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Abstract 

Understanding the dynamics of brain-scale functional networks at rest and during cognitive tasks 

is the subject of intense research efforts to unveil fundamental principles of brain functions. To 

estimate these large-scale brain networks, the emergent method called “electroencephalography 

(EEG) source connectivity” has generated increasing interest in the network neuroscience 

community, due to its ability to identify cortical brain networks with good spatio-temporal 

resolution, while reducing mixing and volume conduction effects. However, the method is still 

immature and several methodological issues should be carefully accounted for to avoid pitfalls. 

Therefore, optimizing the EEG source connectivity pipelines is required, which involves the 

evaluation of several parameters. One key issue to address those evaluation aspects is the 

availability of a ‘ground truth’. In this paper, we show how a recently developed large-scale 

model of brain-scale activity, named COALIA, can provide to some extent such ground truth by 

providing realistic simulations (epileptiform activity) of source-level and scalp-level activity. 

Using a bottom-up approach, the model bridges cortical micro-circuitry and large-scale network 

dynamics. Here, we provide an example of the potential use of COALIA to analyze the effect of 

three key factors involved in the “EEG source connectivity” pipeline: (i) EEG sensors density, 

(ii) algorithm used to solve the inverse problem, and (iii) functional connectivity measure. 

Results show that a high electrode density (at least 64 channels) is needed to accurately estimate 

cortical networks. Regarding the inverse solution/connectivity measure combination, the best 

performance at high electrode density was obtained using the weighted minimum norm estimate 

(wMNE) combined with the weighted phase lag index (wPLI). The COALIA model and the 

simulations used in this paper are freely available and made accessible for the community. We 

believe that this model-based approach will help researchers to address some current and future 
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cognitive and clinical neuroscience questions, and ultimately transform EEG brain network 

imaging into a mature technology. 

Keywords: neural mass models, electroencephalography, EEG sensor density, inverse problem, 

functional connectivity, network neuroscience. 
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Introduction 

There is now growing evidence suggesting that large-scale functional brain networks underlie 

complex brain functions during rest (Allen et al., 2014; Kabbara et al., 2017) and tasks (Hassan 

et al., 2015; O’Neill et al., 2016). In this context, a relatively new field called “network 

neuroscience” has emerged (Bassett and Sporns, 2017), offering the opportunity to assess, 

quantify, and ultimately understand the multifaceted features of complex brain networks. Among 

the neuroimaging techniques used to derive the functional brain networks, the 

electroencephalography (EEG) technique provides a direct measure of electrical brain activity at 

the millisecond time scale. The past years have seen a noticeable increase of interest in “EEG 

source connectivity” methods to estimate brain networks at the cortical sources level, while 

minimizing the volume conduction and field spread problems (Hassan and Wendling, 2018; 

Schoffelen and Gross, 2009). Although consisting only of two main steps: 1) the source 

reconstruction and 2) the connectivity assessment, there is still no consensus on a unified 

pipeline adapted to this approach, and many methodological questions remain unanswered. A 

first issue lies at the very first step of data recording with the question of optimal spatial 

resolution (i.e. density of sensors) needed to avoid misrepresentation of spatial information of 

brain activity. A second critical issue concerns the data preprocessing techniques. Regarding the 

subsequent analysis and for each of the aforementioned steps, a large number of methods is 

available, each having its own properties, advantages and drawbacks, and addressing a different 

aspect of the data. An additional parameter warranting investigation is the spatial resolution of 

the reconstructed cortical sources (i.e. number of regions of interest) ranging from dozens to 

thousands of regions.  
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To tackle those challenges, several comparative studies have been conducted with the aim of 

evaluating the performance of the adopted techniques and the influence of different parameters 

affecting the network estimation procedure (Anzolin et al., 2019; Colclough et al., 2016; Fornito 

et al., 2010; Halder et al., 2019; Lantz et al., 2003; Sohrabpour et al., 2015; Song et al., 2015; 

Wang et al., 2009; Zalesky et al., 2010). In the context of EEG, several studies investigated the 

effect of different electrode montages on the estimation of functional connectivity. Increasing the 

number of electrodes has been shown to decrease the localization error in different contexts 

(Lantz et al., 2003; Sohrabpour et al., 2015; Song et al., 2015). (Song et al., 2015) recommended 

using 128 or 256 electrodes, while in (Sohrabpour et al., 2015) the most dramatic decrease in 

localization error was obtained when going from 32 to 64 electrodes. Other studies have focused 

on evaluating the performance of different inverse solutions using simulated and real EEG 

signals (Anzolin et al., 2019; Bradley et al., 2016; Grova et al., 2006; Halder et al., 2019). 

Compared methods include those based on the minimum norm estimate (MNE, LORETA, 

sLORETA, eLORETA, etc.) as well as beamformers (DICS, LCMV). However, there is no 

consensus on which inverse solution provides the most accurate results when estimating 

EEG/MEG source-space networks. In the context of functional connectivity, the performance of 

various measures covering direct/indirect causal relations, marginal/partial associations, leakage 

correction, amplitude/phase coupling have been evaluated, and compared using either real data 

(Colclough et al., 2016), or simulated data in (Wang et al., 2014; Wendling et al., 2009). As for 

the source reconstruction algorithm, no consensus has been reached on which connectivity 

measure to adopt. 

However, a challenging issue in such studies resides in the absence of a ‘ground truth’. Ideally, 

simultaneous scalp EEG and depth (intracranial) recordings are required, which is challenging to 
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perform and is therefore unavailable in most studies. Thus, to overcome this issue, one solution 

is to use simulated data derived from physiologically-inspired models, which is an approach 

followed in the present study. Here, we use a computational model named “COALIA” (Bensaid 

et al., 2019) able to generate realistic brain-scale, cortical-level simulations from which scalp 

EEG signals can be obtained through the EEG direct problem, thereby representing a ground 

truth for subsequent analysis. More specifically, COALIA simulates electrophysiological activity 

as a function of the detailed circuitry between the main neuronal subtypes and anatomical 

regions. We highlight the implications of this model in enhancing our interpretation of the 

reconstructed brain networks and in evaluating the key factors of the EEG source connectivity 

pipeline such as 1) EEG sensor density, 2) solution of the EEG inverse problem, and 3) 

functional connectivity measure. 

Here, we generate epileptiform cortical activity and present a (not exhaustive) comparative study 

to evaluate the effect of five different electrode densities (256, 128, 64, 32, 19), two inverse 

solution algorithms, weighted minimum norm estimate (wMNE) and exact low resolution 

electromagnetic tomography (eLORETA), and two functional connectivity measures, phase 

locking value (PLV) and weighted minimum norm estimate (wPLI), as they represent the most 

used combination of methods in the context of EEG source-space network estimation. We aim at 

presenting a proof of concept of the interest of COALIA in the network neuroscience field, and 

its potential use in optimizing the EEG source-space network estimation pipeline. 

Materials and Methods 

The full pipeline of our study is summarized in Fig. 1. 
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Fig. 1 Pipeline of the study.  Cortical sources were simulated using COALIA. The forward model 

was solved for five electrode montages (19, 32, 64, 128, 256 electrodes). Scalp EEG signals were 

generated.  Cortical sources were reconstructed using wMNE and eLORETA as inverse solutions. 

Functional connectivity between reconstructed sources was assessed over 30 trials using PLV and 

wPLI algorithms.  Accuracy was computed to assess the performance of the network estimation. 

COALIA: a physiologically-inspired computational model 

COALIA is a recently developed physiologically-grounded computational model (Bensaid et al., 

2019) of large-scale brain activity. Using a bottom-up approach taking account the detailed 

circuitry between the main neuronal subtypes, and anatomical regions from a widely used atlas, 

COALIA generates brain-scale electrophysiological activity while accounting for the macro- as 

well as the micro-circuitry of the brain. The basic unit of the model is the neural mass, a local 

network involving different neuronal types in which the electrical activity is averaged over the 

cells of a similar type, instead of describing individual cell dynamics as in microscopic models. 
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Therefore, the neural mass model (NMM) is a mesoscopic model describing synchronized 

activity in local networks in which the micro-circuitry can be taken into account. At the level of a 

single neural mass (approximated a specific brain region, as done in (Bensaid et al., 2019)), the 

model includes glutamatergic pyramidal neurons and three different types of GABAergic 

interneurons with physiologically-based kinetics (fast vs. slow). At the brain-scale level, each 

neural mass represents the local field activity of one region of the Desikan-Killiany atlas (66 

regions, since the right and left insula were excluded, (Desikan et al., 2006)). Given that each 

neural mass simulates the activity of one specific brain region, neural masses are then 

synaptically connected through long-range glutamatergic projections. This neuro-inspired model 

can simulate both cortical and thalamic activity. In the following, a brief description of the local 

NMM of neocortical and thalamic activity is presented (for further details, please refer to 

(Bensaid et al., 2019)). 

The neocortical module involved pyramidal cells (PCs) and three types of inhibitory GABAergic 

interneurons, namely, (1) somatic-targeting parvalbumine positive (PV+) basket cells (BC); (2) 

the dendritic-targeting somatostatin positive (SST) interneurons; and (3) vasoactive intestinal-

peptide (VIP) expressing interneurons. BC and SST received excitatory inputs from PCs, that are 

reciprocally inhibited by both of them. Pyramidal collateral excitation was implemented via an 

excitatory feedback loop passed by a supplementary excitatory population (PC’) analogous to 

PC, except that it projected only to the subpopulation PC and receives projection from PC as 

well. An inhibitory feedback loop was implemented to account for direct PV+/PV+ coupling 

through electrical gap-junctions. Communication through disinhibition was modeled by 

inhibitory projections first from VIP to SST, then from SST to BC. The non-specific influence 

from neighboring and distant populations was modeled by a Gaussian input noise corresponding 
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to an excitatory input 𝑝𝑐
𝑛(𝑡) that globally described the average density of afferent action 

potentials. The thalamic module included one population of excitatory glutamatergic neurons 

(TCs, i.e. thalamic cells), and two thalamic reticular nuclei (TRN) GABAergic interneurons. TCs 

received GABAergic IPSPs with slow and fast kinetics from the TRNs, whereas the latter 

received excitatory inputs from the former. As in the cortical module, a Gaussian input noise 

corresponding to excitatory input 𝑝𝑐
𝑛(𝑡) was used to represent non-specific inputs on TCs.  

At the brain-scale, glutamatergic PCs originating from a single cortical column targeted PCs of 

other cortical columns by common feedforward excitation and GABAergic cells by disynaptic 

cortico-cortical feedforward inhibition. Variable time delays between NMMs were introduced in 

order to account for activity propagation delays caused by long-range connections. Regarding 

thalamo-cortical connectivity, TCs received glutamatergic excitatory postsynaptic potentials 

(EPSPs) from PCs which, in turn, received excitatory input from TCs. Similarly, TRNs received 

excitatory cortical projections. In terms of GABAergic cortical targets, thalamic projections 

targeted PV+ basket cells, SST neurons as well as VIP neurons, which in turn inhibit SST 

neurons, and disinhibit PCs dendrites. The model output corresponds to the total input onto PCs 

in the cortical modules (i.e. sum of excitatory and inhibitory PSPs). 

Simulations 

We considered a scenario consisting in two connected subnetworks consisting of 7 brain regions 

(from the Desikan-Killiany atlas) located in the left hemisphere. This simulated network was 

inspired from a general scheme of the organization of human partial seizures presented in 

(Bartolomei et al., 2013) and proposing the existence of an epileptogenic subnetwork as well as a 

propagation subnetwork. In the present study, the epileptogenic subnetwork included the 
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following cortical regions: rostral middle frontal gyrus, pars opercularis, pars triangularis, and 

pars orbitalis; and the propagation subnetwork included the supramarginal, banks superior 

temporal sulcus, and transverse temporal cortex. Background activity was simulated in all 66 

regions while a rhythmic spike activity was imposed to the thalamic population. The latter was 

unidirectionally coupled to the 7 aforementioned regions with a connectivity value of 50. Spikes 

propagated, thus, in the desired regions such that their activity was epileptiform. Values of the 

model parameters corresponding to the generated background and spiking activity are provided 

in the GitHub repository. All sources belonging to a single patch were synchronized at a zero lag, 

while a delay of 30 ms was introduced between the two subnetworks to reflect the propagation of 

the spikes between relatively distant regions in the brain. A timeseries of  ̴ 6 min at 2048 Hz was 

simulated, and was segmented into 10-second epochs. A total of 30 epochs was selected for the 

subsequent analysis. 

EEG Electrodes density and direct problem 

Five different electrode montages were used to generate scalp EEG signals. We selected the 

GSN HydroCel EEG configuration (EGI, Electrical geodesic Inc) for the 256, 128, 64 and 32 

channels density, as well as the international 10-20 system (Klem et al., 1999) for the 19 

channels array. For each electrode configuration, the lead field matrix was computed for a 

realistic head model using the Boundary Element Method (BEM) using OpenMEEG (Alexandre 

Gramfort et al., 2010) implemented in the Brainstorm toolbox (Tadel et al., 2011) for Matlab 

(The Mathworks, USA, version 2018b). To generate EEG scalp simulations, we used only the 

lead field vectors reflecting the contribution of the 66 sources located at the centroid of the 

regions of interest - defined on the basis of the Desikan-Killiany atlas (Desikan et al., 2006) 

(right and left insula were excluded) - to the sensors: 
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 𝑋(𝑡) = 𝐺. 𝑆(𝑡) (1) 

where 𝑋(𝑡), 𝑆(𝑡) are the scalp EEG and cortical timeseries respectively, and 𝐺 the gain matrix. 

EEG inverse problem 

In the following methods, solving the EEG inverse problem consists in estimating the magnitude 

of: 

 𝑆̂(𝑡) = 𝑊. 𝑋(𝑡) (2) 

Among the various algorithms proposed to solve this problem, two of the most common methods 

were compared here: the weighted minimum norm estimate (wMNE) and the exact low-

resolution electromagnetic tomography (eLORETA). 

Weighted Minimum Norm Estimate (wMNE) 

The minimum norm estimate (MNE) originally proposed by (Hämäläinen and Ilmoniemi, 1994) 

searches for a solution that fits the measurements with a least square error. The wMNE 

compensates for the tendency of MNE to favor weak and surface sources: 

 𝑊𝑤𝑀𝑁𝐸 = 𝐵𝐺𝑇(𝐺𝐵𝐺𝑇 + 𝜆𝐶)−1 (3) 

where 𝐶 is the noise covariance matrix, and 𝜆 is the regularization parameter computed based on 

the signal-to-noise ratio (𝜆 = 1/𝑆𝑁𝑅). The matrix 𝐵 is a diagonal matrix built from matrix G 

with non-zero terms inversely proportional to the norm of lead field vectors. It adjusts the 

properties of the solution by reducing the bias inherent to the standard MNE solution: 
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 𝐵𝑖𝑗 = {
(𝐺𝑖

𝑇𝐺𝑖)
1 2⁄                      𝑖𝑓 𝑖 = 𝑗

0                                       𝑖𝑓 𝑖 ≠ 𝑗
                    

                                       
 (4) 

Exact low-resolution brain electromagnetic tomography (eLORETA) 

The exact low-resolution electromagnetic tomography (eLORETA) belongs to the family of the 

weighted minimum norm inverse solution. However, it does not only account for depth bias, it 

has, also, exact zero error localization in the presence of measurement and structured biological 

noise (Pascual-Marqui, 2007). 

 𝐵𝑖𝑗 = {
(𝐺𝑖

𝑇(𝐺𝑖𝐵𝐺𝑖
𝑇 + 𝜆𝐶)−1𝐺𝑖)

1 2⁄                         𝑖𝑓 𝑖 = 𝑗

0                                                                       𝑖𝑓 𝑖 ≠ 𝑗
                    

                                       
 (5) 

eLORETA is originally described using the whole brain volume as source space. However, in the 

present study, in order to facilitate the comparison with other methods, we restricted the source 

space to the cortical surface. 

Connectivity measures 

We evaluated in this study two of the most popular connectivity metrics, both based on the 

assessment of the phase synchrony between regional time-courses. 

Phase-locking value 

For two signals 𝑥(𝑡) and 𝑦(𝑡), the phase-locking value (Lachaux et al., 2000) is defined as: 

 𝑃𝐿𝑉 = |𝐸{𝑒𝑖|φ𝑥(𝑡)−φ𝑦(𝑡)|}| (6) 
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where 𝐸{ . } is the expected value operator and φ(𝑡) is the instantaneous phase derived from the 

Hilbert transform. 

Weighted phase-lag index  

While the phase-lag index (PLI) quantifies the asymmetry of the phase difference, rendering it 

insensitive to shared signals at zero phase lag (Stam et al., 2007) that supposedly induce spurious 

volume conduction effects, the weighted PLI (wPLI) attempts to further weight the metric away 

from zero-lag contributions (Vinck et al., 2011). 

 𝑤𝑃𝐿𝐼 =
|𝐸{|ℑ{𝑋}| 𝑠𝑖𝑔𝑛(ℑ{𝑋})}|

𝐸{|ℑ{𝑋}|}
 (7) 

where ℑ{𝑋} denotes the imaginary part of the signal’s cross-spectrum. 

Connectivity matrices were computed in broadband [1-45 Hz] for all considered electrode 

densities and possible inverse solution/connectivity combinations, resulting in 20 connectivity 

matrices for each epoch. The resulting matrices were thresholded by keeping nodes with the 

highest 12% strength values, which corresponds to the proportion of nodes originally used to 

simulate the 2 subnetworks. A node’s strength was defined as the sum of the weights of its 

corresponding edges.   

Results quantification  

In order to assess the performance of each investigated parameter (i.e. electrodes number, inverse 

solution, connectivity measure), the accuracy of the estimated networks with respect to the 

ground truth was computed as follows: 
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 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (8) 

where 𝑇𝑃 (i.e. true positive) represents the connections present in the reference as well as in the 

estimated network, 𝑇𝑁 (i.e. true negative) refers to the absent connections in both the reference 

and estimated networks, 𝐹𝑃 (i.e. false positive) represents the connections obtained in the 

estimated network exclusively, and 𝐹𝑁 stands for the links missing in the estimated network. 

Accuracy values range between 0 and 1. 

Statistical analysis 

Statistical analyses were performed using R (R Core Team, 2020). We used linear mixed model 

analyses to investigate the effects of electrode number, inverse solution method, and connectivity 

measure on the accuracy of the estimated networks. Mixed models have several advantages, such 

as the ability to account for the dependence between the different measures, and to model 

random effects (see (Gueorguieva and Krystal, 2004)). We used the lmer function of the {lme4} 

package (Bates et al., 2015) with the following model that includes, epoch, electrode number, 

inverse solution method and connectivity measures as interacting fixed effects, and also a 

random intercept for epochs: 

 

𝑚𝑜𝑑𝑒𝑙 = 𝑙𝑚𝑒𝑟(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦   ̃ 𝐸𝑝𝑜𝑐ℎ ∗ 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 ∗ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  

𝑚𝑒𝑡ℎ𝑜𝑑 ∗ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 + (1 𝐸𝑝𝑜𝑐ℎ) 𝑑𝑎𝑡𝑎 = 𝑑𝑎𝑡𝑎)⁄  
(9) 

We applied a square root transform to the data, since this led to a better compliance of the model 

with the assumptions of normality and homoscedasticity of model’s residuals than for raw data. 

Calculation of the significance of the fixed effects was performed using the Anova function of 
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the {car} package that computes F-tests (Fox and Weisberg, 2019). In order to assess the quality 

of the model, we computed marginal and conditional R² that were obtained from the 

{MuMin}package. In case of significant main effects, we performed post-hoc analyses using the 

glht function of the {multcomp} package that calculates adjusted p-values using individual z tests 

(Hothorn et al., 2008). The significance threshold was set to 𝑝 = 0.05. 

Results 

As illustrated in Figure 2 and 3, the accuracy of the estimated networks was dramatically 

influenced by the density of scalp sensors. This influence was confirmed by the statistical 

analysis with a significant sensor density effect (𝐹(4,532) = 361.94, 𝑝 < 0.001,

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙  𝑅2 = 0.84, 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑅2 = 0.82). The higher the number of electrodes, the more 

accurate the networks were. Post-hoc analyses showed significant accuracy improvement when 

using 256 electrodes (0.46, 𝑠𝑑 = 0.32) compared to 64 (0.24, 𝑠𝑑 = 0.23, 𝑝 < 0.05), 32 

(0.09, 𝑠𝑑 = 0.08, 𝑝 < 0.001), and 19 (0.08, 𝑠𝑑 = 0.08, 𝑝 < 0.001) electrodes. Increasing 

the sensor density from 128 electrodes to 256 electrodes did not provide further advantage (𝑝 =

0.15). A non-significant difference was obtained in all other cases. Differences between results 

obtained with 19 electrodes and those obtained with 32 (𝑝 = 1), 64 (𝑝 = 0.93), or 128 (𝑝 =

0.47) electrodes were all non-significant. Similarly, no differences were detected between 32 

and 64 (𝑝 = 0.85), 32 and 128 (𝑝 = 0.34), 64 and 128 (𝑝 = 0.92) electrode montages. 

Regarding the inverse solution, wMNE (0.33, 𝑠𝑑 = 0.33) significantly outperformed 

eLORETA (0.15, 𝑠𝑑 = 0.12) (𝐹(1,532) = 315.73, 𝑝 < 0.001, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙  𝑅2 = 0.84,

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑅2 = 0.82).  
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Fig. 2 Average networks over trials for all electrode montages and inverse 

solution/connectivity measure combinations. Connections in green and yellow belong to the 

epileptogenic and propagation subnetworks respectively. Connections in blue represent the 

connectivity between the two subnetworks. Connections in red are spurious connections, 

that do not exist in the reference network. 

Also, statistical analyses showed a significant effect of the connectivity measure (𝐹(1,532) =

99.35, 𝑝 < 0.001, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙  𝑅2 = 0.84, 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑅2 = 0.82). The accuracy of the 

estimated networks was slightly higher with wPLI (0.26, 𝑠𝑑 = 0.35) than with PLV (0.23,

𝑠𝑑 = 0.14). Interestingly, the combination inverse solution/connectivity measure combination 

had also a significant effect on the network estimation accuracy (𝐹(1,532) = 455.31, 𝑝 <

0.001, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙  𝑅2 = 0.84, 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑅2 = 0.82). 
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Fig. 3 Accuracy of the estimated based on different electrode montages for each inverse 

solution/connectivity measure. Values are ranged between 0 and 1.
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The highest network estimation accuracy was reached using wMNE/wPLI (0.44, 𝑠𝑑 = 0.41), 

while the worst performance was obtained with eLORETA/wPLI (0.07, 𝑠𝑑 = 0.07). 

eLORETA/PLV (0.23, 𝑠𝑑 = 0.11) and wMNE/PLV (0.22, 𝑠𝑑 = 0.16) had similar average 

accuracy values. Post-hoc analyses showed significant difference between wMNE/wPLI and 

both eLORETA/PLV (𝑝 < 0.001) and wMNE/PLV (𝑝 < 0.001). Similarly, results obtained 

with eLORETA/wPLI were significantly different from those obtained with eLORETA/PLV 

(𝑝 < 0.001) and wMNE/PLV (𝑝 < 0.001). On the other hand, differences between 

eLORERA/PLV and wMNE/PLV (𝑝 = 1) and between eLORETA/wPLI and wMNE/wPLI 

(𝑝 = 0.98) were not statistically significant. 

Discussion 

To the best of our knowledge, there is still no consensus on the most optimized pipeline for 

reconstructing EEG source-space networks. At each step of this pipeline, several methods 

have indeed been proposed and many parameters need to be defined. Several comparative 

studies have investigated different methods/parameters affecting the estimation of functional 

networks. A key challenge in such studies (i.e. when dealing with real EEG data) is the 

absence of a ground truth, which prevents the exact evaluation of the performance of each 

considered method. In order to overcome this issue, we proposed to use in this paper a 

recently developed, physiologically-grounded computational model, and highlighted its 

potential use in optimizing the EEG network estimation procedure. Therefore, we used the 

model to simulate cortical-level sources from which scalp-EEG signals were generated, and 

also evaluated the effects of EEG channels density, two different source reconstruction 

algorithms, as well two different connectivity measures.  
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Overall, results obtained for the five considered electrode montages demonstrate clearly that 

the spatial resolution of the sensor array dramatically affects the accuracy of network 

estimation: as expected, increasing spatial resolution involves a higher accuracy of the 

reconstructed networks. These results were expected theoretically and are in line with 

previous studies (Lantz et al., 2003; Sohrabpour et al., 2015; Song et al., 2015). Recording 

EEG data with a low sensor density array could contribute to a misrepresentation of high 

spatial frequencies, and therefore high spatial resolution is required to avoid aliasing. 

Interestingly, increasing the number of electrodes from 128 to 256 did not provide significant 

improvement. On a different note, (Song et al., 2015) found that adding sensors on the 

inferior surface of the head (including the neck and the face) improves localization accuracy, 

even with sparse arrays. Therefore, it may be interesting to study the effect of the head 

coverage provided by different sensor array layouts, and not only the number of electrodes in 

each array. 

Comparing inverse solutions and connectivity measures showed that wMNE performed better 

than eLORETA, and wPLI performed better than PLV. In contrast to our results, in (Tait et 

al., 2020), eLORETA outperformed wMNE at both voxel and ROI level. Even though 

(Colclough et al., 2016) did not recommend phase-based metrics as a first choice for 

assessing MEG functional connectivity, they, in general, favored using measures that are not 

affected by zero-lag phase coupling. Interestingly, our study showed that a more crucial 

parameter is the combination of inverse method and connectivity measure. Although 

wMNE/wPLI performed better than eLORETA/wPLI, the PLV connectivity measure 

performed similarly with both eLORETA and wMNE methods. Thus, the choice of the 

inverse solution and connectivity measure is recommended to be made simultaneously. In a 

previous study (Hassan et al., 2014), wMNE/PLV combination had the best performance in 

the context of a picture naming task. This combination has also showed better performance 
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than other combinations (eLORETA and wPLI were not included) when applied to simulated 

epileptic spikes (Hassan et al., 2017). A possible difference between the current simulations 

and (Hassan et al., 2017) is that, in the latter, the reference network were very dense locally 

with a very high number of zero-lag correlations which may favor methods that do not 

remove these connections (such as PLV). Moreover, neither eLORETA nor wPLI were 

investigated in that study. It is worth noting that the results obtained in this study are specific 

to the analyzed condition, i.e. epileptic spikes: therefore, we are not sure that the same 

combination of methods will show the best network estimation accuracy when analyzing 

networks related to cognitive tasks or resting state, such as the alpha/beta DMN for instance 

(i.e. physiological activity), which is the main objective of our further work. 

Methodological considerations: 

Here, our objective was to provide a typical example of the use of the COALIA model to 

investigate the effect of different pipeline-related parameters on EEG source-space network 

analysis. With our approach, we aimed at promoting the use of computational modeling as a 

ground-truth to evaluate parameters of EEG source connectivity methods. Using this 

approach, other parameters could be also evaluated and other scenarios could be also 

generated, and we suggest hereafter possible extensions for this work. First, we simulated in 

this study a network with 7 regions generating spike activity, while background brain activity 

was attributed to contributions from all other regions. However, it would be even more 

realistic for the network neuroscience field to use the model to simulate different rhythms of 

resting-state data (alpha/beta-band activity in the DMN network, for instance) and then 

evaluate the desired techniques in such context, rather than restricting the study to 

spikes/background activity scenarios. Second, the inverse solutions compared in this paper 

both belong to the family of minimum norm estimates methods. Other algorithms based on 
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beamformers, such as the widely used linearly constrained minimum variance (LCMV) were 

not tested here. Our choice was based on the results obtained in (Tait et al., 2020), where the 

use of LCMV methods for MEG source reconstruction was not recommended since it 

produces high localization error. It is worthy to mention that the two connectivity measures 

included in this study estimate phase synchrony between regional time-series. Other existing 

methods investigate instead the amplitude correlation between signals, such as the amplitude 

envelope correlation (AEC), which is widely used in the context of MEG functional 

connectivity. In a large study investigating the reliability of different connectivity metrics 

(Colclough et al., 2016), Colclough et al. have suggested that AEC between orthogonalized 

signals is the most consistent connectivity measure to employ in the context of resting-state 

recordings. Moreover, since we introduced a time delay between the two subnetworks, we 

propose that studying directional connectivity metrics (e.g., Granger causality) may also lead 

to additional insights. In order to threshold connectivity matrices, only the nodes with the 

highest 12% strength were kept, which was the value corresponding to the proportion of 

nodes originally used to simulate the 2 subnetworks. Obviously, this choice is not fully 

realistic, since we cannot have any a priori in experimental data on the exact number of 

activated brain regions. In addition, we used here the accuracy to quantify the difference 

between the estimated and reference networks. Other network-based metrics can be also 

useful to compute the similarities between these networks (Mheich et al., 2020, 2018). 

Finally, in order to make the simulations more realistic, several noise level could be also 

added to the scalp signals to mimic instrumental and measurement noises that occur in 

experimental settings.  

Conclusion 

In this work, we showed how COALIA, a recently developed, physiologically-inspired 

computational model can provide a ground-truth for comparative studies aiming at 
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optimizing the EEG-source connectivity pipeline. Using this model-based approach, several 

methodological questions could be addressed. Here, we assessed the effect of the number of 

EEG electrodes, as well as the inverse solution/connectivity measure combination. Our 

results suggest that a higher network estimation accuracy requires a high number of EEG 

electrodes and suggest the careful choice of an efficient inverse solution/connectivity 

measure combination. 
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