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Abstract (300 words) 

Most of the biomedical datasets, including those of ‘omics, population studies and surveys, are rectangular 

in shape and have few missing data. Recently, their sample sizes have grown significantly. Rigorous 

analyses on these large datasets demand considerably more efficient and more accurate algorithms. 

Machine learning (ML) algorithms have been used to classify outcomes in biomedical datasets, including 

random forests (RF), decision tree (DT), artificial neural networks (ANN) and support vector machine 

(SVM). However, their performance and efficiency in classifying multi-category outcomes in rectangular 

data are poorly understood. Therefore, we aimed to compare these metrics among the 4 ML algorithms. As 

an example, we created a large rectangular dataset using the female breast cancers in the Surveillance, 

Epidemiology, and End Results-18 (SEER-18) database which were diagnosed in 2004 and followed up 

until December 2016. The outcome was the 6-category cause of death, namely alive, non-breast cancer, 

breast cancer, cardiovascular disease, infection and other cause. We included 58 dichotomized features 

from ~53,000 patients. All analyses were performed using MatLab (version 2018a) and the 10-fold cross 

validation approach. The accuracy in classifying 6-category cause of death with DT, RF, ANN and SVM 

was 72.68%, 72.66%, 70.01% and 71.85%, respectively. Based on the information entropy and information 

gain of feature values, we optimized dimension reduction (i.e. reduce the number of features in models). 

We found 22 or more features were required to maintain the similar accuracy, while the running time 

decreased from 440s for 58 features to 90s for 22 features in RF, from 70s to 40s in ANN and from 440s to 

80s in SVM. In summary, we here show that RF, DT, ANN and SVM had similar accuracy for 

classifying multi-category outcomes in this large rectangular dataset. Dimension reduction based on 

information gain will significantly increase model’s efficiency while maintaining classification accuracy. 
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Ⅰ. INTRODUCTION  

Most of the biomedical data are rectangular in shape, including those of ‘omics, large cohorts, population 

studies and surveys. Few missing data were present in these datasets. An increasingly number of human 

genomic and survey data have been produced in recent years [1]. Rigorous analyses on these large datasets 

demand considerably more efficient and more accurate algorithms, which are poorly understood.  

 

Machine learning (ML) algorithms are aimed to produce a model that can be used to perform classification, 

prediction, estimation or any other similar task [2, 3]. The unknown dependencies/associations are 

estimated based on a given dataset and later can be used to predict the output of a new system or dataset [2-

4]. Therefore, ML algorithms have been used to analyze large biomedical datasets [5-7]. Studies have 

compared the accuracy of several ML algorithms for classifying microarray or genomic data [8-10], and 

show a superior performance of random forests (RF). However, only few studies accessed the accuracy of 

ML algorithms in classifying multi-category outcomes which are important for more-in-depth 

understanding of biological and clinical processes. Hence, we aimed to understand the performance and 

efficiency of RF, decision tree (DT), artificial neural networks (ANN) and support vector machine (SVM) 

algorithms in classifying multi-category outcomes of rectangular-shaped biomedical datasets.   

 

As an example, we used a large population-based breast cancer dataset with long-term follow-up data to 

create a large rectangular dataset. The reasons were: 1. Cancer is one of most common diseases [11]. 

Knowledge gained by studying cancer can be easily generalized to other biomedical fields; 2. Breast cancer 

is the second most common cancer in the U.S. women [11, 12], and would provide a sufficiently large 

sample size (n>50,000); 3. Breast cancers diagnosed in 2004 had 12 years of follow up on average, and 

very few missing outcomes/follow-ups were anticipated; 4. Breast cancers diagnosed in 2004 would have 

a moderately-good prognosis and their outcomes will be rather diversified (i.e. many patients might not die 
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of breast cancer). Therefore, this study is designed to systematically compare the performance and 

efficiency of DT, RF, SVM and ANN algorithms in classifying multicategory causes of death (COD) in a 

large biomedical dataset (breast cancers).     

  

In this study,  

II. Methods 

2.1 Data Analysis 

We obtained individual-level data from the Surveillance, Epidemiology, and End Results-18 (SEER-18) 

(www.seer.cancer.gov) SEER*Stat Database with Treatment Data using SEER*Stat software (Surveillance 

Research Program, National Cancer Institute SEER*Stat software (seer.cancer.gov/seerstat) version 

<8.3.6>) as we did before [13-15]. SEER-18 is the largest SEER database including cases from 18 states 

and covering near 30% of the U.S. population. The SEER data were de-identified and publicly available. 

Therefore, this was an exempt study (category 4) and did not require an Institutional Review Board (IRB) 

review. All incidental invasive breast cancers of SEER-18 diagnosed in 2004 were included and had the 

follow-up to December 2016. The individual deaths were verified via certified death certificates (2019 data-

release). We chose the diagnosis year of 2004 with the consideration of implementation of the 6th edition 

of the Tumor, Node and Metastasis staging manual (TNM6) of the American Joint Commission on Cancer 

(AJCC) in 2004. Moreover, we only included the primary-cancer cases that had a survival time > 1 month, 

age of 20+ years, and known COD.  

 

The features (i.e. variables) were dichotomized for more efficiency and slightly better performance [7]. A 

total of 58 features were included (Supplementary Table 1). The outcomes of the classification models 

were the patient’s 6-category COD. The COD were originally classified using SEER’s recodes of the causes 
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of death, which were collected through death certificates of deceased patients (https://seer.cancer.gov/). We 

simplified the SEER COD into 6 categories based on the prevalence of COD [16-18], including Alive, Non-

Breast cancer, Breast cancer, CVD, Infection and Other cause. 

 

The most common task of ML techniques in learning process is classification [19]. The ten-fold cross-

validation approach was used to tune all models, which is also termed as model optimization (See 

supplementary methods). We conducted experiments on a computer configured as follows: Huawei KLV-

WX9 laptop; Windows 10 64-bit (DirectX 12); Intel Core i7-8565U @ 1.80GHz (Quad core); Motherboard 

of KLV-WX9-PCB(I/O - 9D84 for mobile 8th Gen Intel Core processor family); 8 GB Memory ( SK Hynix 

LPDDR3 2133MHz ); Hard disk drive of WDC PC SN720 SDAPNTW-512G-1127(512 GB / SSD); 

Graphics card of Nvidia GeForce MX250 (2 GB). All ML analyses were carried out using MATLAB 

(version 2018a, MathWorks, Natick, MA).  

 

2.2 Model tuning 

The detailed model tuning process is described in supplementary material. Several DT methods, such as 

CHAID, CART and exclusive CHAID are available with MATLAB [20]. We used CART (Classification 

and Regression Tree) to predict the categories, using the Gini index as split criterion and 100 iterations for 

each run. There are no default RF packages/toolboxs in MATLAB's own toolbox. We thus used the 

Randomforest-matlab open source toolbox developed by Jaiantilal et al. [21, 22].  

 

In tuning RF models, the parameter nTrees, which was to set how many trees in a random forest, and may 

have an impact on the classification results. We set the value of nTrees from 1 to 600 separately, the results 

show that if this parameter is not too few (greater than 10), the accuracy of recognition can reach 71% to 

72% (Supplementary Table 2). Therefore, we set this parameter to 500 in RF-based analyses. The value 
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of Mtry node for the best model performance was identified by setting the parameter value from 1 to 30 

with 1 as the interval. We found 7 was the value, which was indeed consistent with the default value 

generated using the MATLAB model’s default (i.e. Mtry=floor(sqrt(size(P_train,2)))).  

 

Among different training algorithms of ANN, we used the Trainscg algorithm because it is the only 

conjugate gradient method that did not require linear search. The number of input layer nodes is 58, and the 

number of output layer nodes is 6. To tune the ANN model, we conducted experiments of either single 

hidden or double hidden layers, with the node numbers ranged from 5 to 100. According to the tuning 

results of accuracy and mean squared error (MSE), we would set the model to double hidden layers, and 

the number of layers for the highest accuracy and lowest MSE.    

 

We used the multi-class error-correcting output codes (ECOC) model the SVM modelling, which allows 

classification in more than two classes; and the MATLAB fitcecoc function that creates and adjusts the 

template for SVM [23]. The Kernel functions considered in the SVM were: Linear, Radial basis function, 

Gaussian and Polynomial. 

2.3 Performance analysis 

We analyzed the performance metrics of each proposed model, including accuracy, recall, precision, F1 

score and specificity [24, 25]. They were defined as follows: 

TP TN
Accuracy

All

+
=

                           

   (1) 

TP
Precision

TP FP
=

+                            

   (2) 
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TP
Recall

TP FN
=

+                                  

(3) 

2* *
1

Precision Recall
F

Precision Recall
=

+                     

    (4) 

True Positive (TP) and True Negative (TN) were defined as the number of samples that are classified 

correctly. False Positive (FP) and False Negative (FN) were defined as the number of samples that are 

misclassified into the other mutational classes [24, 25]. The specificity or true negative rate (TNR) is defined 

as the percentage of mutations that are correctly identified: 

TN
Specificity TNR

TN FP
= =

+
                   (5) 

The receiver operating curve (ROC) is a graph where recall is plotted as a function of 1-specificity. It can 

more objectively measure the performance of the model itself [23]. The model performance was also 

evaluated using the area under the ROC, which is denoted the area under curve (AUC). An AUC value 

close to 1 highlight a high-performance model, while an AUC value close to 0 demonstrate a low model 

performance [26, 27]. AUC is independent of class prior distribution, class misclassification cost and 

classification threshold, which can more stably reflect the model's ability to sort samples and characterize 

the overall performance of the classification algorithm. The formula used to determine the AUC can be 

written as follows (Hong et al., 2018a) [27, 28]. 

       

TP TN
AUC

P N

+
=

+

 
                      

 (6)
 

Where P is the total number of positive class and N is the total number of negative class.  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.13.295592doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.13.295592


2.4 Dimension reduction based on the information entropy and information gain 

Information entropy is an indicator to measure the purity of the sample set. The formula is as follows: 

1

( ) log
n

i i

i

H S p p
=

= −        
      

   （7） 

The measure of information gain is to see how much information a feature can bring to the classification 

system. The more information it brings, the more important the feature. Information gain IG(A) is the 

compute of the difference in entropy from start to end the set S is split on an attribute A, the information 

gain is defined as follows [29][50]: 

( , ) ( ) ( ) ( )
t T

IG A S H S p t H t


= −     

 

     （8） 

Where H(S) is the entropy of set S, T is the subsets created from splitting set S by attribute A such that 

t TS U t= , p(t) is the proportion of the number of elements in t to the number of elements inset S, and H(t) 

is the entropy of subset T. 

 

The information gain of a feature can indicate how much information it brings to the classification system 

and can be used as a feature weight. When the model uses more features, the classification time will be 

longer. Arbitrarily reducing the characteristics will likely reduce classification accuracy. Therefore, we 

screened the features based on the calculated information gains to achieve a balance between run time and 

classification accuracy. We then step-wise deleted the features of the least information of gain, which were 

likely the least important. Because DT and RF were both ensemble-based algorithms and had similar 

performances, we only conducted dimension reduction with RF models and expect similar results with DT 

models.  
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III. Results 

3.1. Dataset characteristics and the model tuning 

Of the 52,818 samples, there were missing values for tumor level (_grade) and level (lat_bi), of which there 

were 5,294 (~10%) vacancies in tumor grade (_grade) and 352 (0.6%) vacancies in the level (lat_bi), and 

317 (0.6%) data were missing at the same time. Here, we fill in with other invalid values, such as -5 to pre-

fill these vacant feature values, and then act as input features for the model.   

 

For DT models, the minimum number of leaf nodes with the best performance of the DT ranged 120-560 

and bottomed at 359 (Supplementary Fig. 1). Therefore, the minimum number of samples contained in 

the leaf node was 359 for optimization. The overall classification accuracy could reach 72%, which was 

about 7% higher than the original DT, and the cross-validation error has also decreased. However, due to 

the uneven distribution of the data samples, some categories such as Non-Breast cancer, Infection and Other 

cause were pruned, causing loss of some data information. 

 

For RF models, the parameter nTrees set how many trees in a RF and may have an impact on the 

classification results. The Mtry is the number of variables randomly sampled as candidates at each split and 

was optimized (Supplementary methods). After tuning the models, we set the nTrees parameter to 500 in 

RF-based analyses with the best Mtry node value of 7 (Supplementary Table 2). 

 

According to the tuning results of accuracy and mean squared error (MSE) in ANN models, when the 

number of layers was greater than 20, the models’ performance appeared stabilized (Table 1). Therefore, 

we set the model to double hidden layers, and the number of layers is 50.  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.13.295592doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.13.295592


For the SVM models of linear, radial basis function, Gaussian or polynomial function, we found the linear 

kernel function had the highest accuracy (71.87%) and shortest run-time (483.57s, Table 2), with a one-vs-

one approach.  

3.2 Performance analysis results 

Based on the confusion matrices (Fig. 1), the 4 ML models appeared to have similar performance. The best 

classification accuracy of DT, RF, ANN and SVM models in this study were 72.68%, 72.66%, 70.01% and 

71.85%, respectively, and seemed overall acceptable. However, to evaluate the pros and cons of a model, 

it is not enough to just look at the accuracy. The values of recall,TNR and F1 can specifically reflect the 

classification of each category. Further comparing the metrics among the four models show that the Recall 

and F1 in classifying Non-Breast cancer by RF model were significantly better than the DT, ANN and SVM 

models. In addition, Recall and F1 of Other cause were 1.83% and 3.38%, which were slightly higher than 

the DT and SVM models. This is mainly because that the RF model is an integrated learning algorithm; 

through the voting mechanism, one can balance a certain error. The accuracy of ANN model in classifying 

Alive, Non-Breast cancer, Breast cancer and CVD was not higher than those of the DT, RF model or SVM 

models. However, that of ANN model in classifying Other cause was the highest. Unfortunately, none of 

the above four models can effectively classify the COD of infection. 

3.3. ROC analysis results 

After a comparative analysis of the above performance metrics, we found that the RF model was superior 

to the DT, ANN and SVM models. However, in the classification of Other causes, the ANN model has a 

higher recognition rate than the RF model, and the F1 values of Non-Breast cancer and Infection cannot be 

calculated. Therefore, we used ROC curve to further analyze Non-Breast cancer, Infection and Other cause 

in RF and ANN models. 
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The AUC of Non-Breast cancer, Infection and Other cause of the RF model are 0.6139, 0.7150 and 0.6217 

respectively, which are better than 0.5481, 0.6373 and 0.6125 in the ANN model (Fig. 2). Because the AUC 

index can measure the performance of the model more objectively, the results show that the overall 

performance of the RF model is better than that of the ANN model. 

 

3.4 Dimension reduction based on the information entropy and information gain 

This dataset had 58 categorical/binary features, except the random id for grouping which was continuous. 

Based on the training datasets, the information entropy and information gain of 58 features were calculated 

(Supplementary Table 3). Using information entropy and information gain, we obtained the following 

important features: random id for grouping; Cause of death-only cardiovascular; age >65; Surgery; TNM6 

metastasis subgroup1; AJCC stage 4; TNM6 metastasis subgroup2; Surgery – other; TNM6 tumor 

subgroup1; TNM6 tumor subgroup2; AJCC stage 1; Surgery-lumpectomy; TNM6 lymph node subgroup5 

and TNM6 lymph node subgroup1. Then we characterized the key features in a step-wise fashion 

(Supplementary Fig. 2).  

 

We successfully reduced the data dimension based on information gain and shortened the run times in RF, 

ANN and SVM models, while maintaining the overall classification accuracy (Table 4 and Supplementary 

Tables 4-6). Removal of feature with low information gain (0.0000-0.0005) in RF models led to slight 

increase in Alive and the overall accuracy rates, while no accuracy changes in CVD and Breast cancer 

classes.  The classification of CVD was always 100%; Alive and the overall accuracy rate had a slight 

improvement, respectively about 0.8% and 0.3 %; Breast cancer and CVD had no significant changes; Non-

Breast cancer accuracy was slightly reduced, and the classification effect is unstable, and the Infection 

category was still not recognized in the model due to the uneven distribution of data samples. Therefore, 

the features with low information gain (0.0000-0.0005) may be considered as redundant features, and 
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deleted in the models, while the running times were scientifically reduced. We also found similar changes 

in ANN and SVM models. 

IV. Discussion 

We here compared the performance and efficacy of DT, RF, ANN and SVM in classifying 6-category 

outcomes of a large rectangular database (58 features and ~53,000 samples). The accuracy in classifying 6-

category COD with DT, RF, ANN and SVM was 72.68%, 72.66%, 70.01% and 71.85%, respectively. It is 

noteworthy that the accuracy in classifying 6-category outcomes is exponentially more difficult than 

classifying binary-category outcomes since it depends on 6 sequential classification processes (i.e. 

accuracy^6). Moreover, based on the information entropy and information gain of feature values, we could 

reduce the feature number in a model to 22 and maintained the similar accuracy, while the running time 

decreased from 440s for 58 features to 90s for 22 features in RF, from 70s to 40s in ANN and from 440s to 

80s in SVM. The DT algorithm was not tested after dimension reduction for its lower performance than RF 

and its theoretical framework (ensemble-based) like RF.  

 

Few studies to our knowledge investigated the dimension reduction of multicategory classification. Two-

stage approach has been shown to effectively and efficiently select features for balanced datasets [30], but 

no specific reduction in run time was reported. We here show that dimension reduction and efficiency 

improvement can be achieved by removing features of low to medium information gain (<0.0005) in RF, 

ANN and SVM models, which apparently have little effect on the overall classification performance. Such 

a strategy may be applied to other ML models in classifying unbalanced large rectangular datasets, while 

caution should be used when classifying outcomes in a balanced dataset.  

 

The four included ML algorithms each have their own theoretical frameworks. DT is a logical-based ML 

approach [31]. The structure of DT is similar to a flowchart. Using top-down recursion, the classification 
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tree produces the category output. Starting from the root node of the tree, test and compare property values 

on its internal node, then determine the corresponding branch, and finally reach a conclusion in the leaf 

node of the DT. This process is repeated at each node of the tree by selecting the optimal splitting features 

until the cut-off value is reached [32]. A leafy tree tends to overtraining, and its test accuracy is often far 

less than its training accuracy. By contrast, a shallow tree can be more robust and be easy to interpret [33].  

 

DT works by learning simple decision rules extracted from the data features. But RF are a combination of 

tree predictors such that each tree depends on the values of a random vector sampled independently, and 

with the same distribution for all trees in the forest [34]. When RF used for a classification algorithm, the 

deeper the tree is, the more complex the decision rules and the fitter the model [34, 35]. The generalization 

error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the 

correlation between them. Random decision forests overcome the problem of over fitting of the DTs and 

are more robust with respect to noise.  

 

ANN technique is one of the artificial intelligence tools. It is a mathematical model that imitates the 

behavior characteristics of animal neural networks [36]. This kind of network carries on distributed parallel 

information processing, by adjusting the connection between a large number of internal nodes, so as to 

achieve the purpose of processing information. After repeated learning and training, network parameters 

corresponding to the minimum error are determined, and the ANN model classifies the output automatically 

from the dataset. 

 

SVM is another popular ML tool based on statistical learning theory, which was first proposed by Vladimir 

Vapnik and his colleagues [37, 38]. Unlike traditional learning methods, SVMs are approximate 

implementations of structural risk minimization methods. The input vector is mapped to a high-dimensional 
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feature space through some kind of non-linear mapping which was selected in advance. An optimal 

classification hyperplane is constructed in this feature space, to maximize the separation boundary between 

the positive and negative examples [37, 38]. Support vectors are the data points closest to the decision plane, 

and they determine the location of the optimal classification hyperplane. 

 

The four ML algorithms had different strengths and weaknesses. The RF algorithm in our study seems to 

have the best overall performance for its lack of being unable to classify some CODs (NA in the Table 3) 

and the best overall accuracy. Despite the similar classification accuracy (~72.66%), the DT algorithm 

could not accurately classify non-breast cancer group. Given the similar theoretical framework, we did not 

access its performance after dimension reduction. The ANN algorithm in our study is most efficient before 

and after dimension reduction. Surprisingly, we also notice a small increase in accuracy after dimension 

reduction which warrants further investigation. The SVM algorithm in our study appears very sensitive to 

the subgroup size (i.e. number of samples) and was not able to classify 2 of the 6 COD, although it also 

acceptable classification accuracy (71.8%).  

 

The study’s limitations should be noted when applying our findings to other databases. First, this type of 

rectangular database is typical in survey and population-study, but not so in computational biology. The 

major difference is the large p in ‘omics datasets versus the large n in epidemiological datasets, which 

referred to feature number and sample number, respectively. Second, some of the outcomes were not 

accurately classified. It is likely owing to the unbalanced outcome distribution. On the other hand, such an 

undesired situation reflexes the real-world evidence/experience. Further studies are needed to improve the 

classification accuracy in the classes of fewer samples. Third, our works were exclusively based on 

MATLAB platform, and may not be applicable to other platforms such as R or python. Finally, ideally, 
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we should use a large database to validate our models, but it is very difficult to curate and apply the tuned 

models to another large database that is similar to the SEER database.  

 

In summary, we here show that RF, DT, ANN and SVM algorithms had similar accuracy for 

classifying multi-category outcomes in this large rectangular dataset. Dimension reduction based on 

information gain will significantly increase model’s efficiency while maintaining classification accuracy. 
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Figure Legends 

Figure 1. The confusion matrices of the tuned decision tree (A), random forest (B), artificial neural 

networks (C) and support vector machine (D) models. 
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Figure 2. The receiver Operator Curve (ROC) of the tuned random forest and artificial neural networks 

models 
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