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Abstract

Background

Structural brain connectivity has been shown to be sensitive to the changes that the brain

undergoes during Alzheimer’s disease (AD) progression.

Methods

In this work, we use our recently proposed structural connectivity quantification measure de-

rived from diffusion MRI, which accounts for both direct and indirect pathways, to quantify brain

connectivity in dementia. We analyze data from the ADNI-2 and OASIS-3 datasets to derive rel-

evant information for the study of the changes that the brain undergoes in AD. We also compare

these datasets to the HCP dataset, as a reference.

Results

Our analysis shows expected trends of mean conductance with respect to age and cognitive

scores, significant age prediction values in aging data, and regional effects centered among sub-

cortical regions, and cingulate and temporal cortices.

Discussion

Results indicate that the conductance measure has prediction potential, especially for age,

that age and cognitive scores largely overlap, and that this measure could be used to study effects

such as anti-correlation in structural connections.

Impact statement

This work presents a methodology and a set of analyses that open new possibilities in the study

of healthy and pathological aging. The methodology used here is sensitive to direct and indirect

pathways in deriving brain connectivity measures from dMRI, and therefore provides information

that many state-of-the-art methods do not account for. As a result, this technique may provide the

research community with ways to detect subtle effects of healthy aging and AD.
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1. Introduction

Brain structural connectivity reflects the physical connections through white-matter (WM) axon

bundles between different regions of interest (ROIs), and can be measured by diffusion-weighted

magnetic resonance imaging (dMRI). Brain connectivity analysis has proven to be useful in the

study of many conditions, such as the effects of aging on the brain (Damoiseaux, 2017; Wu et al.,

2013; Fjell et al., 2016), and in the study of disease. Differences in brain connectivity patterns

between healthy and diseased populations are potential indicators of changes in the brain “wiring”

due to disease processes. In particular, Alzheimer’s disease (AD) has been found to impact

structural connectivity (Rose et al., 2000; Daianu et al., 2013; Prasad et al., 2015). The changes

that the brain undergoes with aging and AD can be confounded, thereby contributing to a delay

in AD diagnosis. Nonetheless, the spatial and temporal patterns of changes in connectivity are

different in healthy aging and in AD. Accurately modeling structural connectivity may therefore

reveal the effects of aging and AD progression in WM degeneration, and help to differentiate the

two.

1.1. Brain changes in aging and dementia

Healthy aging is associated with a moderate decline of some cognitive abilities. AD dementia

causes severe deterioration of similar cognitive domains, but also additional cognitive functions,

in such a way that it compromises independent living. The abnormal decline preceding AD, with

noticeable alterations in cognition yet short of functional independence, is termed mild cognitive

impairment (MCI) (Petersen et al., 1999). Both the gray matter (GM) and the WM undergo changes

in volume and integrity in healthy and pathological aging, but the affected regions vary. Healthy

aging has been found to be related to decline in frontal and temporal regions of the GM. An age-

related volume decline has been localized in the prefrontal cortex (PFC), insula, anterior cingulate

gyrus, superior temporal gyrus, inferior parietal lobule, and precuneus (Ghosh et al., 2011), as well

as in the striatum, caudate, and medial temporal lobe (hippocampus and adjacent, anatomically

related cortex, including entorhinal, perirhinal, and parahippocampal cortices) (Raz and Rodrigue,

2006). Other regions, like occipital cortex, are mostly unaffected by aging. Degeneration in WM

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.09.15.298331doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.298331


has been found to often follow an anterior-posterior gradient of fractional anisotropy (FA) reduc-

tions, indicating that frontal connections are especially vulnerable (Toepper, 2017). Small and less

myelinated fibers are particularly vulnerable to age-related decline, such as fiber tracts whose

myelinization is completed later in life (Salat et al., 2005).

In patients with AD dementia, changes in regional volume are not uniform. A significant volume

reduction has been found in the hippocampal formation and the enthorhinal cortex bilaterally very

early in the disease (Thompson et al., 2004), followed by a degeneration in the PFC (Ghosh et al.,

2011). In the WM, signal abnormalities (WMSA) have been found in AD in regions such as rostral

frontal, inferior temporal, and inferior parietal WM, with a greater volume of WMSA in AD with

respect to healthy aging consistently across different ages. In MCI, frontal and temporal regions

have been found to have greater WMSA volume with decreasing time-to-AD-conversion (Lindemer

et al., 2017).

1.2. Brain connectivity changes in aging and dementia

While enabling the segregation and integration of information processing, brain networks are

also responsible for widespread effects resulting from local disease-related disruptions, thereby

complicating relationships between pathological processes and clinical phenotypes in AD (Ti-

jms et al., 2013). The disconnection model of AD has long been discussed (de LaCoste and

White III, 1993), with cumulative evidence associating plaques and tangles with local synaptic dis-

ruptions (Arendt, 2009; Takahashi et al., 2010), as well as linking the cognitive dysfunction in AD

to dysconnectivity between highly-interrelated brain regions (Delbeuck et al., 2003; Brier et al.,

2014; Matthews et al., 2013). Identifying large-scale brain networks that are vulnerable or resilient

in aging and AD (by studying the human connectome) can therefore reveal underlying disease

propagation patterns in the brain and provide connectivity-based biomarkers (Gomez-Ramirez

and Wu, 2014) in prodromal AD. Network-based analysis of brain WM connections through dMRI

(Basser and Özarslan, 2014; Goveas et al., 2015; Madden et al., 2012) has proved promising in

revealing the structural basis of cognitive changes in AD, MCI, and aging, and discovery of diag-

nostically and therapeutically important biomarkers. Structural networks have been used to predict

the process of disease spread in AD (Raj et al., 2012, 2015), and to distinguish the groups of cog-
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nitively normal (CN), MCI, and AD (Prasad et al., 2015; Frau-Pascual et al., 2019b; Aganj et al.,

2014; Shao et al., 2012), as well as AD from vascular dementia (Zarei et al., 2009). Relative to

CN controls, AD patients have been shown to have significantly lower integrity of association fiber

tracts (Rose et al., 2000), weaker cingulum connectivity (Zhang et al., 2007; Huang et al., 2012;

Mielke et al., 2009), and structural brain networks with disruption in their rich club organization

(Daianu et al., 2016; Lee et al., 2018), and reduced local efficiency (Reijmer et al., 2013; Lo et al.,

2010). The performance in memory and executive functioning of AD patients has been inversely

correlated to the path length (Reijmer et al., 2013), and network small-worldness has been shown

to predict brain atrophy in MCI (Nir et al., 2015). Structural brain networks are affected even in

individuals without dementia with the APOE ε4 allele (Liu et al., 2013), a genetic AD risk factor.

Connectivity disruption within a brain network is also occasionally accompanied by hyper-

connectivity in a reciprocal network. For instance, increased frontal connectivity may be observed

alongside reduced temporal connectivity in AD (Supekar et al., 2008; Wang et al., 2007), and in-

verse relationship has been reported between frontal activity and occipital activity in aging (Davis

et al., 2008). Furthermore, AD has been shown to reduce connectivity in the default mode network

(DMN) but intensify it at the early stages in the salience network – a collection of regions active

in response to emotionally significant stimuli (Seeley et al., 2007; Uddin, 2016) – whereas behav-

ioral variant fronto-temporal dementia (bvFTD) has been shown to attenuate the salience network

connectivity but enhance DMN connectivity (Brier et al., 2012; Zhou et al., 2010). Even so, most

existing studies monitor such hyper-connectivity with respect to the progression of dementia, but

not with respect to the deterioration of other networks.

1.3. Contributions of this work

We have previously introduced a method for inferring structural brain connectivity from dMRI

using an electrical conductance model (Frau-Pascual et al., 2019b), which accounts for all possible

WM pathways, and is solved globally. This method was shown to produce structural connectivity

measures that were more strongly correlated with resting-state functional connectivity and more

sensitive to AD-related WM degeneration than standard streamline tractography methods did. In

this work, we extend our analysis to demonstrate the impact that this new measure of structural
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brain connectivity could have in the study of aging and AD dementia. To that end, we investigate

the relationship of structural connectivity with age and cognitive and volumetric measures, attempt

to predict age and cognitive scores from dMRI data, and identify some anti-correlated connections

that might help to study compensation. This paper extends our preliminary conference publications

(Frau-Pascual et al., 2019a; Aganj et al., 2020); in particular, we have added more data analysis

and experiments.

2. Methods

2.1. Conductance model

In our previous work (Frau-Pascual et al., 2019b)1, we extended the heat equation method

proposed by O’Donnell et al. (2002) with a combination of differential circuit laws. Our method

assigns to each image voxel a local anisotropic conductivity value D, which is the diffusion tensor

computed from dMRI (Basser et al., 1994). By solving the partial differential equation (PDE),

−∇ · (D∇φi,j) = γi,j , for a given current configuration γi,j between a pair of source (i) and sink (j)

voxels (see below), we find the potential map φi,j for that specific configuration. ∇ and ∇· are the

gradient and divergence operators, respectively.

We solve the PDE for a 1-ampere current (without loss of generality) between a pair of voxels

i and j: γi,j = δi − δj , where δk(x) := δ(x − xk), with xk the position of voxel k and δ(·) the Dirac

delta. To compute ROI-wise conductance, we distribute the currents among the sets of voxels I

and J (the two ROIs) as: γI,J = 1
|I|

∑
i∈I

δi − 1
|J |

∑
j∈J

δj .

The conductance between two points can then be computed from Ohm’s law as the ratio of

the current to the potential difference. In our case, the potential difference between two voxels

(or ROIs) i and j is φi,j(xi) − φi,j(xj). The conductance is therefore computed, for ROI-wise

connectivity, as: CI,J = 1
1
|I|

∑
i∈I

φI,J (xi)− 1
|J|

∑
j∈J

φI,J (xj)
.

The conductance among all N regions can be computed efficiently in O(N ) using the super-

position principle (Frau-Pascual et al., 2019b).

1Our codes are publicly available at:
www.nitrc.org/projects/conductance
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High conductance (i.e. low resistance) between two points represents a high degree of con-

nectivity in our model. Since the ROIs are all at least weakly connected, these maps could then

be thresholded.

2.2. Brain connectivity matrix generation

With the conductance method, we model and quantify diffusion data in a non-conventional way.

As mentioned in Section 2.1, a 1-ampere current is split across voxels and the PDE is solved once

per ROI to compute a conductance measure between each pair of ROIs using the superposition

principle. This eventually results in a connectivity matrix per subject that reflects the ease with

which this small current goes from one region to another, following the diffusion tensors. This

measure also embeds geometrical information, such as volumes (number of voxels in each ROI)

and distances between ROIs.

2.3. Study of conductance matrices

We consider the relationship between the mean conductance and other variables, such as

age and cognitive scores (and cortical/subcortical volumes in the Supplementary Materials). The

cognitive scores considered in this work are the Clinical Dementia Rating (CDR) scale (Morris,

1991) and the Mini–Mental State Examination (MMSE) score (Pangman et al., 2000), explained in

more detail in Section 3.1. We fit a linear function to our data points and report the correlation (r)

and significance (p) values of the fit, which reveals whether conductance is significantly correlated

with these variables.

We also attempt to predict variables such as age and cognitive scores via linear regression.

We initially discard outliers in every cohort, while considering an outlier a subject with mean con-

ductance higher or lower than the average by two standard deviations. We report r and p values of

the correlation between the predicted and the true variable when fitting with a cohort and predict-

ing with a different cohort. The p-values below 0.05 are considered significant when r is positive

(as a negative r would indicate the opposite of the desired effect). We also report the Bonferroni

corrected p-values, i.e. the original p-values multiplied by the number of comparisons. Further-

more, we try fitting and predicting within the same cohort (which involves fewer comparisons),

using cross-validation with 20 folds.
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We then measure the correlation of the conductance values between every pair of regions with

age and cognitive scores (CDR and MMSE). For each pair of regions, we correct the p-value for

multiple comparisons using Bonferroni correction. The results will reveal which regions correlate

more strongly with age and/or cognition.

We further use a general linear model to regress out the effects of aging before correlating the

conductance with CDR or MMSE. This will disentangle the overlapping contributions of aging and

cognition, revealing the residual effects of CDR and MMSE unexplained by age.

2.4. Identification of anti-correlated connections

Next, we attempt to identify negative (cross-subject) interrelationships among brain connec-

tions. As opposed to focusing only on the relationship between connectivity and the clinical data,

we identify pairs of connections that are significantly negatively correlated with each other, and

validate them on external datasets. Such a connection-wise correlation approach might help to

reveal pathways that are potentially compensatory and define the resilience mechanism of brain

networks against AD.

We first vectorize the lower triangular part of each N × N connectivity matrix to a vector of

length N(N − 1)/2, and reduce this vector to keep M cortico-cortical and cortico-subcortical con-

nections. Next, we compute the cross-subject linear correlation coefficient between each pair of

connections, resulting in two symmetric M ×M connection-wise matrices of correlations, R, and

p-values, P . We then keep only the elements of R with a correlation value smaller than a negative

threshold, e.g. τ = −0.1, as R− = {(i, j)|Ri,j < τ}. From that set, we consider the connection

pairs whose p-values survive a cutoff threshold, namely α = 0.05, as L = {(i, j) ∈ R−|P ∗i,j < α}.

P ∗ is the set of p-values corrected for multiple comparisons among the elements of R− with the

Holm-Bonferroni method. We regard the surviving set L as the pairs of connections with significant

cross-subject anti-correlation. We keep either the entire L, or a most significant subset of it.

Next, to externally test if the surviving set L is anti-correlated, we compute Rtest and Ptest for

the connection pairs in L in a different population, and verify both Rtest < 0 and P ∗test < α for that

set, with P ∗test being Ptest corrected for multiple comparisons among the pairs in L. We will also

test the hypothesis that the surviving pairs of connections are left-right symmetric; i.e., whether a
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significant anti-correlation is also a significant anti-correlation in the mirrored hemisphere.

Lastly, we correlate the identified connections with cognitive performance measures.

2.5. MR data processing

The common pipeline for brain connectivity computation is: segmentation of brain ROIs, quan-

tification of brain connections from dMRI, and aggregation of connectivity values in a matrix. The

constructed brain connectivity matrix will describe how strongly different regions are connected to

each other according to the dMRI acquisition of WM connections. We processed the MRI data

similarly for all datasets.

2.5.1. Structural MRI processing:

We performed tissue segmentation and parcellation of the cortex into ROIs using FreeSurfer2

(Fischl, 2012). The parcellation used in this work is the Desikan-Killiany atlas (Desikan et al.,

2006), which has 86 regions, among which 68 were cortical and 18 were subcortical or brainstem.

2.5.2. Diffusion MRI processing:

Diffusion preprocessing was performed using the FSL software3 (Jenkinson et al., 2012) and

included BET for brain extraction and EDDY for eddy current and subject motion correction.4 From

the preprocessed dMR images, we reconstructed the diffusion tensors using the Diffusion Tensor

Imaging (DTI) (Basser et al., 1994) reconstruction module of DSI Studio5, which we then used as

input to our conductance computation algorithm.

3. Results

3.1. Analysis of AD population

We evaluated how our conductance method could help in discriminating different stages of

AD. For this, we used two publicly available datasets that included subjects across the AD de-

mentia spectrum (see Figure 1): the second phase of Alzheimer’s Disease Neuroimaging Initiative

2FreeSurfer, https://surfer.nmr.mgh.harvard.edu
3FSL, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
4eddy openmp command was used in ADNI-2 and eddy correct in OASIS-3
5DSI Studio, http://dsi-studio.labsolver.org
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Figure 1: Demographics of the AD datasets used here. (a) ADNI-2 cohort of 213 subjects (77 CN, 89 MCI, 47 AD),
(b) OASIS-3 group of 652 subjects, consisting of 4 cohorts, each of which has more than 100 subjects with identical
scan description: (c) 272-subject cohort (187 CN, 38 AD, 47 other dementias), (d) 139-subject cohort (86 CN, 33 AD,
20 other dementias), (e) 125-subject cohort (112 CN, 4 AD, 9 other dementias), and (f) 116-subject cohort (103 CN,
6 AD, 7 other dementias). Other dementias include vascular dementia, or AD dementia with depression or additional
symptoms (refer to Figure 2).

(ADNI-2)6 (Jack et al., 2008; Beckett et al., 2015), and the third release in the Open Access Series

of Imaging Studies (OASIS-3) (Fotenos et al., 2005), which is a longitudinal neuroimaging, clini-

cal, and cognitive dataset for normal aging and AD. These two datasets enabled us to compare

structural brain connectivity in different stages of the disease and correlate neuroimaging data

to clinical cognitive scores. We also compared these two datasets to 100 subjects of the pub-

licly available Human Connectome Project (HCP) (Van Essen et al., 2013), which contains data

6The ADNI (http://adni.loni.usc.edu) was launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, positron emission
tomography, other biological markers, and clinical and neuropsychological assessment can be combined to measure
the progression of MCI and early AD.
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of younger healthy subjects and provides a reference, helping us to interpret our results in the

targeted population. HCP provides age intervals, as opposed to exact age, for the subjects.
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Figure 2: MMSE vs diagnosis, color-coded by CDR: 0, 0.5, 1, 2 and 3 (refer to Figure 3). Each datapoint represents
one subject, with some overlap, with a certain diagnosis (y-axis), MMSE (x-axis) and CDR (color).

Other clinical data from these populations were also available: age, diagnosis, cerebral cortical

and subcortical volumes, and cognitive scores such as the CDR scale and the MMSE score. CDR

measures from 0 to 3 the cognitive capabilities of each subject, with 0 being CN and a higher

number reflecting higher cognitive impairment. MMSE rates cognitive capabilities from 0 to 30,

with 30 being CN and a lower value reflecting higher cognitive impairment. Figure 2 shows the

relationship between these scores and the subject diagnosis in ADNI-2 and OASIS-3. It is to

be noted that the ratings differ across diagnoses and datasets. ADNI-2 rates people with AD

diagnosis with CDR scales of 0.5 and 1, MCI with 0.5, and CN with 0, but the MMSE scores are

overlapping for the three diagnoses. OASIS-3 rates are variable, with MMSE values overlapping

across diagnoses and CDR scores. Therefore, the ratings between ADNI-2 and OASIS-3 are

slightly different, and the cognitive scores of MMSE and CDR are used differently.
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Figure 3: Correlation of mean conductance with age and cognitive scores of CDR and MMSE, color-coded with respect

to the CDR: 0, 0.5, 1, 2 and 3.
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3.2. Correlation of conductance values with clinical data

We computed the correlation between mean conductance and other variables, such as age,

CDR and MMSE (shown in Figure 3), and cortical/subcortical volumes (provided in the Supple-

mentary Materials). Mean conductance consistently exhibited a decreasing trend (negative r) with

respect to age and CDR and an increasing trend (positive r) with respect to MMSE.

3.3. Predictive value of conductance matrices

We assessed the predictive value of our conductance matrices. For that, we used linear re-

gression to fit on one cohort and predict from a different one, or fit and predict on the same cohort

using cross-validation (see Section 2.3). We first discarded outliers – subjects with mean conduc-

tance higher or lower than the average by two standard deviations – in every cohort. We removed

3 subjects of the ADNI-2 cohort, 3, 6, 2, and 6 subjects of the different OASIS-3 cohorts, and no

subject from the HCP cohort.

In tables 1 and 2, we show the r and p values when fitting and predicting age with the same

cohort (within-cohort prediction), and when fitting age with a cohort and predicting with a different

cohort (cross-prediction), respectively. Table 2 shows significant correlation between predicted

and true values of age across ADNI-2 and OASIS-3, but not when fitting using HCP. When we

combined all OASIS-3 data, we got values of r = 0.21, p <10−6, pb <10−6 for within-cohort

prediction, and values of r = 0.38, p <10−6, pb <10−6 when training on OASIS-3 and testing on

ADNI-2, and r = 0.27, p <10−6, pb <10−6 when training on ADNI-2 and testing on OASIS-3, and a

negative r when training with OASIS-3 and testing on HCP and vice versa. In this comparison (with

all of OASIS-3 in a single cohort), we Bonferroni-corrected (pb) with a factor 3 in the within-cohort

prediction and a factor 6 in the cross-prediction case.

Tables 3, 4, 5 and 6 show results when similarly predicting the MMSE and CDR cognitive

scores. Prediction in these cases yielded less significant p-values, both in within- and cross-cohort

predictions. When we put all the OASIS-3 data together, we got significant values for within-cohort

prediction: r = 0.13, p <10−3, and pb <10−2 for CDR, r = 0.09, p = 0.02, and pb = 0.04 for MMSE.

For cross-prediction with ADNI-2: r = 0.32, p = 2·10−5, pb = 4·10−5 when training on OASIS-3

and testing on ADNI-2, and r = 0.05, p = 0.17, pb = 0.68 when training on ADNI-2 and testing
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Table 1: Prediction of age within ADNI-2, OASIS-3, and HCP. pb stands for Bonferroni-corrected p-value (for 6 compar-
isons). p-values under 0.05 with a positive r are highlighted.

ADNI-2 OASIS-3 HCP
213 sub 272 sub 139 sub 125 sub 116 sub 100 sub
r=0.33,
p=10−6,
pb <10−5

r=0.14,
p=0.02,
pb=0.14

r=0.34,
p<10−4,
pb <10−3

r=0.56,
p<10−6,
pb <10−5

r=0.33,
p<10−3,
pb <10−2

r=-0.03,
p=0.78,
pb=1

Table 2: Prediction of age in ADNI-2, OASIS-3, and HCP. pb stands for Bonferroni-corrected p-value (for 30 compar-
isons). p-values under 0.05 with a positive r are highlighted.

Predict ADNI-2 OASIS-3 HCP
Fit 213 sub 272 sub 139 sub 125 sub 116 sub 100 sub

ADNI-2
213 sub

r=0.25,
p<10−4,
pb=10−3

r=0.22,
p=0.01,
pb=0.33

r=0.29,
p=10−3,
pb=0.03

r=0.23,
p=0.02,
pb=0.51

r=0.12,
p=0.22,
pb=1

OASIS-3
272 sub

r=0.34,
p<10−6,
pb <10−4

r=0.25,
p<10−2,
pb=0.12

r=0.26,
p<10−2,
pb=0.12

r=0.29,
p<10−2,
pb=0.09

r=-0.16,
p=0.1,
pb=1

OASIS-3
139 sub

r=0.36,
p<10−6,
pb <10−4

r=0.26,
p=10−5,
pb <10−3

r=0.29,
p=10−3,
pb=0.03

r=0.26,
p<10−2,
pb=0.21

r=0.14,
p=0.17,
pb=1

OASIS-3
125 sub

r=0.37,
p<10−6,
pb <10−4

r=0.2,
p=10−3,
pb=0.03

r=0.33,
p<10−4,
pb <10−2

r=0.35,
p<10−3,
pb <10−2

r=-0.04,
p=0.68,
pb=1

OASIS-3
116 sub

r=0.49,
p<10−6,
pb <10−4

r=0.41,
p<10−6,
pb <10−4

r=0.31,
p<10−3,
pb <10−2

r=0.34,
p=10−4,
pb <10−2

r=0.37,
p=10−4,
pb <10−2

HCP 100
sub

r=-0.33,
p=10−6,
pb <10−4

r=-0.17,
p<10−2,
pb=0.18

r=-0.05,
p=0.58,
pb=1

r=-0.16,
p=0.07,
pb=1

r=-0.3,
p=10−3,
pb=0.03

on OASIS-3, when using CDR; r = 0.32, p = 2·10−6, pb = 4·10−6 when training on OASIS-3

and testing on ADNI-2, and r = 0.01, p = 0.83, pb = 1 when training on ADNI-2 and testing on

OASIS-3, when using MMSE. p-values were significant only in one direction: when we trained

with all OASIS-3 data together. In this comparison, we Bonferroni-corrected with a factor 2 in both

the within-cohort prediction and cross-prediction. Cognitive scores were not available for the HCP

subjects.

3.4. Region-specific conductance results

We then correlated the elements of the conductance matrix individually with the MMSE score,

the CDR, and the age, while correcting for multiple comparisons by multiplying the p-values by the

number of connections. Figure 4 shows many of the connections being significant (i.e., pb < 0.05)

for OASIS-3. In the case of age, 1350 connections out of 3655 had p-values under 0.05, and in the
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Table 3: Prediction of CDR within ADNI-2 and OASIS-3. pb stands for Bonferroni-corrected p-value (for 5 comparisons).
p-values under 0.05 with a positive r are highlighted.

ADNI-2 OASIS-3
213 sub 272 sub 139 sub 125 sub 116 sub
r=0.2,
p<10−2,
pb=0.02

r=0.04,
p=0.54,
pb=1

r=0.18,
p=0.04,
pb=0.18

r=0.1,
p=0.29,
pb=1

r=0.25,
p<10−2,
pb=0.04

Table 4: Prediction of CDR in ADNI-2 and OASIS-3. pb stands for Bonferroni-corrected p-value (for 20 comparisons).
p-values under 0.05 with a positive r are highlighted.

Predict ADNI-2 OASIS-3
Fit 213 sub 272 sub 139 sub 125 sub 116 sub

ADNI-2
213 sub

r=-0.01,
p=0.83,
pb=1

r=0.03,
p=0.75,
pb=1

r=0.15,
p=0.1,
pb=1

r=0.02,
p=0.85,
pb=1

OASIS-3
272 sub

r=0.25,
p<10−3,
pb <10−2

r=0.04,
p=0.62,
pb=1

r=0.08,
p=0.41,
pb=0.82

r=0.1,
p=0.32,
pb=1

OASIS-3
139 sub

r=0.2,
p<10−2,
pb=0.08

r=0.18,
p<10−2,
pb=0.08

r=0.07,
p=0.45,
pb=1

r=0.11,
p=0.28,
pb=1

OASIS-3
125 sub

r=0.28,
p<10−4,
pb <10−3

r=0.27,
p<10−5,
pb=10−4

r=0.08,
p=0.36,
pb=1

r=0.16,
p=0.09,
pb=1

OASIS-3
116 sub

r=0.33,
p=10−6,
pb <10−5

r=0.19,
p=10−3,
pb=0.02

r=0.14,
p=0.1,
pb=1

r=0.13,
p=0.16,
pb=1

case of the cognitive scores of CDR and MMSE, 736 connections out of 3655 had p-values under

0.05 in both cases. In OASIS-3, age correlated with connectivity with higher significance among

all subcortical regions, especially thalamus and hippocampus, bilaterally, and with regions in the

cortex, mostly transverse temporal, caudal anterior cingulate, rostral anterior cingulate, posterior

cingulate, insula, isthmus cingulate, and precuneus cortex, bilaterally. In both hemispheres, con-

nections found to correlate with cognitive scores most significantly often stemmed from subcortical

regions, especially putamen, hippocampus, amygdala, and thalamus, in addition to connections

between these subcortical regions and isthmus cingulate, rostral anterior cingulate, insula, poste-

rior cingulate, caudal anterior cingulate, transverse temporal, and precuneus. When limiting the

analysis to subjects with CDR≤1, as in the ADNI-2 cohort, we observed a similar (but less signif-

icant) effect, but with the transverse temporal cortex connected to more regions (consistently for

both CDR and MMSE, with regions in slightly different order of significance). We then regressed

out the age effect before correlating the conductance with the CDR and MMSE scores, where,
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Table 5: Prediction of MMSE within ADNI-2 and OASIS-3. pb stands for Bonferroni-corrected p-value (for 5 compar-
isons). p-values under 0.05 with a positive r are highlighted.

ADNI-2 OASIS-3
213 sub 272 sub 139 sub 125 sub 116 sub
r=0.32,
p<10−5,
pb <10−4

r=0.11,
p=0.08,
pb=0.38

r=0.16,
p=0.07,
pb=0.34

r=-0.05,
p=0.56,
pb=1

r=0.28,
p<10−2,
pb=0.02

Table 6: Prediction of MMSE in ADNI-2 and OASIS-3. pb stands for Bonferroni-corrected p-value (for 20 comparisons).
p-values under 0.05 with a positive r are highlighted.

Predict ADNI-2 OASIS-3
Fit 213 sub 272 sub 139 sub 125 sub 116 sub

ADNI-2
213 sub

r=-0.03,
p=0.6,
pb=1

r=-0.02,
p=0.79,
pb=1

r=0.02,
p=0.84,
pb=1

r=0.13,
p=0.17,
pb=1

OASIS-3
272 sub

r=0.29,
p<10−4,
pb <10−3

r=0.21,
p=0.02,
pb=0.3

r=-0.04,
p=0.63,
pb=1

r=-0.02,
p=0.84,
pb=1

OASIS-3
139 sub

r=0.11,
p=0.12,
pb=1

r=0.18,
p<10−2,
pb=0.06

r=-0.04,
p=0.67,
pb=1

r=0.07,
p=0.46,
pb=1

OASIS-3
125 sub

r=0.22,
p=10−3,
pb=0.02

r=0.1,
p=0.1,
pb=1

r=0.05,
p=0.54,
pb=1

r=0.13,
p=0.2,
pb=1

OASIS-3
116 sub

r=0.19,
p<10−2,
pb=0.1

r=0.04,
p=0.56,
pb=1

r=0.05,
p=0.59,
pb=1

r=0.1,
p=0.3,
pb=1

only in the MMSE case, 350 out of 3655 connections survived the multiple-comparisons (Bonfer-

roni) correction. The connectivity plot for this experiment is depicted in Figure 5, showing the most

significant connections to be those from thalamus, putamen, hippocampus and amygdala, to both

subcortical and cortical areas. (See also tables 7 and 8 in the Supplementary Materials for the

age effects in the CN population.)

As for ADNI-2, only 5 connections significantly correlated with age (Figure 4), and none cor-

related significantly with CDR or MMSE. The connections found to be significantly correlated with

age in ADNI-2 were, in order of significance: right putamen to rostral midfrontal, left to right supe-

riorfrontal, right rostral midfrontal to postcentral, right fusiform area to parahippocampal, and right

thalamus to rostral midfrontal. Note that, out of the five significant ones, three were connected to

the right rostral midfrontal cortex.
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Figure 4: Sig-values for the correlation of conductance with age, CDR, and MMSE. We depict the negative logarithm

of the Bonferroni-corrected p-value (sig = − log10(pb)), and consider significant values above 1.3 (i.e., pb < 0.05). In

this figure, all OASIS-3 cohorts were used together. The CDR and MMSE plots are not shown for ADNI-2, given that

the correlation for no connection survived the Bonferroni correction.

3.5. Anti-correlated connectivity results

For ADNI-2, we computed the cross-subject linear correlation coefficient between all pairs

of structural connections, keeping |R−| = 1978 pairs for which r := Ri,j < −0.1. From those,
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OASIS-3: MMSE, after regressing out age effect
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Figure 5: Sig-values for the correlation of conductance with MMSE, once the age effect has been removed. We depict
the negative logarithm of the Bonferroni-corrected p-value (sig = − log10(pb)), and we consider significant values above
1.3 (i.e., pb < 0.05). In this figure, all OASIS-3 cohorts were used together. Only some connections in OASIS-3 survived
the multiple comparisons correction when correlated with MMSE.

the correlation between the left cortico-subcortical insula-caudate connection and the left cortico-

cortical precentral-entorhinal connection (Figure 6, top, left) was most significant (p = 3 · 10−6,

pb = 6 · 10−3) with r = -0.31 and the robust (bisquare) fit slope m = -0.40. (The top 20 significant

pairs all involved the insula-caudate connection.)

We then tested whether the same two connections were inversely correlated also in the right

hemisphere, which was true with high significance (r = -0.15, p = 0.03, m = -0.24; Figure 6, top,

right). Since here we tested a specific pair of connections in the right hemisphere, correction for

multiple comparisons was not necessary.

Next, for external validation and replication, we tested the hypothesis that the pair of insula-

caudate and precentral-entorhinal connections are negatively correlated in the first (largest)

OASIS-3 database cohort. This hypothesis was validated on this new dataset in both the left

(r = -0.26, p = 2 · 10−5, m = -0.48) and the right (r = -0.23, p = 2 · 10−4, m = -0.28) hemispheres

(Figure 6, bottom).

We then computed the correlation of the caudate-insula connection with the CDR and the

MMSE score in the OASIS-3 database. While the CDR was negatively correlated with mean con-
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nectivity as reported in the previous subsection, it was positively correlated with the caudate-insula

connection in the left (r = 0.19, p = 10−3) and right (r = 0.22, p = 2 · 10−4) hemispheres. Like-

wise, whereas the MMSE score was positively correlated with mean connectivity, it was negatively

correlated with the caudate-insula connection in the left (r = -0.12, p < 0.05) and right (r = -0.12,

p = 0.04) hemispheres.
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Figure 6: Negative correlation between the insula-caudate and the precentral-entorhinal structural connections in the

left and right hemispheres, across ADNI-2 (top) and 272-subject cohort of OASIS-3 (bottom) populations. CDR values

are encoded in the colors of the dots: 0, 0.5, 1, 2 and 3 (refer to Figure 3).

3.5.1. Null results

In contrast, we did not observe any negative correlation between the insula-caudate and

precentral-entorhinal connections across the young-adult HCP subjects7. By reversing the or-

der of ADNI-2 and OASIS-3 databases in this experiment, the most significantly anti-correlated

pair found in OASIS-3 was not negatively correlated in ADNI-2. In addition, the anti-correlation

7The negative correlation was not observed in functional connectivity either.
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between the insula-caudate and precentral-entorhinal connections was not observed in OASIS-3

when we included most (652) OASIS-3 subjects, which had heterogeneous scan descriptions (as

opposed to the 272-subject cohort).

4. Discussion

In this work, we used our previously proposed approach (Frau-Pascual et al., 2019b) to com-

pute and analyze structural brain connectivity in dementia populations. This method models struc-

tural connectivity as electric conductance, computing it as a weighted sum of all possible paths

between two areas, following the information given by the diffusion tensors. We previously showed

(Frau-Pascual et al., 2019b) that this method outperformed deterministic tractography in produc-

ing structural connectivity that was more correlated with functional connectivity, possibly due to the

fact that all paths – including direct and indirect – were considered. In this work, we employed our

conductance method and investigated its potential in the study of aging and AD. The conductance

model is sensitive to AD-related changes in not only diffusion but also geometric properties of the

brain WM. For instance, given that this method takes into account distances and paths, changes

in subcortical volumes and cortical thickness could also affect the measured connectivity. The

conductance might be affected by the GM and WM volume, as they affect ROI sizes and pathways

between a pair of ROIs, respectively. Shrinkage in volume could also draw ROIs closer to each

other, producing shorter pathways.

Our results are based on the HCP data for healthy young population, and ADNI-2 and OASIS-

3 data for aging/AD populations. In total, we analyzed 100 young healthy subjects, and 865

elderly subjects, from which 128 had been diagnosed with AD dementia, 89 had MCI, and 83 had

other types of dementias or pathologies. This is a heterogeneous pool of subjects with various

diagnoses scanned at different sites with different acquisition parameters. Such heterogeneity

can make the results more robust and allow for replicability analysis, but also introduces variability

that could reduce statistical power.

We used independent variables such as the subject’s age as well as the cognitive scores of

CDR and MMSE, which quantify the progression of dementia for a subject, even though they do

not clarify whether dementia is due to AD, aging, or other causes. It is worth noting that, as
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shown in Figure 2, the ways CDR is defined and used in ADNI-2 and OASIS-3 are not identical,

and neither are the relationships between CDR and MMSE in these two datasets, as seen when

comparing to diagnosis. We did not consider diagnosis when analyzing our data and focused

only on these scores (see however Figure 7, left, in the Supplementary Materials for a diagnosis-

specific histogram of mean conductance). Previous works have modeled the association between

dMRI measures and changes in executive and memory function scores (Scott et al., 2017).

We first summarized the conductance values by averaging them across all region pairs. We

considered the independent variables of age, CDR, and MMSE (as well as cortical and subcor-

tical volumes in Figure 8 of the Supplementary Materials). As illustrated in Figure 3, we found

expected trends already in the mean conductance: it correlated negatively with age, negatively

with CDR, positively with MMSE, and positively with the volumes, except for subcortical regions

in ADNI-2. Interestingly, HCP data with healthy young adults followed the same trends in age

and volumes. Similar trends have been reported for diffusion measures such as FA and mean

diffusivity (Zavaliangos-Petropulu et al., 2019).

Next, we investigated the predictive power of mean conductance when training a model and

predicting from it, either using the same dataset or different ones. As seen in tables 1 and 2,

prediction values were significant for age using most cohorts except for HCP, although in some

cases we lost significance after the Bonferroni correction. Putting all the OASIS-3 data together, in

either training or testing, produced significant results. Regarding the HCP, however, most values

were not significant, which may have been because the age range of the HCP subjects is not only

narrow, but very different from those of ADNI-2 and OASIS-3. In addition, the HCP dataset pro-

vides the age much less precisely, including only the age ballpark. Thus, we were not surprised

that we could not predict age even within HCP via cross-validation. Predicting cognitive scores of

CDR and MMSE from conductance values, as seen in tables 3, 4, 5 and 6, produced significant

results mostly only in cohorts with more than 200 subjects. This is probably due to unbalanced val-

ues/categories, and, also, the fact that these scores are variable across datasets and diagnoses.

When we considered all the OASIS-3 data together, we achieved significant results when training

with OASIS-3. Nonetheless, the fact that the prediction was generally significant in datasets with

over 200 subjects suggests that sample size is playing an important role in the prediction power.
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We then considered the region-pairwise connections to see how correlated individual connec-

tions were with changes in age, and cognitive scores. Previous works have shown correlations

of dMRI-derived measures and cognitive scores in the corpus callosum (Moseley et al., 2002),

cingulum (Mito et al., 2018), and temporal lobe (Nir et al., 2013). As described in Section 3.4, in

OASIS-3 the correlation with age was significant for more than a third of the connections, whereas

the correlation with cognition was significant in a quarter of the connections. However, the af-

fected regions were similar, possibly due to an overlap between cognition and age effects on brain

connectivity, and the cognitive decline that accompanies aging. Out of the only five connections

significantly correlated with age in ADNI-2, the three involving the right rostral midfrontal region

were also significant in OASIS-3. An interesting question here is how much of the correlation of

conductance with CDR and MMSE overlaps with the correlation with age. To clarify this nuance,

in a different experiment, we regressed out the effect of age and found residual connections that

were significantly correlated with MMSE – but not CDR – in OASIS-3, but no residual significant

connections in ADNI-2. This suggests that the changes in conductance related to aging and de-

mentia largely overlap. It is worth noting that subject head motion has been found to bias results

when comparing groups (Yendiki et al., 2014), and that it is likely that subject the motion in this

case is correlated with cognitive impairment and age.

Lastly, we considered the interrelationship among connections.8 We found anticorrelation be-

tween certain connections, which was consistent across datasets and in both hemispheres. AD

patients are known to suffer from connectivity attenuation, but also characterized by brain reor-

ganization and plasticity (Dillen et al., 2016; Kim et al., 2015a). Early in the disease, connectivity

within some (e.g., frontal) brain regions increases – possibly due to a compensatory reallocation of

cognitive resources – but eventually declines as the disease progresses (Sohn et al., 2014; Brier

et al., 2012; Schultz et al., 2017). The connections that we found to be anticorrelated were the

precentral-entorhinal cortex and the insula-caudate connections; i.e., the stronger one connec-

tion, the weaker the other, across the population. Notably, we observed an increasing trend in the

caudate-insula connection strength with respect to CDR. In fact, there is evidence of increased FA

8This work has previously been preliminarily presented (Aganj et al., 2020).
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in the left caudate in pre-symptomatic familial AD subjects (Ryan et al., 2013), increased structural

connectivity in the right insula (Ye et al., 2019), and increased functional connectivity between the

frontal lobe and the corpus striatum (Supekar et al., 2008) in AD. In addition, because the conduc-

tance method accounts for indirect paths, a possible enhancement in the thalamus and putamen

structural connectivity in AD (Ryan et al., 2013; Ye et al., 2019) might also have contributed to

the increase in the caudate-insula connectivity. Furthermore, the fact that this negative correla-

tion was observed consistently in the older adults and those on the dementia spectrum (ADNI-2

and OASIS-3), but not in young healthy adults (HCP), suggests that this significant anti-correlation

might be due to progression of dementia or aging. Although these results do not necessarily im-

ply a compensatory effect at this stage, our approach may prove useful in a study to discover

compensatory connections. Including all OASIS-3 subjects (as opposed to only a subset with ho-

mogeneous scans) did not externally validate the anticorrelation hypothesis generated from ADNI-

2, possibly because the various acquisition parameters created a large variance in the data that

dominated the putative effects. It is important to note that an increase in the measured structural

connectivity could stem from factors other than an actual strengthening of the tract. WM atrophy,

volume reduction (Ye et al., 2019), and other geometrical variabilities could make ROIs closer

to each other, leading to elevated measured structural connectivity. Additionally, in regions with

fiber crossing, selective axonal loss can increase the FA and subsequently measured structural

connectivity (Ryan et al., 2013; Kim et al., 2015b; Douaud et al., 2011).

5. Conclusion

In this work, we focused on the study of the aging and Alzheimer’s disease (AD) populations

through connectomics. We applied our conductance method to several databases to detect brain

changes related with aging and AD. Results indicate the predictive potential of the conductance

measure, especially for age. Although mean conductance values exhibited the expected trends,

the prediction of cognitive scores varied across datasets. An important but not surprising finding

was that age and cognitive scores of CDR and MMSE largely overlapped. We also correlated

brain connections with each other across populations and discovered significantly anti-correlated

structural connections. Future work consists of using longitudinal data to further explore the pre-
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diction of cognitive scores, and test the hypothesis that anti-correlated connections are indeed

compensatory.
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9. Supplementary Materials

The distribution of mean connectivity for the CN and AD dementia groups, shown in Figure 7,

demonstrates an overlap between the two groups, although with separated means (t = 4.06, p =

0.00008). When we plotted according to the CDR scale, we observed overlapped distributions

again, with separated means: t = 4.04, p = 0.00007 between CDR = 0 and CDR = 0.5; t =

2.31, p = 0.00007 between CDR = 0.5 and CDR ≥ 1; and t = 5.1, p = 0.000007 between CDR = 0

and CDR ≥ 1. However, classification results were not as significant, probably due to unbalanced

cohort size. We are showing only the 272-subject OASIS-3 cohort because the rest of the cohorts

did not have enough AD samples.
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Figure 7: Distribution of mean conductance across disease stage and CDR scales in OASIS-3.

Table 7 shows the significance of predicting age when using linear regression in only the CN

subjects (controls, CDR= 0), in different cohorts. The p-values are less significant than when we

used all CDR values, probably due to the larger sample size.

Figure 8 depicts the correlation of mean conductance with cortical and subcortical volumes,

where the averages reported are over only cortical or subcortical conductances, respectively. As

in the previous figures, the color-code of the dots reflects the CDR values. The positive r in both

columns indicate a consistent positive trend of mean cortical conductance and mean subcortical

conductance with respect to cortical and subcortical volumes. Only ADNI-2 shows a negative

trend for subcortical conductance with respect to volume, although the p-value was not significant.

Volumes have been previously used in the prediction of MMSE and CDR decline in MCI (Kovacevic

et al., 2009).
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Table 7: Prediction of age within cohorts in ADNI-2, OASIS-3 (considering only CDR= 0), and HCP.
ADNI-2 OASIS-3 HCP
213 sub 272 sub 139 sub 125 sub 116 sub 100 sub
r=0.51,
p<10−5,
pb=10−5

r=0.09,
p=0.22,
pb=1.3

r=0.47,
p=10−5,
pb <10−4

r=0.46,
p<10−6,
pb <10−4

r=0.35,
p<10−3,
pb <10−2

r=-0.03,
p=0.78,
pb=4.7

Table 8: Prediction of age with different cohorts in ADNI-2, OASIS-3 (considering only CDR= 0), and HCP. pb stands
for Bonferroni-corrected p-value. p-values under 0.05 with a positive r are highlighted.

Fit Predict
(r, p, pb) ADNI-2 OASIS-3 HCP

213 sub 272 sub 139 sub 125 sub 116 sub 100 sub

ADNI-2
213 sub

0.21,
<10−2,
0.14

0.1, 0.38, 1
r=0.09,
p=0.36,
pb=1

r=0.13,
p=0.2,
pb=6

r=-0.11,
p=0.29,
pb=1

OASIS-3
272 sub

r=0.46,
p<10−4,
pb <10−3

r=0.33,
p<10−2,
pb=0.09

r=0.13,
p=0.16,
pb=1

r=0.29,
p<10−2,
pb=0.11

r=-0.07,
p=0.51,
pb=1

OASIS-3
139 sub

r=0.54,
p<10−6,
pb <10−4

r=0.52,
p<10−6,
pb <10−4

r=0.34,
p<10−3,
pb <10−2

r=0.37,
p<10−3,
pb <10−2

r=0.13,
p=0.2,
pb=1

OASIS-3
125 sub

r=0.33,
p<10−2,
pb=1.02

r=0.16,
p=0.03,
pb=0.97

r=0.38,
p<10−3,
pb=0.02

r=0.31,
p<10−3,
pb <0.05

r=-0.02,
p=0.87,
pb=1

OASIS-3
116 sub

r=0.55,
p<10−6,
pb <10−4

r=0.38,
p<10−6,
pb <10−4

r=0.55,
p<10−6,
pb <10−4

r=0.22,
p=0.02,
pb=0.71

r=0.33,
p<10−3,
pb=0.02

HCP 100
sub

r=-0.34,
p<10−2,
pb=0.07

r=-0.15,
p=0.05,
pb=1

r=0.09,
p=0.43,
pb=1

r=-0.16,
p=0.09,
pb=1

r=-0.17,
p=0.09,
pb=1
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Figure 8: Correlation of mean conductance with cortical and subcortical volumes. Note that the averages were com-
puted only over cortical or subcortical regions.
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