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Abstract 
Cell-to-cell heterogeneity in gene expression and growth can have critical functional 
consequences, such as determining whether individual bacteria survive or die following 
stress. However, the timescales of the dynamics that underlie this heterogeneity are 
often unknown. This is a critical piece of information because different phenotypic 
outcomes can arise from gradual versus rapid changes in expression and growth. Using 
single-cell time-lapse microscopy, we conducted detailed measurements of gene 
expression and growth over many generations using 15 reporters in Escherichia coli, 
focusing on genes related to stress response. In constant environmental conditions 
without stress, we found many examples of pulsatile gene expression, suggesting that 
this may be a widespread dynamic property. Pulse lengths often exceeded the cell 
cycle, leading to multi-generational correlations. Temporal properties of the pulses, such 
as their frequency, duration, and amplitude, varied widely across the reporters. Single-
cell growth rates were often anti-correlated with gene expression, with changes in 
growth typically preceding changes in expression. These dynamics and the timescales 
of the pulses have functional consequences, which we demonstrate by measuring 
single-cell survival after challenging cells with the antibiotic ciprofloxacin. Together, this 
work reveals that pulsatile expression dynamics are widespread in E. coli stress 
response networks. Further, these dynamic patterns of gene expression are closely 
linked with growth and have important consequences for survival.  
 
Introduction 
Even under otherwise constant environmental conditions, genetically identical cells can 
display substantial phenotypic heterogeneity, resulting from differences in gene 
expression and growth rate from cell to cell 1–4. Phenotypic heterogeneity can, in 
principle, arise from slow changes within the population where individual cells have 
different expression levels or growth rates, but maintain their state over many cell 
cycles. Alternatively, fast dynamics with rapid fluctuations could produce equivalent 
distributions. The distinction between these alternatives is significant because the 
timescale over which expression or growth differences persist can ultimately determine 
if they have functional consequences or are simply short-lived random variations that 
are filtered before impacting cellular outcomes. Although phenotypic heterogeneity is 
well documented, the timescales underlying the variation and their ultimate impact on 
function are often less clear. 
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We focused on stress response genes in Escherichia coli to study the dynamics of 
expression and growth in single cells. Genes involved in adaptation to stress are among 
the noisiest genome-wide 3,5. Studies on individual pathways have revealed specific 
examples in which heterogeneous expression of stress response genes can allow 
subpopulations of cells to survive sudden environmental stress, such as transient 
exposure to antimicrobial drugs, oxidative stress, and acid stress 6–9. Recent studies 
also indicate that heterogeneity in the expression of genes involved in DNA repair can 
lead to variability in mutation rates, contributing to microbial evolution 10–12. Notably, this 
diversity exists even in the absence of stressors. Although selected studies have begun 
to reveal examples of how cell-to-cell phenotypic variation can provide important 
functional capabilities to cell populations, examples of direct links are relatively sparse 
compared to reports quantifying phenotypic heterogeneity. This motivated our focus on 
stress response pathways, because the effect of the genes involved can be directly 
assessed by quantifying outcomes like cell survival versus death following stress.  
 
In addition to measurements at a single time point, long-term monitoring of gene 
expression has begun to uncover examples of rich dynamics in key stress response 
proteins 13. For example, self-cleavage of the regulator LexA produces spontaneous 
pulses in the SOS response network 14. Dynamic activity of transcription factors can 
propagate to downstream genes, with direct consequences for stress tolerance. For 
instance, pulsatile expression of the transcription factor ComK enables Bacillus subtilis 
cells to enter a transient competent state 15,16. In E. coli, heterogeneous expression of 
RpoS, a key regulator of general stress response, originates from pulses of activation 
that are inversely correlated with growth, allowing cells to survive oxidative stress 8. 
Additionally, Kim et al. recently demonstrated that genes in the flagellar synthesis 
network, a process with a pivotal role in microbial pathogenicity, are expressed with 
different pulsing programs that allow cells to switch between flagellar phenotypes 17. 
Collectively, these studies demonstrate that the temporal dynamics of gene expression 
play an important role in the regulation of stress response networks.  
 
Growth rate fluctuations have also been observed in single cells across many bacterial 
species 2,8,18–20. They can arise due to temporal variation in the expression of metabolic 
enzymes 2, the expression of burdensome proteins 12, and due to regulatory effects 
such as feedback involved in cell size control 19. These single-cell differences in growth 
rate can play a functional role in stress tolerance. For example, Narula et al. 
demonstrated that the growth rate of B. subtilis under starvation conditions can 
determine whether individual cells differentiate into spores or remain vegetative 21. 
Single-cell growth rates also play a protective role, for example correlating with 
differential antibiotic susceptibility in mycobacteria 22 and E. coli 7,23.  
 
Understanding the timescales associated with gene expression dynamics and growth 
can provide critical insights into the strategies that cells use to hedge against 
environmental uncertainty. In this study, we characterize the prevalence and dynamic 
properties of cell-to-cell phenotypic variation in different branches of the stress response 
network in E. coli. Using time-lapse microscopy, we monitored the activity of key stress 
response genes, as well as genes involved in biosynthesis and metabolism, in single E. 
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coli cells under precisely controlled, unstressed conditions. Our results reveal that 
pulsatile activity is common in these reporters. Furthermore, properties of the dynamics, 
such as the frequency or amplitude of pulsing, are unique to each gene. In addition, 
fluctuations in the expression of genes frequently occur following variations in growth 
rate. Finally, focusing on the acid stress regulator GadX, we show that coincident pulses 
of upregulation of stress response genes and reduced growth rates favor tolerance to 
lethal antibiotic exposure. Together, this work reveals that non-trivial gene expression 
dynamics are common, even in otherwise constant conditions, and that these dynamic 
patterns of gene expression can have critical consequences for cell survival. 
 
Results 
We began by characterizing heterogeneity in the expression of genes with a diverse 
range of functions (Table S1). These include genes involved in acid resistance (gadW, 
gadX, phoP), multi-drug resistance (evgA, marA, rob), heat shock (rpoH), oxidative 
stress response (oxyR), SOS response (dinB, recA, sulA), and general stress response 
(bolA), in addition to genes involved in biosynthesis and metabolism (araC, metJ, purA).  
 
In order to measure heterogeneity in the expression from each promoter at the single-
cell level, we used strains containing transcriptional reporters where the promoter 
sequence of interest is fused to the coding sequence of a fluorescent protein. We grew 
independent bulk cultures of each strain to exponential phase and measured 
heterogeneity across cells in the population using fluorescence microscopy for single 
cells on agarose pads. Cell-to-cell differences in gene expression resulted in different 
distributions of reporter levels for each gene (Fig. 1A, Fig. S1). Measurements of the 
reporters revealed many instances of wide distributions, indicative of a broad range of 
expression levels across cells within a population. Distributions tended to skew to the 
right of the mean (skew > 0) due to the presence of highly-expressing cells.  
 
However, measures of static distributions do not reveal the underlying dynamics that 
generate them, prompting the question: Do these distributions stem from long-lived 
fixed subpopulations with slow dynamics or from conditions with fast dynamics where 
individual cells transition between low and high expression over time (Fig. 1B)? The 
significance of this question is particularly pertinent in the context of stress response 
networks, where the timescale over which individual genes are active may have 
concrete implications for tolerance levels. For instance, if a transcription factor that 
activates genes involved in stress response exhibits short pulses in expression, these 
pulses might be insufficient to turn on expression of downstream genes, while more 
sustained expression could. Further, single-cell growth rates can impact survival, thus 
the interplay between expression and growth may be significant for determining 
tolerance. 
 
Thus, we next aimed to quantify the temporal dynamics underlying the distributions of 
gene expression and growth. We measured expression in cell lineages over many 
generations using a ‘mother machine’ microfluidic device 24 and time-lapse fluorescence 
microscopy. In this device, ‘mother’ cells are trapped at the top of one-ended chambers 
and maintained indefinitely in exponential phase through the addition of fresh media, 
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allowing for multi-hour imaging of cell lineages. We used this to monitor gene 
expression in tens to hundreds of independent cell lineages for each reporter for at least 
15 hours. To quantify gene expression over time, we used our deep learning based cell 
segmentation and tracking algorithm 25 to extract single-cell resolution data from the 
mother cell and its progeny. 
 
We observed heterogeneity in gene expression for cells growing in these precisely 
controlled conditions, which was consistent with measurements acquired from bulk 
culture snapshots (Fig. S2). Long-term monitoring of expression revealed a diversity of 
phenotypes, with some genes that fluctuated at a low level while others were highly 
dynamic in their expression (Fig. 1C-E). We observed that variability within a distribution 
often arose from pulsatile dynamics, with single cells transitioning between low and high 
expression states. However, the timescales of these fluctuations were specific to each 
gene, and the pulses themselves ranged in intensity. For instance, gadX, which 
encodes a transcription factor that regulates ~34 genes in the acid resistance system, 
exhibits pulses of high amplitude and duration that persist well beyond the cell cycle 
length, as visible in multi-generation patterns of gene expression (Fig. 1C, Movie S1). In 
contrast, recA, which plays a central role in the processes of homologous recombination 
and SOS response, showed large amplitude pulses, but with shorter durations (Fig. 1D, 
Movie S2). Yet others, like araC, which encodes a transcription factor that regulates 
arabinose catabolism and transport, were more muted in their changes, and exhibited 
only mild, low amplitude fluctuations (Fig. 1E, Movie S3). Surveying 15 reporters, we 
observed a wide range of temporal gene expression profiles (Fig. 1F-G). Importantly, 
the dynamic activity observed for many reporters occurred under constant growth 
conditions, where parameters such as pH, temperature, and growth medium do not 
fluctuate. 
 
Next, we defined several metrics across which to assess dynamic behavior. We 
selected properties related to pulses including their frequency, duration, and amplitude 
(Fig. 2A). Pulse frequencies were broadly distributed, ranging from mean values of 0.25 
pulses per hour (one pulse every four hours) for recA to much less frequent conditions 
where our peak-finding algorithm rarely identified pulses (Fig. 2B). The distributions 
themselves were also highly variable, with some genes exhibiting tight distributions 
such that pulses always tended to occur at about the same frequency, while others 
were broadly distributed. For instance, pulses in bolA tend to be fairly narrow in their 
distribution while evgA pulses have a much less standardized frequency. Pulse 
durations typically ranged from 0.5 - 3 hours, and again showed instances of precision 
(e.g. recA, sulA) in addition to examples with widely variable durations (e.g. evgA, purA, 
rob). Pulse amplitudes were predominantly small (within 25% of the mean, or 0.25x), 
but there were notable instances where the distributions had long tails such that 
amplitudes extended well above this for a subset of the pulses. For example, gadX and 
recA exhibit pulses that significantly deviate from the mean.  
 
We used these data to look for general trends and relationships related to pulse 
properties. We found that pulse frequency and amplitude were positively correlated for 
the genes we analyzed, while frequency and duration were inversely related (Fig. 2C). 
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To alleviate the potential concern that these relationships were a result of the specific 
method by which we identified pulses, we repeated the calculations under a range of 
different peak determination thresholds and found that our results were not sensitive to 
the precise threshold definition (Fig. S3). Coefficients of variation from our static 
snapshots were positively correlated with pulse frequency and amplitude, and inversely 
correlated with duration (Fig. S4). These results on relationships between pulse 
properties suggest that there may be some pulsing regimes that are uncommon in 
practice. For example, we did not observe pulses with high frequency and low amplitude 
or long durations. 
 
We next asked what characteristic timescales the gene expression dynamics exhibited 
by calculating the autocorrelation of the fluorescence signal. In all cases, we observed 
monotonically decreasing autocorrelation curves, ruling out the presence of regular 
period signals, such as oscillatory behavior (Fig. S5). We calculated the half life 
associated with the autocorrelation curve for each gene (Fig. 2D-E). If the fluorescent 
reporter levels decrease solely due to dilution resulting from growth and division, the 
half life will equal the cell division time. Longer half lives can indicate the presence of 
memory, for example due to regulatory networks that causes signals to persist. We 
found that half lives were always greater than or equal to the cell division time, 
consistent with the use of stable fluorescent reporters (Fig. 2E). Notably, we observed 
cases where the average half life exceeded the cell division time by 2-3-fold, potentially 
indicative of memory within the network. The half life of the autocorrelation curve was 
positively correlated with pulse duration (Fig. S6), as longer duration pulses persist 
across generations. We verified that these calculations performed on data from mother 
cells were consistent with correlations within the lineage tree. Indeed, tracking 
fluorescence signals from mother to daughter to granddaughter cells revealed a strong 
positive correlation that persisted across multiple generations (Fig. S7).  
 
We next asked whether growth rate contributes to the observed variability in expression 
levels. While the growth rate of individual E. coli cells shows long-term stability during 
replicative aging 24, it can exhibit noisy temporal behavior 2,8,19. Patange et al. 
demonstrated that the growth rates fluctuate, with pulses of slow growth that last for 
several generations and are anti-correlated with pulses of activation of RpoS 8. 
However, it is not clear whether this feature is specific to RpoS or if it is common to 
many genes. We asked whether the pulsatile dynamics we observed coincided with 
dynamic patterns in growth rate. To test this, we extracted the instantaneous growth 
rate, as quantified by the elongation rate, from cell lineages over time and compared 
them to fluorescence data for the different reporters.  
 
In principle, growth can drive changes in fluorescence since it affects dilution rates; 
regulatory links between growth rate and fluorescence are also possible. Alternatively, 
fluorescence levels, which report underlying cellular properties such as those related to 
metabolism, could precede changes in growth (Fig. 3A). In both cases, these 
relationships could be positive or negative depending on the precise underlying 
mechanism.  
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To distinguish between these possibilities, we computed temporal cross-correlations 
between fluorescence and growth rate, Rfluo,gr(t) (Fig. 3B). The cross-correlation 
measures how well the fluorescence and growth signals are correlated, when the 
growth signal is shifted by a time t relative to the fluorescence signal. Cross-correlation 
curves for our reporters have characteristic shapes, where signals are uncorrelated at 
large positive and negative values of the time shift, t. For intermediate values of t, we 
regularly observed peaks or valleys in the cross-correlation. We defined Rextreme as the 
point on the cross-correlation with the largest absolute value, indicating the largest 
correlation between the fluorescence and growth rate signals. Rextreme can be either 
positive or negative, depending on whether the signals are correlated or anti-correlated. 
We also defined textreme as the time shift associated with Rextreme, where textreme > 0 when 
changes in growth precede changes in fluorescence and textreme < 0 when fluorescence 
leads growth.  
 
We found examples where a strong anti-correlation between fluorescence and growth 
were visible, such as with the gadX reporter, and other cases where the signals were 
mildly positively correlated, such as with the recA reporter (Fig. 3C). To quantify this 
trend across many cell lineages, we calculated cross-correlations between growth and 
fluorescence for all reporters (Fig. 3D). In many cases we observed an anti-correlation 
with a positive time shift between growth rate and gene expression, indicating that the 
pulses of expression from these promoters were preceded by a decrease in growth rate. 
Although the accumulation of fluorescent proteins resulting from reduced dilution due to 
cell growth and division could potentially artificially generate this relationship, we 
observed only a modest anti-correlation for the majority of promoters, and no anti-
correlation for recA and sulA (Fig. 3E). Thus, it is unlikely that these results are due 
solely to a reduced dilution rate. 
 
Changes in growth rate never lagged changes in fluorescence for all reporters we 
measured (textreme ³ 0) (Fig. 3F). It is possible that fluorophore maturation times could 
systematically introduce a lag between actual promoter activity and read out of the 
fluorescent protein. Maturation times for our reporters are relatively rapid, with 50% of 
fluorescent proteins maturing within ~6 minutes 26, however reporter maturation times 
could systematically introduce a small positive shift in textreme. Overall, our 
measurements indicate that even cells growing exponentially under optimal conditions 
undergo episodes of slow growth that are largely followed by the pulses of stress-
related genes, which frequently demonstrate an inverse relationship between growth 
rate and fluorescence (Fig 3G). In general, there was little relationship between pulse 
properties such as frequency, amplitude, and duration, and the properties related to 
growth rate and fluorescence correlations (Fig. S8), thus these features appear to be 
largely independent. 
 
A critical question is whether these changes in gene expression and growth have 
concrete implications for whether a single cell will survive or die following stress. In 
other words, are the dynamics we observed sufficient to provide meaningful phenotypic 
differences that cause a cell to evade or succumb to stress? Slow growth and induction 
of stress response genes have previously been reported as mechanisms that allow 
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survival at the populational level 27–31. This prompted us to investigate whether pulses in 
gene expression and growth influence the chances of survival under stress. Further, we 
asked whether survival was the result of a fortuitous condition of gene expression or 
slow growth upon stress introduction, or if a cell’s past history was important.  
 
For these studies, we focused on expression of gadX, as our measurements of single-
cell gene expression demonstrate that this reporter is expressed in large pulses and has 
a strong anti-correlation with growth. We previously demonstrated that gadX is 
heterogeneously expressed in the absence of antibiotic stress and that expression 
levels correlate with longer survival times under constant carbenicillin exposure 7; 
however, it is unclear how prior history or pulsing dynamics contribute to this phenotype. 
Here, we quantified how gadX expression preceding sudden exposure to a lethal 
antibiotic dose influences survival. To do so, we leveraged the mother machine device 
to rapidly switch input medium and exposed exponentially dividing cells to a short pulse 
of ciprofloxacin, a fluoroquinolone drug widely used to treat bacterial infections. We 
treated cells with 2 µg/ml ciprofloxacin, which corresponds to 100x the minimum 
inhibitory concentration (MIC), for 35 minutes before switching back to growth medium 
without antibiotics. This experimental set up allowed us to monitor the dynamics of gadX 
expression and growth in single cells prior to, during, and after antibiotic treatment while 
also recording the outcome of each cell lineage.  
 
Within the same experiment, we observed instances where single cells were able to 
survive ciprofloxacin treatment (Fig. 4A, Movie S4) and also cases where treatment 
killed the cells (Fig. 4B, Movie S5). In addition to surviving and dying, we also observed 
a third category of outcomes where cells filamented. However, it was difficult to 
accurately assess whether these cells survived or died, as they were frequently swept 
out of the mother machine chamber and lost from the field of view. Thus, we focused 
our analysis on the surviving and dying cells because we could accurately assess their 
outcomes. By tracking gene expression history preceding antibiotic treatment, we 
observed pulses in fluorescence from the gadX reporter prior to ciprofloxacin addition in 
both the surviving and dying cells (Fig. 4C). However, cells that were in the midst of a 
pulse of expression were more likely to survive. In contrast, cells that exhibited 
expression pulses in the past, but had low expression at the time of ciprofloxacin 
treatment were more likely to die. Thus, cells which are in the fortuitous state of having 
an ongoing gadX pulse at the time of ciprofloxacin addition are more likely to exhibit 
transient stress tolerance. 
 
We also looked at cellular outcome as a function of the growth rate. Consistent with our 
results showing anti-correlations between fluorescence and growth for gadX (Fig. 3D), 
we observed decreased growth rates in cells that survived, which were associated with 
increases in fluorescence signals (Fig. 4D). However, reduced growth rate alone does 
not appear to be sufficient for survival, as we observed cells that died which had similar 
growth rates to those that survived. Measurements of the instantaneous fluorescence 
and growth rate at t = 0, just prior to antibiotic addition, show that most surviving cells 
exhibited both elevated gadX expression and reduced growth rate immediately prior to 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 15, 2020. ; https://doi.org/10.1101/2020.09.14.297101doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.297101


ciprofloxacin treatment (Fig. 4E), and our findings indicate that the prior dynamics are 
what give rise to these conditions.  
 
Neither growth rate nor gadX expression alone is expected to completely determine 
cellular outcome, as stress response is a complex process; instead, our results suggest 
that pulsing dynamics can bias the probability that a single cell will live or die. Cell-to-
cell heterogeneity in gadX expression is the result of pulsing dynamics, which produce 
diverse distributions of cells. Thus, we demonstrate that gadX pulsing can play a 
protective role against ciprofloxacin stress, demonstrating a clear link between single-
cell dynamics and cell fate. 
 
Discussion 
Although cells can display substantial phenotypic heterogeneity in constant 
environmental conditions, the timescales over which gene expression levels and growth 
rate fluctuate and how this ultimately impacts function are often less clear. To provide 
insight into these questions, we focused on genes involved in stress response in E. coli. 
Our results demonstrate that distributions of gene expression levels and growth rates 
can originate from rich dynamic activity, where individual cells transition between low 
and high expression over time. Our findings expand previously published observations 
on pulsing dynamics 8,13,14,17,32 to a broader set of genes, suggesting that these time-
varying differences in expression and growth may be more common than previously 
appreciated. These fluctuations occur under uniform, unstressed conditions and are 
observed across genes with diverse stress response roles. The specific properties of 
these fluctuations, including pulse duration, amplitude, and frequency vary significantly 
between individual genes. Notably, temporal changes in gene expression are also 
related to growth. In our measurements, we found many instances where pulses of high 
activity followed decreases in growth rate. However, this link is not universal, which 
indicates that this effect is not an unavoidable consequence of growth, and rather that 
the expression and growth relationship is specific to each gene. Finally, we asked 
whether gene expression dynamics have functional consequences, focusing on 
expression of gadX. We showed that a functional outcome of gadX pulsing and the 
corresponding decrease in growth rate is that cells are more likely to survive following 
sudden exposure to a lethal dose of ciprofloxacin.  
 
Our results with gadX join a small number of other studies demonstrating examples of 
functional phenotypic heterogeneity. For example, the stochastic activation of diverse 
stress response genes, such as those encoding porins 33, the catalase-peroxidase KatG 
34, and the multiple antibiotic resistance activator MarA 6,35,36 result in transient tolerance 
to exogenous stress. Other examples include biased partitioning of efflux pumps during 
cell division that results in differential antibiotic susceptibility 37 and heterogeneous 
induction of gad regulon genes during antibiotic treatment that cross-protects cells 
against subsequent acid stress 9.  
 
Reduced growth rates can also enable cells to transiently resist stress, for example, by 
playing a major role in the formation of persister cells 28,38. By tracking expression 
dynamics and growth rates simultaneously, we found many instances in which these 
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metrics are inversely correlated over time. Interestingly, an analogous observation was 
recently reported by Patange et al. 8 that demonstrated that the stress response master 
regulator RpoS is expressed with pulsatile dynamics in exponentially dividing cells and 
is inversely correlated with growth rate. RpoS participates in the regulation of many 
genes characterized in our study, including bolA, dinB, evgA, gadX, oxyR, and rpoH 
(Table S1), which could in principle indicate that the pulsatile RpoS expression is 
transmitted to several of its downstream genes. However, additional mechanisms might 
underlie this phenomenon, as some genes in our study with strong growth rate anti-
correlations (e.g. marA) are not known to be regulated by RpoS. It is also noteworthy 
that, in addition to RpoS, at least one additional sigma factor, RpoH, was activated with 
pulsatile dynamics during exponential growth, a behavior that can potentially be 
propagated to >150 downstream genes that collectively control the cellular heat-shock 
response 39,40. The pulsatile activity of these regulators might indicate that the 
mechanism by which sigma factors “time share” RNA polymerase complexes previously 
described in B. subtilis 41 might also be present in E. coli. Additionally, our results 
suggest that the pulses of activation of different sigma factors might be associated with 
different cellular growth statuses. Further investigations can help to decouple the roles 
of growth rate and gene expression in enabling survival.  
 
In addition, it would be interesting to conduct measurements using pairs of reporters so 
that expression pulses can be monitored simultaneously in the same cell. This is 
particularly interesting to examine in relation to the growth rate, as we observed many 
instances of anti-correlation, but the temporal properties of these pulses were distinct 
from each other. Further, future studies may be necessary to identify the mechanism 
underlying the pulsing dynamics. In some instances this is known, as in a recent study 
that identified LexA-induced heterogeneity as a key contributor to pulsing in SOS 
response genes including recA 14, however other examples will require further 
investigation. In addition, although we measure growth rate in our analysis, our findings 
do not preclude the possibility that growth rate is a secondary effect that is downstream 
of the true coordinating signal, such as metabolic state 42. Experiments that use 
reporters to measure genes involved in metabolism alongside the stress response 
reporters, or studies that carefully control the nutrient composition could be used to 
investigate this possibility. It will also be interesting to investigate how the information 
encoded in transcription factor dynamics is transmitted to downstream genes, and 
emerging technologies that enable the manipulation of gene expression over time could 
help to identify how these signals are propagated 43,44.  
 
Our findings reveal that pulsatile dynamics in gene expression and growth serve as a 
mechanism that cells can leverage to transiently resist stress. This dynamic behavior is 
spread across a broad range of stress response genes, including heat-shock response, 
multi-drug resistance, and oxidative stress and can enable subpopulations of cells to 
withstand temporary stress.  
 
Methods 
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Strains and growth media. Strains containing reporter plasmids were sourced from the 
collection created by Zaslaver et al. 45 , unless otherwise noted. Briefly, each strain has 
a low copy number plasmid (SC101 origin) containing the promoter sequence for the 
gene of interest upstream of the coding sequence for gfpmut2 green fluorescent protein 
(GFP). The strain reporting purA was sourced from Rossi et al. 7 and the strain reporting 
marA was sourced from El Meouche et al. 6, where the marA reporter has intact MarR 
binding sites. The purA and marA reporters use a low copy number plasmid (SC101 
origin) and the promoters of interest control the expression of cerulean cyan fluorescent 
protein (CFP). In all cases, we used E. coli MG1655 as the strain background. Cells 
were grown in M9 medium (0.1 mM CaCl2; 2 mM MgSO4; 1X M9 salts) supplemented 
with 0.4% glucose, 0.2% casamino acids, and 30 µg/ml kanamycin for plasmid 
maintenance. Media used in microfluidic experiments was supplemented with 2 g/L F-
127 Pluronic to prevent cell adhesion and growth outside of the mother machine growth 
chambers.  
 
Static fluorescence microscopy snapshots. Overnight cultures were diluted 1:100 
and incubated at 37C with shaking for ~3 hours until mid-exponential phase (OD600nm= 
1.0-1.3). 1 µL of cells were placed on 1.5% MGC (0.2% glycerol, 0.01% casamino 
acids, 0.15 μg/ml biotin, and 1.5 μM thiamine) low melting point agarose pads and 
imaged at 100X on a Nikon Ti-E inverted fluorescence microscope. Three separate 
overnight cultures were sampled and imaged for each reporter strain. 
 
Mother machine microfluidic device. The mother machine microfluidic master mold 
used was described previously in Ref. 25. Briefly, the master mold chip has 8 
independent main feed channels where growth media flows in and out. Each channel 
features 3,000 one-ended chambers (25 µm x 1.3 µm x 1.8 µm) where the mother cells 
are trapped. We made the microfluidic devices by pouring a degassed 10:1 mixture of 
dimethyl-siloxane monomer and curing agent (Sylgard 184 Silicone Elastomer Kit, Dow 
Corning) onto the wafer, which was then cured overnight at 65C. Individual chips were 
separated from the mold and a 0.75 mm biopsy punch was used to create inlets and 
outlets for each flow channel before the chip was plasma bonded to a glass slide. 
 
Time-lapse microscopy movies. Overnight cultures were diluted 1:100 and incubated 
at 37C with shaking for ~3 hours until mid-exponential phase (OD600nm= 1.0-1.3). Cells 
were concentrated by centrifugation (6,000xg for 2 min) and loaded into the microfluidic 
chip. Cells were seeded in the growth chambers by centrifugation at 6,000xg for 3 min. 
Media was supplied at a flow rate of 20 µL/min using a peristaltic pump. Cells were 
allowed to adapt to growth in the device for at least two hours before imaging. Time-
lapse movies were acquired with a 100X oil objective on a Nikon Ti-E inverted 
fluorescence microscope equipped with a perfect focus system and a temperature 
control chamber that was set at 37C for the duration of the experiment. Images were 
acquired in phase contrast and epifluorescence illumination with a GFP or CFP filter 
every 5 min. At least two independent mother machine channels were imaged for each 
reporter; the total number of cell lineages tracked for each reporter is listed in Table S2. 
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Microscopy image processing and fluorescence and growth rate analysis. For 
static snapshots, cell images were segmented with the SuperSegger software 46. For 
mother machine experiments, we performed automated cell segmentation and lineage 
tracking using the deep learning-based software DeLTA 25. Unless otherwise noted, 
only data for the ‘mother’ cell trapped at the top of the growth chambers was used in 
quantitative analysis. We smoothed the fluorescence data using a moving average filter 
with a window of 5 frames.  
 
To estimate growth rates, we calculated the numerical derivative as the difference in cell 
length between adjacent frames. When there is no cell division event, this derivative is 
calculated as (Lt – Lt-1)/Dt, where Lt is the length of the cell at time t and Dt is the time 
between frames (5 min). In cases where a cell division event occurs, this calculation is 
modified to (Lt + Dt – Lt-1)/Dt, where Dt is the length of the daughter at time t. After 
calculating the growth rate, we smoothed the data using a moving average filter with a 
window of 5 frames. 
 
Cell division times are calculated as the time between division events. 
 
Pulse identification. To allow comparison across all reporters, which have different 
expression levels and where imaging exposure times are different (Table S2), we 
normalized each time-series by its mean. Pulses of gene expression were identified 
using the built-in MATLAB function findpeaks, which identifies local maxima. We set the 
threshold for the minimum peak prominence at 0.15, unless otherwise noted. 
 
Autocorrelation and cross-correlation calculations. We calculated the 
autocorrelation of the fluorescence signal—Rfluo,fluo(t) where t is the time shift—using 
the MATLAB function xcov with the unbiased normalization method. We then 
normalized the entire signal by the value of the autocorrelation at zero time lag, 
Rfluo,fluo(0). The half life was calculated by taking the mean of all autocorrelation signals 
from individual cell lineages and identifying the time shift value where it crosses 0.5. 
 
The cross-correlation between the fluorescence signal and the growth rate, Rfluo,gr(t), 
was calculated using the MATLAB function xcov with the unbiased normalization 
method. The signal was then normalized by the square root of the product of the 
autocorrelation at zero time shift of the fluorescence and growth rate signals: (Rfluo,fluo(0) 
Rgr,gr(0))1/2.  
 
Rextreme is the value of Rfluo,gr(t) with the largest absolute value. textreme is the time lag 
value associated with Rextreme. 
 
Antibiotic survival assay. Mother machine experiments were initiated using the 
methods described above. During image acquisition, cells were provided with fresh 
medium for 14 hours, followed by 35 minutes of treatment with medium supplemented 
with 2 µg/ml ciprofloxacin, then fresh medium again for 16 hours. The outcomes of 
ciprofloxacin treatment for each lineage were manually scored as: ‘survived,’ ‘died,’ or 
‘filamented.’ Cells were scored as ‘surviving’ if cell division was observed in the 
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chamber at the end of the full 16 hours after the second addition of fresh medium. Cells 
were scored as ‘dying’ if growth ceased in the chamber at any point after antibiotic 
exposure. ‘Filamented’ cells were excluded from the analysis, as it was difficult to 
accurately assess their outcome since they were frequently swept out of the chamber 
and field of view.  
 
Principal component analysis. We conducted principal component analysis using six 
metrics for each of the 15 reporters: pulse frequency, pulse duration, pulse amplitude, 
autocorrelation half life, Rextreme, and textreme. Principal component analysis was 
performed using the MATLAB function pca with centered data and the singular value 
decomposition algorithm.  
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Figure 1. Cell-to-cell heterogeneity and temporal dynamics of gene expression. (A) 
Histograms of fluorescence values show cell-to-cell variation. Values are presented 
normalized relative to their means to allow for comparison across reporters. The same 
data without normalization are shown in Fig. S1. Corresponding coefficient of variation 
(CV) values obtained from snapshot images of cells grown in bulk cultures are listed in 
the figure. The skewness (skew) of the distribution, which is positive for distributions 
that are right-skewed, are also listed. Insets show phase contrast and fluorescence 
images for representative strains. Functional classes are listed for each gene. (B) 
Schematic representation of fluorescence signal over time originating from single cells 
with slow or fast dynamics of gene expression that result in identical fluorescence 
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distributions for the final timepoint. (C-E) Representative kymographs of cells containing 
transcriptional fluorescent reporters for (C) gadX, (D) recA, and (E) araC. In all cases, 
fluorescence values are normalized to the mean to allow comparisons across the 
reporters. Scale bar, 5 µm. (F) Single-cell measurements of green fluorescent protein 
expression (GFP) over time for the gadX reporter. Colored heat maps summarize the 
time-series data. Data from 25 cells are shown, however this represents a subset of the 
time-series data. (G) Heat maps summarizing the temporal dynamics of gene 
expression for all reporters. To allow comparison across reporters, fluorescence traces 
are normalized by their mean as in (F). 
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Figure 2. Pulsing dynamics vary across the reporters. (A) Schematic representation of 
pulse characteristics. (B) Distributions of pulse frequency, duration, and amplitude for all 
reporters. (C) Correlations between pulse properties. Each circle represents the median 
values for the reporter analyzed. (D) Autocorrelation of the fluorescence signal for 
independent cell lineages with the gadX reporter. Half life is defined as the value of the 
time shift t when the mean of the autocorrelation curve crosses 0.5. (E) Cell division 
time and half life for each of the reporters. Error bars show standard deviation around 
the mean.  
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Figure 3. Growth and gene expression dynamics are often anti-correlated. (A) Two 
possible models for the relationship between fluorescent reporter levels and growth. (B) 
Schematic of cross-correlation function Rfluo,gr(t) indicating points corresponding to 
Rextreme and textreme (top). Temporal patterns of the fluorescence and growth rate and 
their impact on Rextreme and textreme (bottom). (C) Representative fluorescence (green) 
and growth rate (magenta) values over time for a single mother cell with a reporter for 
gadX (left) or recA (right). Black dots at the top of the figure indicate cell division events. 
Data are smoothed with a moving average filter with window of 5 frames. (D) Cross-
correlations for all reporters. Shaded region represents standard deviation about the 
mean. (E) Rextreme and (F) textreme values for each reporter. (G) Rextreme as a function of 
textreme.  
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Figure 4. Cell-to-cell differences in gadX expression and growth influence survival 
outcomes after antibiotic exposure. (A) Representative kymograph of a cell lineage that 
survives and (B) dies after antibiotic treatment. Images are from nearby chambers 
within the same microfluidic chip. Shaded area in red indicates 35 minute period of 
ciprofloxacin treatment. (C) Single-cell gadX expression and (D) growth rate for the 
period preceding ciprofloxacin treatment. Cell numbers in (C) and (D) correspond to the 
same cells. Time-series are sorted by the mean value of the fluorescence signal for t < 
0, from high to low. (E) Individual cells that survived (green) or died (black) following 
ciprofloxacin treatment plotted as a function of growth rate and fluorescence at t = 0. 
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