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Abstract 22 

1. Time series classification consists of assigning time series into one of two or more 23 

predefined classes. This procedure plays a role in a vast number of ecological classification 24 

tasks, including species identification, animal behaviour analysis, predictive mapping, or the 25 

detection of critical transitions in ecological systems. In ecology, the usual approach to time 26 

series classification consists of transforming the time series into static predictors and then 27 

using these in conventional statistical or machine learning models. However, recent deep 28 

learning approaches now enable the classification using the raw time series data, avoiding the 29 

need for domain expertise, eliminating subjective and resource-consuming data 30 

transformation procedures, and potentially improving classification results. 31 

2. We here introduce ecologists to time series classification using deep learning models. We 32 

describe some of the deep learning architectures relevant for time series classification and 33 

show how these architectures and their hyper-parameters can be tested and used for the 34 

classification problem at hand. We illustrate the approach using three case studies from 35 

distinct ecological subdisciplines: i) species identification from wingbeat spectrograms; ii) 36 

species distribution modelling from time series of climatic variables and iii) the classification 37 

of phenological phases from continuous meteorological data. 38 

3. The deep learning approach delivered ecologically robust and high performing 39 

classifications for the three case studies. The results obtained also allowed us to point future 40 

research directions and highlight current limitations. 41 
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4. We demonstrate the high potential and wide applicability of deep learning for time series 42 

classification in ecology. We recommend this approach be considered as an alternative to 43 

commonly used techniques requiring the transformation of time series data. 44 

 45 

Keywords: AutoML; Classification; Data-driven; Deep learning; Scalability; Sequential 46 

data; Time series 47 

 48 

Introduction 49 

The recent increase in affordability, capacity, and autonomy of sensor-based technologies 50 

(Peters et al., 2014; Bush et al., 2017), as well as an increasing number of contributions from 51 

citizen scientists and the establishment of international research networks (Hurlbert & Liang, 52 

2012; Bush et al., 2017) is allowing an unprecedented access to time series of interest for 53 

ecological research (Reichstein et al., 2019). A common aim of ecologists using these data 54 

concerns assigning them into predefined classes, such as ecological states or biological 55 

entities. Typical examples include the recognition of bird species from sound recordings (e.g., 56 

Priyadarshani, Marsland, Juodakis, Castro, & Listanti 2020), the distinction between phases 57 

in the annual life cycle of plants (i.e., ‘phenophases’) from spectral time series (Melaas, 58 

Friedl, & Zhu 2013), or the recognition of behavioural states from animal movement data 59 

(Shamoun-Baranes, Bouten, van Loon, Meijer, & Camphuysen 2016). Many other examples 60 

exist, with scopes of application that range from the molecular level (Jaakkola, Diekhans, & 61 

Haussler 2000) to the global scale (e.g., Schneider, Friedl, & Potere 2010). 62 

 63 
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The assignment of time series into one of two or more predefined classes (hereafter referred 64 

to as ‘time series classification’; Keogh and Kasetty 2003) can be performed using a variety 65 

of different approaches, ranging from manual, expert-based, classification (Priyadarshani et 66 

al., 2020) to fully automated procedures (see Bagnall, Lines, Bostrom, Large, & Keogh 2017 67 

for examples). In ecology, time series classification is generally approached by processing the 68 

time series data into a new set of ‘static’ variables − using hand-designed transformations, or 69 

techniques such as Fourier or wavelet transforms − and then using these variables as 70 

predictors in ‘classical’ classification algorithms, such as logistic or multinomial regressions 71 

or random forests (e.g., Reside, VanDerWal, Kutt, & Perkins 2010; Shamoun-Baranes et al., 72 

2016; Dyderski, Paź, Frelich, & Jagodziński 2017; Capinha, 2019; Priyadarshani et al., 73 

2020). In machine learning terminology, this approach is known as ‘feature-based’, where the 74 

‘features’ are the variables that are extracted from the time series.  75 

 76 

Despite the wide adoption of feature-based approaches, important limitations still undermine 77 

their predictive performance and scalability. A key constraint concerns the need for domain-78 

specific knowledge about the phenomenon that is being classified in order to obtain ‘optimal’ 79 

sets of features. While this may not seem limiting, considering the ever-growing body of 80 

knowledge in the ecological literature, in reality few, if any, ecological phenomena are fully 81 

understood (Currie, 2019). This inherently limits and casts doubt about the optimality of 82 

human-mediated selections of ‘relevant’ predictors of their behaviour. This limitation can be 83 

illustrated for species distribution modelling, a popular field among ecological modellers. 84 

These models often rely on readily available sets of predictors that summarize long-term 85 

climate averages and variability, (e.g., the BIOCLIM variables; Booth, Nix, Busby, & 86 
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Hutchinson 2014), despite recognition that species distributions can also respond to short-87 

term meteorological variation (e.g., Reside et al., 2010). Accordingly, these common 88 

predictors cannot guarantee a comprehensive representation of the role of climate in 89 

determining the distribution of species. Additionally, scaling modelling frameworks can 90 

result in reliance on pre-processed predictors because performing species-specific feature 91 

extraction could be prohibitively costly, in terms of human and time resources, when 92 

modelling the distribution of hundreds of species. 93 

 94 

Here we discuss and demonstrate the use of supervised deep learning models for time series 95 

classification. Deep learning models are a set of recent, complex architectures of artificial 96 

neural networks (LeCun, Bengio, & Hinton 2015; Christin et al., 2019), which have enabled 97 

significant advances of performance in highly complex tasks, particularly image recognition 98 

(LeCun et al., 2015) − including in ecology (e.g., Christin, Hervet, & Lecomte 2019; Ferreira 99 

et al., in press). Recently, the usefulness of these models for time series classification has 100 

been highlighted (Wang, Yan, & Oates 2017; Fawaz, Forestier, Weber, Idoumghar, & Muller 101 

2019). However, their adoption for this purpose in ecology remains limited (see Sethi et al. 102 

2020, for an exception). A difference between deep learning models and feature-based 103 

approaches is that deep learning models work directly with the raw time series. The 104 

identification of relevant features in the time series is performed by the model itself and is 105 

guided by the contribution that the features have in distinguishing the classes. Accordingly, a 106 

promise of these models is that they may capture relevant information that would be missed if 107 

relying on subjective sets of static features, improving predictive performances. Additionally, 108 
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because there is no need of human intervention in feature extraction, deep learning models 109 

allow a full, end-to-end, automation of computational workflows. 110 

 111 

We explain deep neural networks and describe some of the modelling architectures more 112 

relevant in the context of classifying time series. Next, we demonstrate the application of 113 

deep learning models for time series classification using three case studies. First, we perform 114 

species identification based on recordings of insect wing flap movements, second, we predict 115 

the potential distribution of a vulnerable mammal species using time series of monthly 116 

climate data, and third we predict the seasonal patterns of fruiting of a mushroom species, 117 

based on meteorological time series. We implement all models using ‘mcfly’ (van Kuppevelt 118 

et al., 2020), a Python package aimed at time series classification for non-experts in deep 119 

learning, and which should be accessible to the generality of ecological modelers. 120 

 121 

Materials and Methods 122 

Deep neural networks for time series classification 123 

Artificial neural networks (ANN) are algorithms inspired by how biological nervous systems 124 

process information. These models are often conceptualised in terms of nodes (or ‘neurons’) 125 

and weighted links. A basic ANN architecture includes a first layer of nodes, representing the 126 

input data, a second (‘hidden’) layer with nodes performing data aggregation followed by 127 

nonlinear transformation, and a final (‘output’) layer where the predicted values are 128 

computed. The nodes in each layer are connected to the nodes in the next layer through 129 

weighted links. Function fitting in ANNs proceeds by iteratively adjusting the weights of 130 

links between the layers. An important notion is the ‘epoch’, which refers to when the entire 131 
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training dataset is passed forward and backward across the network one time. During each 132 

epoch, the weights are updated to improve the network’s predictions, given the information 133 

fed to the input layer. For more details on ANNs see, among others, LeCun et al. (2015) and 134 

references therein. 135 

 136 

‘Deep’ neural networks refer broadly to ANN architectures that are capable of training large 137 

numbers of hidden layers and neurons (LeCun et al., 2015). This capacity determines the 138 

level of abstraction that the models can attain in representing the input data. Models with 139 

more hidden layers can capture more complex patterns and achieve a deeper hierarchy of 140 

features. In other words, shallow models tend to capture ‘basic’ patterns (e.g., a ‘spike’ in a 141 

specific time step), while deeper models are able to ‘learn’ more complex abstractions (e.g., 142 

spikes combined with a reduced long-term variability). 143 

 144 

Unlike commonly believed, deep learning models do not always require large amounts of 145 

data for training. For instance, some of these models can provide competitive classification 146 

results with as low as 50 samples (Fawaz et al., 2019). 147 

 148 

Many deep learning architectures can be used for time series classification (Wang et al., 149 

2017; Fawaz et al., 2019). These architectures differ in the number of layers, and the 150 

mathematical functions the layers perform, as well as in the way information flows between 151 

them. Below we provide a description of four architectures used for time series classification: 152 

Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Residual 153 

Networks (ResNet) and Inception Time Networks (InceptionTime). These architectures were 154 
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chosen because they are widely adopted for time series classification and because they are 155 

available in mcfly (the software we use here for model implementation; van Kuppevelt et al., 156 

2020). 157 

 158 

Convolutional Neural Networks 159 

Convolutional neural networks (CNN) are an influential class of deep neural networks. These 160 

networks have been mainly applied for pattern recognition in image data (e.g., Christin et al., 161 

2019; Ferreira et al., in press), but effective examples of their application for time series 162 

classification have been recently published (e.g., Zhao Lu, Chen, Liu, & Wu 2017). A key 163 

component of CNNs are the so-called convolutional layers (LeCun et al., 2015). These layers 164 

extract local features from the raw time series by applying ‘filters’. Each filter determines if a 165 

given pattern (e.g., ‘a spike’) occurs in the data and in what regions. These layers are often 166 

followed by rectified linear unit (ReLU) (or a similarly shaped function) and ‘pooling’ layers. 167 

The ReLU layers transform the summed weighted input from nodes in the convolutional 168 

layer into outputs that range from 0 to + ∞, while pooling layers reduce the dimensionality of 169 

outputs from the ReLU layer. CNNs often layer multiple instances of convolution, ReLU and 170 

pooling layers in a sequence, to build a hierarchy of increasingly abstract features. This 171 

sequence of layers is usually followed by a fully connected (or ‘dense’) layer, where each 172 

node is connected to all nodes in adjacent layers, and where classification outputs are 173 

calculated. 174 

 175 

Recurrent Neural Networks 176 
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Recurrent neural networks (RNNs) are specifically designed for sequence-type input data, 177 

such as time series (LeCun et al., 2015; Fawaz et al., 2019). These models are defined by 178 

inclusion of feedback loops, where the output of a layer is added to the next input and fed 179 

back into the same layer. This allows RNNs to characterize sequential patterns in the input 180 

data, but their ability to capture long term dependencies is limited due to the RNN’s tendency 181 

to prioritize signals in the short term while failing to learn long term signals (i.e., the 182 

‘vanishing gradient problem’; Bengio, Simard, & Frasconi 1994). To overcome this problem 183 

several adaptations to the simple RNN architecture have been proposed, the most popular of 184 

which being the use of gating units, such as ‘Long Short Term Memory’ (LSTM) and ‘Gated 185 

Recurrent Units’ (GRU) (Chung, Gulcehre, Cho, & Bengio 2014). Gating is a technique that 186 

helps the networks decide to either forget the current input or to remember it for future time 187 

steps, hence effectively improving the modelling of long-term dependencies (Chung et al., 188 

2014).  189 

 190 

Residual Networks 191 

Residual networks (ResNet) are recently proposed in the context of image recognition (He, 192 

Zhang, Ren, & Sun 2016). Basically, these networks introduce a new type of component, the 193 

‘Residual Block’, to CNN-type models. The aim of these blocks is to allow the training of 194 

deeper models (i.e., having more hidden layers). In theory, deeper models should improve 195 

classification performances, as they allow higher levels of data abstraction. However, in 196 

practice the performances may not improve, among other things, due to the vanishing 197 

gradient problem (see above). The use of residual blocks aims to address this by forwarding 198 

the output of layers directly into layers that are several levels deeper (e.g., 2–3 layers ahead). 199 
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Recently, this architecture has been applied for time series classification (Wang et al., 2017), 200 

often performing very well (Fawaz et al., 2019). 201 

 202 

Inception Time Networks 203 

Inception time networks are a very recent type of architecture, proposed specifically for time 204 

series classification (Fawaz et al., 2019). This network is an ensemble of CNN models having 205 

ResNet-type components and modules called ‘inceptions’. Inception modules ‘rework’ how 206 

convolution layers act in the networks, so that instead of being stacked sequentially, they are 207 

ordered to work on the same level in parallel. This approach allows the application of 208 

multiple filters with highly varying temporal lengths working on the same input time series. 209 

In comparison to sequential convolutional layers (as in ‘simple’ CNN) this lowers processing 210 

costs and reduces the risk of fitting noise in the data (i.e., overfitting) (Fawaz et al., 2019).  211 

 212 

The mcfly Python library 213 

Deep learning models can be implemented using several programming languages and 214 

specialised libraries (see Christin et al., 2019 for a review). Here, we use mcfly, a Python 215 

package for time series classification using deep learning (van Kuppevelt et al., 2020). This 216 

package is aimed at non-experts and it should be easy to use for 'mid-level' ecological 217 

modellers. Mcfly also delivers a standardized workflow that ‘generates’ distinct, ready-to-218 

train models and tests which is best suited for the classification task. This assists non-experts 219 

in deep learning in identifying a suitable modelling architecture and implementing the model 220 

from scratch (Christin et al., 2019).  221 

 222 
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Mcfly utilizes TensorFlow (www.tensorflow.org) an extensively adopted machine learning 223 

library, it can make use of (but does not require) dedicated hardware (such as Graphical 224 

Processing Units: ‘GPUs’), works with both univariate and multivariate time series (‘single 225 

channel’ and ‘multichannel data’, in machine learning terminology) and includes procedures 226 

for inspecting and visualizing the parameters of trained models. In its current version (v.3.0) 227 

mcfly generates CNN, Deep convolutional LSTM (‘DeepConvLSTM’; an architecture 228 

composed of convolutional and LSTM recurrent layers), ResNet and InceptionTime 229 

architectures. Specific details about the components and structure of each architecture are 230 

given in van Kuppevelt et al. (2020).  231 

 232 

Model selection in mcfly proceeds by generating a set of candidate models with architectures 233 

and hyperparameters (e.g., number of layers; learning rate) selected at random from a 234 

prespecified range of values (see Figure 1). Each candidate model is trained using a small 235 

subset of the data (data partition At; Figure 1) during a small number of epochs. After 236 

training, the performance of the candidate models is compared using a left-out validation data 237 

set (Av; Figure 1). The selected candidate model (usually the best performing among 238 

candidates) is then trained on the full training data (Bt; Figure 1). In this step it is required to 239 

identify an optimal number of training epochs, to avoid under- or overfitting of the model. A 240 

model trained too few epochs will not capture all relevant patterns in the data, reducing 241 

predictive performance. A model trained for an excessive number of epochs might overfit, 242 

reducing its generality and ability to classify new data. There is no definitive way to identify 243 

an optimal number of training epochs, but one practical approach is through monitoring the 244 

model’s validation performance (i.e., using holdout data partition Bv; Figure 1). The 245 
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‘optimal’ number of training epochs is the one that provides the best validation performance. 246 

Finally, the performance of the model having an ‘optimal’ number of training epochs is 247 

evaluated using a ‘final’ test data set (T; Figure 1), providing the best estimate of the 248 

predictive performance of the model. 249 

 250 

For the three case studies below, we used the same model generation and selection strategy. 251 

We had mcfly generate 20 candidate models, five for each architecture type. These models 252 

were trained during 4 epochs (using At). The candidate model achieving highest performance 253 

in predicting the classes of the validation data (Av) was then trained on the full training data 254 

set (Bt). For each epoch we measured training performance, as provided by mcfly (which 255 

uses the accuracy metric i.e., ‘the proportion of cases correctly classified’). The classification 256 

performance on the validation data (Bv) was measured using the area under the receiver 257 

operating characteristic curve (AUC), a metric that is not affected by differences in the 258 

prevalence of classes and is widely used in ecology (e.g., Dyderski et al., 2017).  259 

 260 

To identify an ‘optimal’ number of training epochs, we examined the progression of 261 

validation performance (Bv). Models can be trained for an infinite number of epochs, so here 262 

we stopped training if no increase in validation performance was observed after 25 epochs 263 

(other thresholds could be considered, according to time resources available). Finally, the 264 

model trained with the number of epochs showing highest AUC in predicting Bv was used to 265 

classify the test data (data set T), with performance measured using AUC. 266 

 267 
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We recorded processing time of all models from the onset of training of candidate models to 268 

the last training epoch evaluated for the selected model. This was done on two distinct 269 

systems: a ‘desktop PC’ with an Intel i7 4-Core (3.40GHz) processor and 8GB RAM and a 270 

‘high-end workstation’ with an AMD Ryzen 9 12-Core (3.80 GHz) processor, 64 GB RAM 271 

and an NVidia RTX 2060 GPU. Because CPU- and GPU-based TensorFlow generate distinct 272 

random hyperparameters, modelling results will differ between the two computer systems. 273 

We report results and processing times for the desktop PC system. For the workstation we 274 

report processing time only. We emphasize that the timings recorded in the two systems are 275 

not directly comparable as they correspond to distinct modelling routes. 276 

 277 

It is important to bear in mind that the modelling strategy described aims at general 278 

applicability and further tailoring for specific classification tasks could be beneficial. For 279 

instance, with a priori knowledge that a specific architecture, say CNN, is best suited for the 280 

classification task at hand (see discussion section), the selection could be adjusted to generate 281 

only CNN-type candidate models. Further information about fine-tuning of mcfly model 282 

generation and selection can be found in van Kuppevelt et al. (2020). 283 

 284 

Case study 1: Species identification 285 

In this case study we predict the identity of three insect species: the olive fruit fly (Bactrocera 286 

oleae), the western honey bee (Apis mellifera), and the black fig fly (Lonchaea aristella) 287 

using wingbeat spectrograms (frequency series of amplitude values; Potamitis, Rigakis, & 288 

Fysarakis 2015). B. oleae is an olive fruit fly pest, which if left unmanaged can lead to large 289 

economic costs worldwide (Potamitis et al., 2015). The wingbeat spectrum characteristics of 290 
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these three species allow us to exemplify an ‘easy’ classification case and a ‘difficult’ 291 

classification case: while in A. mellifera harmonics partially overlap with those of B. oleae, 292 

these species show differences in frequencies - including the fundamental frequency - and 293 

thus constitute the ‘easy’ classification case; in contrast, L. aristella has a wingbeat spectrum 294 

that completely overlaps with that of B. oleae, representing the ‘difficult’ classification case. 295 

 296 

We thus have three classes, each corresponding to a species ‘positive’ identity. The data are 297 

balanced (i.e. the number of samples per class is similar) and consist of 230 samples for B. 298 

oleae, 205 for A. mellifera, and 252 for L. aristella. 299 

 300 

Species were identified (classified) according to their wingbeat spectrograms, which consist 301 

of frequency series of amplitudes (the predictor variable) obtained from Potamitis et al. 302 

(2015). A sample was composed of a total of 256 steps (frequencies), each step 303 

corresponding to an amplitude value for a frequency. This case study illustrates the use of 304 

these models using only one predictor variable (i.e., a single time series). 305 

 306 

The records of species identity data and predictor variable (amplitude per frequency) were 307 

split into: data for training candidate models (~50%; At), data for validating candidate models 308 

(~20%; Av), data for training the selected model (~70%; Bt; resulting from merging the two 309 

previous data sets), validation data for determining the number of epochs for training the 310 

selected model (~15%; Bv) and test data for final assessment of classification performance 311 

(~15%; T in Fig. 1). 312 

 313 
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Case study 2: Species distribution model 314 

In this case study we predict the potential distribution of the Iberian Desman (Galemys 315 

pyrenaicus) using time series of environmental data. The Iberian Desman is a vulnerable 316 

semi-aquatic species, endemic to the Iberian Peninsula and the Pyrenean Mountains. We 317 

collected distribution records from the Portuguese and Spanish atlases of mammals (Palomo, 318 

Gisbert, & Blanco 2007; Bencatel, Álvares, Moura, & Barbosa 2017). The data consists of 319 

6141 UTM grid cells of 10×10 km, of which 659 record the species presence (class 320 

‘Presence’) and 5482 its absence (class ‘Absence’). 321 

 322 

The environmental conditions in each cell were characterized using four variables: 1) 323 

maximum temperature; 2) minimum temperature, 3) accumulated precipitation, and 4) 324 

altitude. The first three variables consist of time series of monthly values collected from 325 

CHELSA (Karger et al., 2017) spanning 1989 to 2013, totalling 300 time steps. The fourth 326 

variable was from Fick and Hijmans (2017) and corresponds to temporally invariant values of 327 

altitude (demonstrating inclusion of temporally static predictors), coded as a time series.  328 

 329 

Species distribution data and predictors were split similarly as above with different 330 

proportions: a) At  ~ 35%, b) Av ~ 35%, c) Bt ~70%; resulting from merging At and Av, d) 331 

Bv ~ 15%, and e) test data set T ~15%. The low percentage of data used for training the 332 

candidate models in comparison to case study 1 aims to reduce computer processing time, 333 

given larger data volume.     334 

 335 
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The training and internal validation of deep learning models are sensitive to class imbalance 336 

(i.e., when one or several classes have a much higher number of samples). Strong class 337 

imbalance can bias models towards the prediction of majority classes (Menardi & Torelli, 338 

2014) and reduces the reliability of performance metrics such as accuracy sensu stricto (i.e., 339 

the proportion of correct predictions to the total number of samples), which is used for the 340 

automated selection of candidate models in mcfly (van Kuppevelt et al., 2020). Accordingly, 341 

we balanced our data by randomly duplicating presence records and deleting absence records 342 

until a balance of ~50:50 is obtained, which was executed using the ROSE package 343 

(Lunardon, Menardi, & Torelli 2014) for R (R Core Team, 2020). This was done for the data 344 

sets that mcfly uses for internal assessment of accuracy s.s. (At, Av and Bt, Figure 1). Data 345 

partitioning was performed prior to balancing, to avoid inclusion of replicated cases of the 346 

same data across multiple partitions. The remaining data sets (i.e., Bv and T) were not 347 

balanced.  348 

 349 

Case study 3: Phenological prediction 350 

In this case study we predict the timing of fruiting of the Parasol mushroom (Macrolepiota 351 

procera) across Europe. This species produces fruiting bodies valued for human consumption 352 

(Capinha 2019) and predicting their emergence could be useful for managing human pressure 353 

on the species and its habitats. Data is from Capinha (2019), a study employing a feature-354 

based approach to achieve an equivalent aim. The data have two classes. One class 355 

(‘fruiting’) corresponds to locations and dates of observation of fruiting bodies of the species 356 

(from 2009 to 2015). The second class corresponds to ‘temporal pseudo-absences’, which are 357 

records in the same locations of the observation records, but with dates selected at random 358 
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along the temporal range of the study (Capinha 2019). The aim of the classification is to 359 

distinguish the meteorological conditions associated with the observation of fruiting bodies of 360 

the species from the range of meteorological conditions that are available to it. 361 

 362 

We characterized each record using four time series: 1) mean daily temperature for the 363 

preceding 365 days, 2) daily total precipitation for the preceding 365 days, 3) latitude and 4) 364 

longitude. Time series of temperature and precipitation were extracted from the daily 365 

AGRI4CAST maps (http://agri4cast.jrc.ec.europa.eu/), at a cell resolution of 25x25 km. 366 

Geographical coordinates were coded as temporally invariant time series.  367 

 368 

Records from 2009 to 2014 were randomly partitioned into: At: 15%, Av: 70%,  Bv: 15%, 369 

and Bt: 85% (merging At and Av). Data for the year 2015 was used to evaluate the predictive 370 

performance of the final model (T), allowing comparison with the performance results 371 

achieved in Capinha (2019). 372 

 373 

To increase the representation of the meteorological conditions occurring in the location of 374 

each observation record, the data consists of 15 pseudo-absence records per each observation 375 

record (Capinha, 2019). Similarly to the previous case study, we corrected for class 376 

imbalance by balancing the number of samples in each class using a random deletion and 377 

duplication approach (Lunardon et al., 2014). This balancing was performed for data sets At, 378 

Av and Bt. Data sets Bv and T remained unchanged. 379 

 380 

Results 381 
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Species identification 382 

The candidate model with greatest ability to distinguish between the spectrograms of the 383 

three insect wingbeats had an InceptionTime architecture (accuracy = 0.85; model number 384 

15; Figure 2b). On the training data set this model showed a progressively increasing training 385 

accuracy with number of epochs (Figure 2c). However, its evaluation against left-out data 386 

(Bv data set; Figure 1) showed that best performances were found mainly between training 387 

epoch ~30 and ~50 (‘validation AUC’; Figure 2c), followed by little change. The highest 388 

validation performance was obtained after 47 training epochs. On the test data (T; Figure 1), 389 

this model achieved an average AUC of 0.96, resulting from an AUC of 1 in classifying 390 

between B. oleae and A. mellifera, an AUC of 0.88 in classifying between B. oleae and L. 391 

aristella and an AUC of 1 in classifying between A. mellifera and L. aristella. Computer 392 

processing time, from the onset of candidate model training to the 72nd training epoch of the 393 

selected model, took 26 minutes on a desktop PC. On the high-end workstation, a distinct 394 

modelling event took 3 minutes. 395 

 396 

Species distribution model 397 

The best performing candidate model for this case study had a CNN-type architecture (model 398 

number 4; Figure 3b), reaching 0.82 of validation accuracy. On the full training data set, the 399 

model showed a slowly increasing trend of training accuracy with number of epochs (Figure 400 

3c). However, left-out validation data (Bv) showed a decreasing trend of performance after 401 

the ~60th epoch (‘validation AUC’; Figure 3c), with highest performing classification at the 402 

56th training epoch. The model trained with this number of epochs achieved an AUC of 0.95 403 

on the final test data (T). Most of northern Iberian Peninsula was predicted as suitable to the 404 
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Iberian Desman, particularly the high mountainous areas (Figure 3e). Computer processing 405 

time took 2 hours and 49 minutes on a desktop PC. A distinct modelling event on the high-406 

end workstation took 19 minutes. 407 

 408 

Phenological prediction 409 

For this case study, the selected candidate model had an InceptionTime-type of architecture 410 

(model number 2; Figure 4a), achieving 0.81 validation accuracy. This model rapidly 411 

increased in training accuracy, but its classification performance measured with external data 412 

increased only up to the 5th epoch (Figure 4b). The model trained for 5 epochs achieved an 413 

AUC of 0.91 on the final test data. The predicted probabilities of fruiting for an example site 414 

(Figure 4c) show the ability of the model to capturing seasonal variation, with higher 415 

probabilities generally being predicted for the Autumn season, but with important inter-416 

annual differences. Computer processing time took 10 hours and 23 minutes on a desktop PC. 417 

On a high-end workstation a distinct modelling event took 18 minutes. 418 

 419 

Discussion 420 

Deep artificial neural networks are a flexible modelling technique with notable success in a 421 

range of scientific fields (LeCun et al., 2015). In ecology, the adoption of these models is still 422 

in its infancy and has been mainly directed towards image recognition (Christin et al., 2019; 423 

Ferreira et al., 2020). We here introduce the use of deep learning models for time series 424 

classification and demonstrate how these models can be implemented and evaluated for 425 

distinct tasks across subfields of ecology. 426 

 427 
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Our case studies demonstrate the versatility and potential of deep learning for time series 428 

classification. In the first case study, an InceptionTime model performed well in 429 

distinguishing insect species based on spectrograms of their wingbeats. Given the use of 430 

different data partition strategies and performance metrics, the performance measured for this 431 

model is not fully comparable to those obtained by Potamitis et al. (2015) – who classified 432 

the same data using distance and feature based approaches. However, our study more 433 

accurately identified the honeybee, suggesting its superior classification ability. In the case of 434 

the Iberian desman the predictions from a CNN model also achieved a very high 435 

performance, and the predicted spatial patterns are congruent with the known distribution of 436 

the species and with existing predictions from ‘classic’ feature-based approaches (Barbosa, 437 

Real, & Vargas 2011). Finally, an InceptionTime model projected ecologically plausible 438 

patterns of fruiting seasonality for Macrolepiota procera, with performance equaling that 439 

obtained by Capinha (2019) (i.e., an AUC of 0.91 on predictions of fruiting in 2015). Unlike 440 

the raw time series used by deep learning models, Capinha (2019) used a large set (n=40) of 441 

hand-crafted features reliant on domain-expertise (e.g., growing degree days). 442 

 443 

Despite the valuable results described above, the advantages of deep learning models for time 444 

series classification in ecology can only be fully appreciated with wider testing, including 445 

different classification tasks and data settings. The benchmarking of classification 446 

performances against traditional modelling approaches and the identification of factors 447 

associated with performance differences (e.g., degree of a priori ecological knowledge; 448 

complexity of the phenomena; volume of training data, etc.) will be of paramount 449 

importance. Research efforts should attempt to identify the deep learning architectures and 450 
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hyperparameters that are best suited for specific ecological phenomena and data types. Thus 451 

far, classification performances from distinct deep learning typologies were compared using 452 

time series data coming from multiple domains (e.g., Fawaz et al., 2019), and the relevance 453 

of these results to ecology remains uncertain. 454 

 455 

A distinctive feature of deep learning approaches is that they allow classifying phenomena 456 

directly from raw time series data. For ecologists, this ability should be seen not merely as a 457 

methodological particularity, but as a conceptual and operational upgrade from traditional 458 

modelling approaches. On one hand, the use of time series data as predictors positively forces 459 

ecologists to consider the temporal component of the analysed phenomena (Wolkovich, 460 

Cook, McLauchlan, & Davies 2014) and, on the other, it relieves them from subjective 461 

decisions about the temporal extent to summarize in static predictors. This reorientation in 462 

thinking was, perhaps, best illustrated by using time series − instead of the usual time-463 

averaged variables − for predicting the potential distribution of a species. This ‘fully’ 464 

temporally explicit approach can be exploited for virtually any ecological or biological entity 465 

or state, as long as the putative drivers have a temporal representation. Further, the usage of 466 

time series data by deep learning models matches the increasing number of high frequency 467 

streams of digital data coming from distinct sources (e.g., satellite sensors, meteorological 468 

stations). The direct integration of these data into the models eliminates the need for resource 469 

consuming feature extraction procedures and is well-suited for operational frameworks aimed 470 

at short-term forecasting (e.g., of algal blooms or disease vector abundances), allowing a 471 

rapid detection of situations of concern. 472 

 473 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.14.296251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296251
http://creativecommons.org/licenses/by/4.0/


As for any modelling approach, deep learning models have limitations. Two obstacles are 474 

particularly prominent: the interpretability of models and computational demand. Limitations 475 

to the interpretation of deep learning models have been well described in the literature (e.g., 476 

Reichstein et al., 2019), however, they are caused mainly by a lack of available tools. Very 477 

recently important efforts towards the interpretability of deep learning models have been 478 

made (e.g., Siddiqui, Mercier, Munir, Dengel, & Ahmed 2019) and given the fast pace of 479 

deep learning research, we expect that soon deep learning models will be no harder to 480 

interpret than many traditional machine learning models. The challenges arising from 481 

computational demand are harder to solve. Here we showed that ‘typical’ classification tasks 482 

can take several hours to run on a standard desktop computer. Additionally, the 483 

computational expensiveness of deep learning is expected to grow in the future (Thompson, 484 

Greenewald, Lee, & Manso, 2020). To face this challenge, ecologists will likely have to 485 

move in the same direction as their fellow computer scientists and embrace faster hardware 486 

(e.g., GPUs, ‘tensor processing units’ and large-resourced cloud computing services) and 487 

scalable model implementations (e.g., distributed computing). 488 

 489 

In conclusion, we suggest that the use of deep learning for classifying ecological time series 490 

could bring considerable improvements over conventional approaches. Software tools now 491 

exist that allow overcoming the implementation barrier for non-experts and state-of-the-art 492 

classification results seem a reasonable expectation for several tasks. However, only with 493 

extensive testing can the value of this approach be fully recognized. Those willing to venture 494 

through this modelling route could use the data and code we provide as a starting point. 495 

 496 
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Figures 624 

 625 

Figure 1. Schematic of data partitions and modelling workflow used by the ‘mcfly’ Python 626 

package for time series classification.  627 
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 628 

Figure 2. Data and results of deep learning models classifying insect species from wingbeat 629 

spectrograms. (a) Example wingbeat spectrograms for each species. (b) Validation accuracy 630 

for candidate deep learning models. (c) Training and validation curves of the selected model 631 

along time (highest validation performance is marked with a diamond symbol). 632 
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 633 

 634 

Figure 3. Data and results of deep learning models classifying environmental suitability for 635 

the Iberian desman. (a) Presence and absence data of the species. (b) Example of time series 636 

used as predictors. (c) Validation accuracy for candidate deep learning models. (d) Training 637 

and validation curves of the selected model along time. The diamond symbol marks the 638 

highest validation performance. (e) Environmental suitability predicted by the selected 639 

model. 640 
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 641 

Figure 4.  Data and results of deep learning models classifying the fruiting phenology of the 642 

parasol mushroom based on meteorological variation. (a) Validation accuracy for candidate 643 

deep learning models. (b) Training and validation curves of the selected model along time 644 

(the diamond symbol marks the highest validation performance). (c) Patterns of fruiting 645 

seasonality predicted by the selected model for an example location. 646 
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