusion: Our method masks personal alleles within mapped reads while preserving           

valuable non-sensitive properties of sequenced DNA fragments for further research.          

Accordingly, masked reads can be stored publicly, since they are deprived of sensitive             

personal information. Personal alleles may be restored in arbitrary genomic regions for            

interested parties: patients, medical units, and researchers. 

Keywords: genome, privacy, personal data  
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Introduction 

The ongoing advancements in DNA sequencing technologies drive the increasingly complex           

and accurate interpretation of genomic data, together with the development of precision            

medicine [1]. A potential adversary can abuse genomic data since they carry sensitive             

personal information, such as disease risks and phenotypic traits [2]. Accordingly, genomic            

data are regulated as personal data [3]; nevertheless, keeping the data open for further              

research is essential [4]. 

In general, many genomic analyses stand on the presence of short genomic variants; hence              

the typical solution of the prior art is to extract these variants from the underlying genomic                

reads [5–7]. The prior art stores these variants in a secure form, while discarding the               

genomic reads, or encrypting them completely, so they can be reanalysed in future.             

However, manual examination of reported variants in aligned genomic reads is a common             

practice to confirm a finding, and specific variations can be missing from variant calls due to                

their misclassification as sequencing errors [8]. Moreover, current variant calling algorithms           

are not mature, and it is unknown which type of data produced by the sequencing process                

will be necessary for future algorithms [9]. Additionally, aligned reads can be employed             

directly in the detection of structural variations such as copy number variations (CNVs) or              

aneuploidies in clinical non-invasive prenatal testing (NIPT) [10–12]. These detection          

methods are not dependent on short variant analyses, since they use coverage data,             

determined by read alignment only. 

We developed the tool Varlock with two main goals. First, to keep sequenced data available               

without compromising the privacy of a patient, and second, to create an access control              

mechanism for extracting sensitive private information contained within the sequenced data.           

More specifically, the Varlock masks personal alleles within aligned reads of a sequenced             

genome, while preserving existing alignment data (coverage, quality, etc.). The method is            

reversible, allowing the user with access to masked personal alleles to unmask them within              

an arbitrary region of the associated genome. The user can also share access to a subset of                 

the masked alleles, for example from a particular gene, with another user. 

Materials and Methods 

The Varlock provides methods for masking, unmasking, and dissemination of personal           

alleles found in mapped reads stored in a BAM file. More specifically, the masking method               
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(Figure 1) masks personal alleles found in mapped reads using publicly known population             

allele frequencies. The output set of masked alleles represents all differences between            

original and masked mapped reads. The masked alleles are encrypted as a single file using               

an asymmetric encryption scheme (Supplement 3), so only the owner of the associated             

private key can decrypt them. 

 

Figure 1:  Workflow of the masking method, where BAM file and VOF file are processed into 

masked BAM and BDIFF. The BDIFF file is subsequently encrypted. 

The unmasking method (Figure 2) is a partially reversed masking method. The file with              

masked alleles is decrypted with the associated private key and is processed simultaneously             

with masked mapped reads back into personal mapped reads. The dissemination (Figure 3)             

method re-encrypts the file with masked alleles in an arbitrary range, making the associated              

subset of alleles accessible for a specific user. Firstly, the file with masked alleles is               

decrypted by the associated private key; secondly, a subset of masked alleles is selected,              

and lastly, the selected masked alleles are encrypted as a new file with the public key of a                  

specific user. 
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Figure 2: Workflow of the unmasking method, where a BDIFF file is decrypted and used to                

unmask a masked BAM file to restore a personal BAM file. 

We introduce two file formats VOF (Supplement 2) and BDIFF (Supplement 3); VOF             

describes population allele frequencies, and BDIFF is the format of masked alleles which is              

used to unmask masked mapped reads. 
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Figure 3: Workflow of a dissemination method showing decryption of BDIFF and encryption             

of its subrange intended for a specific user. 

Masking of alleles 

A sequenced genomic position is typically covered by multiple alignments, which may carry             

different alleles due to heterozygosity, sequencing, or alignment errors. Both personal alleles            

are equally likely to be represented in the alignments, albeit their mutual ratio can              

substantially vary for a given position. Therefore, each genomic position with a population             

variant is described by a list of alleles, and the personal pair of alleles is determined as the                  

two most represented ones. In detail, an allele is considered personal if it constitutes at least                
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20% (arbitrarily chosen threshold) of alignments covering the variant. If only one such allele              

exists, the position is evaluated as homozygous, and two identical alleles are assigned to the               

position. If two alleles with a sufficient representation exist, the position is considered             

heterozygous, and two different alleles are assigned to the position. If there are more than               

two sufficiently represented alleles, the variant position is skipped by the method. 

The process of masking and unmasking alleles per given position has several steps (Figure              

4). The population allele frequencies defined in VOF are multiplied with each other to              

produce a probability matrix of every possible pair of alleles at a given genomic position               

(Supplementary Methods, Section 4). The pair of masking alleles is drawn randomly from             

this probability matrix as a replacement for the pair of personal alleles assigned previously. If               

a reference allele replaces both personal alternative alleles, a variant can not be detected in               

masked mapped reads; therefore, it is masked. Conversely, if an alternative allele replaces             

either of the personal reference alleles, a new variant can be called at this position in                

masked mapped reads; thus, it is introduced. All personal alleles within the alignments             

covering a variant are replaced by masking alleles. However, personal alleles may be             

replaced by the same pair of masking alleles, which is the most common case. Remaining               

alleles found within the alignments are considered to be sequencing or alignment errors and              

are not replaced or replaced by other than masking alleles. 
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Figure 4: Flow of masking and unmasking alleles at a single variant position within covering               

alignments. The masking is represented as “mask alleles” in Figure 1, and the unmasking is               

represented as “unmask alleles” in Figure 2. 

Both personal and masking pair can be either homozygous or heterozygous, leading to one              

of the following cases: 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.16.299594doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.299594
http://creativecommons.org/licenses/by-nc/4.0/


Homozygous to homozygous: Two identical masking alleles replace two identical personal           

alleles. Most often, two reference alleles are replaced by the same two alleles, since              

reference allele is typically the most common one in both personal mapped reads and              

population allele frequencies. If pairs are identical, no actual masking occurs. Possible            

outcome: masked variant, introduced variant, replaced variant, none. 

Heterozygous to homozygous: Two identical masking alleles replace two different          

personal alleles. Reference and alternative alleles are often replaced by two reference            

alleles, which results in masking of a personal variant. Possible outcome: masked variant,             

replaced variant. 

Homozygous to heterozygous: Two different masking alleles replace two identical          

personal alleles. If an alternative allele replaces either reference allele, a new variant             

emerges. Possible outcome: introduced variant, replaced variant. 

Heterozygous to heterozygous: Two different masking alleles replace another two          

different personal alleles. Personal and masking pairs of alleles are often identical, so no              

actual masking occurs. If only one personal allele is identical to a masking allele, the other                

personal allele is masked with the remaining masking allele. In this case, the variant can not                

be masked since the alternative allele can be replaced only by another alternative allele.              

Possible outcome: replaced variant, none. 

 

Unmasking of alleles 

All alleles within masked mapped reads, or their specific subset, can be unmasked by BDIFF               

file, containing replaced personal alleles and deleted qualities. This operation transforms           

masked mapped reads to personal mapped reads. User has to provide masked mapped             

reads and an associated encrypted BDIFF file along with the RSA private key whose public               

counterpart was used in the BDIFF encryption. The decryption of unmapped reads is             

handled separately, and the user can choose whether to decrypt them. 

The first step of unmasking method is the decryption of the encrypted BDIFF file              

(Supplement 3.1). The algorithm reads the encrypted AES key and the file signature from              

the start of the file. The AES key is decrypted with a provided private key and then used to                   

decrypt an actual encrypted BDIFF file. The decrypted file is verified with a public key               

against its signature to prove its origin. 
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Dissemination of alleles 

A holder of the private key that was used to encrypt a BDIFF file can disseminate alleles                 

described by BDIFF file and associated masked mapped reads by re-encrypting the BDIFF             

file in desired genomic range. A BDIFF file is first decrypted by the private key and then                 

encrypted by a public key of another user who can decrypt the file later. If a subrange of                  

effective range for re-encryption is provided, only records inside or intersecting this range             

are considered, and this range becomes the effective range of the new BDIFF file. The               

re-encryption process can be repeated with different combinations of genomic ranges and            

public keys, producing different accesses for individual users. In addition, the decrypted            

BDIFF file can be verified with the holder's public key by comparing the checksum of masked                

mapped reads to the checksum stored in the encrypted BDIFF file header. This ensures that               

the BDIFF file belongs to the masked mapped reads and that they were not modified.  

Validation 

To validate the Varlock, we collected a set of 37 clinical exomes from the central European                

population. The DNA samples were sequenced on Illumina platform following enrichment           

and library preparation using TruSight One clinical exome sequencing panel according to the             

manufacturer's instructions. Next, we called variants on each exome with a fine-tuned variant             

calling pipeline comprising BWA-MEM mapper (Li and Durbin 2009) and DeepVariant caller            

(Poplin et al. 2018), producing 37 BAM files and the same number of corresponding VCF               

files. Finally, we masked each BAM file with the Varlock and called variants on these               

masked BAM files subsequently, producing the same number of VCF files. 

As the source of population variants, we used the Genome Aggregation Database version 3              

(gnomAD v3) mapped to GRCh38 reference [13], which spans 71,702 genomes from            

unrelated individuals of various ethnicities. We downloaded the database in the form of a              

single VCF file, selected passing single nucleotide variants within ranges of Trusight One             

clinical exome panel, and merged duplicate variant positions as multiallelic. Finally, we            

converted the file to VOF format intended for masking. 

We performed two separate validation analyses: (1) the single case study on a selected              

sample and (2) the PCA masking analysis on the whole set of samples. In the single case                 

study, we used non-Finnish European gnomAD population variants in VOF format to best             

match the central European population of the sample. The output files of the masking              

method - BDIFF and masked BAM were used as the unmasking method input files. In the                
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PCA masking analysis, we merged all the passing single nucleotide variants from both             

personal and masked VCFs, 74 in total, into a single VCF. The PCA analysis was performed                

on this file by the tool PLINK [14] twice, each time with a different VOF file. Firstly, with all                   

gnomAD populations, and secondly, with the non-Finnish European population, since it best            

matches the central European population of sequenced individuals. 

Results 

Single case study 

The performance of the masking method was evaluated by comparison between called            

variants on a single personal BAM file, called variants on the corresponding masked BAM              

file, and the variants from non-Finnish European gnomAD population. We selected only            

passing variants with total coverage and quality above 30 from both personal and masked              

VCF files to provide confident results. We identified five categories of variant positions from              

personal VCF, masked VCF, and population VCF (Figure 5). (1) Not found: Vast majority of               

variant positions in the population VCF is not found in the personal VCF. This is expected as                 

the population VCF is called on thousands of personal genomes, and masking of rare              

variants tends to result in a homozygous reference. (2) Masked: This case occurs when a               

homozygous reference allele masks a homozygous alternative allele. (3) Not masked:           

Alternative allele at this position was either preserved or replaced by another alternative             

allele while zygosity may be changed. (4) Introduced: When an alternative allele replaces             

reference allele at a homozygous position, a new variant appears. (5) Not covered: Set of               

personal variant positions not covered by the population VCF. These are presumably rare             

variants or variants specific for a particular local population that was not part of the gnomAD                

database. 
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Figure 5: Intersections between sets of positions with alternative alleles from three VCF             

files: population VCF, personal VCF, and masked VCF. 

We compared distributions of alternative allele frequencies by VCF to show their nature and              

the effect of masking (Figure 6). The population VCF contains a vast amount of low               

frequency alleles which have a little chance to be introduced by the masking process into the                

masked VCF despite every variant covered by personal BAM is considered. In case of the               

personal VCF, personal allele frequency has expected ratio of 0.5 for a heterozygote and 1.0               

for a homozygote but actual ratios may quite vary due to low coverage or sequencing errors.                

As can be seen, masked VCF preserves the distribution of personal allele frequency to a               

considerable extent. 
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Figure 6: The distribution of alternative allele frequency reported by population VCF,            

personal VCF, and masked VCF. 

Furthermore, we compared the distribution of alternative population allele frequencies          

between the masked VCF and the not masked VCF (Figure 7). The ratio of masked alleles                

increases with decreasing frequency of an allele; therefore, rare variants have a higher             

chance to be masked by the method. Similarly, the ratio of introduced alleles increases with               

a decreasing frequency of an allele. On the other hand, common population alleles have a               

lower chance to be masked or introduced; nonetheless, they are specific for the population              

and not for an individual. 
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Figure 7: The ratio of masked alleles to not masked alleles and its relation to population                

allele frequency. 

Finally, we compared alleles in the not masked set between the personal VCF and the               

masked VCF. The alternative alleles from both VCFs were joined by their positions, allowing              

direct comparison of an alternative allele and its frequency between the two files. An              

alternative allele was replaced by another alternative allele in only 13 (0.29%) from a total of                

4416 reported positions; thus this case is negligible. We compared frequencies of 4406             

remaining positions with matching alleles between the personal and masked file and found a              

mismatch in 1463 (33.23%) of them. The changes of frequencies of alternative alleles in              

these positions were caused by the change of homozygous pair of alleles to heterozygous              

pair or vice-versa by the masking method. 

PCA masking analysis 

We plotted the first two principal components and distinguished original and masked VCFs             

with a marker type. In the first case (Figure 8) the masked VCFs are clearly separated from                 

the personal VCFs as two different groups, implying that masking using whole gnomAD             
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variation caused a shift from the population of origin to the mixture of gnomAD populations.               

In the second case (Figure 9, 10), the masked VCFs can not be unambiguously mapped to                

corresponding personal VCFs since they stay within the same population space. Moreover,            

outliers - VCFs with specific genotypes are shifted into the same population cluster. 

Figure 8: Personal VCFs are clearly shifted from the original local population (non-Finnish             

European) to VCFs masked with alleles from all gnomAD populations. Lines link individual             

original BAMs (circles) with their masked counterparts (triangles). 
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Figure 9: All masked VCFs, including outliers in their personal form, are clustered in the               

same region. The lines link individual original BAMs (circles) with their masked counterparts             

(triangles). For detail of the cluster, see Figure 10. 
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Figure 10 

Figure 10: The detail of the cluster from Figure 9. The lines link individual original BAMs                

(circles) with their masked counterparts (triangles). 

Discussion 

The continuously improving interpretation of genomic data makes them prone to abuse by a              

potential adversary [2]; therefore, it is essential to prevent their unwanted copying,            

modifying, and sharing. On the other hand, open genomic data are invaluable for further              

research and their application in clinical practice [4]. Given these points, a practical solution              

to genomic privacy is a certain trade-off between privacy and utility. 

The examined methods for preserving genomic privacy encrypt genomic data entirely aiming            

to secure personal variants [6,7,15–17]. The retrieval, decryption, and interpretation of           

encrypted data are available only through special procedures by authorized parties; besides,            

some sort of consent is required when requesting the data. As a result, access to complete                

genomic information produced by sequencing is restricted or limited, even for the scientific             

community. On the contrary, our method allows an individual to retain full control over his               
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digital genome, supporting dynamic consent approach to access a subset of his alleles, for a               

clinical purpose or a scientific study. 

The Varlock masks short alternative alleles within a sequenced genome and securely            

preserves them, allowing open access to the masked genome, which can be employed in              

studies unrelated to short genomic variations. In addition, we assume that a masked BAM              

file can not be identified as masked, since it preserves the natural distribution of alternative               

allele frequencies, giving an advantage against a potential adversary. However, an           

adversary can tell which genomic positions may be masked, given masking population allele             

frequencies are public, and focus on the positions that are not covered. Consequently, he              

could find and exploit rare personal variants. This could be mitigated by using a more robust                

set of masking population allele frequencies or by random masking (Supplement 4.4). In             

future work, we consider masking also called variants to solve this problem. 

While our approach masks sensitive personal information, the genome still carries unique            

information, and so person re-identification by the masked genome is still possible. Although,             

masking more types of genomic variation, such as short tandem repeats, could make the              

re-identification harder. Regardless, the goal of Varlock is not to anonymize a genome,             

merely hide sensitive personal information. We believe that concepts behind the Varlock will             

find application in future medical or laboratory information management systems. 
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can be run as tests. The clinical exomes dataset used to evaluate the Varlock is not publicly                 

available due to personal data protection but is available from the corresponding author on a               

reasonable request. 
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