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ABSTRACT 

The contribution of peptide amino-acid sequence to collision cross-section values (CCS) has 

been investigated using a dataset of ~134,000 peptides of four different charge states (1+ to 4+). 

The migration data was acquired using a two-dimensional LC/trapped ion mobility 

spectrometry/quadrupole/time-of-flight MS analysis of HeLa cell digests created using 7 different 

proteases and was converted to CCS values. Following the previously reported modeling 

approaches using intrinsic size parameters (ISP), we extended this methodology to encode the 

position of individual residues within a peptide sequence. A generalized prediction model was 

built by dividing the dataset into 8 groups (four charges for both tryptic/non-tryptic peptides). 

Position dependent ISPs were independently optimized for the eight subsets of peptides, resulting 

in prediction accuracy of ~0.981 for the entire population of peptides. We find that ion mobility is 

strongly affected by the peptide’s ability to solvate the positively charged sites. Internal positioning 

of polar residues and proline leads to decreased CCS values as they improve charge solvation; 

conversely, this ability decreases with increasing peptide charge due to electrostatic repulsion. 

Furthermore, higher helical propensity and peptide hydrophobicity result in preferential formation 

of extended structures with higher than predicted CCS values. Finally, acidic/basic residues 

exhibit position dependent ISP behaviour consistent with electrostatic interaction with the peptide 

macro-dipole, which affects the peptide helicity.  

 

 

Keywords:  Collision cross-section (CCS), Ion mobility prediction, Trapped ion mobility 

spectrometry, Sequence Specific Ion Mobility Calculator (SSICalc), Peptide ion mobility, Position 

dependent intrinsic size parameter 
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INTRODUCTION 

Ion mobility spectrometry (IMS) has been long considered as a promising tool for many 

applications in structural biology,1 proteomics2 and many other analytical applications.3,4 

Separation of isobaric peptides,5 improving signal-to-noise ratio in bottom-up approaches,6 

studying protein conformation and protein assemblies7 represents an incomplete list of its 

proteomic applications. One of the attractive options of IMS is the possibility to model gas-phase 

peptide behaviour in ion-mobility based separation. Building a comprehensive collisional cross 

section (CCS) prediction model for peptides will allow not only the direct application to improve 

confidence of MS/MS-based identification8 but will help better the current understanding of 

underlying mechanisms for ion mobility-based separations, resulting in improving MS/MS-based 

quantitation by reducing the complexity of peptide ions prior to tandem mass spectrometry.9,10 

Considering the history in the progress of this field, it is easy to notice striking similarity 

between IMS and reversed-phase high performance liquid chromatography (RP-HPLC). Both 

were conceived long before arrival of MS based proteomics.11-13 Both techniques are used as 

front-end devices to improve delivery of separated compounds into the mass spectrometer and 

are amenable to modeling of the separation processes – driven by peptides’ size/shape in the 

gas phase and hydrophobicity, respectively.8,14  

Due to its preparative capability, RP-HPLC became one of the most important techniques in 

protein/peptide analytical chemistry long before the proteomic era. Initial peptide retention time 

prediction models aimed at improving separation method development during early 1980s.14,15 

These early models were based on an additive principle, which considers that the hydrophobicity 

for a peptide is equal the sum of its constituent residues’ hydrophobicities. The effect of peptide 

sequence in addition to its composition in RP HPLC has been reported in 198716 and first 

sequence specific model has been developed in 2004 based on the collection of just 346 tryptic 

peptides.17 The authors suggested using position-dependent hydrophobicity coefficients for 

individual amino acids to compensate for unique features of peptide N-termini observed due to 

ion-pairing interactions; however, sufficient data density is required to model this concept. 

Development of mass spectrometry and proteomics brought increased throughput and 

confidence in peptide identifications, thus increasing the size of high-quality datasets available for 

prediction modeling.18 Proteomic peptide datasets have allowed the implementation of more 

complex prediction algorithms and opportunities to study a variety of structural features in 

peptides. In mid 2000s, Petritis et al. described retention modeling via an artificial neural network 

(ANN) approach using datasets of ~6,00019 and later ~300,000 peptides.20 The increasing size of 

proteomic datasets near the 2010s opened the opportunity to study the effects of structural motifs 
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such as N-cap helical stabilization on peptide retention in RP HPLC. Given only a small portion 

of peptides exhibit amphipathic helicity, such study required a collection of ~280,000 peptides.21 

Continuous efforts in standardization of RP HPLC separation in proteomics22,23 and progressive 

growth in MS productivity in the past decade has allowed for the collection of high quality RP 

HPLC data in the size of hundreds of thousand to over a million peptides.24-27 This paved the 

possibility for wider application of high data density machine learning techniques to address 

peptide retention time prediction problems.27-29 

Clemmer and co-workers led the way in the development of IMS technology for proteomic 

applications,30 peptide IMS data collection, and modeling peptide ion mobility.8,31 Valentine et al. 

used 660 peptides to derive the intrinsic size parameter (ISP) coefficients, which multiplicatively 

scales the mass of individual residues used in CCS additive prediction models.31 The same group 

of authors expanded this algorithm to the collection of 2,094 tryptic peptides 5-15 amino acids 

long.8 In a different approach, Shah et al. built a machine-learning based model attempting to 

introduce additional features including but not limited to: normalized retention time in RP HPLC, 

peptide length, gas phase basicity, and number of negatively/positively charged groups.32 

However, the size of this dataset, which contained 3933 (2+), 3916 (3+), 717 (4+ peptides), was 

not sufficient to define sequence-specific features. Peptide structural properties are of ultimate 

importance for IMS. The same peptide species can assume different conformations with 

drastically different CCS values.33 This feature is the most obvious for 3+ peptide populations, 

which exhibit significant split in CCS versus molecular weight plots – designated as compact and 

extended structure populations.32,34,35 Another argument confirming sequence dependent 

character of peptide IMS was provided by Lietz et al.34 The authors used Lys-C and Lys-N digests 

of K562 to show that N-terminal location of Lys results in lower CCS values compared to the same 

sequences with C-terminal Lys for 14 peptide pairs.  

Overall, there is ample evidence of sequence-dependent character of IMS separation. Yet, 

compared to RP HPLC, there are no CCS prediction models incorporating these features. One of 

the problems is a significant advantage of chromatographic separations in terms of data 

availability: hundreds of thousand data points23-25,27 vs. thousands.8,32 The timsTOF Pro, a 

quadrupole/time-of-flight (Q/TOF) mass spectrometer coupled with trapped ion mobility 

spectrometry (TIMS) cells, achieves a resolving power of over 220K and the scan speed (100 ms 

per scan) between LC and Q/TOF mass analyzer, showed a lot of promise in this regard.35-37 

Similar to chromatographic applications, measuring CCS values for few hundred thousand 

peptides may provide sufficient data for application of machine learning approaches. At the time 

of our work, Meier et al. concurrently developed a deep learning CCS prediction model using 
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570,000 unique combinations of sequence, charge state (2+, 3+ and 4+), including peptides with 

oxidized methionine.38 However, many machine learning approaches often operate as "black 

boxes", providing limited information on the underlying separation mechanisms. Meier et al. have 

demonstrated the contributions of the 20 amino acid residues and the qualitative trends for 

hydrophobicity, Pro content, and position of His.38 They highlighted the difficulty to model the 

observed physicochemical properties along with sequence dependent features directly with the 

linear sequences and our work here is able to address such difficulties as well as investigate finer 

composition and position dependent features that are novel to our approach. Therefore, a semi-

empirical Sequence-Specific Retention Calculator (SSRCalc) approach based on position-

dependent correction coefficients was applied in this work to establish a Sequence-Specific Ion 

mobility Calculator (SSICalc).39 The SSRCalc has been used successfully in the past for modeling 

various modes of peptide HPLC,39-41 and capillary zone electrophoresis.42 The dataset for CCS 

modeling was obtained by the 2D LC (SCX/RP)/ESI/TIMS/Q/TOF analysis of multiple alternative 

proteases digests using timsTOF Pro.  

 

 

EXPERIMENTAL SECTION 

Materials. Ammonium bicarbonate (ABC), 2-amino-2-(hydroxymethyl)-1,3-propanediol 

hydrochloride (Tris-HCl), sodium deoxycholate (SDC), ammonium acetate (AA), sodium N-

lauroylsarcosinate (SLS), tris(2-carboxyethyl)phosphine (TCEP), 2-chloroacetamide (CAA), 

calcium chloride, ethyl acetate, acetonitrile, acetic acid, trifluoroacetic acid, V8 protease (Glu-C), 

lysyl endopeptidase (Lys-C) and other chemicals were purchased from Fujifilm Wako (Osaka, 

Japan). Modified trypsin, chymotrypsin and Asp-N / Lys-N / LysargiNase were procured from 

Promega (Madison, WI) / Thermo Fisher Scientific (Waltham, MA) / Merck (Darmstadt, Germany), 

respectively. Polystyrene-divinylbenzene (SDB) and cation exchange-SR (SCX) EmporeTM disks 

were purchased from GL Sciences (Tokyo, Japan). Water was purified by a Millipore Milli-Q 

system (Bedford, MA). 

 

HeLa cell culture and protein extraction. HeLa S3 (human cervical adenocarcinoma) cells were 

cultured to 80% confluence in 10-cm diameter dishes then harvested in lysis buffer containing 

protease inhibitors (Sigma-Aldrich, St. Louis, MO), 12 mM SDC, 12 mM SLS, 10 mM TCEP, 40 

mM CAA in 100 mM Tris buffer (pH 8.5). The lysate was vortexed and sonicated on ice for 20 

min. The final protein concentration of the sample was determined using the bicinchoninic acid 

(BCA) protein assay (Thermo Fisher Scientific). 
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Protein Digestion. The proteins were digested using previously described phase-transfer 

surfactants (PTS) method.43 For LysargiNase digestion, protein extract was diluted 10-fold by 

using 10 mM CaCl2 and digested with LysargiNase (1: 40 w/w) overnight at 37 °C. For other 

proteases, extracts were diluted 5-fold by with 50 mM ABC and digested overnight at 37 °C using 

trypsin (1: 40 w/w), Lys-C (1: 20 w/w), Lys-N (1: 50 w/w), Glu-C (1: 20 w/w), Asp-N (1: 40 w/w), 

chymotrypsin (1: 50 w/w) protease/substrate ratios. After enzymatic digestion, an equal volume 

of ethyl acetate was added, and the mixture was acidified with 0.5% trifluoroacetic acid (final 

concentration) according to the PTS protocol. The mixture was shaken for 1 min and centrifuged 

at 15,700 g for 2 min to separate ethyl acetate phase from the aqueous phase. The latter was 

collected and desalted by using SDB-StageTips.44 The amount of peptides was quantified by LC-

UV at 214 nm relative to standard BSA tryptic digests and kept in 80% ACN and 0.5% TFA at −20 

°C until use. 

 

Peptide fractionation by Strong Cation Exchange StageTip. The preparation of SCX-

StageTips were performed in 200-μL tips format as described previously.45 SCX buffers were 

made in 15% acetonitrile with stepwise increase of elution buffer strength: F1 - 0.1% TFA; F2 - 

1.0% TFA; F3 - 2.0% TFA; F4 - 3.0% TFA; F5 - 3.0% TFA and 100 mM AA; F6 - 3.0% TFA and 

500 mM AA and; F7 - 0.1% TFA and 500 mM AA, as described previously.46 Two technical 

replicate SCX separations have been done for each digest. Conditioning and equilibration were 

done through sequential passing 100 μL buffer and centrifugation at 1000 × g for 1 min of the 

following buffers: methanol, F7, F5 and F1. 20 µg of digests from HeLa cell lysate were loaded 

into the SCX-StageTip, spun at 1000 × g for 1 min and the eluate was collected as flow-through 

(FT). The bound peptides eluted with 100 µL of F1 by centrifugation at 1000 × g for 1 min. 

Subsequent fractions were collected using 100 µL of SCX buffers F2 to F7. F5-F7 were 

lyophilized, resuspended in 50 μL of 0.1% TFA and desalted by SDB-StageTips.  

 

NanoLC/TIMS/Q/TOF analysis. NanoLC/MS/MS analyses were performed using a hybrid 

ESI/TIMS/Q/TOF mass spectrometer (timsTOF Pro, Bruker, Bremen, Germany), which was 

connected to an Ultimate 3000 pump (Thermo Fisher Scientific, Germering, Germany) and an 

HTC-PAL autosampler (CTC Analytics, Zwingen, Switzerland). Peptides were separated at 50 °C 

using 150 mm length × 100 μm ID capillary column with 6 μm ID ESI tip, packed with Reprosil-

Pur 120 C18-AQ 3 μm particles (Dr. Maisch, Ammerbuch, Germany). The injection volume was 

5 μL and the flow rate was 500 nL/min. The mobile phases consisted of (A) 0.5% acetic acid and 
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(B) 0.5% acetic acid and 80% ACN. A two-step linear gradient of 5−40% B in 45 min, 40−99% B 

in 1 min, keeping at 99% B for 5 min was employed.  

The timsTOF Pro mass spectrometer was operated in PASEF mode.47 Two methods were 

applied in IMS separation. Method 1 was applied for covering singly and multiply charged ions 

and method 2 was mainly used for depleting the contaminants usually singly charged background 

ions, respectively. The setting parameters are described in Table S1.  

TIMS funnel’s voltages were linearly calibrated using Agilent ESI-L Tuning Mix to obtain 

reduced ion mobility coefficients (1/K0) for three selected ions (m/z 622, 922, 1222).48 The 1/K0 

was converted to collisional cross section (CCS) using the Mason-Schamp equation.49 

 

                                                   (1) 

 

The z is the charge of the ions, e is the elemental charge (1.602 × 10-19 A·s), n0 is Loschmidt 

constant (2.686 × 1025 m-3), kb is Boltzman’s constant (1.380 × 10-23 kg·m2·K-1·s-2), μ is the 

reduced mass (mimg / (mi + mg), mi is the mass of ion; mg is the mass of N2, 1 Da = 1.660 × 10-27 

kg), K0 is the reduced mobility, (10-4 cm2·V-1·s-1) and T is the temperature (305 K). For the CCS 

calculation, pure N2 is assumed as the drift gas. 

 

Peptide identification and retention time prediction data filtering. The peak list in mascot 

generic format (MGF) was generated by MaxQuant v1.6.7.0,50 encoding information on both 

retention time and 1/K0 for each spectrum. The peptides were identified using X!Tandem Cyclone 

(12.10.01.1)51 against human subset of the Swiss-Prot database (July 2016 extraction) with 20 

ppm mass tolerance for both precursor and product ions. Carbamidomethyl (C) was set as a fixed 

modification. Oxidation (M, W), deamidation (N, Q), cyclization (N-term Q, C) and acetylation 

(protein N-term) were allowed as variable modifications, and strict enzymatic specificity allowing 

for up to 2 missed cleavages as search parameters. Redundant peptide identifications have been 

removed leaving the most intense peptide MS/MS hits with their correspondent 1/K0 and retention 

time values. Peptides with variable modifications were also removed for CCS prediction. All 

peptides with confidence score log (e) < -1 or better were additionally filtered using latest version 

of SSRCalc retention time prediction model.39 All peptides with retention time prediction error of 

more than ±6 min and low confidence score (-3 < log (e) <-1) have been removed as shown in 

Figure S1. 
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Model optimization. The preliminary length-specific ensemble of multiple linear regression (LS-

MLR) models by R package52 used to explore the variable space in CCS prediction has been 

derived for peptides with the selected charges and length (Eq.2): 

 

CCS = ∑ ∑ 𝑃𝑗𝐺𝑘
7
𝑘=1

25
𝑗=1 + 𝑏0                                            (2) 

 

where, Pj is the position and group dependent coefficients, Gk is the mass of each amino acid and 

b0 is a constant. Amino acids have been grouped in seven categories based on their 

physicochemical properties as follows: basic K, R and H; acidic D and E; polar S, T, N and Q; 

aliphatic A, V, I and L; aromatic F, W and Y; aliphatic/polar side chains M and carbamidomethyl-

Cys; P and G as amino acids with low helical propensity.  

On the other hand, the final algorithm of the Sequence-Specific Ion Mobility Calculator 

(SSICalc) encodes 13 position-dependent ISP values (j) for each amino acid (i) in a charge (z) 

and protease (e) tryptic/non-tryptic dependence: six on each terminus plus internal position. Our 

equation for the SSICalc model is shown in Eq.3 as the summation of a coefficient (P) multiplied 

by the number of amino acids (AA) in the peptide with the corresponding e, z, i, j state listed above 

and mass of the amino acid (Gi) along with a constant b0 term for the combined model: 

 

CCS = ∑ ∑ ∑ ∑ (𝑃𝑒,𝑧,𝑖,𝑗 ∗ 𝐴𝐴𝑒,𝑧,𝑖,𝑗 ∗ 𝐺𝑖)
13
𝑗=1

20
𝑖=1

4
𝑧=1

2
𝑒=1 + 𝑏0                 (3) 

 

Optimization of the charge sub-divided models followed a simple stochastic hill-climbing 

approach maximizing to the highest R2 correlation. In each iteration of the optimization, a 

randomly selected parameter was adjusted along a shift value until the prediction versus observed 

CCS stopped improving until which a subsequent parameter is selected for optimization. The 

initial variable-space parameters were set to a matrix of ones and the signed shift value was 

randomly selected.   

 

Data availability. The MS raw data and analysis files have been deposited with the 

ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the jPOST 

partner repository (http:// jpostdb.org)53 with the data set identifier PXD021440/JPST000959. 
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RESULTS AND DISCUSSION 

Data selection for model optimization. In this work, seven protease-digested (trypsin, 

LysargiNase, Lys-C, Lys-N, Glu-C, Asp-N and chymotrypsin) cell lysates have been analysed 

using SCX-StageTip fractionation applied prior to RP-LC/TIMS/Q/TOF analysis. SCX 

chromatography was chosen aiming to improve representation of peptides in different charge 

states. The selection of peptides for model optimization are crucial for generating a representative 

high-quality dataset. NanoLC/TIMS/Q/TOF measurements provided the reduced ion mobility 

coefficients (1/K0) and retention time for all identified peptides. These identifications have been 

additionally filtered using the SSRCalc peptide retention time prediction model as shown in Figure 

S1. Less than 1% of identified peptides were removed based on large retention prediction errors 

or low confidence score of -3 < log(e) < -1. Moreover, since IMS separates peptides based on 

their conformations similar to previous studies,32,34 multiple peptide conformations were detected 

in some instances (Figure S2). The 1/K0 values for model optimization were then selected 

corresponding to the most intense peptide MS/MS hit on each mobilogram (Figure S2) followed 

by the removal of redundant identifications in order to merge the dataset into 133,946 entries. 

There were 14,482, 86,268, 27,463 and 5,733 peptides belonging to the 1+, 2+, 3+ and 4+ 

populations, respectively. Peptides contained 1-11 positively charged residues (Lys, Arg, His and 

unmodified N-termini) and were 5-50 amino acids long (560-5245 Da): 14.7 residues on average. 

This represents a typical size/charge distribution of peptides encountered in bottom-up 

proteomics experiments. 

 

Evaluation of peptide bulk properties affecting CCS. Similar to prior work,32,35 plotting the 

dependence of CCS values on m/z resulted in definitive trend lines corresponding to four 

individual charges (Figures 1, 2). We used the characteristic shapes of these plots and properties 

of 100 peptides that are the most significant positive/negative outliers (Table 1, Figure S3) for 

each charge state to assess the effects of peptide bulk properties.  

The CCS versus m/z correlation plots for singly and doubly charged peptides are slightly 

concave, indicating the preference of longer peptides to be in more compact conformation. For 

longer highly charged (3+, 4+) peptides, the CCS trends became dispersed and a clear split-

population appeared in 3+ species, corresponding to compact (low CCS) and extended (high 

CCS) features observed previously.32,34,35 In addition, we found that the distributions between 

compact and extended conformation is protease-specific, e.g., 3+ Lys-N digested peptides 

containing two positive charges at N-termini predominantly assume compact conformation 

(Figure 2). The non-tryptic (terminated by any amino acid other than Lys or Arg) peptide 
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populations of all charges exhibited lower CCS values compared to tryptic ones. This observation 

was also confirmed by analyzing the population of the outliers (Table 1). For example, 93% of 1+ 

peptides with largest positive deviations are tryptic, while 94% non-tryptic species were found 

among 100 most negative outliers. Similar finding has been reported by Lietz et al., who compared 

CCS values for 3+ peptides from Lys-C and Lys-N digest. The authors explained this behaviour 

by the electrostatic interaction of N-terminal/C-terminal Lys with peptide macro-dipole, which 

should destabilize/stabilize peptide’s helical conformation, respectively. Similarly, 3+ Asp-N 

peptides exhibit even distribution between compact and extended structures, while Glu-C 

generated species tend to be in the latter conformation (Figure 2). Overall, LysargiNase/Lys-

N/Glu-C destabilize the helix favouring compact, whereas trypsin/Lys-C/Asp-N stabilize the helix 

inducing more extended form through interaction of terminal residues with peptide’s macro-

dipole.34 Detailed analysis of 1+ and 2+ correlation plots (Figure 2) also shows that trypsin/Lys-

C/Asp-N populations show some splitting between the dominant compact and extended 

subpopulations, although the CCS difference between two conformations was subtle. Similarly, 

LysargiNase/Lys-N/ Glu-C exhibit more uniform distribution in the 1+ and 2+ peptide populations. 

Furthermore, for 4+ trypsin/Lys-C/Asp-N, more preference to the extended conformation was 

observed compared to LysargiNase/Lys-N/Glu-C. For each protease, increasing charge state of 

a peptide led to higher tendency to be in extended conformation. 

Based on comparison of average peptide length for the entire population (Table S2) vs. the 

most significant outliers (Table 1), we find that shorter peptides are more consistent in 

conformational behaviour than the longer outlier peptides. In other words, shorter peptides are 

characterized by smaller prediction errors. Longer peptides have more accessible conformational 

states that can be either more compact or extended than the average population. This behaviour 

is particularly obvious for 3+ peptides, which exhibit a split for more than 20 mer species. Peptides 

with large positive prediction errors exhibit higher helical content calculated using the Agadir 

algorithm.54 Alpha-helical peptides are more linear in geometry and are unable to fold to smaller 

states thus will exhibit higher than expected CCS consistent with the positive prediction error we 

observed. Peptides with large positive deviations (Table 1) are more hydrophobic. This 

observation supports previous findings by Valentine et al.31 and Shvartsburg et al.56 reporting on 

high ISP values of hydrophobic residues.  

The peptide pI showed no obvious correlation with deviation from CCS vs. m/z plots, when 

entire peptide population was considered (Figure S4). However, when we isolate the top 100 

outliers in the dataset, as shown in Table 1, the general trends amongst all the charges are that 

positive prediction errors are associated with higher average pI values and vice versa. We have 
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an interest to investigate if there is a correlation between peptide CCS and electrophoretic mobility 

measured by capillary zone electrophoresis (CZE). Our advanced SSRCalc CZE model has R2 ~ 

0.995 correlation with experimental values42 and should provide an accurate estimation of 

electrophoretic mobility in solution at acidic pH when compared to experimental CCS. However, 

Figure S5A shows poor correlation between these two systems. Important to note that this plot 

consists of multiple sub-populations corresponding to peptides carrying different number of 

charged residues versus their CCS values for a particular charge state. Peptide electrophoretic 

mobility at acidic pH depends mostly from peptide charge (number of basic residues) and mass. 

The sequence-specific features in CZE largely are limited by N-terminal position of Asp and Glu, 

which reduces N-terminal charge/basicity. IMS separation are affected by many processes, 

including formation of helical structures, which results in poor correlation of CCS versus µef plots 

even when peptides with identical number of charged residues are considered. As shown 

previously,42 the semi-empirical model µef = k(Z/MX) can be optimized by modulating X such as 

1/3, 2/3, or 1/2. As CCS is proportional to mass (in Figure 1), we were able to linearize the CCS 

versus µef correlation by modulating X to 1/3 with R2 = 0.849 (Figure S5B). 

 

Length-specific multiple linear regression model. To explore the properties involved in the ion 

mobility of peptides in IMS, an ensemble of length-specific multiple linear regression (LS-MLR) 

model and charge states was built to predict the CCS values of the peptides. In each model, the 

number of independent variables increases with peptide length, as there are 20 amino acids per 

position in the peptide sequence. However, due to the nature of enzymatic digestions, the number 

of experimental data per peptide length was only distributed over a narrow range, and in particular, 

the number of longer peptides was sparse (Figure S6A). To reduce the number of independent 

variables, in addition to the terminal cleaved site, the 20 amino acids were grouped into 7 by 

similarity and LS-MLR analyses were performed using the relative position coefficients (Pj) 

corrected for the mass (Gk) of each amino acid (Figure 1). Different proteases cleaved at N/C-

terminal sides of different amino acids, resulting in the diverse CCS values observed in IMS 

(Figure 2). Therefore, individual LS-MLR models were built for peptides generated by different 

proteases and in different charged states, and the position coefficients were converted to 

coefficients for each amino acid based on mass as shown in Figure 3.  

  As a first step, LS-MLR was applied to trypsin- and LysargiNase-digested peptides that have 

opposing terminal Lys/Arg (Figure 3). The trypsin-digested peptides have higher coefficients at 

the C-termini especially for aliphatic and positively charged amino acids, whereas positive 

contribution at P3 position was observed for LysargiNase-digested peptides. Second, both 2+ and 
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3+ tryptic had larger coefficients at the C-termini, and only the 3+ peptides had larger coefficients 

at the N-termini. Moreover, some polar amino acids such as D, E, S, T, N, and Q have lower 

coefficients in the internal region. Finally, LS-MLR was performed for each length of tryptic 

peptides. The bottom two heatmaps (Figure 3C and 3D) show the coefficients in CCS prediction 

for 3+ tryptic peptides of different lengths. At a peptide length of 15, the coefficients are higher for 

both termini and lower for the polar amino acids in the central region. However, as the length of 

the peptide increased, the coefficients become more uniform in the central region.  

  The LS-MLR model has been able to achieve an R2 value of 0.977 for the CCS prediction 

derived from the tryptic peptides for specific charge and length (Figure S6B, 1+ peptides with 7-

12 a.a., 2+ peptides with 8 -20 a.a. and 3+ peptides with 11-25 a.a.). While the LS-MLR models 

could produce good correlations for peptides of particular length, the overfitting still occurred due 

to the limited size of the dataset at each length. Therefore, it is necessary to apply an alternative 

predictive model that is not limited by the number of features to obtain a global prediction of CCS 

values. To compensate for these features, we employed the physicochemical properties of 

trypsin/non-trypsin peptides, charge states, and amino acid positions via a step-by-step charge 

and protease dependent ensemble linear regression model optimization, as shown in the next 

section. 

 

Peptide length independent step-by-step optimization using Intrinsic Size Parameters 

(ISP) approach as a starting point. Each optimization step has been followed by the alignment 

of eight peptide subsets: tryptic/non-tryptic in four different charge states to fit all eight correlation 

plots to CCSpred versus CCSexp with slope 1 and intercept 0 as shown in Table S2. In every step 

each of the eight independently optimized sub-models have their own CCS-aligning slope and 

intercept values that are allowed to vary from this initial m/z data alignment. It should be noted 

that the R2 correlation for the combined collection of peptides is higher than individual subgroups 

due to wider range of the experimental CCS values. 

  Step 1: twenty ISP values optimized for two datasets (tryptic and non-tryptic). Figure 4A shows 

comparison of ISPs reported by Valentine et al.8 and by Shvartsburg et al.56 versus ours optimized 

for tryptic/non-tryptic datasets. Most of the hydrophobic residues’ ISP values are larger compared 

to the ones reported previously. Conversely, polar residues showed lower ISP values, favouring 

more compact structures. These deviations are likely originated from the significant difference in 

charge and size distribution in these two datasets. ISP values for Lys and Arg, which have been 

found to be similar to His and in close agreement with a-priori predicted ISP values by Shvartsburg 

et al. using sum of the projection areas for constituent atoms.56  
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  Step 2: charge dependent ISP values have been optimized for subsets of peptides and 

improved correlation values for all of the submodels (Table S2). Figure 4B shows these values 

for both tryptic and non-tryptic species. ISP values of hydrophobic residues increase for highly 

charged 3+ and 4+ peptides; the opposite is true for polar residues (D, E, N, Q). These trends 

follow the difference observed between Valentine et al. values and ours, indicating inclusion of 

highly charged longer peptides determined overall differences in ISP values in Figure 4A. Pro 

exhibits the lowest ISP values, favouring compact structures, for 3+ peptides, while Gly in 4+ 

species promote extended conformation. 

  Step 3: thirteen position dependent ISP coefficients have been introduced for each residue: six 

on both termini plus a general internal position – similar to all SSRCalc models for peptide HPLC. 

This led to further improvements in correlation values in all respective subsets shown in Table 

S2. Selected position dependent trends are shown in Figure 5 and the entire collection of 

optimized coefficients is provided in Table S3.  

  The hydrophobic residues (A, V, L, I, M, F, Y, W) show virtually no position dependence except 

for a small decrease in ISP for internal position, especially for aromatic Phe, Tyr, and Trp (Figure 

5A). Also, an evident decrease in the internal position for Pro. It is interesting to note that Pro ISP 

values in terminal positions are above 1, which corresponds to the value determined by 

Shvartsburg et al. based on atom projections.56 In other words, the behavior of Pro (low ISP) is 

determined by its known property as helix breaker, rather than size of the side chain. While located 

inside of the peptide Pro tends to form kinks in the structure favouring sequence bending, resulting 

in reduced CCS. The decrease in internal Pro ISP is smaller for 2+ ions compared to 1+ and much 

more significant for 3+ (Figure 5B). 

  The position dependence for basic Arg, His, Lys is also unique (Figure 5C-F). Generally, ISP 

values increase slightly from N- to C-terminus corresponding to their increasing interactions with 

the helix macro-dipole near C-terminus. This trend is more visible for 2+ and 3+ peptides 

compared to 1+. Polar acidic residues exhibit lower CCS values for 1+ internal position (Figure 

5C), which is similar to Pro. Asp, and Glu ISP values for 3+ peptides showed the effect of 

interaction with macro-dipole opposite to the basic residues as ISPs decrease from N to C-

terminus. 

  While we do have a diverse set of peptides derived from different protease cleavages, there 

could be some issues with representation of amino acids at particular positions which will result 

in model over-fitting. For example, position dependent ISP values for charged residues showed 

significant variation due to their small representation in the 1+ subset. Position dependent ISP 

values for 4+ charge state also vary significantly, making it hard to extract consistent ISP trends. 
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In other words, CCS prediction model for the 5,733 4+ peptides with 520 parameters is over-fitted. 

Additive retention time prediction models in peptide RP-HPLC show representative results starting 

at a 1:5 parameter to peptide ratio,57 suggesting significant variation in peptide conformation in 

IMS separation. Nonetheless, overall model was able to achieve an R2 value of 0.981 and 

demonstrated robustness in predicting CCS values consistent with experimental trends. 

 

Composition and sequence-specific features driving peptide IMS separation. The original 

work on incorporating ISP concept has been done using collections of structurally similar 1+ and 

2+ tryptic peptides without internal Arg/Lys residues.31 The largest dataset used by Valentine et 

al. consisted of 2,094 peptides, 10.7 residues long on average.8 We anticipated that inclusion of 

the entire population of peptides without restriction on protease type, number of basic residues, 

charges and peptide length will complicate model optimization. At the same time, it has provided 

additional information on the mechanism of ion mobility separation. Due to the increased size of 

the dataset, we were able to elucidate position-dependent ISP and found significant effect of the 

structural features rather than geometric size of individual residues.  

The geometry of peptides in gas phase are strongly affected by the charge of the peptides. As 

seen in the plot of CCS versus molecular weight (Figure 6A), increasing in peptide charge leads 

to higher CCS values. To explain our findings, we use Counterman & Clemmer’s approach33 that 

have described the notion of exposed cationic charges being solvated by the backbone carbonyls 

of the peptide leading to the compact globular structures (Figure 6B). From our results in 

proteomic IMS separations, it suggests that ability of a peptide to solvate the charge as a globular 

peptide is based on the peptide flexibility and availability of polar groups as elaborated below in 

the instances of 1+ peptides. As charge density increases, the repulsive effects of cationic 

charges in proximity starts to be become an issue in charge solvation. The repulsion reduces the 

stability of globular structures and starts to approach other stable conformations that are more 

linear in orientation. The different stages of peptide structures will be described as: closed 

globular, open globular, hinged-helix, alpha-helix, and linear listed in order of increasing CCS. 

In singly charged peptides (1+), the predominant geometry will be closed globular allowing 

this group to have the lowest CCS. The amino acid side chain structure will influence the size of 

the globular peptide based on steric interactions and electronic effects. The solvation of the 

exposed cation will be enhanced in the presence of partially negative functional groups as shown 

in Figure 6B. Acidic Asp and Glu show low ISP coefficients as they improve the solvation with 

their carboxylate side chains, which assist in compacting the globular structure. Asn and Gln also 

follow a similar trend where the carbonyl on the amide also assist in compacting the globule. Cys, 
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Ser and Thr have polar thiol or hydroxyl groups that can stabilize the cation therefore exhibiting 

low ISPs. Aromatic amino acids stabilize the peptide electronically via the pi orbitals on the 

aromatic rings and are able to condense the peptide structure. In the case of aliphatic amino 

acids, their side groups do not contribute electronically to the cation stabilization but rather add 

steric bulk to the peptide leading to the observed increase in CCS. The flexible Gly and Pro do 

not contribute electronically or sterically but rather their flexibility allows for tighter peptide 

solvation to the cationic core allowing lower CCS conformations (Figure 6C). 

For the case of doubly charged peptides (2+), they follow a similar trend in internal ISP values 

with +1 peptides; however, exhibiting smaller change in ISP values between terminal and internal 

positions. This suggests the 2+ peptides are also globular but given the electrostatic repulsion 

between the two positive charges, the peptide will not be able to fold as tightly (Figure 6D). This 

effect forces 2+ peptides to the open globular conformation consistent with the higher CCS than 

1+ peptides found in our experimental data. This observation is supported by the divergence in 

acidic and basic amino acid ISP values shown for 1+ and 2+ peptides in Figure 5C and D where 

the mediation of an acidic side chain assists in lowering the repulsive effects therefore decreasing 

CCS and vice versa for basic amino acids. 

The triply charged peptides (3+) exhibit a divergent pattern when CCS is plotted against 

molecular weight. Prior work in the field has demonstrated that the pattern can be attributed to 

two main peptide geometries:33 a fast hinged-helix orientation and a slower alpha-helix orientation 

as displayed in Figure 6E, F. As peptides are now able to uptake helical conformations in this 

charge state, the ISP values of aliphatic amino acids are increased from their 2+ counter parts. 

The helix-breaker Pro exhibits the lowest ISP value for +3 charge state (especially for internal 

positions as shown in Figure 5B) due to their ability to bend the peptide to favour the hinged-helix 

orientation allowing the peptide to have lower CCS. Similarly, acidic and polar amino acids also 

decrease in CCS from 2+ peptides as the effect of the cationic solvation is more drastic in larger 

ions found in the 3+ sets (Figure 4B). 

Our findings on splitting population of 3+ peptides were confirmed by protease-specific 

features of CCS vs. m/z plots driven by interaction of acidic/basic residues with peptide macro-

dipole. Peptides featuring acidic residues at C-termini and basic ones at N-termini 

(LysargiNase/Lys-N/Glu-C) tend to be in a compact conformation. Meanwhile trypsin/Lys-C/Asp-

N peptides show more even distribution between two conformational states. Surprisingly, ions in 

the other charged states (1+, 2+ and 4+) also showed similar specificity, albeit with uneven 

distribution between conformational states. Lesser number of 1+ and 2+ peptides assume 
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extended and 4+ compact conformation, respectively. Compared to previous studies, we can 

identify this novel finding due to the diversity of proteases employed. 

Quadruply charged peptides (4+) in the past have not been well characterized due to their 

limited representation in the optimization datasets.58 Based on our novel CCS information we 

conclude that the geometry of the peptides are generally more linear and helical than 3+ peptides. 

In terms of the aliphatic amino acids, the ISP values are largely similar to 3+ peptides (Figure 4B) 

supporting our notion that helicity is still a strong contributor in the 4+ charge state. Interestingly, 

Pro and Gly increase in ISP values (Figure 4B). Electrostatic contributions from acidic amino acids 

in quadruply charged peptides are analogous to the triply charged peptides, whereas basic amino 

acids experience a decrease in ISP values (Figure 4B).  

 

 

CONCLUSIONS 

Through pairing high-throughput proteomics with IMS, we were able to collect a high-quality 

CCS database of ~134,000 peptides and establish first sequence-specific model to predict 

peptide CCS. Our collections and resultant prediction model are detailed for each charge state, 

in enabling expansion for the current observations of 3+ and 4+ peptides in finer detail, and in 

attaining an R2 value of 0.981 for the entire dataset. The gas phase peptide geometry dictates the 

CCS of the peptide and the conformations are heavily influenced by charge, sterics, and helical 

propensity of the constituent amino acids. Singly charged peptides have the lowest CCS in the 

entire dataset as it maintains a small profile in a closed globular conformation with the cation 

stabilized by backbone carbonyls or polar side groups. The globular structure can be further 

stabilized and condensed in the presence of Pro. For doubly charged peptides, the geometric 

behaviours are similar to 1+ peptides; however, the two cations experience electrostatic repulsion 

causing the structure to expand to an open globular conformation. Triply charged peptides 

establish two main conformations, a fast hinged-helix or a slow alpha helix structure. The ISP 

contributions of hydrophobic amino acids increase compared to the previous two charge states 

as these amino acids have high helical propensity favouring the alpha-helix conformation. Pro 

also exhibits the lowest ISP in 3+ peptides as its ability to bend the peptide favour the formation 

of the hinged-helix structure. We observe a divergent trend between acidic and basic amino acids’ 

position dependent ISPs in triply charged peptides due to the macro-dipole interaction, which is 

also characteristic for helical structures. For the first time, 2+ peptides as well as 1+ and 4+ 

peptides were identified to exhibit similar splitting behaviour, due to the position of acidic/basic 

residues that favour helical stabilization via interaction with the peptide macro-dipole. Quadruply 
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charged peptides maintain similar ISP values and trends as 3+ peptides with the exception of Pro 

and Gly increasing drastically in ISP. Other structural outliers have been observed for long and 

highly charged peptides with multiple proline residues. These motifs are one of the reasons for 

the high prediction errors observed in 3+ and 4+ peptides as the interactions of adjacent prolines 

may result in the formation of left-hand helices, which extends the peptide conformation. There is 

an active effort to understand the behaviour of different polyproline isomers; however, with current 

literature it is difficult to definitively align our diverse observations for such species. To fully 

elucidate the nature of our prediction errors, molecular dynamics paired with hydrogen-deuterium 

exchange experiments for a majority of the peptides will be needed to understand the true 

diversity of gas-phase peptide conformations. Despite the difficulties in ascertaining outlier 

behaviours in our dataset, we are able to provide a variety of novel insights for the influence of 

peptide properties in real world CCS prediction. 

 

Supporting Information 

Figure S1:  Elimination of false-positive identifications using peptide retention time prediction 

with de-novo SSRCalc model (A, B) or SSRCalc retention Database (C, D). All 

peptides with retention time prediction error of more than ±6 min and low confidence 

identification scores (-3 < log (e) <-1) have been removed. 

Figure S2:  Distribution of extracted ion (754.04-754.06 m/z) in chromatogram and mobilogram. 

The gradient blue on the right shows the intensity scale in MS1, retention time on y-

axis, and 1/K0 on x-axis. Extracted ion chromatogram and extracted ion mobilogram 

are projected on the left and bottom axes, respectively.  

Figure S3:  Graphical representation of the selection process for the Top 100 Positive Outliers 

and Top 100 Negative Outliers shown in Table 1. The outlier selection lines (red) 

are parallel to the trendline of the CCS vs m/z correlation (black dotted) as we are 

picking the outliers with the largest positive difference for the Top 100 Positive 

Outlier set and the largest negative difference for the Top 100 Negative Outlier set. 

Figure S4:  Correlation between CCS prediction error and peptide pI.55 Prediction errors have 

been calculated for uncorrected CCS vs. m/z plots for each charge state. 

Figure S5:  (A) Correlation between predicted peptide electrophoretic mobility42 and 

experimental CCS values. Peptides detected in 2+ charge state by mass 

spectrometer, but carrying different charge (2+, 3+, 4+, 5+) in solution at acidic pH 

are highlighted. (B) As shown in the paper,2 the semi-empirical model µef = k(Z/MX) 
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can be optimized by modulating X such as 1/3, 2/3, or 1/2. As CCS ∝ M (in 

Figure 6), we attempted the X modulation and 1/3 had the best correlation of 

R2=0.849.  

Figure S6:  (A) The number of peptides for each charge state and length in tryptic dataset 

compared to the number of features for each length in the LS-MLR. (B) Correlation 

of predicted versus experimental CCS values. The predicted CCS values derived 

from the tryptic peptides for specific charges and length (1+ peptides with 7-12 a.a., 

2+ peptides with 8 -20 a.a. and 3+ peptides with 11-25 a.a.) by LS-MLR. 

Table S1:  Parameter settings of timsTOF Pro mass spectrometer in PASEF analysis. 

Table S2:  Accuracy of prediction model (R2-value) for step-by-step optimization. 

Table S3:  Intrinsic size parameter values for step-by-step optimization of SSICalc model. 
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Table 1  Average bulk properties of top 100 positive and negative outliers in charge 
specific CCS vs. m/z plots. 

 

Charge/ 
prediction 

error 

Tryptic/non-
tryptic 

peptides* 

Peptide 
length 

Agadir α-
helicity54 

SSRCalc 
Hydrophobicity 

(% ACN) 
pI55 

# of basic 
residues 

1+/pos 93/7 12.60 0.31 11.88 7.13 2.00 

1+/neg 6/94 13.10 0.11 7.92 3.55 1.23 

2+/pos 70/30 18.56 1.41 15.35 6.88 2.93 

2+/neg 44/56 21.52 0.16 12.09 4.44 2.19 

3+/pos 60/40 29.44 1.35 18.43 5.97 3.41 

3+/neg 27/73 28.87 0.23 12.96 4.30 2.81 

4+/pos 42/58 33.77 0.68 16.01 6.42 4.34 

4+/neg 40/60 36.27 0.32 15.67 4.44 4.12 

* - independently of the protease used tryptic peptides correspond to Lys/Arg terminated 

species. 
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Figure legends 

Figure 1   An overview of the workflow used in our work. (A) Experimental data collection, (B) 

prediction model optimization. 

 

Figure 2   CCS versus m/z plots for 133,946 peptides from HeLa cell digests for total (A) and 

protease-specific populations (B-H). Individual charge states are color coded as: 

blue, 1+; orange, 2+; gray, 3+ and purple, 4+. 

 

Figure 3   Heatmaps of position and group dependent coefficients obtained by LS-MLR 

model. 

 

Figure 4   Comparison of previously reported ISP values with ones obtained for our dataset. 

A – ISP values for tryptic and non-tryptic peptides vs. Valentine at al.8 and 

Shvartsburg et al.56 data (Model Step 1); B – charge specific ISP values (Step 2).  

 

Figure 5   Selected examples of ISP positional trends: for hydrophobic amino acids (A), Pro in 

different charged peptides (B), acidic/basic amino acids among different charged 

peptides (C, D, E, F). 

 

Figure 6   Compositional and sequence specific features driving the separatory behaviour 

observed in CCS vs. Molecular Weight plot (A). The geometry of the peptides in gas 

phase (C, B, D, E, F) ordered from lowest to highest CCS. N+ corresponds to the N-

terminal, C to the C-terminal, B+ is an internal basic residue, and P is Pro.  
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Figure 1   An overview of the workflow used in our work. (A) Experimental data collection, (B) 

prediction model optimization. 
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Figure 2  CCS versus m/z plots for 133,946 peptides from HeLa cell digests for total (A) and 
protease-specific populations (B-H). Individual charge states are color coded as: blue, 1+; orange, 
2+; gray, 3+ and purple, 4+. 
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Figure 3  Heatmaps of position and group dependent coefficients obtained by LS-MLR model. 
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Figure 4  Comparison of previously reported ISP values with ones obtained for our dataset. A – 

ISP values for tryptic and non-tryptic peptides vs. Valentine at al.8 and Shvartsburg et 

al.56 data (Model Step 1); B – charge specific ISP values (Step 2).  
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Figure 5  Selected examples of ISP positional trends: for hydrophobic amino acids (A), Pro in 

different charged peptides (B), acidic/basic amino acids among different charged 

peptides (C, D, E, F). 
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Figure 6  Compositional and sequence specific features driving the separatory behaviour 

observed in CCS vs. Molecular Weight plot (A). The geometry of the peptides in gas 

phase (C, B, D, E, F) ordered from lowest to highest CCS. N+ corresponds to the N-

terminal, C to the C-terminal, B+ is an internal basic residue, and P is Pro.  
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