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 2 

ABSTRACT 19 

Though Clostridioides difficile is among the most studied anaerobes, we know little about the 20 

systems level interplay of metabolism and regulation that underlies its ability to negotiate complex 21 

immune and commensal interactions while colonizing the human gut. We have compiled publicly 22 

available resources, generated through decades of work by the research community, into two 23 

models and a portal to support comprehensive systems analysis of C. difficile. First, by compiling 24 

a compendium of 148 transcriptomes from 11 studies we have generated an Environment and 25 

Gene Regulatory Influence Network (EGRIN) model that organizes 90% of all genes in the C. 26 

difficile genome into 297 high quality modules based on evidence for their conditional co-27 

regulation by at least 120 transcription factors. EGRIN predictions, validated with independently-28 

generated datasets, have recapitulated previously characterized C. difficile regulons of key 29 

transcriptional regulators, refined and extended membership of genes within regulons, and 30 

implicated new genes for sporulation, carbohydrate transport and metabolism. Findings further 31 

predict pathogen behaviors in in vivo colonization, and interactions with beneficial and detrimental 32 

commensals. Second, by advancing a constraints-based metabolic model, we have discovered 33 

that 15 amino acids, diverse carbohydrates, and 24 genes across glyoxylate, Wood-Ljungdahl, 34 

nucleotide, amino acid, and carbohydrate metabolism are essential to support growth of C. difficile 35 

within an intestinal environment. Models and supporting resources are accessible through an 36 

interactive web portal (http://networks.systemsbiology.net/cdiff-portal/) to support collaborative 37 

systems analyses of C. difficile. 38 

  39 
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INTRODUCTION 40 

Clostridioides difficile, the etiology of pseudomembranous colitis, causes more than 500,000 41 

infections, 30,000 deaths, and $5 billion per year in US healthcare costs (1). Infections arise 42 

through a variety of conditions that modulate the pathogen’s ability to colonize and expand in the 43 

gut. Antibiotic ablation of the commensal microbiota creates altered nutrient states in intestinal 44 

environments due to lack of competition for nutrients from host, dietary or microbial origin. The 45 

pathogen modifies its endogenous metabolism to respond to these altered states, which 46 

stimulates subsequent cellular programs that can promote enhanced colonization and growth. 47 

Stress and starvation responses within C. difficile populations trigger responses that lead to 48 

sporulation, biofilm formation and release of mucosal damaging toxins (2–4). 49 

Symptomatic infection requires the production of toxins from the C. difficile pathogenicity locus 50 

(PaLoc), which includes the genes tcdA, tcdB and tcdE that respectively encode the A and B 51 

toxins and holin involved in toxin export. The PaLoc also contains tcdR, a sigma factor specific 52 

for the toxin gene promoters, and tcdC, a TcdR anti-sigma factor (5, 6). Epidemic ribotype 027 53 

strains carry a second toxin locus, cdt, which includes the binary toxin genes ctdA and ctdB, and 54 

cdtR regulator, which has also been hypothesized to modulate PaLoc expression (7, 8). C. difficile 55 

elaborates toxin under starvation conditions to extract nutrients from the host and promote spore 56 

shedding (9–11). Regulation of PaLoc expression occurs via a complex network of TFs and small 57 

molecule inputs, of which direct primary regulators have been well described, but more complex 58 

and combinatorial effects remain unclear (11). Toxin production further triggers rapid and 59 

profound host immune responses, including release of reactive oxygen species (ROS) which 60 

substantially alters the redox state of the gut environment, and other innate immune responses 61 

that can induce C. difficile stress responses to cell wall, oxidative, and other damaging stimuli 62 

(12–15). As per all microbes, C. difficile adapts to complex, dynamic environments through 63 
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changes in metabolism coordinated by a gene regulatory network (16, 17). However, the 64 

mechanisms by which the gene regulatory network and metabolic pathways integrate to modulate 65 

C. difficile pathogenesis remain ill-defined (18, 19).  66 

The C. difficile 630 (CD630) genome encodes 4,018 genes, with ~309 putative transcription 67 

factors (TFs; including sigma factors), 1,030 metabolic genes, and 1,330 genes (>30%) with 68 

unknown function (20, 21). The ATCC43255 strain of C. difficile, which is used to generate 69 

symptomatic infections in mice, encodes 4,117 genes and ~327 TFs, of which ~97% are 70 

significantly orthologous to genes encoded in the CD630 strain (22). To address questions 71 

regarding the broader systems-level interplay among genes in colonization and infection, we used 72 

computational modeling and network inference algorithms to construct an Environment and Gene 73 

Regulatory Influence Network (EGRIN) model for C. difficile. This model leverages a compendium 74 

of 148 published transcriptomes that surveyed responses of CD630 in diverse contexts. The 75 

EGRIN model consists of modules of putatively co-regulated genes  identified based on their co-76 

expression over subsets of conditions, enrichment of functional associations, chromosomal 77 

proximity, co-occurrence across phylogenetically related organisms, and presence of conserved 78 

DNA motif(s) within their promoter regions indicating regulation by the same TFs. Further, using 79 

regression analysis, EGRIN also captures the combinatorial regulation of genes within each 80 

module as a function of the weighted influences of TFs. The model supports a systems-level 81 

understanding of the infective capacity of this obligate anaerobe under different in vitro and in vivo 82 

conditions.  83 

In addition to EGRIN, we have advanced a metabolic network model of C. difficile to understand 84 

how conditional regulation manifests physiologically, by adding reactions and associated genes 85 

supporting the exchange of nutrients required for growth in intestinal environments. We apply the 86 

EGRIN and metabolic models to predict conditional contributions of metabolic genes to the 87 

pathogen’s fitness under different environmental conditions. Analyses support rational prediction 88 
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of context-specific vulnerabilities of the pathogen and uncover TFs driving essential adaptive 89 

responses under in vitro versus in vivo conditions. This analytic framework provides a new 90 

systems-level view of the transcriptional and metabolic networks that coordinate C. difficile’s 91 

colonization, growth, expression of toxin, and adaptions to changing environments with host 92 

infection. Our models identified multiple TFs that coordinate critical aspects within each of these 93 

components, including contributions from PrdR, which regulates the Stickland proline and glycine 94 

reductase systems and other energy-generating pathways, and Rex a regulator modulating 95 

energy balance in C. difficile (23, 24). These findings refine the context and roles of these and 96 

other regulators in C. difficile virulence, and provide specific targets of vulnerability for model-97 

informed interventions against this pathogen. The compiled datasets, algorithms, and models can 98 

be explored interactively through a community-wide web resource at 99 

http://networks.systemsbiology.net/cdiff-portal/.  100 

 101 

 102 

  103 
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RESULTS  104 

Reconstruction of the environment and gene regulatory influence network (EGRIN) model 105 

for C. difficile 630 106 

To investigate C. difficile’s transcriptionally-driven adaptive strategies we compiled 148 publicly 107 

available transcriptomic datasets from 11 independent studies using CD630 (Table 1). This 108 

compendium captures diverse transcriptional responses of C. difficile to commensals, in vitro or 109 

in vivo responses to different nutrient conditions, and consequences of targeted TF gene 110 

deletions. The transcriptome compendium together with functional associations from STRING 111 

(25), and all promoter sequences, was analyzed with a suite of network inference tools to infer an 112 

EGRIN model for C. difficile (Fig. 1A). The cMonkey2 biclustering algorithm (26) iteratively 113 

grouped functionally-associated genes into modules based on their co-expression across 114 

subsets of environments, and presence of similar cis-acting gene regulatory elements (GREs), 115 

providing mechanistic evidence for co-regulation. Subsequently, we used the Inferelator (27) to 116 

discover potential TFs of each module through a regression-based approach. The resulting 117 

EGRIN model organized 3,895 of 4,018 CD630 genes into 406 gene modules, and inferred 118 

module regulation by 148 of 309 genomically identified TFs that putatively act through GREs 119 

discovered within gene and operon promoters. Among the Inferelator implicated regulatory 120 

networks, 221 modules were controlled by more than one TF, and 75 were regulated by more 121 

than two TFs (Fig.  S1). The TF module assignments support subsequent hypothesis-driven 122 

experimental analyses, including the design of ChIP-seq and TF-deletion experiments to validate 123 

the regulatory network architecture under physiologically relevant environmental contexts.  124 

 125 

The quality of modules within the EGRIN model was evaluated using residual scores, which reflect 126 

the coherence of gene co-expression patterns. The lower the residual score, the higher the quality 127 

of the module. We determined using an empirical approach that a residual cutoff  of 0.55 identified 128 
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a functionally meaningful set of 297 high quality modules (73% of the total 406 modules) based 129 

on the relative enrichment of related functions within modules that passed filtering (Fig. 1B). 130 

Incidentally, this empirically determined threshold was similar to the threshold used to identify 131 

high quality EGRIN gene modules for Mycobacterium tuberculosis (28). Altogether, the 297 high 132 

quality modules captured transcriptional regulation of 3,617 genes (90%) in CD630, with  average 133 

membership of 20 genes per module (Fig. 1C-D). These metrics were consistent with models 134 

developed for other organisms (28, 29), a remarkable finding given that the transcriptional dataset 135 

used to construct the C. difficile model was less than 10% the size of ones used to construct 136 

models for other species. 137 

 138 

Validation of the modular architecture and regulatory mechanisms uncovered by the C. 139 

difficile EGRIN model 140 

We tested the accuracy of the EGRIN model to reconstruct previously characterized regulons and 141 

recapitulate key aspects of  C. difficile biology. To do so, we performed gene enrichment analysis 142 

within modules using an updated annotation of C. difficile genome (22). This analysis identified 143 

93 of 297 modules (31%) with significant enrichment of genes with related functions in 40 144 

pathways (hypergeometric test adjusted p-value ≤ 0.05). Among these pathways, 13 were over-145 

represented in three or more modules (Fig. 2A), demonstrating the capacity of the model to 146 

discover conditional partition of cellular processes. We also investigated whether the EGRIN 147 

model had identified known regulatory interactions between TFs and their target genes. We 148 

compiled from literature the regulons (i.e. target genes) of 13 previously characterized TFs in C. 149 

difficile, representing a network of 1,353 TF-gene interactions (Table S1).  Notably, a total of 65 150 

modules (22% of all high-quality modules) were significantly enriched with nine of these TF 151 

regulons (Fig. 2B).  The EGRIN model recapitulated 541 of the 1,212  (45%) previously 152 

characterized interactions. This value is consistent with the recall rate of the EGRIN model for M. 153 
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tuberculosis (41%-49%) (28). The poor recall of the remaining four regulons (141 regulatory 154 

interactions) could be due to underrepresentation of gene expression data from relevant 155 

conditions in which these regulons are conditionally active. This analysis also uncovered 156 

combinatorial regulation of genes across 19 modules (i.e. enriched with more than one TF 157 

regulon). Consistent with the known hierarchical scheme for regulation of sporulation (30), 158 

expression of 161 genes across at least eight modules were putatively influenced by Spo0A in 159 

combination with one or more alternative sigma factors implicated in sporulation (e.g., SigE). 160 

EGRIN also predicted CcpA contributions in seven additional modules in combination with CodY, 161 

PrdR and SigL, illustrating the complexity of modular transcriptional regulation in C. difficile. 162 

 163 

The biclustering of genes by cMonkey2 is constrained by the de novo discovery of a conserved 164 

GRE(s) within their promoters in order to cluster genes that are co-regulated, and not just co-165 

expressed. The GREs represent putative binding sites for TFs that are often independently 166 

implicated by the Inferelator and protein-DNA interaction maps as regulators of genes within the 167 

same module(28, 29, 31). Notably, we determined that the GREs within promoters of genes in 168 

modules #182 and #309 were similar to known binding sites for CodY and SigL, which are 169 

predicted regulators of those modules, and are among the very few TFs for which binding sites 170 

have been characterized (Fig. 2C-D). 171 

 172 

The EGRIN modules also detected co-regulation of genes within and across functionally related 173 

operons. For example,  module #152, which is enriched with the SigD regulon, contains 16 genes 174 

that were part of four operons including the flagellar operon flgG1G-fliMN-CD630_02720-htpG, in 175 

addition to pyrBKDE, CD630_30270-CD630_30280-malY-CD630_30300, and CD630_32430-176 

prdA. De novo search for TF motifs traditionally use dozens of sequences to identify putative 177 

GREs. With the amount of transcriptomic information available, further robust prediction of 178 

putative GREs was limited by available numbers of putative binding sites after genes were 179 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2020. ; https://doi.org/10.1101/2020.09.14.297382doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.297382
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

organized into predicted operon structures. In addition, multiple modules with statistically 180 

significant GREs could not be matched to characterized TFs due to the limited number of TFs 181 

with known motifs in C. difficile. These limitations can be overcome with additional transcriptomic 182 

datasets, as leveraged for EGRIN model development for other species.  183 

 184 

C. difficile EGRIN model uncovers regulatory networks for the Pathogenicity Locus  185 

We evaluated capacity for the EGRIN model to recall known mechanisms of PaLoc regulation, 186 

and to provide new information regarding complex regulatory and small molecule effects. The 187 

EGRIN model captured certain previously described effects of CodY on toxin gene expression 188 

(Fig. 2E), as shown in module #182, which is enriched with members of the CodY regulon 189 

including tcdA. In agreement with EGRIN-predicted CodY regulation of PaLoc genes in module 190 

#182, genes encoding the toxin tcdA and its regulator tcdR were significantly overexpressed upon 191 

deletion of codY (Fig. 2G). Interestingly, tcdB which was co-regulated with sporulation genes in 192 

module #397 was also significantly upregulated in the codY deletion strain, suggesting that this 193 

effect might be an indirect consequence of disrupted CodY regulation of tcdR (Fig. 2G). It is 194 

assumed that CodY acts on PaLoc gene expression primarily through its repression of tcdR. 195 

Putative lower affinity binding sites have been suggested in the toxin gene promoter regions (32). 196 

The presence of the CodY motif (Fig. 2C) in most members of module #182, including tcdA 197 

(purple font in Fig. 2E) suggests direct influence of CodY on tcdA gene expression. The EGRIN 198 

model also identified previously reported connections between sporulation and toxin production 199 

(33). tcdB was assigned to module #397, which was significantly enriched with genes controlled 200 

by Spo0A, the master regulator of sporulation (Fig. 2F). Additional members of the PaLoc were 201 

assigned to other modules, supporting the presence of multiple condition-dependent promoters 202 

within the PaLoc (Table S2). 203 

 204 

Assignment of putative functions to genes in EGRIN modules 205 
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Approximately 33% of gene features in the CD630 genome have unknown functions. Thus, the 206 

C. difficile EGRIN model emerges as a resource to assign putative functions to uncharacterized 207 

genes based on functional associations among co-regulated genes (i.e. guilt-by-association)(34). 208 

We predicted putative functions for 48 uncharacterized genes by mining underlying functional 209 

enrichment of modules under different experimental conditions (see methods). These 48 210 

previously uncharacterized genes were associated with 13 functional categories, including 211 

“Sporulation” and “Other sugar-family transporters” (Fig. 3A). 212 

 213 

Ten genes were putatively assigned sporulation-related functions based on their co-regulation in 214 

the sporulation associated modules #206 and #251 (Fig. 3B). Module #251 includes the 215 

sporulation-associated alternative sigma factors SigG and SigE (located in the same operon). 216 

Module #206 includes seven stage III sporulation genes (spoIIIAA, spoIIIAB, spoIIIAC, spoIIIAD, 217 

spoIIIAF, spoIIIAG and spoIIIAH), and two stage IV sporulation genes (spoIV, spoIVA). Reduced 218 

expression of the 10 putative sporulation genes upon deletion of sporulation-associated sigma 219 

factors suggested putative roles within the mother cell or the forespore. Seven genes are likely 220 

associated with mother cell-specific roles based on their decreased expression in sigE (six genes) 221 

and sigK (one gene) deletion strains (Table S1). Two additional genes were down-regulated in a 222 

sigG deletion strain, suggesting putative functions in the forespore. Notably, Tn-seq studies for 223 

gene essentiality in C. difficile identified seven of these 10 genes as required for sporulation (35).  224 

 225 

Module #43 contains six genes, organized in a single operon (CD630_15840-15890), associated 226 

with the category “Other Sugar-family transporters”. Studies by Antunes et al. (3) identified 227 

members of the CD630_15840-15890 operon to be regulated by glucose and indirectly by CcpA. 228 

Thus, the 12 uncharacterized genes included in module #43 may also be associated with the 229 

same functional category (Fig. 3C). Two of these uncharacterized genes (CD630_13011 and 230 

CD630_29661) were also identified as CcpA targets in the presence of glucose (3). These 231 
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 11 

EGRIN-predicted functional assignments are consistent with the known role of CcpA in regulating 232 

sugar transport and metabolism (3).  233 

 234 

Module #48 contains two adjacent operons (4hbd-cat2-CD630_23400-abf2 and sucD-cat1) 235 

associated with aminobutanoate degradation. Both operons are regulated by CodY and PrdR. 236 

Hence, we predicted that the four uncharacterized genes in this module may be also involved in 237 

amino acid metabolism (Fig. 3C). In support of this hypothesis, CD630_08760 and CD630_08780 238 

are both differentially expressed upon codY deletion. Recent studies also suggest that CD630_ 239 

08760 may function as a tyrosine transporter per its homology to the CodY-regulated neighbor 240 

gene, CD630_08730 (36). Furthermore, Steglich et al. (37) observed decreases in tyrosine uptake 241 

and Stickland fermentation in clinical isolates lacking CD630_08760 and CD630_08780.  242 

 243 

EGRIN uncovers differentially active regulatory networks during in vivo infection 244 

We investigated the differential expression of EGRIN modules across multiple published in vivo 245 

experiments to discover underlying regulatory mechanisms that drive C. difficile’s colonization 246 

and adaption to in vivo environments. This analysis discovered the in vivo activation of module 247 

#158, particularly during acute infection, and the down regulation of module #48; notably the latter 248 

was upregulated during early infection (Fig. 4A-B). Module #48 is enriched with members of the 249 

CodY and PrdR regulons, as described above. Module #158 is enriched for putative PrdR and 250 

EutV co-regulated ethanolamine utilization genes, including eut operons for a 2-component 251 

histidine kinase sensing system and carboxysome structural proteins that house the ethanolamine 252 

fermentative enzymes (38). Ethanolamine is prevalent within gut secretions and is also released 253 

from damaged host tissues, providing a readily available carbon and nitrogen source for C. 254 

difficile. The predicted co-regulation of this gene module by PrdR suggests additional in vivo 255 

functions of this regulator to optimize C. difficile’s metabolism in gut environments.  256 

 257 
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With capacity to identify intestinal contributions to C. difficile responses we leveraged the EGRIN 258 

model to analyze commensal modulation of the pathogen’s virulence, using transcriptomic 259 

datasets from gnotobiotic mice that were mono-colonized with the mouse-infective strain C. 260 

difficile ATCC43255 or co-colonized with C. difficile and the protective gut commensal species 261 

Paraclostridium bifermentans (PBI), or infection-worsening species Clostridium sardiniense 262 

(CSAR). These datasets were not used in model construction. By mapping sets of differentially 263 

expressed genes into the EGRIN model we uncovered modules across 20 cellular processes and 264 

their associated TFs that were differentially regulated in the presence of PBI or CSAR (Fig. 4C-265 

F).  266 

 267 

Two sporulation-enriched modules (modules #206 and #261) were up-regulated by 24h of 268 

infection in monocolonized mice (Fig. 4C). The same two modules were up-regulated by 24h of 269 

infection in CSAR co-colonized mice, in addition to four other modules also enriched with 270 

sporulation genes (modules #82, #223, #242, #251 in Fig. 4D). These six modules were enriched 271 

with the Spo0A regulon. On the other hand, no sporulation-enriched modules were detected by 272 

24h of infection in PBI co-colonized mice (Fig. 4E). Comparison of CSAR co-colonized mice and 273 

PBI co-colonized mice discovered four sporulation-enriched modules (including modules #206 274 

and #261) with increased expression in the virulent context (i.e. presence of CSAR) (Fig. 4F). 275 

These findings were confirmed with the high levels of spore release in expanded populations of 276 

vegetative C. difficile when co-colonized with CSAR (22). Overall, this analysis suggested that 277 

the sporulation pathway is an indicator of C. difficile disease, reinforcing the Spo0A-mediated link 278 

between sporulation and toxin production recapitulated by the model (Fig. 2F). 279 

 280 

Module #319 contains multiple genes associated with electron transport via Rnf ferredoxin 281 

systems, and steps in glycolytic, butanoate and succinate metabolic pathways. This module was 282 

upregulated at later stages of infection in monocolonized mice at 24h (Fig. 4C), and was also up-283 
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regulated in CSAR co-colonized mice when compared to PBI co-colonized mice (Fig. 4F). Module 284 

#319 was consistently down-regulated in mice co-colonized with the protective commensal PBI 285 

(Fig. 4E). These findings show associated activation of multiple co-regulated energy generating 286 

pathways in hypervirulent states of C. difficile. Because the EGRIN model identified the 287 

NAD+/NADH sensing regulator Rex as a potential activator of module #319, the observed down-288 

regulation of module #319 in PBI co-colonized mice indicates decreased Rex activity. This may 289 

explain why a rex deletion strain supported increased survival in hamsters (24).  290 

 291 

Five modules enriched with the SigD-regulated genes encoding subunits of flagella (modules 292 

#184, #187, #295, #296 and #358) were downregulated in monocolonized mice at 24h (Fig. 4C). 293 

Similarly, two modules enriched with SigD-regulated motility genes (modules #152 and #295) 294 

were downregulated in CSAR co-colonized mice (Fig. 4D). From these modules, only module 295 

#152 was downregulated in PBI co-colonized mice (Fig. 4E), indicating that motility may be 296 

repressed to redirect resources toward pathogenesis. This finding is supported by increased 297 

virulence of C. difficile strains lacking a functional flagella (39). Surprisingly, module #273 298 

enriched with the SigD regulon but not with flagellar genes was downregulated in PBI co-299 

colonized mice (Fig. 4E) but upregulated in CSAR co-colonized mice (Fig. 4F). One of the genes 300 

in this module luxS encodes a protein involved in the synthesis of the quorum sensing signal, and 301 

its over-expression increases toxin expression (40). While it is unclear whether SigD plays a role 302 

in the expression of this module, these observations suggest that downregulation of module # 303 

273 and luxS (through a still uncharacterized mechanism) may contribute to the PBI-mediated 304 

reduction of C. difficile virulence. In summary, the described EGRIN modules illustrate the 305 

potential of the model to uncover additional co-regulated genes and cellular functions that enable 306 

states of enhanced virulence within C. difficile, and support multiple additional hypotheses for 307 

experimental validation. 308 

 309 
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Metabolic network analyses elucidate in vivo metabolic adaptations of C. difficile 310 

To investigate how specific genes within C. difficile contribute to in vivo phenotypes needed to 311 

develop symptomatic infection we leveraged reconstructed metabolic models that mapped 312 

functionally annotated genes to curated biochemical reactions. We extended a previously 313 

developed icdf834 metabolic model for C. difficile strain 630 (41, 42). The icdf834 model 314 

incorporates 1227 metabolic reactions and 807 metabolites. The metabolic reactions were 315 

mapped through gene-protein-reaction (GPR) associations to 834 genes, which represent 80% 316 

of 1,030 identified metabolic genes in the CD630 genome (Fig. 5A). We increased the number of 317 

genes in the icdf834 model from 834 to 838 (Fig. 5B), and added six new exchange reactions to 318 

account for C. difficile’s capacity to utilize mannitol, fructose, sorbitol, raffinose, succinate and 319 

butanoate (43, 44) (Fig. 5B). We also added four genes (CD630_08700, CD630_08680, 320 

CD630_17090 and CD630_10810) that encode three reactions for molybdenum utilization and 321 

cofactor synthesis. Lastly, we updated pathway annotations to reflect those found in obligate 322 

anaerobes. For example, the tricarboxylic citric acid cycle (TCA) is not found in most anaerobes, 323 

though some reactions, in reverse, support aspects of pyruvate, succinate and oxaloacete 324 

metabolism. In the icdf834 model, we changed subsystem pathway annotation of two reactions - 325 

i) acetyl-CoA:oxaloacetate C-acetyltransferase and ii) succinyl-CoA synthase from TCA cycle to 326 

pyruvate metabolism and butanoate fermentation respectively (Supplementary File S1). Similar 327 

updates were performed for reactions originally assigned to gluconeogenesis and the pentose 328 

phosphate pathway. We refer to this updated model as icdf838. Lastly, the model derived from 329 

CD630 was compared with the gene feature content from C. difficile ATCC43255, used commonly 330 

in mouse infection models. The two strains shared 92% of metabolic genes and predicted 331 

pathways (768 out of 838 genes in the icdf838 model have homology with the ATCC43255 strain; 332 

Supplementary File S1).  333 

 334 
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We validated the completeness and accuracy of this model by confirming its ability to predict 335 

biomass production in three different in vitro media compositions: 1) minimal medium, 2) basal 336 

defined medium and 3) complex, nutrient-rich medium (see Larocque et al. 2014 (42) for media 337 

compositions). The model accurately predicted C. difficile’s requirements for six amino acids: 338 

cysteine, leucine, Isoleucine, proline, tryptophan and valine (45). We also tested the performance 339 

of this “in silico broth” model for accuracy in predicting gene essentiality by comparing our model 340 

predictions to results from Tn-seq fitness screen performed in vitro under nutrient-rich conditions 341 

(35). With a threshold cutoff of 95% predicted growth inhibition, receiver-operator curve (ROC) 342 

analyses demonstrated high sensitivity and specificity of the model predictions (Fig. 5C; area 343 

under curve = 0.7626; p-value=0.015), indicating capacity for the model to distinguish essential 344 

versus non-essential gene calls with a true positive rate (sensitivity) of 0.9791 and a false positive 345 

rate (specificity) of 0.5431(Fig. 5C). 346 

 347 

We next extended and applied the model to predict C. difficile behaviors and gene essentiality in 348 

vivo.  C. difficile transcriptomes from specifically-colonized gnotobiotic mice (22) were used as 349 

input into the GIMME algorithm (46). Analyses of expressed transcripts in vivo identified 665 350 

active reactions (Fig. 5B) within the icdf838 model during colonization, growth, and over the 351 

course of symptomatic infection. Leveraging information from the in vitro studies, the model made 352 

two notable predictions in vivo regarding the pathogen’s metabolism. First, the icdf838 model 353 

predicted 15 amino acids to be required for C. difficile growth in contrast to the 6 required in vitro 354 

(Supplementary File S1). These amino acids included the dominant Stickland-fermented amino 355 

acids that were also required in vitro, including proline and branched chain amino acids, and 356 

additional amino acids including arginine, glutamate, lysine and methionine, which also have 357 

multiple cellular functions in cell wall synthesis, nitrogen cycling, and responses to oxidative 358 

stress. Secondly, the model predicted C. difficile’s switch from preferential use of glucose as a 359 

carbon source in vitro in complex media, to simultaneous utilization in vivo of diverse carbohydrate 360 
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sources including fructose, galactose, maltose, and sugar alcohols such as mannitol and sorbitol, 361 

to promote colonization and growth (Supplementary File S1). Seven of these carbohydrate 362 

sources were described in other in vivo mouse infection studies illustrating support for these 363 

findings across C. difficile strains, and in germfree and conventional mouse models 364 

(Supplementary File S1) (43, 44, 47).  365 

 366 

We next used the metabolic model to identify essential metabolic genes and networks that 367 

promote C. difficile’s growth in vivo. Gene deletions predicted to reduce the pathogen’s in vivo 368 

growth by ≥95% identified 24 genes, involved in 1 carbon-cycling reactions in glyoxylate and 369 

Wood-Ljungdahl metabolism, nucleotide biosynthesis, nucleotide interconversion and salvage 370 

pathways, amino acid biosynthetic and metabolic reactions, and aspects of central carbohydrate 371 

metabolism (Fig. 5D-E). These metabolic pathways represent new potential targets that drive 372 

aspects of C. difficile’s colonization and subsequent growth which are required to develop 373 

symptomatic infections. Model predictions also illustrated C. difficile’s predicted shift from 374 

carbohydrate utilization towards amino acid utilizing pathways in vivo, as shown by the enhanced 375 

set of 15 amino acids, including the preferred Stickland donor and acceptor amino acids (leucine 376 

and proline) known to support metabolism and growth (43, 44, 47). Notably, many of these amino 377 

acids show high abundance within the gut lumen in gnotobiotic and conventional colonization 378 

states that enhance C. difficile’s capacity to colonize and expand (22).  379 

 380 

The Cdiff Web Portal, a resource for the C. difficile community 381 

We have released a new C. difficile Web Portal (http://networks.systemsbiology.net/cdiff-portal/) 382 

to provide a discovery and collaboration gateway for the C. difficile scientific community. The 383 

portal aims to accelerate the advancement of the science and understanding of C. difficile biology, 384 

gene regulation, and metabolism on its virulence.  Within the portal users can access publicly 385 
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available datasets (e.g. transcriptional compendia), models, software and supporting resources. 386 

The Portal includes information on more than 4,000 C. difficile genes, 1,227 metabolic reactions, 387 

and 406 co-regulated gene modules. Genes can be explored in the context of genome 388 

annotations, expression profiles, regulatory and metabolic membership, and other functional 389 

genomic information across different databases including COG, Uniprot, and PATRIC (48–50). 390 

The portal provides access to detailed information on (1) Genes, (2) predicted Gene Modules, 391 

and (3) Metabolic Reactions (Fig. S2).  392 

 393 

Each gene module page includes summary statistics for the module, expression profiles of the 394 

module genes across conditions incorporated in developing the model, regulatory motifs, 395 

regulatory influences from transcription factors, functional enrichment information, and 396 

information about regulon member genes (Fig. 6). The module pages are structured to facilitate 397 

the assessment of the quality and statistical significance of the modules and highlight functional 398 

connections. The portal includes a table of metabolic reactions with details of each reaction, 399 

associated genes, metabolites, and sub-systems. Metabolites and sub-systems are defined as 400 

taxonomic vocabularies that collect and group associated reactions to identify related metabolic 401 

processes. In addition, the portal provides access to algorithms, software, and data, and will 402 

include information about animal models, strains, and other C. difficile relevant community 403 

resources. As additional datasets are communicated, model predictions and tools will be 404 

successively enhanced to support systems-level analyses and assist in hypothesis generation in 405 

C. difficile biology and to enable tangible clinical interventions. 406 

  407 
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DISCUSSION  408 

The obligate anaerobe C. difficile is unique among gut anaerobes in possessing a diverse carbon 409 

source metabolism to enable colonization and growth in gut environments. These systems further 410 

exist within a complex network of gene regulatory modules that modulate growth, energy balance, 411 

and stress responses in vivo. Capacity to understand these systems-level integration points has 412 

remained challenging in the absence of robust systems biology models to infer C. difficile’s in vivo 413 

behaviors. We acknowledge the detailed studies from multiple groups over prior decades that 414 

provided a critical mass of information on C. difficile’s nutrient and gene-level responses to 415 

support development of an EGRIN model, the first for a gut anaerobe and toxigenic species. We 416 

emphasize that this information, the most for any obligate anaerobe, still represents a small 417 

fraction of that normally used to develop thorough EGRIN models. Recent improvements in the 418 

genetic manipulation of C. difficile, including the mouse infective strain ATCC43255, open new 419 

capacity to probe the GREs modulating critical aspects of its metabolism, growth and virulence, 420 

from a systems-level perspective.  421 

 422 

The C. difficile EGRIN model enables a number of predictions relevant to in vivo disease. For 423 

example, the PrdR regulator of the pathogen’s Stickland proline reductase (prd) and other genes, 424 

has long been hypothesized to have a role in PaLoc gene expression through as-yet unknown 425 

mechanisms. EGRIN predictions included gene regulatory module #182 which identified 426 

combined PrdR and CodY effects on tcdA gene expression, providing a regulatory integration 427 

point and broader set of co-regulated genes to support further experimental analyses of co-428 

regulation between these two transcription factors, including effects on PaLoc expression. 429 

Biclustering also identified interactions between Spo0A, another regulator hypothesized to 430 

modulate PaLoc expression, and tcdB expression in module #397. The identified modules, 431 

associated genes and regulators provide new information to support further experimental 432 
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investigation of combinatorial effects of these and other regulators identified in PaLoc gene-433 

associated biclusters. The EGRIN model also predicted PrdR as a critical regulator in vivo through 434 

its systems-level effects on the pathogen’s colonization, metabolism and growth, involving 435 

multiple direct and indirect effects upon other modules and aspects of the pathogen’s metabolism 436 

and gene regulation.  437 

 438 

The present model did not identify all experimentally known regulators of PaLoc expression, 439 

including SigD regulation of TcdR, and effects of other more recently identified PaLoc regulators 440 

such as RstA and LexA, for which limited datasets exist from targeted deletion mutants or under 441 

multiple nutrient and other environmental perturbations. Nonetheless, as shown with our in vivo 442 

analyses, application of the EGRIN and metabolic models to new datasets offers key insights into 443 

causal mechanistic drivers of adaptive strategies of the pathogen. Given that less than 10% of 444 

transcriptomic information and less than 1% of ChIP-seq regulator datasets were available for C. 445 

difficile 630, as compared to EGRIN models developed for other species, the model provides a 446 

formative tool to design future transcriptomic and ChIP-seq studies to improve predictions for 447 

these regulons.  448 

 449 

Leveraging additional Tn-seq and in vivo transcriptomic datasets, the expanded icdf838 model 450 

identified a broader set of amino acids, in addition to genes and anaerobe-specific pathways, 451 

needed to support colonization and growth expansion in vivo. Notably, predictions of in vivo gene 452 

essentially identified multiple genes in glyoxylate metabolism, a pathway essential in many 453 

acetogenic anaerobes (51, 52) that leverage this system with folate 1-carbon cycling pathways 454 

including those connected with Wood-Ljundahl fixation of carbon dioxide to acetate. Predictions 455 

of gene essentiality also identified multiple nucleotide synthesis and salvage pathway genes that 456 

were essential in vivo but not in vitro, including ones associated with xanthine transport and 457 

metabolism, an abundant nucleotide in gut secretions that originates from host sources (22). 458 
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Lastly, predictions identified genes in amino acid biosynthetic pathways for branched-chain amino 459 

acids, aromatic amino acids, and others that were predicted to be required in vivo. Each of these 460 

provides new targets of vulnerability for which to consider therapeutic interventions leveraging 461 

small molecules, bacteriotherapeutic, or other patient interventions. 462 

  463 

We illustrate additional predictions from the C. difficile EGRIN model to enable gene- through 464 

systems-level analyses of the pathogen. Though among the best described obligate anaerobes, 465 

the C. difficile genome still contains a high number of genes of unknown function. Model 466 

predictions provided new information to assign putative functions to 48 gene features, including 467 

ones associated with sporulation, carbohydrate transport, and other aspects of cellular 468 

metabolism. The C. difficile Web Portal, makes these tools and resources available to the broader 469 

C. difficile, microbiology, and systems biology communities, providing a platform for collaboration 470 

and to support systems-level investigations of the pathogen and its interactions with the host and 471 

commensal microbiota.  472 

 473 

 474 

 475 

  476 
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METHODS 477 

C. difficile genome annotation 478 

A new ATCC43255 reference genome was generated and annotated to support in vivo 479 

transcriptome studies of C. difficile per discrepancies noted in the RefSeq genome, particularly 480 

among bacteriophage loci and other mobile elements (22). The updated reference genome was 481 

annotated using the NCBI Prokaryotic Genome Automatic Annotation Pipeline (53), PATRIC (50), 482 

and PROKKA (54) to extract gene features for support of transcriptome pathway enrichment 483 

analyses. Bacteriophage loci and genes were identified using PHASTER (55). 484 

 485 

C. difficile transcriptional compendium  486 

To generate a transcriptional compendium for C. difficile, required for constructing an EGRIN 487 

model,  a total of 148 publicly available transcriptomes of C. difficile 630 were downloaded from 488 

the NCBI Gene Expression Omnibus (GEO) repository (56) in March 2020. Downloaded 489 

transcriptomes were generated by 11 independent studies (Table 1). To integrate this data into a 490 

single dataset, we computed the log2 fold-change of each transcriptome with respect to a control 491 

condition, as performed in the generation of other transcriptional compendia (57). This step was 492 

not necessary for transcriptional data collected with dual channel arrays that included a 493 

normalizing control channel. The resulting transcriptional compendium contained a total of 4,091 494 

gene features and 127 conditions. The 127 conditions in the transcriptional compendium were 495 

organized in 10 distinct conditional blocks (e.g. sporulation, fur deletion), as shown in Table 1. 496 

 497 

Construction of the EGRIN model  498 

The EGRIN model for C. difficile was constructed in two stages. First, we used cMonkey2 (26), a 499 

biclustering algorithm, on the compiled compendium of 127 C. difficile transcriptomes to 500 

simultaneously detect co-regulated gene modules and the conditions where co-regulation occurs. 501 
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cMonkey2 integrates functional annotation from the STRING database (25), gene promoter 502 

sequences from the RSAT database (58), and operon predictions from MicrobesOnline (59) when 503 

detecting the gene modules. cMonkey2 was run using default parameters. Briefly, we used 2,000 504 

iterations to optimize the co-regulated gene modules, each one with 3-70 genes. In each iteration, 505 

cMonkey2 refined the gene modules by evaluating and modifying (if necessary) condition and 506 

gene memberships. cMonkey2 biclustering approach allowed genes and conditions to be 507 

assigned to a maximum of two and 204 different modules, respectively. De novo motif search was 508 

performed using MEME v. 4.12.0 (60). Second, we used the Inferelator (27), a network inference 509 

algorithm, to identify potential transcriptional regulators for the 406 gene modules generated by 510 

cMonkey2. The Inferelator uses a Bayesian best subset regression to estimate the magnitude 511 

and sign (activation or repression) of potential interactions between TFs and gene modules. We 512 

bootstrapped the expression data (20 times) to avoid regression overfitting (27). The Inferelator 513 

generates two scores for each TF-module interaction, the corresponding regression coefficient 514 

and a confidence score. The second score indicates the likelihood of the interaction. The final set 515 

of TF-module interactions was defined as the 704 interactions with the top 10% of highest non-516 

zero confidence scores. 517 

 518 

Experimentally supported literature derived TF regulons 519 

We mined available literature to compile a list of experimentally supported targets for the 13 520 

partially characterized transcriptional regulators (involved in sporulation, motility, carbon 521 

metabolism, among other processes) shown on Table S1. The manually compiled regulons  522 

represented a total of 1,353 regulatory interactions and involved 1,050 genes. Target genes 523 

included in the compiled TF regulons were supported by transcriptional data, protein-dna binding 524 

data and in silico analysis of promoter regions (e.g. presence of known regulators DNA binding 525 

motif).  526 

Module enrichment evaluation  527 
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We used a hypergeometric test to identify modules of co-regulated genes in the EGRIN model 528 

that  were statistically enriched with manually compiled TF regulons (Table S1) or functional 529 

pathways derived from curated annotation of C. difficile genome (22). Only gene modules with 530 

adjusted hypergeometric test p-value £ 0.05 and containing four or more genes from the relevant 531 

TF regulon or functional pathway were considered enriched. 532 

 533 

Analysis of in vivo data   534 

In vivo transcriptomic data from gnotobiotic mice monocolonized with C. difficile ATCC43255 or 535 

co-colonized with P. bifermentans or C. sardiniense were analyzed as described (22) using the 536 

updated reference genome of ATCC43255 to extract gene features for subsequent analysis with 537 

DESEQ2.  538 

 539 

Metabolic model refinement and gene essentiality prediction  540 

A published genome-scale metabolic model of C. difficile 630 strain, icdf834 (41), was used in 541 

this study and expanded by adding reactions required for in vivo survival of the pathogen. We 542 

also curated pathway annotations that were incorrectly designated using default KEGG 543 

annotations (61). For example, the TCA, gluconeogenesis and pentose phosphate pathways are 544 

incomplete in C. difficile. Thus, we updated the annotation of these pathways as part of pyruvate 545 

metabolism, butanoate fermentation and Galactose & Tagatose metabolism (Supplementary 546 

File S1). Initially, we evaluated the homology of metabolic genes between C. difficile 630 and 547 

ATCC43255 strain of C. difficile in order to use the icdf834 model for representing the in vivo 548 

infection state of ATCC43255 strain. The details of 764 genes that are predicted in this homology 549 

analysis is provided in Supplementary File S1. Then, the transcriptome of C. difficile profiled 550 

from in vivo infections of specifically-colonized gnotobiotic mice (22) was mapped onto the icdf834 551 

model using the GIMME algorithm (46). This resulted in a model with 665 active reactions, with 552 

no changes in the number of genes. We then expanded the model by including four new genes 553 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2020. ; https://doi.org/10.1101/2020.09.14.297382doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.297382
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

and 8 new reactions (Supplementary File S1) that are required for the growth of the pathogen in 554 

the in vivo micro-environment, based on KEGG annotations. We named this expanded version of 555 

the model as “icdf838”. This model represents the in vivo state of C. difficile. We then applied the 556 

constraint-based method for simulating the metabolic steady-state of C. difficile using flux-balance 557 

analysis (FBA) (46, 62). The initial validation steps involved checking the capacity of the icdf834 558 

model to produce biomass in defined media conditions including 1) minimal medium, 2) basal 559 

defined medium and 3) complex, nutrient-rich medium (compositions used according to Larocque 560 

et al 2014 (42)). Then, we tested the performance of the icdf834 model using gene essentiality 561 

predictions by FBA. A gene was considered “essential” if its deletion reduced the biomass by 562 

>95%. By this analysis, the model classified each gene as “essential” or “non-essential”. We 563 

compared the gene essentiality predictions from nutrient-rich media constraints with the available 564 

experimental Tn-seq data (35) and deduced the confusion matrix to derive true positive rates 565 

(TPR) and false positive rates (FPR). This led to the elucidation of sensitivity and specificity of the 566 

model using ROC curve analysis. We then applied the same strategy and predicted the essential 567 

genes in vivo using FBA with the expanded context-specific network, icdf838. All model 568 

simulations related to FBA were performed on MATLAB_R2019a platform using the recent 569 

version of COBRA (The COnstraint-Based Reconstruction and Analysis) toolbox (63). In silico 570 

gene essentiality predictions were performed using the COBRA toolbox ‘single-gene-deletion’ 571 

function in MATLAB. The illustration of essential gene regulatory network in vivo was deduced 572 

using BioTapsetry tool (http://www.biotapestry.org/). 573 

 574 

C. difficile Web Portal 575 

This portal utilizes the powerful build, search, collaboration, and visualization features of the 576 

Drupal content management system. With the two key features of modularity and extensibility, 577 

Drupal provides a slim, powerful core that can be readily extended through custom modules and 578 

easy-to-use collaborative tools to support information sharing. Based on these key features, we 579 
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developed this content management system into a data management, analysis, and visualization 580 

framework to support C. difficile research.  581 

 582 

Due to the complexity of the information provided by the genome and models, it is critical to 583 

provide a user-friendly and flexible search and filtering capabilities. By taking advantage of 584 

Drupal's built-in search interface and implementing Apache Solr search, we created very powerful 585 

search capabilities that will query every information included in the portal database. Moreover, 586 

the search interface uses "facets" to allow users to explore a collection of information by applying 587 

multiple filters. This combination together with sorting enables users to start with broad searches 588 

and then quickly pinpoint specific information.  589 

 590 

In order to provide a comprehensive functional genomics resource for the Cdiff community, 591 

genome annotations from several different sources were merged and imported into the Cdiff 592 

Portal. Curated genome annotations for Clostridium difficile strain 630 published by Monot et al. 593 

(21), were  downloaded from MicroScope platform (64). Additional functional annotations were 594 

downloaded from PATRIC (50) and Uniprot (49) and merged with curated genome annotations. 595 

Overall, 4,018 genes were included in the Cdiff Portal. The C. difficile genome included 1,030 596 

metabolic genes, 309 TFs, 270 sRNAs, 87 tRNAs, 32 rRNAs and 17 miscRNAs. The genome 597 

included 1,330 genes with unknown function. Furthermore, gene essentiality data from Dembek 598 

et al. (35) was integrated with gene annotations.  599 

 600 

  601 
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FIGURES 805 

 806 

Figure 1. Inference pipeline and general properties of the resulting Environment Gene 807 

Regulatory Influence Network (EGRIN) model of C. difficile. (A) Framework used to build the 808 

EGRIN model. (B) Distribution of residual values for the 406 detected co-regulated gene modules. 809 

297 gene modules had residual values equal or lower than 0.55 (shown in purple) and were 810 

labelled as high quality. (C) Distribution of gene count for the high quality gene modules. (D) 811 

Coverage of all genes (4,018), the subset of metabolic genes (1,030) and TFs (309) by EGRIN 812 

modules for different residual thresholds. The red dashed line indicates the 0.55 residual cutoff. 813 
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Figure 2. The Environment Gene Regulatory Influence Network model of C. difficile 817 

recapitulates known biology of the pathogen. (A) Co-regulated gene modules are enriched 818 

with functional terms derived from expert curated annotation of the C. difficile genome (22). The 819 

pie chart shows terms over-represented in three or more modules. Number of modules associated 820 

with each functional term is shown in parenthesis. (B) Enriched gene modules among nine (out 821 

of 13) manually-defined and experimentally supported TF regulons (compiled from publicly 822 

available data in Table S1). (C) EGRIN identified the known DNA binding motif of CodY (65). (D) 823 

EGRIN also identified the known DNA binding motif of SigL (66). Motif comparisons were 824 

performed using Tomtom (60). (E) The EGRIN model recapitulated the previously reported 825 

influence of CodY on tcdA  expression. The module #182 contains tcdA, it is enriched with 826 

members of the CodY regulon and contains a motif (shown in panel C) similar to the 827 

experimentally determined CodY motif. (F) The EGRIN model also captured the interaction 828 

between toxin expression and sporulation via module #397 that contains tcdB and is enriched 829 

with genes regulated by sporulation-related transcriptional regulators. (G) Expression profiles of 830 

tcdAB and tcdR (positive regulator of the pathogenicity loci). Highest expression of the toxin genes 831 

and their activator was observed in the codY single deletion condition (light green box). 832 
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 834 

 835 

Figure 3. The EGRIN model offers insights on potential functions of uncharacterized genes 836 

of C. difficile.  Hypotheses regarding the functions of 48 uncharacterized genes were generated 837 

based on their membership in high quality co-regulated gene modules significantly enriched with 838 
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specific functional terms. (A) Barplot with the number of unknown genes associated with each 839 

functional term (from the C. difficile  genome annotation in Girinathan et al. (22) ). (B) The 840 

involvement of 10 uncharacterized genes in sporulation was supported by the observed strongest 841 

and significant down-regulation in single deletion strains of transcriptional regulators of 842 

sporulation (spo0A, sigEFGK, spoIIID). (C) Locus tag of uncharacterized genes associated with 843 

selected functional terms. 844 

  845 
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Figure 4. The EGRIN model identifies TFs driving the in vivo response of C. difficile when 847 

interacting with gut commensals P. bifermentans (PBI) and C. sardiniense (CSAR). (A) 848 

Expression profile of module #158. (B) Expression profile of module #48. (C) EGRIN modules 849 

enriched with genes differentially expressed (absolute log2 fold-change > 1 and adjusted p-value 850 

< 0.05) in C. difficile mono-colonized mice at 24 vs 20 hours of infection. X-axis shows module 851 

IDs. Modules were annotated according to their functional enrichment and overlap with manually 852 

curated TF regulons (Table S1).  (D) Enriched EGRIN modules in C. sardiniense+C. difficile co-853 

colonized mice vs C. difficile mono-colonized mice at 24 hours of infection. Due to space 854 

constraint, only abbreviations of functional terms not shown in other panels are displayed. (E) 855 

Enriched EGRIN modules in P. bifermentans+C. difficile co-colonized mice vs C. difficile mono-856 

colonized mice at 24 hours of infection. (F) Enriched EGRIN modules in P. bifermentans+C. 857 

difficile co-colonized mice vs C. sardiniense+C. difficile co-colonized mice at 24 hours of infection. 858 

For all comparisons, only modules with absolute median fold-changes > 0.5, and enriched with 859 

TF regulons or functional categories are displayed.  860 

 861 

 862 

  863 
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 864 

Figure 5. Metabolic model predictions. (A) Details of the in vitro metabolic model of C. difficile 865 

630 (41). (B) Details of icdf838 metabolic model of C. difficile 630. Initial in vivo model was derived 866 
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using the GIMME algorithm (46) where only the active reactions are included from in vivo 867 

transcriptome. The numbers in parentheses indicate the number of genes, reactions and 868 

metabolites in the icdf838 model after adding the required in vivo exchanges and transports. (C) 869 

ROC curve showing the accuracy of icdf834-predicted gene essentiality in nutrient rich medium 870 

evaluated against a Tn-seq functional screen (35). Red circle indicates the 95% growth inhibition 871 

as threshold. (D) Venn diagram showing the number of model-predicted essential genes for 872 

growth of C. difficile 630 in vitro vs in vivo. (E) BioTapestry visualization of in vivo gene regulatory 873 

network for C. difficile 630: All 24 in vivo-specific essential genes that are regulated by 874 

transcription factors (TFs) are shown. Transcriptional regulators are derived from EGRIN. The 875 

network includes all TFs that regulate more than four in vivo essential genes. The genes and TFs 876 

shown as five digit numbers represent the nomenclature preceded by ‘CD630_’ (e.g. 27220 877 

indicates CD630_27220). 878 

 879 

  880 
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Figure 6. An example module page of the C. difficile Portal.  Module #182, associated with 882 

CodY and shown in Fig 2D is used as an example. (A) Each module page includes general 883 

statistics of the module (residual score, gene count), displays the module expression profile in the 884 

compiled transcriptional compendium and the detected motifs. (B) A module page also offers 885 

information about the potential transcriptional regulators of the module. Putative regulators are 886 

defined based on over-representation of manually compiled TF regulons (assessed using 887 

hypergeometric test) and based on the Inferelator predictions. (C) Each module page includes a 888 

list of its gene members with a brief description of each gene. This information includes gene 889 

name, product, alternative names, function and essentiality. In the example, only the first four 890 

genes (out of 24) are shown. The user can click in any gene to visit the corresponding gene page. 891 

 892 
893 
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TABLES 894 
Table 1. Datasets used for generating C. difficile transcriptional compendium 895 

Condition 
GEO Series 
Accession # Transcriptomesa # Controlsb 

Early infections  
(0h, 30 mins, 60 mins, 120 

mins) GSE18407 12 NAc 

In vivo vs in vitro  
(8h, 14h, 38h) GSE43305 32 NAc 

Iron limitation 
GSE109453 
GSE120189 15 15d 

fur deletion 
GSE69218 
GSE120189 12 12d 

Response to oxygen GSE109175 3 3 

Response to commensals and 
diet GSE60751 8 8e 

Rich diet vs Poor diet GSE60751 8 8e 

Transition from exponential to 
stationary phase GSE115054 16 NAc 

codY KO GSE23192 3 NAc 

Sporulation  
(spo0A KO, sigEFGK KOs, 

spoIIID KO) 
GSE45977 
GSE63777 18 6 

aRefers to the number of arrays used as numerator when estimating log2 ratios 896 
bControl arrays were averaged and used as denominator when estimating log2 ratios 897 
cNot Applicable. Dual channel array and therefore the control was included in each array 898 
dSix samples used as controls were also considered as main transcriptome in other comparisons  899 
eSamples used as controls were also considered as main transcriptome in other comparisons  900 
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SUPPLEMENTARY FIGURES 901 

 902 

              903 

Figure S1.  Number of Inferelator-predicted transcriptional regulators of modules in the 904 

EGRIN model. 905 

 906 

 907 
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Figure S2. The Cdiff Web Portal.  (A) Home page of the Cdiff Portal. Users can explore the 910 

gene regulatory network model and the metabolic model for C. difficile. In addition, all files are 911 

accessible in the resource tab. The search bar facilitates website exploration. (B) An example 912 

gene page of the C. difficile Portal. 913 

 914 
  915 
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SUPPLEMENTARY TABLES 916 
 917 
Table S1. Compiled TF regulons 918 

Regulator Regulon Size Supporting Data Reference 

CcpA 194a 
Protein-DNA binding, transcriptomics, 

in silicob (3, 67) 

CodY 160c Protein-DNA binding, transcriptomics (65) 

Fur 19 Transcriptomics, in silicob (68, 69) 

PrdR 181 Transcriptomics (24) 

SigB 57 Transcriptomics (15) 

SigD 159 Transcriptomics (70) 

SigE 96 

Transcriptomics (30) SigF 25 

SigG 46 

SigH 40 Transcriptomics, in silicob (4) 

SigK 54 Transcriptomics (30) 

SigL 46d Transcriptomics, in silicob (66) 

Spo0A 276e Transcriptomics (71) 
aOnly genes classified as CcpA-dependent (in the presence or absence of glucose) by Antunes 919 
et al. 2012 (3) were included 920 
bIn silico search of the binding motif of the corresponding regulator within the genes and their 921 
promoter sequences 922 
cOnly genes negatively influenced by CodY were included 923 
dOnly genes with SigL motif and down-regulated in sigL deletion were included 924 
eOnly genes positively influenced by Spo0A were included 925 
 926 
  927 
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Table S2. General properties of modules associated with the pathogenicity loci 928 

Gene Locus tag Modulea Residual Functional 
enrichmentb 

Enriched TF 
regulonsb 

Inferelator 
predicted 

regulatorsb 

 
 

tcdR 

 
 

CD_06590 

31 0.46 NF NF SigG, SpoVT 

336 0.54 NF NF FapR, 
CD_16930 

 
 

tcdB 

 
 

CD_06600 

284 0.63 NF NF CD_06930, 
CD_17820 

397 0.49 NF Spo0A, SigE SpoVT, 
CD_06290 

 
 

tcdE 

 
 

CD_06610 

31 0.46 NF NF SigG, SpoVT 

138 0.61 NF NF CD_06290, 
CD_12390, 

SpoVT 

 
 

tcdA 

 
 

CD_06630 

182 0.56 ATP 
synthesis 

CodY, PrdR FapR, 
CD_20480, SigG 

264 0.71 NF NF SigV 

 
tcdC 

 
CD_06640 

146 0.52 NF NF CD_27320, 
PhoU 

395 0.51 NF NF CD_18100, 
CD_35440 

aModules that contain the corresponding member of the pathogenicity loci 929 
bRefers to the information shown for the corresponding module on the Cdiff Web Portal 930 
  931 
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Table S3. Model predicted essential genes in vivo 932 
Locus tag Gene name Gene 

product/function 
Pathway In silico predictions Expt 

Essentiality 
in vivo 

Essentiality 
nutrient-rich 

in vitro 

Essentiality 
Nutrient-rich in 
vitro  (Tn-seq) 

CD630_09940 G12WB-
1109 

serine-pyruvate 
aminotransferase 

Alanine, aspartate 
and glutamate 
metabolism 

Essential Non-
Essential 

Non-Essential 

CD630_05800 gapN glyceraldehyde-3-
phosphate 
dehydrogenase 

Valine, leucine and 
isoleucine 
metabolism 

Essential Non-
Essential 

Non-Essential 

CD630_15340 ggt gamma-
glutamyltranspeptida
se 

Alanine, aspartate 
and glutamate 
metabolism 

Essential Non-
Essential 

Non-Essential 

CD630_23430 cat1 succinyl-
CoA:coenzyme A 
transferase 

Butanoate 
fermentation; 
Methionine 
Biosynthesis 

Essential Non-
Essential 

Non-Essential 

CD630_34400 G12WB-
3619 

glycoside hydrolase-
type carbohydrate-
binding protein 

Glycolysis Essential Non-
Essential 

Non-Essential 

CD630_30840 garK glycerate kinase Glycine, serine 
and threonine 
metabolism 

Essential Non-
Essential 

Non-Essential 

CD630_28130 garR tartronate 
semialdehyde 
reductase 

Glyoxylate and 
dicarboxylate 
metabolism 

Essential Non-
Essential 

Non-Essential 

CD630_33170 fdhF formate 
dehydrogenase-H 

Glyoxylate and 
dicarboxylate 
metabolism 

Essential Non-
Essential 

Non-Essential 

CD630_21790 G12WB-
2336 

anaerobic 
dehydrogenase 

Glyoxylate and 
dicarboxylate 
metabolism 

Essential Non-
Essential 

Non-Essential 

CD630_07690 G12WB-
880 

oxidoreductase 
subunit 

Glyoxylate and 
dicarboxylate 
metabolism 

Essential Non-
Essential 

Non-Essential 
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CD630_12240 pupG purine nucleoside 
phosphorylase 

Purine metabolism Essential Non-
Essential 

Non-Essential 

CD630_07190 fchA methenyltetrahydrofol
ate cyclohydrolase 

One carbon pool 
by folate; Wood-
Ljungdahl pathway 

Essential Non-
Essential 

Non-Essential 

CD630_15660 ilvB acetolactate synthase 
large subunit 

Valine, leucine and 
isoleucine 
metabolism 

Essential Non-
Essential 

Non-Essential 

CD630_12230 drm phosphopentomutase Nucleotide 
interconversion 

Essential Non-
Essential 

Non-Essential 

CD630_20140 ilvD dihydroxy-acid 
dehydratase 

Valine, leucine and 
isoleucine 
metabolism 

Essential Non-
Essential 

Non-Essential 

CD630_15020 deoC deoxyribose-
phosphate aldolase 

Nucleotide 
interconversion 

Essential Non-
Essential 

Non-Essential 

CD630_18390 tyrC prephenate 
dehydrogenase 

Phenylalanine, 
tyrosine and 
tryptophan 
biosynthesis 

Essential Non-
Essential 

Non-Essential 

CD630_18360 pheA bifunctional 
chorismate 
mutase/prephenate 
dehydratase 

Phenylalanine, 
tyrosine and 
tryptophan 
biosynthesis 

Essential Non-
Essential 

Non-Essential 

CD630_12200 nudF NUDIX family 
hydrolase 

Purine metabolism Essential Non-
Essential 

Non-Essential 

CD630_23300 xpt xanthine 
phosphoribosyltransf
erase 

Purine metabolism Essential Non-
Essential 

Non-Essential 

CD630_05570 G12WB-
669 

uridine kinase Pyrimidine 
metabolism 

Essential Non-
Essential 

Non-Essential 

CD630_04870 G12WB-
599 

carbon-nitrogen 
hydrolase 

Pyrimidine 
metabolism 

Essential Non-
Essential 

Non-Essential 

CD630_18160 cmk cytidylate kinase Pyrimidine 
metabolism 

Essential Non-
Essential 

Non-Essential 
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CD630_15650 ilvC ketol-acid 
reductoisomerase 

Valine, leucine and 
isoleucine 
metabolism 

Essential Non-
Essential 

Non-Essential 

 933 
 934 
 935 
 936 
 937 
 938 
 939 
 940 
 941 
 942 
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 944 
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