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Abstract

Understanding how human brain microstructure influences functional connectivity is an
important endeavor. In this work, magnetic resonance imaging data from ninety healthy
participants were used to calculate structural connectivity matrices using the streamline
count, fractional anisotropy, radial diffusivity and a myelin measure (derived from multi-
component relaxometry) to assign connection strength. Unweighted binarized structural
connectivity matrices were also constructed. Magnetoencephalography resting-state data
from those participants were used to calculate functional connectivity matrices, via corre-
lations of the Hilbert envelopes of beamformer timeseries at four frequency bands: delta
(1− 4 Hz), theta (3− 8 Hz), alpha (8− 13 Hz) and beta (13− 30 Hz). Non-negative ma-
trix factorization was performed to identify the components of the functional connectivity.
Shortest-path-length and search-information analyses of the structural connectomes were
used to predict functional connectivity patterns for each participant.

The microstructurally-informed algorithms predicted the components of the functional
connectivity more accurately than they predicted the total functional connectivity. The
shortest-path-length algorithm exhibited the highest prediction accuracy. Of the weights
of the structural connectivity matrices, the streamline count and the myelin measure gave
the most accurate predictions, while the fractional anisotropy performed poorly. Different
structural metrics paint very different pictures of the structural connectome and its relation-
ship to functional connectivity.

1 Introduction

The representation of the human brain as a network, in which cortical and subcortical areas
(nodes) communicate via white matter tracts that carry neuronal signals (connections or edges),
has been used extensively to study the brains of healthy people and of patients that suffer from
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neurological and neuropsychiatric conditions (for example Hagmann et al. (2008); Griffa et al.
(2013); Caeyenberghs and Leemans (2014); Fischer et al. (2014); van den Heuvel and Fornito
(2014); Yuan et al. (2014); Baker et al. (2015); Collin et al. (2016); Drakesmith et al. (2015b);
Aerts et al. (2016); Nelson et al. (2017); Vidaurre et al. (2018); Imms et al. (2019)). Structural
networks can be derived from diffusion magnetic resonance imaging (MRI) data via tractogra-
phy methods (Basser et al., 2000; Mukherjee et al., 2008a,b), and represent the intricate wiring of
the human brain that allows communication between different brain areas. Functional networks
can be constructed from magnetoencephalography (MEG), electroencephalography (EEG) or
functional MRI (fMRI) data, by calculating correlations of brain activity between different brain
areas (Biswal et al., 1997; Greicius et al., 2003; Brookes et al., 2011), and represent the pos-
sible association of physiological activity in those areas. Comparing structural and functional
networks can lead to an understanding of the role of the structural connectome on the evoca-
tion of functional connectivity, both in healthy and in diseased brains. It can also shed light
into whether, in diseased brains, the local synaptic disruptions and the excitation-inhibition im-
balance, and the resulting disrupted functional connectome, lead to structural impairments, or
whether it is the structural impairments that lead to functional deficiencies. Such knowledge
can inform possible interventions that target structural or functional deficiencies in patients, and
therefore can go above and beyond symptom alleviation to improve the brain’s performance
(Friston et al., 2016).

The effort to relate the human structural and functional connectomes started several years
ago. Honey et al. (2009) investigated whether systems-level properties of fMRI-derived func-
tional networks can be accounted for by properties of structural networks, and found that al-
though resting-state functional connectivity (i.e. connectivity in the absence of a task) is fre-
quently present between regions without direct structural connections, its strength, persistence,
and spatial patterns are constrained by the large-scale anatomical structure of the human brain.
Gõni et al. (2014) used analytic measures of network communication on the structural con-
nectome of the human brain and explored the capacity of these measures to predict resting-
state functional connectivity derived from functional MRI data. Shen et al. (2015) showed that
resting-state functional connectivity (measured using fMRI) is partly dependent on direct struc-
tural connections, but also that dynamic coordination of activity can occur via polysynaptic
pathways, as initially postulated by Robinson (2012). Mišić et al. (2016) used singular value
decomposition to calculate covariance between the structural and functional (measured with
fMRI) connections in data from the Human Connectome Project (Essen et al., 2013), concluding
that functional connectivity patterns do not conform to structural connectivity patterns, and that
network-wide interactions involve structural connections that do not exist within the functional
network in question. Mill et al. (2017) argued that it is essential to consider the temporal vari-
ability of resting-state functional connectivity, because that leads to a better understanding of the
components that represent task-based connectivity, and therefore of how task-based connectivity
can emerge from the structural connectome. There is also a growing literature on forward gen-
erative mechanisms that link microstructure to function (for example Honey et al. (2007, 2009);
Deco et al. (2011, 2014, 2017)). Finally, Cabral et al. (2017) give a comprehensive review on
the subject, while Suarez et al. (2020) argue that structural connectomes that are enriched with
biological details such as local molecular and cellular data have a better chance of disentangling
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the relationship between structure and function in the human brain.
Linking functional and structural connectivity has also been done for electrophysiologically

measured functional connectivity. Garcés et al. (2016) compared networks derived via diffusion-
weighted imaging, fMRI and MEG, for nine participants, observing some similarities and some
differences in the hubness of the nodes and the patterns of functional connectivity. Tewarie
et al. (2014) used the structural degree and the Euclidean distance to predict functional net-
works derived from fMRI and MEG recordings, using a structural network derived from a co-
hort that was independent of the one for which the functional recordings had been obtained.
Pineda-Pardo et al. (2014) described an estimation of functional connectivity derived via MEG
recordings, by structural connectivity, and showed that the methodology can serve to classify
participants with mild cognitive impairment. Meier et al. (2016) used group-averaged connec-
tomes derived from MEG, fMRI and diffusion-weighted imaging, to investigate the structure-
function mapping. Tewarie et al. (2019) proposed a decomposition of the structural connectome
into eigenmodes and used those to predict MEG-derived functional connectivity in different fre-
quency bands. Following on from this work, Tewarie et al. (2020) related the approach in which
functional connectivity is explained by all possible paths in the structural network, i.e. series
expansion approach, to the eigenmode approach.

In this work, we are interested in understanding how the brain microstructure relates to elec-
trophysiological functional connectivity in the human brain. We used MRI and MEG data from
ninety healthy participants, a much larger sample than used in most previous studies. Specif-
ically, we used diffusion MRI data to construct their white matter tracts and to derive their
structural connectivity networks. Although diffusion MRI is a good method of identifying those
tracts, it is insensitive to their myelin content. Given that myelin is believed to play a major role
in the formation of functional connectivity in the brain, we also used mcDESPOT data (Deoni
et al., 2008) to derive a myelin measure to assign strength to the connections of the structural net-
works. We used the MEG resting-state recordings to calculate correlations between the electro-
physiological activity in different brain areas and derive the resting-state functional connectivity
networks of the same participants. We then used the structural networks to predict patterns of
functional connectivity based on algorithms proposed by Gõni et al. (2014) and calculated how
accurate those predictions are at replicating the observed patterns of the MEG-measured func-
tional connectivity. In order to unravel the richness of the whole-scan connectivity that results
from our MEG recordings, we used non-negative matrix factorization to decompose the MEG-
measured functional connectivity into fundamental components, and calculated how accurately
those components are predicted by the algorithms of Gõni et al. (2014) applied to our struc-
tural data. In contrast to previous studies, and because our long-term goal is that similar work
will be used in the development of biomarkers, we do not use averaged connectomes, but rather
work with participant-specific ones. The methodology is described in Sec. 2 and the results are
presented in Sec. 3. The implications of our results are discussed in Sec. 4.

2 Methods

All analyses were performed using MATLAB (MATLAB and Statistics Toolbox Release 2015a,
The MathWorks, Inc., Massachusetts, United States), unless otherwise stated. An outline of the
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Figure 1: Outline of the methodology.

analysis pipeline is shown in Fig. 1.

2.1 Data acquisition and preprocessing

Ninety healthy participants (58 females, age: 19− 34 years, mean age: 23.7 years, SD: 3.4
years) were scanned at the Cardiff University Brain Research Imaging Centre (CUBRIC). This
is a subset of the participants from the “100 Brains” and UK MEG Partnership scanning projects
(Godfrey and Singh, 2020), and includes the participants who successfully went through the
scans described below. All procedures were given ethical approval by the Cardiff University
School of Psychology Ethics Committee, and all participants gave written informed consent
before taking part.

MRI was carried out on a GE Signa HDx 3T scanner (GE Healthcare, Milwaukee, WI). T1-
weighted structural data were acquired using an axial three-dimensional fast spoiled gradient
recalled sequence with the following parameters: TR = 8 ms, TE = 3 ms, TI = 450 ms; flip
angle = 20◦; voxel size = 1 mm; field of view (FOV) ranging from 256× 192× 160 mm3 to
256× 256× 256 mm3 (anterior-posterior / left-right / superior-inferior). The T1 images were
down-sampled to 1.5 mm isotropic resolution.

Diffusion-weighted MRI data were acquired using a peripherally cardiac-gated sequence
with b = 1200 s/mm2, TR = 20 s, TE = 90 ms, isotropic resolution of 2.4 mm, zero slice gap,
FOV = 230 mm. Data were acquired along 30 unique and isotropically distributed gradient
orientations. Three images with no diffusion weighting were also acquired. The diffusion im-
ages were co-registered to the T1-weighted images and corrected for head movement and eddy
current distortions. Free-water correction was also performed.

The acquisition and preprocessing of mcDESPOT data (Deoni et al., 2008) was done as
described by Zacharopoulos et al. (2017). We briefly describe the method here. The acquisition
consisted of spoiled gradient recall (SPGR) images for eight flip angles, one inversion recovery
SPGR (IR-SPGR) and steady-state free precession (SSFP) images for eight flip angles and two
phase-cycling angles. Twenty-five images were acquired for each participant. All images were
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acquired in sagittal orientation with a slice matrix of 128×128(1.72×1.72 mm resolution) with
a minimum of 88 slices (slice thickness = 1.7 mm). Additional slices were acquired for some
participants, in order to ensure full head coverage. The parameters used for each sequence were:
SPGR: TE = 2.112 ms, TR = 4.7 ms, flip angles = 3◦, 4◦, 5◦, 6◦, 7◦, 9◦, 13◦ and 18◦. IR-SPGR:
TE = 2.112 ms, TR = 4.7 ms, IR = 450 ms, flipangle = 5◦. SSFP: TE = 1.6 ms, TR = 3.2 ms, flip
angles of 10.59◦, 14.12◦, 18.53◦, 23.82◦, 29.12◦, 35.29◦, 45◦ and 60◦, and phase-cycling angles
of 0◦ and 180◦. All images were linearly coregistered to the 13◦ SPGR image to correct for
subject motion. Non-brain tissue was removed using a mask computed with the BET algorithm
(Smith et al., 2002). Registration and brain masking were performed with FSL (http://www.
fmrib.ox.ac.uk/fsl/, Woolrich et al. (2009); Smith et al. (2004); Jenkinson et al. (2012)).
The images were then corrected for B1 inhomogeneities and off-resonance artifacts, using maps
generated from the IR-SPGR and 2 phase-cycling SSFP acquisitions, respectively. The 3-pool
mcDESPOT algorithm was then used to identify the fast (water constrained by myelin) and slow
(free-moving water in intra- and extra-cellular space) components of the T1 and T2 times, and a
non-exchanging free-water component (Deoni et al., 2013). The fast volume fraction was taken
as a map of the myelin water fraction. The myelin volume fraction was calculated as the ratio of
myelin-bound water to total water.

Five-minute whole-head MEG recordings were acquired in a 275-channel CTF radial gra-
diometer system, at a sampling rate of 1200 Hz. Twenty-nine additional reference channels
were recorded for noise cancellation purposes and the primary sensors were analysed as syn-
thetic third-order gradiometers (Vrba and Robinson, 2001). Participants were seated upright in
a magnetically shielded room with their head supported with a chin rest to minimise movement.
They were asked to rest with their eyes open and to fixate on a central red point, presented
on either a CRT monitor or LCD projector. Horizontal and vertical electro-oculograms (EOG)
were recorded to monitor eye blinks and eye movements. Recordings were also acquired while
the participants performed tasks after the completion of the resting-state recording, but those
recordings were not used in the analysis presented here. To achieve MRI/MEG co-registration,
fiduciary markers were placed at fixed distances from three anatomical landmarks identifiable in
the participant’s T1-weighted anatomical MRI scan, and their locations were manually marked
in the MR image. Head localization was performed at the start and end of the MEG recording.
The data were subsequently pre-processed in a manner identical to that described in Koelewijn
et al. (2019). Specifically, all datasets were down-sampled to 600 Hz, and filtered with a 1
Hz high-pass and a 150 Hz low-pass filter. The datasets were then segmented into 2s epochs,
and were visually inspected. Epochs exhibiting large head movements, muscle contractions, or
ocular artefacts were excluded from subsequent analysis.

2.2 Network construction

The Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) was used to
define, for each participant, the 90 cortical and sub-cortical areas of the cerebrum that corre-
spond to the nodes of the structural and functional networks. The correspondence between node
numbers and brain areas for the AAL atlas is given in Table 1. Matching between the cortical
and sub-cortical areas of each participant and the AAL atlas was performed in ExploreDTI-
4.6.8 (Leemans et al., 2009). Each network can be represented as a 90× 90 symmetric matrix,
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1 Precentral L 31 Cingulum Ant L 61 Parietal Inf L
2 Precentral R 32 Cingulum Ant R 62 Parietal Inf R
3 Frontal Sup L 33 Cingulum Mid L 63 SupraMarginal L
4 Frontal Sup R 34 Cingulum Mid R 64 SupraMarginal R
5 Frontal Sup Orb L 35 Cingulum Post L 65 Angular L
6 Frontal Sup Orb R 36 Cingulum Post R 66 Angular R
7 Frontal Mid L 37 Hippocampus L 67 Precuneus L
8 Frontal Mid R 38 Hippocampus R 68 Precuneus R
9 Frontal Mid Orb L 39 ParaHippocampal L 69 Paracentral Lobule L
10 Frontal Mid Orb R 40 ParaHippocampal R 70 Paracentral Lobule R
11 Frontal Inf Oper L 41 Amygdala L 71 Caudate L
12 Frontal Inf Oper R 42 Amygdala R 72 Caudate R
13 Frontal Inf Tri L 43 Calcarine L 73 Putamen L
14 Frontal Inf Tri R 44 Calcarine R 74 Putamen R
15 Frontal Inf Orb L 45 Cuneus L 75 Pallidum L
16 Frontal Inf Orb R 46 Cuneus R 76 Pallidum R
17 Rolandic Oper L 47 Lingual L 77 Thalamus L
18 Rolandic Oper R 48 Lingual R 78 Thalamus R
19 Supp Motor Area L 49 Occipital Sup L 79 Heschl L
20 Supp Motor Area R 50 Occipital Sup R 80 Heschl R
21 Olfactory L 51 Occipital Mid L 81 Temporal Sup L
22 Olfactory R 52 Occipital Mid R 82 Temporal Sup R
23 Frontal Sup Medial L 53 Occipital Inf L 83 Temporal Pole Sup L
24 Frontal Sup Medial R 54 Occipital Inf R 84 Temporal Pole Sup R
25 Frontal Med Orb L 55 Fusiform L 85 Temporal Mid L
26 Frontal Med Orb R 56 Fusiform R 86 Temporal Mid R
27 Rectus L 57 Postcentral L 87 Temporal Pole Mid L
28 Rectus R 58 Postcentral R 88 Temporal Pole Mid R
29 Insula L 59 Parietal Sup L 89 Temporal Inf L
30 Insula R 60 Parietal Sup R 90 Temporal Inf R

Table 1: AAL atlas areas.

with each entry indicating the strength of the connection (structural or functional) between the
respective nodes. Diagonal elements of those matrices, i.e. self-connections, were set to zero.

The white matter (WM) tracts linking the brain areas are the connections, or edges, of the
structural networks. The first step in the construction of the structural networks was to perform
tractography using a deterministic streamline algorithm in MRtrix 3.0 (Tournier et al., 2019;
Dhollander et al., 2016, 2019) (function tckgen SD stream). WM tracts were seeded in the
white matter, using a WM mask generated from the T1-weighted images using FSL fast (Smith
et al., 2004; Jenkinson et al., 2012). The response function was calculated with spherical har-
monic order lmax = 6. The maximum allowed angle between successive steps was 45◦, and the
minimum and maximum tract lengths were 30 and 250 mm respectively. The algorithm was set
to select 2×105 streamlines. In the structural connectome construction, we excluded any tracts
that were generated with 5 or fewer streamlines.

The tractograms generated were subsequently used to identify the structural connectomes of
the participants, using the MRtrix function tck2connectome. Three structural networks were
derived to represent the structural connectome for each participant. The edges of those networks
were weighted by the number of streamlines scaled by the volume of the two connected nodes
(NS), the mean fractional anisotropy (FA) along the streamlines (which has been shown to be
correlated with myelination (de Santis et al., 2014), in single-tract voxels), and the mean radial
diffusivity (RD) of the streamlines (which has been shown to correlate with axonal diameter by
Barazany et al. (2009)). The tcksample function was again used to scan the myelin volume
fraction (MVF) images, assign the proportion of the MVF that each streamline is responsible
for and divide by the tract length. Then, for each tract, the average myelin measure (MM)
along its streamlines was defined to be its edge weight, in order to create a fourth structural
network for each participant (MM-weighted). We note that a different myelin measure, the g-
ratio, has previously been used as an edge weight in structural connectomes (Mancini et al.,
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2018). The matrices that resulted from these four edge-weightings were normalized by dividing
by the largest value of each matrix, so that, within any given matrix, the values range from 0 to
1. In order to assess the predictive capability of combinations of the WM attributes, we derived
data-driven combinations of them based on the method described by Dimitriadis et al. (2017),
resulting in composite structural connectivity matrices, and used them as edge-weights in the
SC matrices used to predict the functional connectivity (FC). Finally, in order to have a measure
of the impact of these four edge weightings on our analyses, we also constructed a binarized
network for each participant, in which the strength of a structural connection was set to 1 if a
WM tract linking the corresponding brain areas existed, and it was set to 0 if such a white matter
tract did not exist. We use ’b’ to denote those binarized networks.

The modular organisation of the structural networks and any differences in their hubs are
also of relevance to the analysis. In order to develop some understanding of the differences
between structural networks that have been weighted with the different metrics, we calculated
the node degree and the betweenness centrality of each node, normalised them, and averaged
them to calculate a hub score for each node, in a manner similar to that described by Betzel
et al. (2014). This procedure was repeated for the structural networks of each participant, and
for each of the structural edge weightings used in our analysis. The nodes with the 10 highest
hub scores were identified as hubs. We also calculated the modular structure of each network
for each participant using the Brain Connectivity Toolbox.

The functional networks were constructed in a manner similar to that described by Koelewijn
et al. (2019). Specifically, the MEG sensor data were source-localised using FieldTrip (RRID:
SCR 004849) version 20161011 (Oostenveld et al., 2011), with an LCMV beamformer on a 6
mm grid, using a single-shell forward model (Nolte, 2003), where the covariance matrix was
constructed in each of four frequency bands: delta (1− 4 Hz), theta (3− 8 Hz), alpha (8− 13
Hz) and beta (13− 30 Hz). For each band, the beamformer weights were normalized using a
vector norm (Hillebrand et al., 2012), data were normalized to the MNI template, and mapped
to 90 nodes based on the Automatic Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et al.,
2002). Epochs were concatenated to generate a continuous virtual-sensor time course for each
voxel and then band-passed into the above-mentioned frequency bands. For each of the 90 AAL
regions, the virtual channel with the greatest temporal standard deviation was selected as the
representative one.

The resulting 90 time series were orthogonalized in order to avoid spurious correlations, us-
ing symmetric orthogonalization (Colclough et al., 2015). A Hilbert transform was then used to
obtain the oscillatory amplitude envelope. The data were subsequently de-spiked using a median
filter in order to remove artifactual temporal transients, down-sampled to 1 Hz, and trimmed
to avoid edge effects (removing the first two and the last three samples). Amplitude correla-
tions were calculated by correlating the 90 down-sampled Hilbert envelopes to each other, and
were converted to variance-normalized z-scores by applying a Fisher transform. This choice
was motivated by the fact that such correlations have been shown to be one of the most robust
and repeatable electrophysiological connectivity measures (Colclough et al., 2016; Godfrey and
Singh, 2020). We adjusted each participant’s FC matrix to correct for global session effects
(Siems et al., 2016). These effects can be generated by experimental confounds such as head
size, head motion and position within the MEG helmet. Such correction procedures are common
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in fMRI analyses, although it is still not clear what is the best method for post-hoc standardiza-
tion (Yan et al., 2013). We adopted a variant of z-scoring, in which the null mean and standard
deviation of connectivity is estimated by fitting a Gaussian (Lowe et al., 1998) to the noise peak
(± 1 standard deviation) of the distribution. This estimated mean and standard deviation were
then used to z-score each Fisher’s z connectivity value for that participant. Finally, the weakest
80% of values were removed. We note that we only considered positive amplitude-amplitude
correlations in our analysis, because the few negative correlations that resulted were very faint
and not robust, and therefore amount to noise in our experiment. Robust negative correlations
are generally not seen with static amplitude-amplitude correlations in MEG experiments.

Functional connectivity derived from fMRI data has been shown to be impacted by the Eu-
clidean distance between brain areas. In order to assess whether that is the case in our data, the
Euclidean distance was plotted against the functional connectivity strength.

2.3 Decomposition of observed functional connectivity

The whole-scan MEG resting-state functional connectivity is complex, and could potentially
be broken up into fundamental components. Non-negative matrix factorization (NMF) (Lee
and Seun, 1999) is a mathematical method that allows a set of matrices to be decomposed into
their fundamental components. It has been previously used in MEG studies to decompose time-
dependent FC into its fundamental components (Phalen et al., 2019), and allowed for differences
between Schizophrenia patients and healthy controls to be quantified. In this work, NMF was
used to derive the components that comprise the observed FC (FCo) for the group of participants,
and to identify the contribution that each component has on the whole-scan connectivity of each
participant. In NMF, the number of components for the decomposition needs to be specified
a-priori, and the resulting components depend on that pre-specified number. This needs to be
done with care: a small number of components can result in some details of the FCo not being
captured, while a large number of components can result in at least some of the components
being relevant to only a very small number of participants of the group. In our analysis, the
number of components was chosen to be the maximum number for which all components were
present in at least half of the total number of participants, with a contribution that is at least
5% of the maximum contribution, ensuring that the component is important in explaining the
whole-scan FCo of those participants. The NMF analysis was performed for each frequency
band independently, and there was no requirement for the number of components to be identical
for the four frequency bands.

As a result of the NMF decomposition, the FCo of each participant (index i) for the frequency
band f can be written as a sum of the N f components FC j, namely:

FCi
o =

N f

∑
j=1

ai
j ×FC j. (2.1)

The coefficients ai
j are specific to each participant for each frequency band, while the compo-

nents FC j are frequency-band specific.
The motivation for decomposing the FCo in the context of our work, which aims to predict

the FC from the SC, comes from the fact that the FC derived from our MEG recordings pertains
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to the whole 5-minute scan and is very complex. At the same time, the function-predicting
algorithms are powerful but rely on simple interactions between brain areas. Our hypothesis
is that the function-predicting algorithms would be better at capturing the components than at
capturing the total FCo.

Various algorithms can be used to predict the FC given a substrate of structural connections
between the cortical and sub-cortical areas. A number of such algorithms were described by
Gõni et al. (2014) and implemented in the Brain Connectivity Toolbox (Rubinov and Sporns,
2010). These algorithms calculate the potential predictors of FC based on a structural connec-
tivity (SC) matrix, using different methods to identify the optimal links between brain areas, and
then use regression to generate a predicted FC that best matches the observed FC. They favor
structural connections that are stronger, and take into account both direct and indirect connec-
tions between brain areas.

In this work, the search-information (SI) and the shortest-path-length (SPL) algorithms were
used to predict the FC for each participant using the five different structural edge-weightings de-
scribed earlier, with the Euclidean distance also used as a predictor in those algorithms. The
analysis was performed for each participant and each frequency band independently. The in-
verse transform was used to convert the edge weights to distances. The predicted FC was cal-
culated both for the total FCo, and for each of the components derived through NMF. In order
to assess the impact of the structural edge-weightings and the function-predicting algorithms on
the predicted FC (FCp), the Pearson correlations between FCp derived with all possible pairs
of edge-weightings and algorithms were calculated, at participant-level for the total (pre-NMF)
FCo. Finally, in order to assess the reliability of the predictions derived with the SI and SPL al-
gorithms for our electrophysiologically-measured FC, the correlations between the FCo and the
FCp were calculated, both for the total connectivity (pre-NMF) and for the NMF-derived com-
ponents. Because we are interested in the reliability with which the functional connections that
were realised are predicted, we do not include, in the correlation calculation only, the functional
connections that were zero in the FC matrices of the participants.

3 Results

3.1 Observed functional connectivity

The strength of the connections of FCo depended on the Euclidean distance between brain areas
(Fig. 2), a result that is in agreement with what has been observed for fMRI functional con-
nectivity (for example by Gõni et al. (2014) and by Alexander-Bloch et al. (2012) - also note
a discussion of the relationship between MEG-derived FC and Euclidean distance in Tewarie
et al. (2019)) . There were more and stronger functional connections between brain areas that
are directly linked with a WM tract (Fig. 2). However, calculating the mean Euclidean distance
between brain areas which are linked with a WM tract and that of those which are not we ob-
serve that more functional connections exist between brain areas that are close to each other,
and therefore have smaller Euclidean distance (Table 2). The distributions of the number of
FCo connections versus the Euclidean distance for linked and unlinked brain areas is shown in
Fig. 3. The apparent dependence of the strength of functional connectivity on whether or not the
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Figure 2: Top left: Euclidean distance vs FCo strength between brain areas. Top right: Density plot of the top left
plot, where the color in each square represents the log10 of the number of points in that square. Bottom: Number
of connections vs functional connection strength, for brain areas that are linked/unlinked with a WM tract. All three
plots refer to the z-scored FCo and contain all connections from all 90 participants.
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Frequency band Mean Euclidean distance
Linked Unlinked

δ 23.9 41.0
θ 27.7 45.2
α 26.6 44.4
β 26.2 43.6

Table 2: Mean Euclidean distance (mm) between brain areas that exhibit functional connectivity in each frequency
band, for areas that are linked with a WM tract, and those that are not linked.

Figure 3: Histogram of the number of FCo connections versus the Euclidean distance (in mm) for brain areas that are
linked or unlinked with a WM tract, for each frequency band.

brain areas are linked with a WM tract could be due to the fact that, by construction, brain areas
that are closer to each other are more likely to have a direct WM tract assigned between them.
This implies that it is the Euclidean distance, rather than the presence or absence of a link be-
tween two brain areas, that plays the important role in the strength of the functional connectivity
between those brain areas.

Based on the considerations described in Sec. 2 regarding the number of components in the
NMF algorithm, the number of components depended on the frequency band of the FCo. The
maximum number of components for which all components were present for at least half of the
participants with a contribution that was at least 5% of the maximum contribution, was 8 for the
delta band, 10 for the theta band, 9 for the alpha band and 9 for the beta band. These components
are shown in Fig. 4, where the strongest 5% of the connections for each FC component are
shown. The contribution of the connectivity of each participant to each component is shown in
Fig. 5. We discuss the components in detail in the 4 Section.
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Figure 4: Components of FCo for the four frequency bands.
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Figure 5: Relative contribution from each participant to each component of the FCo, for the four frequency bands.
The horizontal axis is over the 90 participants.

NS FA MM RD ED
NS 1 -0.063 0.749 0.008 -0.329
FA -0.063 1 0.190 -0.359 0.535

MM 0.749 0.190 1 -0.095 -0.084
RD 0.008 -0.359 -0.095 1 -0.190
ED -0.329 0.535 -0.084 -0.190 1

Table 3: Correlations of metrics across all SC connections and participants.

3.2 Predicted FC

Table 3 shows the correlations between the metrics used as edge weights in the SC matrices, for
all tracts and all participants. We stress that the only difference in the 5 SC matrices derived
for each participant comes from the edge weights. For each participant the SC matrices are
constructed from the same tracts, but each matrix results from assigning the strength of the
structural connectivity of the tracts based on one of the 5 metrics.

The lack of strong correlations between the metrics (with the exception of the NS-MM pair)
implies a substantial dependence of the results of the analysis on the choice of edge-weight.
Fig. 6 shows the SC matrices used in the function-predicting algorithms for one representative
participant. Each edge-weighting results in a distinct pattern of SC strength for the structural
connections.

The hub score for the nodes of each SC network depended on the metric used to weight
the edges. The left and right precuneus are hubs for the majority of participants regardless of
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Figure 6: SC matrices for the five different edge-weightings, for one participant. In order to demonstrate the detail
of the differences for the NS and MM matrices, we plot the log10 of those metrics.

Figure 7: Number of modules in the SC matrices of each participant, for each structural edge-weighting. Using the
NS or the MM as edge weights results in a more modular structure than when using the FA, the RD, or the binarized
SC matrices.
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Figure 8: Graphical representation of the fact that the hub nodes for each participant have some similarities and some
differences across structural edge-weightings. The brain areas that the number of each node corresponds to are listed
in Table 1.

mean SD
NS 4.93 1.07
FA 3.63 0.59

binary 3.68 0.63
MM 5.93 1.65
RD 3.66 0.78

Table 4: Mean and standard deviation of the number of modules for the SC matrices.

which metric is used as edge weight, with the exception of the binarized graphs. Similarly, the
thalamus is a hub for most participants regardless of the metric used as edge weight, with the
exception of MM. The caudate is a hub for most participants when the NS or the RD are used.
The superior parietal gyrus is a hub when any metric other than NS is used as edge weight. The
nodes that are hubs for each participant are shown in Fig. 8. The modularity of the networks
depends on the choice of edge weight, as shown in Fig. 7. The MM and NS result in more
modular networks than when the other metrics are used. The mean and standard deviation of the
number of modules are shown in Table 4.

The patterns of FCp derived using the different structural edge-weightings and the two FC-
predicting algorithms, exhibited high correlations, all with a mean value of above 0.75 (Fig. 9).
However, for some participants and some edge-weightings and algorithms the correlations be-
tween the FCp were lower, with values that sometimes go below 0.6. It is noteworthy that the
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Figure 9: Mean of the correlations of FCp over participants, with different combinations of structural edge-weightings
and function-predicting algorithms. SI = search-information, SPL = shortest-path-length.

freq. band NS ED FA ED bin ED MM ED RD ED
delta -0.005 -0.840 -0.035 -0.894 -0.083 -0.821 -0.001 -0.920 -0.045 -0.800
theta -0.006 -0.551 -0.046 -0.632 -0.097 -0.549 -0.002 -0.672 -0.049 -0.534
alpha -0.015 -0.838 -0.069 -1.034 -0.197 -0.852 -0.005 -1.101 -0.010 -0.823
beta -0.017 -0.963 -0.092 -1.175 -0.231 -0.969 -0.006 -1.259 -0.111 -0.950

Table 5: Mean (over the 90 participants) value of the coefficients that result from the SPL algorithm, when each of
the structural metric is used as a predictor with the Euclidean distance, for each frequency band.

correlations were highest for the delta band, regardless of the pair of algorithm/metric used. We
note that the composite structural connectomes that were derived with the algorithm of Dimi-
triadis et al. (2017) did not provide any improvement in the relationship between structure and
function compared to the single-metric structural connectomes, possibly because the true rela-
tionship is more complex than that implied by the linear data-driven algorithm. For that reason
we do not discuss them any further.

The mean values of the coefficients for each of the predictors that are calculated from the ED
and each of the other metrics, are listed in Tables 5 and 6, for the SPL and SI algorithms respec-
tively. There is no strong dependence of these values on the frequency band or the algorithm
considered.
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freq. band NS ED FA ED bin ED MM ED RD ED
delta -0.006 -0.790 -0.005 -0.872 -0.009 -0.811 -0.004 -0.874 -0.009 -0.803
theta -0.006 -0.523 -0.005 -0.619 -0.10 -0.541 -0.006 -0.592 -0.010 -0.537
alpha -0.013 -0.798 -0.005 -1.031 -0.019 -0.848 -0.013 -0.935 -0.019 -0.841
beta -0.015 -0.903 -0.012 -1.132 -0.023 -0.950 -0.016 -1.048 -0.023 -0.944

Table 6: Mean (over the 90 participants) value of the coefficients that result from the SPL algorithm, when each of
the structural metric is used as a predictor with the Euclidean distance, for each frequency band.

Figure 10: Mean values of the correlations between FCp and FCo, for each NMF component and for the total FCo
for the 5 structural edge-weightings for the SPL algorithm.
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Components NS FA binary MM RD
SPL SI SPL SI SPL SI SPL SI SPL SI

1 0.32 0.32 0.33 0.32 0.32 0.32 0.33 0.32 0.32 0.32
2 0.40 0.41 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
3 0.43 0.43 0.43 0.43 0.43 0.43 0.44 0.44 0.43 0.43
4 0.39 0.40 0.39 0.39 0.40 0.40 0.39 0.39 0.40 0.40
5 0.36 0.36 0.37 0.37 0.37 0.37 0.37 0.36 0.37 0.37
6 0.44 0.42 0.40 0.39 0.43 0.42 0.42 0.41 0.42 0.42
7 0.41 0.38 0.38 0.35 0.38 0.37 0.42 0.39 0.37 0.37
8 0.29 0.29 0.30 0.30 0.29 0.29 0.29 0.29 0.29 0.29

FCo 0.30 0.30 0.29 0.29 0.30 0.30 0.30 0.30 0.30 0.30

Table 7: Mean of the correlations between predicted and observed FC for each metric and algorithm, delta band.

Components NS FA binary MM RD
SPL SI SPL SI SPL SI SPL SI SPL SI

1 0.26 0.25 0.24 0.24 0.24 0.24 0.29 0.28 0.24 0.24
2 0.31 0.31 0.31 0.31 0.32 0.31 0.31 0.31 0.32 0.32
3 0.21 0.20 0.21 0.21 0.20 0.20 0.21 0.21 0.20 0.20
4 0.19 0.19 0.18 0.17 0.18 0.18 0.18 0.18 0.18 0.19
5 0.30 0.28 0.28 0.28 0.28 0.28 0.33 0.31 0.28 0.28
6 0.40 0.36 0.32 0.32 0.35 0.34 0.37 0.35 0.35 0.34
7 0.37 0.33 0.32 0.30 0.33 0.32 0.35 0.34 0.32 0.32
8 0.22 0.21 0.18 0.17 0.19 0.19 0.28 0.24 0.18 0.18
9 0.30 0.29 0.30 0.29 0.29 0.29 0.30 0.29 0.29 0.29
10 0.20 0.20 0.18 0.18 0.18 0.19 0.24 0.21 0.19 0.19

FCo 0.21 0.20 0.20 0.19 0.20 0.19 0.21 0.21 0.19 0.19

Table 8: Mean of the correlations between predicted and observed FC for each metric and algorithm, theta band.

3.3 Correlations between predicted and observed FC

For each edge-weighting, the mean of the distributions (over participants) of the correlations
between FCo and FCp derived with the SPL algorithm was, in the majority of cases, higher than
when derived with the SI algorithm. In Tables 7-10 we give the exact values of the correlations
for both the SI and the SPL algorithm for all structural edge-weightings and frequency bands,
and we highlight the instances in which it would be beneficial to use the SPL algorithm (bold
font, 93 instances) and the few instances in which the SI algorithm gave higher correlations
(underlined, 14 instances). For the rest, the mean of the correlations was the same for the SI
and SPL algorithms. Given that the SPL algorithm is superior to the SI algorithm, the rest of the
paper focuses on FCp derived using the SPL algorithm. The mean of the correlation distributions
for the total FCo and its components for the 5 SC edge-weightings and the SPL algorithm are
shown in Fig. 10. For all five edge-weightings, the correlations for the individual components
were higher than the correlations for the total functional connectivity, the only exceptions being
three components in the theta band, one in the alpha band and one in the beta band.

The NS-weighting and the MM-weighting gave, in most cases, the highest correlations,
and the majority of the distributions resulting from different edge-weightings were statistically
significantly different from each other. Interestingly, the binarized graphs performed in several
cases better than the FA-weighted graphs. The p-values for the comparisons of the distributions
resulting from all possible combinations of edge-weightings for each component are shown in
Tables 11-14. These tables also show the p-values that survive multiple comparison correction
with the false-discovery-rate (FDR) algorithm (Benjamini and Yekutieli, 2001; Groppe, 2019)
in bold letters.
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Components NS FA binary MM RD
SPL SI SPL SI SPL SI SPL SI SPL SI

1 0.36 0.33 0.30 0.30 0.33 0.32 0.32 0.32 0.33 0.32
2 0.39 0.35 0.33 0.31 0.35 0.33 0.37 0.35 0.34 0.33
3 0.32 0.29 0.28 0.25 0.31 0.29 0.33 0.29 0.29 0.29
4 0.30 0.27 0.25 0.25 0.27 0.26 0.29 0.26 0.27 0.26
5 0.29 0.26 0.24 0.23 0.25 0.25 0.32 0.26 0.25 0.24
6 0.36 0.37 0.35 0.35 0.36 0.37 0.36 0.36 0.36 0.37
7 0.32 0.29 0.30 0.29 0.29 0.29 0.36 0.32 0.28 0.28
8 0.28 0.25 0.23 0.23 0.24 0.24 0.30 0.26 0.24 0.24
9 0.24 0.24 0.22 0.22 0.23 0.23 0.27 0.26 0.23 0.23

FCo 0.28 0.27 0.26 0.25 0.26 0.26 0.28 0.27 0.26 0.26

Table 9: Mean of the correlations between predicted and observed FC for each metric and algorithm, alpha band.

Components NS FA binary MM RD
SPL SI SPL SI SPL SI SPL SI SPL SI

1 0.36 0.33 0.30 0.29 0.33 0.33 0.32 0.32 0.33 0.33
2 0.38 0.33 0.31 0.30 0.33 0.31 0.37 0.32 0.32 0.31
3 0.32 0.28 0.30 0.29 0.28 0.28 0.36 0.31 0.28 0.28
4 0.26 0.26 0.25 0.25 0.25 0.25 0.28 0.28 0.25 0.25
5 0.33 0.32 0.30 0.29 0.31 0.30 0.36 0.33 0.30 0.30
6 0.32 0.31 0.31 0.31 0.32 0.32 0.32 0.31 0.31 0.32
7 0.36 0.35 0.35 0.36 0.36 0.36 0.39 0.37 0.34 0.36
8 0.40 0.41 0.38 0.39 0.40 0.40 0.41 0.42 0.39 0.40
9 0.31 0.30 0.28 0.27 0.30 0.29 0.31 0.30 0.29 0.29

FCo 0.29 0.29 0.29 0.28 0.28 0.28 0.30 0.29 0.28 0.28

Table 10: Mean of the correlations between predicted and observed for each metric and algorithm, beta band.

Components SC edge weightings
NS-FA NS-bin NS-MM NS-RD FA-bin FA-MM FA-RD bin-MM bin-RD MM-RD

1 4e-04 8e-08 1e-04 2e-07 2e-18 0.253 1e-11 7e-15 0.302 2e-11
2 2e-08 4e-08 3e-06 8e-08 0.348 2e-12 0.239 1e-12 6e-03 6e-12
3 0.344 1e-09 0.014 6e-07 2e-14 7e-03 3e-08 5e-10 0.384 3e-08
4 9e-11 2e-03 0.082 0.022 3e-09 4e-06 3e-05 0.368 0.804 0.404
5 5e-07 0.013 2e-08 8e-04 5e-15 0.281 8e-14 3e-12 0.0467 2e-12
6 4e-11 8e-05 5e-07 4e-06 3e-14 1e-10 3e-08 0.196 3e-03 0.304
7 6e-07 6e-13 1e-04 1e-13 3e-17 4e-05 5e-17 2e-15 2e-03 2e-15
8 7e-04 0.017 0.015 1e-03 3e-07 0.018 2e-07 3e-05 0.014 6e-06

FCo 0.059 0.182 0.866 0.114 0.339 0.063 0.669 0.241 0.410 0.172

Table 11: p-value resulting from the comparison of the correlation distributions, for each pair of structural edge
weightings for the SPL algorithm, in the delta band. Bold numbers indicate the cases for which the distributions were
not statistically significantly different.

Components SC edge weightings
NS-FA NS-bin NS-MM NS-RD FA-bin FA-MM FA-RD bin-MM bin-RD MM-RD

1 8e-14 1e-10 6e-08 9e-11 5e-15 5e-14 3e-09 7e-07 0.1 6e-07
2 9e-09 3e-08 2e-12 3e-07 0.013 3e-15 0.200 4e-15 0.851 2e-14
3 2e-07 1e-04 1e-09 7e-05 8e-04 5e-03 0.065 2e-06 0.262 6e-04
4 1e-04 2e-09 0.838 1e-10 1e-06 3e-05 1e-06 5e-09 0.017 1e-09
5 8e-07 1e-05 5e-10 1e-07 8e-04 6e-14 0.082 2e-13 1e-05 1e-13
6 5e-14 9e-13 1e-05 7e-13 2e-11 2e-15 8e-04 1e-13 8e-04 1e-12
7 4e-07 2e-05 4e-15 1e-04 0.010 4e-17 0.208 2e-16 0.785 5e-15
8 5e-04 9e-04 1e-09 0.012 0.184 8e-12 0.049 4e-12 0.127 9e-11
9 0.103 5e-06 0.188 2e-04 3e-11 0.878 2e-09 1e-04 0.009 0.001

10 0.283 0.001 0.046 0.002 3e-07 0.372 2e-06 2e-04 0.4673 2e-04
FCo 0.0663 0.053 0.763 0.016 0.973 0.037 0.505 0.085 0.261 0.033

Table 12: p-value resulting from the comparison of the correlation distributions, for each pair of structural edge
weightings for the SPL algorithm, in the theta band. Bold numbers indicate the cases for which the distributions were
not statistically significantly different.
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Components SC edge weightings
NS-FA NS-bin NS-MM NS-RD FA-bin FA-MM FA-RD bin-MM bin-RD MM-RD

1 2e-19 6e-16 1e-08 4e-16 2e-16 7e-19 6e-05 4e-13 5e-05 1e-13
2 1e-23 2e-15 3e-22 2e-14 8e-26 1e-16 1e-19 11e-09 0.656 2e-06
3 2e-09 4e-12 3e-12 3e-11 4e-07 2e-15 2e-05 2e-16 0.015 6e-16
4 3e-10 4e-09 2e-04 7e-09 2e-04 1e-15 0.187 3e-15 0.302 2e-14
5 4e-07 0.002 2e-11 0.006 4e-05 1e-12 0.002 2e-11 0.951 3e-10
6 9e-09 0.049 0.021 2e-05 6e-15 5e-14 8e-05 1e-06 6e-08 1e-10
7 8e-12 9e-09 0.041 6e-07 7e-13 3e-15 1e-08 1e-10 0.284 1e-07
8 5e-10 2e-08 3e-08 1e-08 9e-07 3e-16 0.052 6e-16 0.081 1e-15
9 1e-09 0.022 0.338 0.154 6e-17 3e-11 8e-14 5e-04 0.052 0.026

FCo 3e-05 2e-06 0.689 7e-08 0.847 6e-10 0.409 1e-07 0.217 1e-08

Table 13: p-value resulting from the comparison of the correlation distributions, for each pair of structural edge
weightings for the SPL algorithm, in the alpha band. Bold numbers indicate the cases for which the distributions
were not statistically significantly different.

Components SC edge weightings
NS-FA NS-bin NS-MM NS-RD FA-bin FA-MM FA-RD bin-MM bin-RD MM-RD

1 2e-16 6e-15 4e-03 9e-15 5e-12 2e-19 1e-04 6e-18 0.135 3e-16
2 2e-23 7e-15 2e-23 1e-14 1e-25 2e-12 8e-20 8e-13 0.067 1e-08
3 2e-10 6e-16 5e-15 2e-15 2e-14 7e-20 1e-11 1e-21 0.006 1e-21
4 3e-09 1e-06 1e-12 4e-08 3e-07 2e-17 0.227 4e-16 7e-04 8e-16
5 8e-10 6e-05 0.077 2e-08 3e-11 7e-12 0.045 2e-05 1e-09 2e-09
6 6e-04 7e-03 4e-11 4e-03 0.021 5e-12 0.309 3e-12 0.381 6e-12
7 1e-08 0.681 2e-07 4e-03 3e-14 2e-12 3e-09 2e-06 1e-09 1e-09
8 0.022 0.900 1e-11 5e-06 1e-04 6e-11 0.005 4e-10 6e-11 3e-13
9 1e-06 6e-04 0.558 9e-06 1e-04 7e-09 0.231 3e-05 1e-04 8e-07

FCo 0.079 4e-04 0.098 6e-06 0.016 9e-05 0.001 7e-07 0.008 1e-08

Table 14: p-value resulting from the comparison of the correlation distributions, for each pair of structural edge
weightings for the SPL algorithm, in the beta band. Bold numbers indicate the cases for which the distributions were
not statistically significantly different.
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Figure 11: Distributions (over participants) of the correlation coefficients between the observed and the predicted FC
NMF components, for each structural edge weighting and frequency band, for the SPL algorithm. The bottom and
top ends of the thicker part of each bar indicate the 25th and 75th percentiles respectively, while the whiskers extend
to the points that are not considered outliers of each distribution. Any outliers are plotted as circles.

In Fig. 11 we show the distributions (over participants) of the correlation coefficients for
each metric and each component, in each of the four frequency bands.

3.4 Shortest path length

The length of the shortest path (calculated from the weighted structural connectomes of each
participant) for functionally connected brain areas depended on the metric used to weigh the
edges of the SC matrices (Fig. 12). Weighting the SC matrices by NS or MM, which gave
the highest correlations between FCo and FCp, resulted in longer shortest-paths, compared to
weighting them by FA or RD or using binarized graphs. With the NS- or MM-weightings, most
shortest paths were 2 or 3 steps long, while for the other 3 edge-weightings they were 1 or 2
steps long.
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Figure 12: Histogram of the length of the shortest path between functionally connected brain areas, expressed as
number of steps calculated based on the structural connectome, for the 5 different structural edge-weightings.

4 Discussion

Our work combines microstructural and electrophysiological brain imaging data to understand
the relationship between brain structure and function in the human brain.

4.1 Novel contributions

The novel contributions of the work are as follows:
1. For each participant, we derived structural brain networks for which the edges are weighted

with different attributes of the WM tracts that could influence functional connectivity, and bi-
narized networks that only encode whether a structural connection exists or not. We used those
structural networks in the search-information and the shortest-path-length algorithms (Gõni
et al., 2014) to predict patterns of MEG resting-state functional connectivity, and we compared
the resulting patterns. To the best of our knowledge, this is the first time that attributes of
WM tracts beyond the number of streamlines and the mean fractional anisotropy are used in
such algorithms, and the resulting patterns are compared. It is also the first time that these al-
gorithms are used to predict MEG resting-state functional connectivity, and the first time that
analysis aiming to describe the relationship between electrophysiological functional connec-
tivity and structural connectivity is performed using individual-participant instead of averaged
connectomes.

2. We applied, for the first time, NMF to the whole-scan MEG resting-state FCo of our
participants. This methodology uses the variance across participants to derive static connectivity
components that comprise the cohort FCo.

3. We used the SI and SPL algorithms of Gõni et al. (2014) to calculate the FCp both for
the total FCo and for each of its NMF components. We also calculated the correlations between
the FCo and the FCp, for the total observed functional connectivity and for each of its NMF
components. This was done for each of the 5 different edge-weightings in the SC matrices. It
reflects the reliability of the function predicting algorithms, and allows us to assess how accurate
the different edge-weightings and function-prediction algorithms are at predicting patterns of FC
that form the fundamental parts of the whole-scan resting-state MEG FCo for this cohort. It also
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allows us to quantify the impact of the choice of structural edge-weighting and algorithm on the
accuracy of the predictions.

4. Motivated by the fact that the SPL algorithm was the best at predicting patterns of MEG
resting-state functional connectivity in the majority of cases, we used the dMRI-derived struc-
tural connectome of each participant to calculate the shortest paths for each connection of the
FCo, for all 5 structural egde-weightings.

4.2 Implications

The FC patterns predicted for a given participant, using different structural edge-weightings
and algorithms, are similar to each other (Fig. 9), but there are exceptions where those patterns
are not well correlated. This indicates that the choice of edge-weighting and algorithm has an
impact on the FCp and consequently on conclusions drawn from such studies. Our analysis
also provides a quantification of the impact of the discrepancies that arise when calculating
the FCp with different structural edge-weightings, by calculating the correlations between FCp
and FCo. The distributions of correlations between FCp and FCo were statistically significantly
different, and there is, for most NMF components, a significant improvement when either the
NS or the MM is used to weight the edges of the structural networks. We also showed that
for a given structural edge-weighting, the SPL algorithm resulted in higher correlation between
the components of FCp and the FCo compared to the SI algorithm. This conclusion diverges
from the observations of Gõni et al. (2014), who found that the SI algorithm could yield higher
correlations. This could be due to the fact that they used fMRI rather than MEG data, as well as
to the fact that they used averaged connectomes rather than participant-specific ones.

Looking at the other studies that have compared structural networks to MEG-derived resting-
state functional networks (Tewarie et al. (2014); Meier et al. (2016); Tewarie et al. (2019)) we
note that the correlations they report are, in some instances, higher than ours. This is most likely
due to the fact that, in those studies, averaged structural connectomes were used, in contrast to
our participant-specific ones. We also note that (Tewarie et al., 2019) used, for part of the analy-
sis, a generic structural connectome that had been derived from a group of participants different
to the group that the MEG data were collected for. The approach in those studies could be valu-
able in that it allows for the most reproducible parts of the structural connectome to be used, and
possibly discards some of the noise. At the same time it masks individual differences and there-
fore can a) artificially augment the correlations between the observed functional connectivity
and that predicted by the analysis and, b) is not appropriate for the development of biomarkers
that can allow classification of diseases. We also note that the study of (Tewarie et al., 2019)
is in a sense reciprocal to ours: they decompose the structural connectome and use the derived
basis to predict the functional connectivity, while we decompose the functional connectome and
predict its components from the full structural connectome.

Brain areas that are close to each other and which are directly linked with a WM tract ap-
peared to have stronger FCo. However, further analysis of the relationship between the distance
of brain areas and whether or not they are linked or not revealed that it is the Euclidean distance
that is the dominant predictor. The dependence of the strength of functional connectivity on
whether brain areas are directly linked or not appears to be a result of the fact that areas that are
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closer together are more likely to have a WM tract directly connecting them. This would happen
regardless of which brain atlas is used for parcellation.

Decomposing the FCo using NMF revealed the components that form the complex pattern
of the whole-scan FCo.

a) Delta band: The FCo decomposed into components that have strong frontal connections
and components that have strong occipital and parietal connections. There is also a separation
of left-dominated from right-dominated activation. There is little variation in the mean of the
correlations for different structural metrics and algorithms, for each of the 8 components of the
FCo, and even less for the total FCo. All FCo components exhibit higher correlations with the
FCp than the total FCo exhibits with the FCp.

b) Theta band: The FCo decomposed into components that are dominated by frontal and
parietal inter-hemispheric connections, as well as fronto-parietal connections. For several of the
components of FCo the mean value of the correlations between the predicted and observed FC
depends strongly on the edge-weighting used. The distributions over participants were statisti-
cally significantly different (corrected for multiple comparisons). For components 1, 3 and 6,
the NS-weighted SC resulted in the highest correlations, while for components 2, 5, 7 and 8
the MM-weighting performed the best. For components 9 and 10, the FA resulted in a slightly
higher mean value, however the differences with the mean values that resulted from the NS and
MM weightings were not statistically significantly different (Table 12).

c) Alpha band: The FCo decomposed into components that have predominantly inter-hemispheric
occipital and parietal connections, as well as fronto-parietal connections (component 3) and
temporo-occipital connections (component 6). The mean value of the correlations between the
components of FCo and FCp was strongly dependent on the edge-weighting used. The corre-
sponding distributions were statistically significantly different for all but a few of the pairs of SC
metrics (Table 13 corrected for multiple comparisons via FDR). The MM and NS were the best
predictors of FCo for most of the components. The FA consistently performed poorly compared
to those, and also compared to the binarized SC.

d) Beta band: The FCo decomposed into components that comprise of mainly inter-hemispheric
connections between occipital or parietal areas. There were also intra-hemispheric fronto-
parietal and temporo-parietal connections. There was a separation of left- and right-dominated
connectivity in the 7th and 8th component. The mean value of the correlations between the
components of FCo and FCp was strongly dependent on the edge-weighting used, with the cor-
responding distributions being statistically significantly different (corrected for multiple com-
parisons) for most the pairs of SC metrics (Table 14). The MM and NS were, again, the best
predictors of FCo for most of the components, while the FA consistently performed poorly.

Overall, the NS and MM edge-weightings were better predictors of the FCo than the FA,
which is frequently used in structural network analyses. In fact, the binarized SC matrices
performed better than the FA-weighted ones in many cases. This finding, along with the fact
that the FA has been shown to exhibit poor repeatability as an edge-weighting in other datasets
(Messaritaki et al. (2019a),Messaritaki et al. (2019b)) suggest that the FA is of limited relevance
when quantifying structural connectivity and trying to relate it to functional connectivity.

The correlations between the FCp and the FCo, both for their non-decomposed values and
for the components, were highly variable. For most of the components they were higher than the
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correlations that the total FCo exhibited with the FCp. This indicates that the simplicity of the
function-predicting algorithms that we considered is very good at capturing the dynamics of the
fundamental components of the FCo, but perhaps less appropriate for understanding the whole-
scan FCo. The correlations we observed for most of the NMF components are comparable
to the correlations that were reported by Gõni et al. (2014), when they compared structural
networks to fMRI-derived functional networks, even though they used average connectomes for
the participants involved in their study.

Although our analysis used resting-state data, the documented correspondence between
resting-state networks and task-related networks (Smith et al., 2009) indicates that the funda-
mental organization of the human brain is relatively similar across task and resting-state condi-
tions. The validity of our conclusions should be explored for task-related studies too.

4.3 Assessment of our analysis

Head movement in the MEG system can have a detrimental effect on the measurement of resting-
state brain activity, at both beam-former and network level, (Stolk et al., 2013; Messaritaki
et al., 2017). To eliminate this confound, the method described by Stolk et al. (2013) and by
Messaritaki et al. (2017) would have to be implemented. For that to be possible, continuous
head localization throughout the MEG scan is necessary, so that the location of the fiducial
points is recorded with the same frequency as the neuronal signals are recorded. However,
this information was not recorded during the acquisition of the data. Despite that, the results of
Messaritaki et al. (2017) show that the effect of head movement on MEG resting-state functional
networks derived via an independent component analysis is small, indicating that the results are
robust for head movement that is relatively low.

In our analysis, we considered one measure of MEG-derived functional connectivity, namely
correlations between the Hilbert envelopes of the MEG beamformer in different brain areas. Our
choice was motivated by the robustness of that measure (Colclough et al., 2016). Network behav-
ior can also be characterised using phase-amplitude and phase-phase correlations of beamformer
time series (Siegel et al., 2011), and those should be explored in similar analyses in the future.

Axonal diameter is an important factor when it comes to the formation of brain dynamics
(Drakesmith et al., 2019). Including a direct measure of the distributions of axonal diameters
in different WM tracts would have been desirable. However, this requires ultra-strong gradients
(Veraart et al., 2020) and the data to be acquired with different sequences than those used here.
For that reason we used the RD as a possible SC edge-weighting, because it has been shown
to correlate with axon diameter (Barazany et al., 2009). Including such a measure in future
analyses could result in more components of the FCo having higher correlations with the FCp,
as other mechanisms that promote FC are ultimately included in the models.

We only applied a very modest thresholding to the SC matrices. The thresholding of such
matrices is an issue of debate nowadays. For example, Buchanan et al. (2020) showed that the
spurious WM connections reconstructed with probabilistic tractography can be reduced by dif-
ferent thresholding schemes and give better age associations than if the connections were left
unthresholded. On the other hand, Civier et al. (2019) evaluated the removal of weak connec-
tions from structural connectomes and concluded that the removal of those connections is in-
consequential for graph theoretical analysis, ultimately advocating against the removal of such
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connections. Finally, Drakesmith et al. (2015a) showed that thresholding can reduce the effects
of false positives, but it can introduce its own biases. In our analysis, we used deterministic
tractography, which results in fewer false positives (Sarwar et al., 2018). This, along with the
fact that the function predicting algorithms we used favor stronger connections, indicate that any
further thresholding is unlikely to have a significant impact on the patterns of FCp.

5 Conclusions

In this study, we used MRI and MEG data to investigate the relationship between brain structure
and resting-state functional connectivity in the human brain. Function-predicting algorithms
were shown to be good at predicting the building blocks of electrophysiological resting-state
functional connectivity, as measured by MEG in our experiment. Different structural edge-
weightings resulted in very different pictures for the structural connectome and for its relation-
ship to electrophysiological functional connectivity. The number of streamlines and the myelin
measure were the best predictors of the NMF components of the observed functional connectiv-
ity, when used with the shortest-path-length algorithm. Our results indicate that the accuracy of
the predictions of similar studies can be improved if well-considered structural metrics are used
in the analyses.
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