
Journal of XYZ, 2017, 1–11
doi: xx.xxxx/xxxx
Manuscript in Preparation
Paper

P A P ER

Rapid development of cloud-native intelligent data
pipelines for scienti�c data streams using the
HASTE Toolkit
Ben Blamey1,*, Salman Toor1, Martin Dahlö2,3, Håkan Wieslander1, Philip J
Harrison2,3, Ida-Maria Sintorn1,3,4, Alan Sabirsh5, Carolina Wählby1,3, Ola
Spjuth2,3,† and Andreas Hellander1,†
1Department of Information Technology, Uppsala University, Sweden and 2Department of Pharmaceutical
Biosciences and Science for Life Laboratory, Uppsala University, Sweden and 3Science for Life Laboratory,
Uppsala University and 4Vironova AB, Stockholm, Sweden and 5Advanced Drug Delivery, Pharmaceutical
Sciences, R&D, AstraZeneca, Gothenburg, Sweden
*Correspondence: ben.blamey@it.uu.se
†Co-senior authors

Abstract
This paper introduces the HASTE Toolkit, a cloud-native software toolkit capable of partitioning data streams in order to
prioritize usage of limited resources. This in turn enables more e�cient data-intensive experiments. We propose a model
that introduces automated, autonomous decision making in data pipelines, such that a stream of data can be partitioned
into a tiered or ordered data hierarchy. Importantly, the partitioning is online and based on data content rather than a priori
metadata. At the core of the model are interestingness functions and policies. Interestingness functions assign a quantitative
measure of interestingness to a single data object in the stream, an interestingness score. Based on this score, a policy
guides decisions on how to prioritize computational resource usage for a given object. The HASTE Toolkit is a collection of
tools to adapt data stream processing to this pipeline model. The result is smart data pipelines capable of e�ective or even
optimal use of e.g. storage, compute and network bandwidth, to support experiments involving rapid processing of
scienti�c data characterized by large individual data object sizes. We demonstrate the proposed model and our toolkit
through two microscopy imaging case studies, each with their own interestingness functions, policies, and data hierarchies.
The �rst deals with a high content screening experiment, where images are analyzed in an on-premise container cloud
with the goal of prioritizing the images for storage and subsequent computation. The second considers edge processing of
images for upload into the public cloud for a real-time control loop for a transmission electron microscope.
Key words: Stream Processing, Interestingness Functions, HASTE, Tiered Storage, Image Analysis

Introduction

Large datasets are both computationally and �nancially expen-
sive to process, transport and store. Such datasets are ubiq-
uitous throughout the life sciences, including imaging, where
di�erent types of microscopy are used to e.g. observe and

quantify e�ects of drugs on cell morphology. Modern imag-
ing techniques can generate image streams at rates of up to
1TB/hour [1]. Clearly, the processing, storing and communi-
cation of these images can be slow, resource-intensive and ex-
pensive, e�ectively becoming a bottleneck to scale experiments
in support of data-driven life science. Another prominent ex-

Compiled on: September 13, 2020.
Draft manuscript prepared by the author.

1

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.13.274779doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.13.274779


2 | Journal of XYZ, 2017, Vol. 00, No. 0

Key Points

• We propose a pipeline model for building intelligent pipelines for streams, accounting for actual information content in
data rather than a priori metadata, and present the HASTE Toolkit, a cloud-native software toolkit for supporting rapid
development according to the proposed model.

• We demonstrate how the HASTE Toolkit enables intelligent resource optimization in two image analysis case studies based
on a) high-content imaging and b) transmission electron microscopy.

• We highlight the challenges of storage, processing and transfer in streamed high volume, high velocity scienti�c data for
both cloud and cloud-edge use cases.

ample is human genome sequencing, where the global storage
requirements is predicted to be between 2 and 40 exabytes (1
exabyte = 1018 bytes) by 2025, and with modern techniques
generating data at the order of ~60 GB/h [2]. Similarly, in
large-scale modeling, a single computational experiment in a
systems biology context can generate terabytes of data [3].
This work is motivated by some of the most critical as-

pects of scalable scienti�c discovery for spatial and temporal
image data. There are two primary concerns: (1) not all data
is equally valuable. With datasets outgrowing resources, data
storage should be prioritized for data that is most relevant (or
interesting) for the study at hand and poor quality, or unin-
teresting, data (e.g. out-of-focus images) should be discarded
or archived; (2) when resources are limited, or if decisions are
required in real-time, we have to be smart about how the data
is (pre)processed and which subsets of the data are stored for
more detailed (and potentially computer intensive) analysis –
prioritizing more interesting subsets of the data.
The general challenges of management and availability of

large datasets are often popularized and summarized trough
the so-called Vs of big data. Initially, the focus was on the three
Vs: velocity, volume and variety, but this list has since grown
with the increasing number of new use-cases to also include Vs
such as veracity, variability, virtualization and value [4]. Dur-
ing the last decade, a number of frameworks have been de-
signed to address these challenges, o�ering reliable, e�cient
and secure large-scale data management solutions. However,
according to a white paper published by IDC [5], only 30% of
the generated data is in the form that it can be e�ciently ana-
lyzed. This highlights the current gap between large-scale data
management and e�cient data analysis. To close this gap, it
is essential to design and develop intelligent data management
frameworks that can help organize the available datasets for
e�cient analyses. In this work, we address this challenge by
proposing a model that helps a data pipeline developer make
online decisions about individual data objects’1 priority based
in actual information content, or interestingness, rather than
traditional metadata.
A range of existing work in life science applications has dis-

cussed the challenges of transporting, storing and analyzing
data, often advocating a streamed approach. In [6] the authors
explicitly discuss the constraints of cloud upload bandwidth,
and its e�ect on overall throughput for mass-spectrometry
based metabolomics. In their application, uploading large
datasets from the instrument to the cloud represents a bottle-
neck and they advocate a stream-based approach with online
analysis where data is processed when it arrives, rather than
waiting for upload of the complete dataset. Hillman et al. [7]
developed a stream based pipeline with Apache Flink and Kafka
for processing of proteomics data from liquid chromatography-

1 We use the generic term data object but note that analogous terms in
various contexts include: documents, messages and blobs

mass spectrometry (LC/MS) and note the advantages of a real-
time approach to analysis: “a scientist could see what is hap-
pening in real-time and possibly stop a problematic experi-
ment to save time”. Zhang et al. [8] developed a client/server
application for interactive visualization of MS spectra, adopt-
ing a stream-based approach to achieve better user interactiv-
ity. In genomics, [9] presented the htsget protocol to enable
clients to download genomic data in a more �ne-grained fash-
ion, and allow for processing chunks as they come from the
sequencer. In [10], the authors note that a single electron mi-
croscope can produce 1 TB of images per day, requiring a min-
imum of 1000 CPU hours for analysis. Adapting their Scipion
software [11] (intended for Cryo EM image analysis) for use in
the cloud, they discuss the challenges of data transfer to/from
the cloud, comparing transfer rates for di�erent providers. [12]
proposes excluding outliers in streaming data, using an ‘Outlier
Detection and Removal’ (ODR) algorithm which they evaluate
on �ve bioinformatics datasets.

Rather than handling one particular type of data or dealing
with a speci�c data pipeline, the aim of the present work is
to distill e�ective architectural patterns into a pipeline model
to allow for repeatable implementations of smart systems ca-
pable of online resource prioritization in scenarios involving
large-scale data production, such as from a scienti�c instru-
ment. Computers in the lab connected directly to such an in-
strument, used together with cloud resources, are an exam-
ple of edge computing [13]. Under that paradigm, computa-
tional resources outside the cloud (such as mobile devices, and
more conventional compute nodes) are used in conjunction
with cloud computing resources to deliver bene�ts to an appli-
cation such as reduced cost, better performance, or improved
user experience. General computer science challenges include
security, deployment, software complexity, and resource man-
agement/workload allocation. In our context, the streams of
large data objects generated by scienti�c instruments create
particular challenges within the edge computing paradigm as
the data often needs to be uploaded to the cloud for process-
ing, storage, or wider distribution. Whilst limited compute re-
sources at the edge are often insu�cient for low-latency pro-
cessing of these datasets, intelligent workload allocation can
improve throughput (as discussed in Case Study 2).

In this paper we propose a pipeline model for partitioning
and prioritizing stream datasets into data hierarchies (DHs) ac-
cording to an interestingness function (IF) and accompanying pol-
icy, applied to objects in the stream, for more e�ective use of
hardware (in edge and cloud contexts). We present this as
a general approach to mitigating resource management chal-
lenges, with a focus on image data. Our model allows for au-
tonomous decision making, while providing a clear model for
domain experts to manage the resources in distributed systems
– by encoding domain expertise via the IF. To that end, this pa-
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per introduces the HASTE2 Toolkit, intended for developing in-
telligent stream processing pipelines based on this model. Two
case studies presented in this paper document how microscopy
pipelines can be adapted to the HASTE pipeline model.
Whilst the core ideas of intelligent data pipelines in HASTE

is generally applicable to many scenarios involving scien-
ti�c datasets, we here focus on case-studies involving image
streams, in particular from microscopy.

Background: StreamProcessing andWork�ow
Management

A fundamental component to the pipelines presented in this
paper is a stream processing engine. Systems for stream
processing are generally concerned with high frequency mes-
sage in�ux, and those objects can be small in size, such as
a few KB. Examples of such data objects include sensor read-
ings from IoT devices (such as MQTT messages), those gener-
ated from telecoms, web and cloud applications, e-commerce
and �nancial applications, or the aggregation and analysis
log entries. Well-known examples of mature, enterprise-
grade frameworks for cloud-based stream processing in these
contexts include Apache Flink, Apache Spark Streaming, and
Apache Log Flume. Resilience and fault tolerance are key fea-
tures of these frameworks (often achieved with various forms
of redundancy and replication). These frameworks are com-
monly used in conjunction with various queuing applications,
e.g., Apache Kafka, and vendor-speci�c products such as AWS
Kinesis – these also include basic processing functionality.
Whilst the maturity, support, documentation, features and

performance (order of MHz message processing throughput)
boasted by these frameworks is attractive for scienti�c com-
puting application, streamed scienti�c data (and its process-
ing) tends to have di�erent characteristics: data objects used in
scienti�c computing applications (such as microscopy images,
and matrices from other scienti�c computing domains) can be
larger in size, which can create performance issues when inte-
grated with these enterprise frameworks described above [14].
For example, data object sizes in imaging applications could be
a few MB.
To address this gap, we have previously developed and re-

ported on a stream processing framework focusing on scien-
ti�c computing applications, HarmonicIO [15]. HarmonicIO
sacri�ces some of these features, and is intended for lower-
frequency applications (towards kHz, not MHz), and was able
to achieve better streaming performance under some condi-
tions in one study for larger message sizes [14]. The HASTE
Toolkit has been developed with images as the primary use-
case and for this reason HarmonicIO is the default supported
streaming framework in the toolkit. However, we stress here
that in principle any streaming framework can be used.
Furthermore, under the emerging edge computing

paradigm, there are some stream processing frameworks
available, often focusing on traditional IoT use-cases. Being
in their infancy, e�ective automated scheduling and operator
placement in hybrid edge/cloud deployment scenarios remains
an open research challenge for this context. Within this area,
there is signi�cant research e�ort concerning real-time video
analysis, where images collected at the edge (from cameras)
are streamed to the cloud for analysis – some degree of lossy
compression is typically used in such applications.
By contrast, work�ow frameworks are broad class of soft-

ware frameworks intended to facilitate the development of

2 HASTE: Hierarchical Analysis of Spatial and Temporal Data http://haste.
research.it.uu.se/

data-processing pipelines. There are a large number of such
frameworks (more than 100 are listed in [16]). In such frame-
works, one generally de�nes processing operations (often as
the invocation of external processes), which are triggered by
events such as the creation of a new�le on disk, or a commit be-
ing pushed to a Git repository. Such frameworks generally han-
dle large numbers of �les, of arbitrary size, and often include
some degree of fault tolerance. But in contrast to stream pro-
cessing frameworks, they may lack functionality speci�c for
streams, such as window operations, more complex schedul-
ing and placing of operators, and are generally intended for
higher latency and/or lower ingress rates (than the 100kHz+
range of the stream processing frameworks described above),
and are often �le-system centric, with objects being written
back to disk between each processing step.
The HASTE toolkit attempts to �ll a gap between these two

classes of software (stream processing frameworks, and work�ow
management systems): applications where latency and high data
object throughput are important (and use of a �lesystem as a
queuing platform are perhaps unsuitable for that reason), but
not as high as some enterprise stream processing applications;
whilst being �exible enough to accommodate a broad range of
integration approaches, processing steps with external tools,
and the large message sizes characteristic of scienti�c comput-
ing applications.
The priority-driven approach of the HASTE pipeline model

reconciles the resource requirements of life science pipelines
(characterised by streams relatively of large message, with ex-
pensive per-message processing steps), with the requirements
for low-latency and high throughput, allowing for real time hu-
man supervision, inspection, interactive analysis – as well as
real-time control of laboratory equipment.

HASTE Pipeline Model

The key ideas of the HASTE pipeline model are the use of inter-
estingness functions and a policy to autonomously induce data
hierarchies. These structures are then used to manage and op-
timize di�erent objectives such as communication, processing
and storage of the datasets. The HASTE Toolkit enables rapid
constructions of smart pipelines following this model. Central
to the approach is that decisions are made based on actual data
content rather than on a priori metadata associated with the
data objects. The following subsections introduces the compo-
nents of the pipeline model.

Overview

Figure 1 illustrates the proposed HASTE model and logical
architecture. One or more streaming data sources generate
streams of data objects. The stream then undergoes feature
extraction (relevant to the context) – this data extraction can
be performed in parallel, as an idempotent function of a sin-
gle object. The intention is that computationally cheap initial
feature extraction can be used to prioritize subsequent, more
expensive, downstream processing.
An Interestingness Function (IF) computes an interesting-

ness score for each object from these extracted features. This
computation can be a simple procedure, e.g. to nominate one
of the extracted features as the interestingness score associ-
ated with the data object. In more complex cases it can also be
a machine learning model trained either before the experiment
or online during the experiment that generates the stream. Fi-
nally, a policy is applied which determines where to store the
object within a Data Hierarchy (DH), or send it for further
downstream processing, based on the interestingness scores.
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Figure 1. Logical Architecture for the HASTE pipeline model. A stream of data objects is generated by one or more streaming sources (such as a microscope). These
objects undergo online, automated feature extraction, and an IF is applied with the extracted features as input. This associates an interestingness score with each
object in the stream. A user-de�ned policy is then used to organize the data objects into a data hierarchy to be used for optimizing subsequent communication,
storage and downstream processing.

Interestingess Functions

The IF is a user provided function, to be applied to the extracted
features from the data objects in the stream. The purpose of
the IF is to associate an interestingness score with each object.
Examples of IFs in image analysis contexts could be features
relating to image quality, detected phenomena in images, etc.
The computed IF score is used for determining priority for

subsequent processing, communication, and/or storage of that
object. In this sense, IFs have some similarities to the con-
cept of document (data object) ‘hotness’ in tiered storage con-
texts, where a more recently accessed ’hot’ document would
be stored in a high-performance tier. Whilst much of that line
of work uses only �le-system information, other work takes
some consideration of the application itself, for example [17]
model access as a Zipf distribution, for a review see [3].
Our present work generalizes the concept of ‘hotness’, in a

number of ways: (1) our IFs always take consideration of se-
mantics at the level of the scienti�c application – in the case
of microscopy imaging this could be image focus, or quality
features – perhaps combined with business logic for particular
color channels, etc. – rather than �le system semantics (such
as �le access history). This approach allows an immediate, on-
line decision about the object’s interestingness – rather then
inferring it from subsequent access patterns. (2) Tiered stor-
age is just one potential application of HASTE: we use IFs to
prioritize data objects for storage, compute, and communica-
tion (3) with HASTE, the intention is that users’ con�gure IFs
themselves, together with the associated policy. Currently, the
output of the IF is scalar valued. This is intended to assure
smooth integration in cases where the IF is a machine learnt
model, outputting a probability, rank, or some other statistical
measure.
Further, we propose general software abstractions for

these ideas, and demonstrate the potential bene�ts of online
interestingness-based prioritization in two case studies: both

in terms of the optimization of various resources (compute,
communication, storage), but also from an experimental and
scienti�c viewpoint – selecting the best data (or outliers) for
inspection and further analysis.

Policies for inducing Data Hierarchies

In applications utilizing tiered storage, more interesting data
objects would be saved in higher performance, more expen-
sive tiers – readily accessible for downstream processing (while
less interesting objects could be cheaply archived) – explored
in Case Study 1. Whereas, in an edge computing contexts, we
may want to prioritize data objects for computation at the cloud
edge, to make more e�ective use of that resource – explored
in Case Study 2. In both cases we refer to these structures as
data hierarchies (DHs). In a HASTE pipeline DHs are ‘induced’
within the source data by the IF and a policy. The policy takes
the interestingness score as input and applies a set of rules to
determine how an object is placed within the DH, for exam-
ple, its allocation within a tiered storage system; or where it
should be stored or processed downstream. Listing 1 shows
how a user can de�ne a policy, a simple dictionary mapping
intervals of interestingness scores to the tiers (which are con-
�gured separately). In this paper we demonstrate two forms of
policy: the interval model mentioned above (where the tier is
determined directly from the interestingness score, Case Study
1) and a priority-based policy, where data objects are queued
(according to their interestingness) for upload and processing
(as in Case Study 2).
A bene�t of the HASTE pipeline model is the clear role sepa-

ration – all the domain-speci�c knowledge is e�ectively encap-
sulated within the IF whilst the choice of how to form DHs and
optimize storage tier allocation is encapsulated entirely within
the policy. This allows the scienti�c question of what consti-
tutes an interesting data object, and the computing infrastruc-
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ture, or indeed, budgetary, concerns of how to make best use of
computing resources (including storage), to be separated and
worked on by team members with di�erent expertise. Impor-
tantly, this de-coupling allows the possibility for IFs to be re-
used among scientists, and between contexts where the data
may be similar, but the dataset size, and available computing
infrastructure, may be di�erent.

The HASTE Toolkit

The HASTE Toolkit implements the core functionality needed
for rapidly constructing smart pipelines based on the proposed
model.

HASTE Storage Client

The HASTE Storage Client (HSC) serves as the main entry-
point for the user. It is con�gured with the IF, the pol-
icy, and the con�guration associated with the tiers, and pro-
cesses each data object arriving in the stream. It can be in-
stalled as a standalone Python module (see: https://github.
com/HASTE-project/HasteStorageClient, version 0.13 was used
for this study.). It allows a DH to be realized within HASTE
as tiered storage. It is a library with the core prioritiza-
tion functionality: it invokes the IF on incoming data ob-
jects, and applies the policy to form the data hierarchy.
The extracted features are used to compute interestingness
scores, along with other metadata and logging info, are
saved in a database by the HSC. It is intended to be adopted
within the Python-based stream processing framework of
choice, an example can be found at: https://github.com/
HASTE-project/HasteStorageClient/blob/master/example.py. An
existing pipeline can be adapted to use HASTE according to the
following steps:
• Install the HSC from PyPI pip install

haste-storage-client, or from source.
• Con�gure one or more storage tiers (on a HASTE-
compatible storage platform)3.

• De�ne an IF for the context – it can use spatial, temporal
or other metadata associated with the data object.

• Run feature extraction on the object prior to invoking the
HSC.

• Deploy a MongoDB instance. The scripts https://github.
com/HASTE-project/k8s-deployments/ can be adapted for this
purpose.

Other key components of the HASTE Toolkit

This section lists other various components in the HASTE
toolkit, and describes how they relate to the key ideas of IFs,
data hierarchies (DHs) and policies.
The HASTE Agent: A command-line application (developed

for the microscopy use case in Case Study 2), which uploads
new documents on disk to the cloud, whilst performing intel-
ligently prioritized pre-processing of objects waiting to be up-
loaded, so as to minimize the overall upload duration. (see:
https://github.com/HASTE-project/haste-agent (v0.1 was used
for this study)). The functionality of this tool is discussed in
detail in Case Study 2.
The HASTE Gateway: Cloud gateway service, which receives

data objects in the cloud, and forwards them for further pro-

3 At the time of writing, supported platforms are: OpenStack Swift, Pachy-
derm [18], and POSIX-compatible �lesystems.

cessing. Deployed as a Docker container. (see: https://github.
com/HASTE-project/haste-gateway, v0.1 was used in this study.).
The HASTE Report Generator: An auxiliary command

line tool for exporting data from the Extracted Fea-
tures Database. (see: https://github.com/HASTE-project/
haste-report-generator).
The Extracted Features Database. MongoDB is used by the

HASTE Storage Client to hold a variety of the metadata: ex-
tracted features, interestingness scores, and tier/DH allocation.
Tiered Storage. Tiered storage is one way that a data hierar-

chy (DH) can be realized. The HSC allows existing storage to be
organized into a tiered storage system, where tiers using vari-
ous drivers built into the HSC can be con�gured. In Case Study
2 the tiers are �lesystem directories, into which image �les are
binned according to the user-de�ned policy. The idea is that in
other deployments, less expensive disks/cloud storage could be
used for less interesting data. Note that the policy can also send
data deemed unusable (e.g. quality below a certain threshold)
directly to trash. Tiered storage drivers are managed by the
HASTE storage client.
Our GitHub project page (https://github.com/

HASTE-project) showcases other components relating to
various example pipelines developed within the HASTE project,
including IFs developed for speci�c use cases as well as scripts
for automated deployment.

Experiments and Results

In this section we illustrate the utility of the toolkit in two
real-world case studies chosen to demonstrate how the HASTE
pipeline model can be realized in practice to optimize resource
usage in two very di�erent infrastructure and deployment sce-
narios. Table 1 summarizes the objectives of the case studies.
Case Study 1 concerns data management for a high-content

screening experiment in a scienti�c laboratory at Uppsala Uni-
versity, Sweden. A small on-premises compute cluster running
Kubernetes [19] provides the necessary infrastructure to handle
the immediate data �ow from the experiment, but both stor-
age capacity and manual downstream analysis is a concern. We
use the HASTE toolkit to build a pipeline that captures the input
data as an image stream and bins images into tiers according to
image quality. The overall goal is to organize the images into
tiers for subsequent processing, to both ensure that the best
images are allocated to high performance storage for high per-
formance analysis, and to help the scientist prioritize manual
work to appropriate subsets of data.
Case Study 2 concerns processing an image stream from

a transmission electron microscope (TEM). During streaming,
there is an opportunity to pre-process images using a desktop
PC co-located with the microscope, before being uploaded for
stream processing in the cloud. This is an example of an edge
computing [13]) scenario, where very limited but low-latency
local infrastructure is leveraged together with a large cloud in-
frastructure. The ultimate goal is real-time control of the mi-
croscope (see Figure 6), and consequently end-to-end latency
is a key concern. This latency is constrained by image upload
time. Here we develop a pipeline using the HASTE tools with an
IF that predicts the e�ectiveness of pre-processing individual
images at the edge prior to cloud upload.

Case Study 1 - Smart data management for high-
content imaging experiments

This case study focuses on adoption of the HASTE toolkit in a
high-content microscopy setting – the input is a stream of im-
ages arriving from an automated microscope. This deployment
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Table 1. Overview of the two case studies used in this paper.
Case Study 1 - Cell Pro�ling Case Study 2 - Real Time Processing with a TEM

Application High-Content Imaging Real Time Control of Microscopy
Prioritization of... Storage Communication & Compute
Goal Tiered Storage Reduce end-to-end latency for cloud upload
Deployment Setting On-premises Cloud, Kubernetes Cloud Edge & Public Cloud (SNIC)
Interestingness Function (IF) CellPro�ler Pipeline – Image Quality Estimation of Size Reduction (Sampling, Splines)
Policy Fixed Interestingness Thresholds Dynamic Interestingness Rank

Figure 2. Architecture for Case Study 1. In this case study, the DH is realized as
storage tiers. Images streamed from themicroscope are saved to disk (Network
Attached Storage). This disk is polled by the ‘client’, which pushes a message
about the new �le to RabbitMQ. Workers pop these messages from the queue,
analyze the image, and move it to the storage tiers con�gured in the data
hierarchy, using the HASTE Storage Client, con�gured with an appropriate IF
and Policy. Icons indicate the components running as Kubernetes pods.

uses an on-premises compute cluster running Kubernetes with
a local NAS. While we want online analysis, we consider this a
‘high latency’ application – images can remain unprocessed for
some seconds or minutes until compute resources are available.
This is a contrast to Case Study 2, where low-latency process-
ing is a goal.
Image quality is an issue in microscopy: images that have

debris, are out of focus, or unusable for some other reason re-
lating to the experimental setup. Such images can disrupt sub-
sequent automated analysis and are distracting for human in-
spection. Furthermore, their storage, computation and trans-
portation have avoidable performance and �nancial costs.
For this case study, the HASTE toolkit is used to prioritize

storage. The developed IF is a CellPro�ler pipeline performing
out of focus prediction using the imagequality plugin [20]). The
Policy is a �xed threshold used to bin images into a DH accord-
ing to image quality. See Table 1 for an overview of the case
studies.
Figure 2 illustrates the key components of the architecture:

• Client – monitors the source directory for new image
�les, adding the name of each �le to the queue. (see:
https://github.com/HASTE-project/cellprofiler-pipeline/
tree/master/client, v3 was used for this study).

• Queue – a RabbitMQ queue to store �lenames (and associ-
ated metadata). Version 3.7.15 was used for this study.

• Worker – waits for a �lename message (on the queue), runs
a CellPro�ler pipeline on it, computes an interestingness
score from the CellPro�ler features (according to a user-
de�ned function). (see: https://github.com/HASTE-project/
cellprofiler-pipeline/tree/master/worker, v3 was used for
this study)
The deployment scripts for Kubernetes & Helm used to

deploy these services for this study are available at: https:
//github.com/HASTE-project/k8s-deployments, v1.1 was used.

The image; together with its interestingness score and
metadata are passed to the HASTE Storage Client – which allo-
cates the images to Tiered Storage/DH, and saves metadata in
the the Extracted Feature Database. Each image is processed
independently, which simpli�es scaling.
The HASTE toolkit simpli�es the development, deployment

and con�guration of this pipeline – in particular, the interac-
tion between the �lesystems used in the input image stream
and archive of the processed images. When using our image
processing pipeline, user e�ort is focused on (a) de�ning a
suitable IF and (b) de�ning a policy which determines how
the output of that function relates to DH allocation (storage
tiers). Both of these are declared within the Kubernetes de-
ployment script. When developing the pipeline itself, one is
able to provide the interestingness score (the output of the IF),
and the policy as arguments to the HASTE tools, and delegate
responsibility to applying the policy (with respect to the stor-
age tiers), recording all associated metadata to the Extracted
Feature Database.
The client, queue and workers are all deployed in Docker

containers. Auto-scaling is con�gured for the workers: they
are scaled up when processing images, and scaled back down
again when idle. A message containing the image �lenames
(and other metadata) is queued, but the �le content is read
from the NAS for processing and tiering.
The code for the worker is an extension of Distributed-

CellPro�ler (released as part of CellPro�ler v3.0) [21]4, which
it to run within AWS5. The key bene�t of our containerized
system is that because it runs in Docker, and is not dependent
on AWS services, it can be used for local deployments in labo-
ratory settings, so that images do not need to be uploaded to
the public cloud for processing. Alternatively, our system can
be used with any cloud computing provider able to host Docker
containers. We use the open-source message broker RabbitMQ
in place of Amazon SQS (simple queue service). Our Kubernetes
deployment scripts handle the necessary con�guration, and a
bene�t of RabbitMQ is that it has a built in management web
GUI. A helper script is provided to con�gure the credentials for
the management GUI.
Evaluation
For validation of this case study we simulated analysis and
tiering using a high content screening dataset previously col-
lected in the lab, consisting of 2699 images of cortical neuronal
cells, imaged with an ImageXpress XLS, the dataset is available
at [22]. In doing so, we demonstrate that our system is able to
handle a large number of images. To simulate the microscope,
the images were copied into the source directory, triggering
messages from the client, which were read by workers to ana-
lyze the images (with CellPro�ler) to extract the relevant fea-
tures from the results, apply the IF, and allocate them to the
tiers according to the policy. Running in our laboratory Ku-
bernetes environment, 17 workers were able to process images

4 Version 3.1.8 was used for this study.
5 https://github.com/CellProfiler/Distributed-CellProfiler
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Figure 3. Histograms of the PLLS feature scores (top), and when converted to
an Interestingness Score (bottom), by application of the Logistic Function (the
IF for Case Study 1, middle). The vertical lines on the bottom plot indicate tier
boundaries con�gured in the policy. c.f. example images in Figure 4

Table 2. Image allocation for Case Study 1.
Tier Image Count Data (MB)
Tier A 726 6 789
Tier B 731 6 836
Tier C 606 5 667
Tier D 636 5 947
Total 2699 25 239

simultaneously.
We use the PLLS (Power Log Log Slope) feature as the basis

of our interestingness score, as it has been shown to be a robust
measure of image focus [23]. In this case study, we use the
logistic function f as an IF, applying it to the PLLS feature x, to
compute the interestingness score. The logistic function has
output in the range (0,1):

f(x) = 1
1 + e–k(x–x0)

The PLLS values will depend on a number of factors (such
as magni�cation, number of cells, stainings, exposure times,
etc.). The parameters of this IF can be chosen to �t the modal-
ity, based on a sample of pre-images for calibration. In this
case, we chose (k = 4.5, x0 = –1.4). The policy is de�ned tomap the interestingness score in the intervals (i/4, (i+1)/4) for
i ∈ (0, 1, 2, 3) to the respective storage tiers. Figure 3 shows
histograms of the PLLS feature and Interestingness Score.
For this evaluation, these tiers were simply directories on

disk. Any storage system compatible with the HASTE Storage
Client could be used, the key idea is that di�erent storage plat-
forms (with di�erent performance and cost) can be used for the
di�erent tiers. In this case, we simply use the tiers as a con-
venient way to partition the dataset for further analysis and
inspection. Figure 4 shows examples of the images according

Figure 4. Example images from the high content screening dataset (Case Study
1), according to automatically assigned tier. Tier A is the most in-focus, with
the highest PLLS feature values and interestingness scores.

interestingness_function(features):
plls = features[’PLLS’]
int_score = 1/(1 + exp(-(4.5) * (plls - (-1.4))))
return int_score

See: https://github.com/HASTE-project/cellprofiler-pipeline/blob/
master/worker/haste/pipeline/worker/LogisticInterestingnessModel.py

storage_policy:
[ [0., 0.25, tierD],

[0.25, 0.50, tierC],
[0.50, 0.75, tierB],
[0.75, 1.00, tierA] ]

See: https://github.com/HASTE-project/k8s-deployments/
blob/master/pipeline_worker.yaml

Listing 1: Pseudocode for Image Tier Placement (Case Study 1). The IF is the
logistic function, applied to the previously extracted PLLS feature. The policy
shows thresholds for the di�erent tiers.

to tiers, and Table 2 shows the results.

Case Study 2 - Prioritizing analysis of TEM images at
the Cloud Edge

This case study is concerned with the prioritized processing
of a stream of images from a microscope (according to an IF),
applied to a hybrid edge/cloud stream processing deployment
context. In this example, we show how the HASTE tools can fa-
cilitate a better use of constrained upload bandwidth and edge
compute resources. The image stream comes fromMiniTEMTM
- a 25keV transmission electron microscope [24] (Vironova,
Sweden), connected to a desktop PC from which the micro-
scope is operated and the image stream received, via propri-
etary driver software. The stream processing application pre-
processes the TEM images locally (i.e. at the cloud edge), to
reduce their image size, with the e�ect of reducing their up-
load time to the cloud, and hence the end-to-end processing
latency.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.13.274779doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.13.274779


8 | Journal of XYZ, 2017, Vol. 00, No. 0

Figure 5. Architecture for Case Study 2, showing internal functionality of the
Haste Desktop Agent at the cloud edge. Images streamed from the microscope
are queued at the edge for uploading after (potential) pre-processing. The DH
is realized as a priority queue. Images are prioritized in this queue depending
on the IF which estimates the extent of their size reduction under this pre-
processing operator: those with a greater estimated reduction are prioritized
for processing (vice-versa for upload). This estimate is calculated by interpo-
lating the reduction achieved in nearby images (see Figure 7). This estimated
spline is the IF for this case study.

The purpose of the pipeline is to automate a typical work-
�ow for TEM analysis, which proceeds as follows: a sample is
loaded into the microscope (in this case a tissue sample), the
operator performs an ‘initial sweep’ over the sample at low
magni�cation, to locate target (i.e. interesting) regions of the
sample. In the conventional work�ow, the search for ‘target’
areas of the sample is done by human inspection. The opera-
tor then images identi�ed target areas of the sample at higher
magni�cation for subsequent visual/digital analysis.
Automating this process entails the detection of target re-

gions of the sample using an automated image processing
pipeline, based on a set of images from the initial sweep. Such a
pipeline would output machine-readable instructions to direct
the microscope to perform the high magni�cation imaging, re-
ducing the need for human supervision of sample imaging. The
image processing pipeline used to detect target regions can be
costly and slow and could hence preferably be performed in
the cloud. Performing image processing in the cloud has sev-
eral advantages: it allows short-term rental of computing re-
sources without incurring the costs associated with up-front
hardware investment and on-premises management of hard-
ware. Machines with GPUs for deep learning, as well as secure,
backed-up storage of images in the cloud, are available accord-
ing to a pay-per-usemodel. With our overall aim of supporting
a real-time control loop, and given the expense of the equip-
ment, sample throughput is important. Despite images being
compressed as PNGs, upload bandwidth is a bottleneck. Note
that PNG compression is lossless, so as not to interfere with
subsequent image analysis. Consequently, we wish to upload
all the images from the ‘initial sweep’ into the cloud as quickly
as possible, and this is what is targeted here.
A pre-processing operator, would reduce the compressed

image size to an extent depending on the image content. How-
ever, this operator itself has a computational cost but because
of the temporary backlog of images waiting to be uploaded,
there is an opportunity to pre-process some of the waiting
images to reduce their size (see Figure 5). The available up-
load bandwidth with respect to the computational cost of the
pre-processing operator, means that (in our experiment) there
is insu�cient time to pre-process all images prior to upload.
In fact, to pre-process all of them would actually increase
end-to-end latency, due to the computational cost of the pre-
processing operation and limited �le size reduction for some
images (content dependent). The solution is to prioritize im-
ages for upload and pre-processing respectively, whilst both

Figure 6. Architecture of the intended application: full control loop for the
MiniTEM, with automatic imaging of target areas identi�ed in initial scan.
Control of microscope acquisition is future work. The internals of the HASTE
Desktop Agent (where the HASTE model is applied) are shown in Figure 5.

processes, as well as the enqueuing of new images from the
microscope, are occurring concurrently.
Feature Extraction, the Interestingness Function, and Policy
Samples for TEM analysis are typically supported by a metal
grid, which then obscures (blocks) regions of the sample in
(in this case) a honeycomb pattern. The blocked regions ap-
pear black in the images. As the sample holder moves under
the camera, the extent to which the sample is obscured is a
piecewise smooth (but irregular) function of document index,
dependent on the particular magni�cation level, and speed and
direction of the sample holder movement. Images can be pre-
processed to remove noise from blocked regions of the image,
reducing the size of the image under PNG compression. The ex-
tent of �le size reduction (under our pre-processing operator)
is related to the extent to which the grid obscures the image.
Consequently, the predicted extent of �le size reduction

can be modelled with linear spline interpolation, based on the
actual �le size reduction of images sampled from the queue,
described in more detail in [25]. The �le size reduction cor-
responds to feature extraction in the HASTE pipeline model,
and the spline estimate – the estimate of message size reduc-
tion – can be encapsulated as an IF, see Figure 1. The HASTE
tools, speci�cally the HASTE Agent allow that IF to be used
as a scheduling heuristic to prioritize upload and local (pre-
)processing respectively (i.e. corresponding to the policy in-
ducing the DH in HASTE).
Available compute resource at the cloud edge are prioritized

on those images expected to yield the greatest reduction in �le
size (normalized by the compute cost, i.e. CPU time, incurred
in doing so). Conversely, upload bandwidth is prioritized on
(a) images that have been processed in this way, followed by
(b) those images for which the extent of �le size reduction is
expected to be the least – under the aim of minimizing the
overall upload time.
An important distinction between the this setting and that

in Case Study 1 is that the IF and DH are dynamic in this case
study.
TheHASTE Agentmanages the 3 processes occurring simul-

taneously: new images are arriving from the microscope, im-
ages are being pre-processed, and images are being uploaded.
Evaluation
When evaluated on a set of kidney tissue sample images [26]
our edge-based processing approach yielded up to a 25% reduc-
tion in end-to-end stream processing latency (for this partic-
ular choice of processing operator and dataset) compared to a
baseline approach without any prioritization, when compared
to performing no stream processing at all [25]. This is a signi�-
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Figure 7. Image size reduction (normalized by CPU cost) over index, showing
which images are processed at the edge. Those marked ‘processed’ were pro-
cessed at the cloud edge prior to upload (and vice-versa) – selected either to
search for new areas of high/low reduction, or to exploit known areas (using the
IF). The line shows the �nal revision of the splines estimation of the message
size reduction (the IF). Note how this deviates from the true value (measured
independently for illustration purposes on the same hardware), in regions of
low reduction. Note the oscillating pattern which is an artifact movement over
the grid in the miniTEM. Adapted from [25].

cant gain obtained with relative ease due to the HASTE Toolkit.
To verify the pre-processing operator, it was applied to all

images after the live test was performed. Figure 7, shows how
the image size reduction (y-axis - normalized with computa-
tional cost) can be modelled as a smooth function of the docu-
ment index (x-axis). The colors and symbols show which im-
ages were processed prior to upload based on either searching
(black crosses); or on the basis of the IF; those selected for
pre-processing (blue dots), and those which were not (orange
crosses). As can be seen and expected there is one peak (the
central one) where more images should optimally have been
scheduled for pre-processing prior to upload. That they were
not is a combination of the heuristics in the sampling strategy,
and the uploading speed. That is, they were simply uploaded
before the IF (the spline estimate) was good enough to schedule
them for pre-processing. The blue line in Figure 7 corresponds
to the �nal spline.

Discussion

This paper has discussed an approach to the design and de-
velopment of smart systems for processing large data streams.
The key idea of a HASTE pipeline is based on prioritization
with an interestingness function, and the application of a pol-
icy. We demonstrated in two distinct case studies that this
simple model can yield signi�cant performance gains for data-
intensive experiments. We argue that IFs (and the prioritiza-
tion and binning that they achieve) should be considered more
a ‘�rst class citizen’ in the next generation of work�ow man-
agement systems, and that the prioritization of data using IFs
and policies are useful concepts for designing and developing
such systems.
The ability to express informative IFs are critical to the ef-

�ciency of a HASTE pipeline. IFs are chosen by the domain
expert to quantify aspects of the data to determine online pri-
oritization. In this work we provide two examples of increas-
ing complexity. In Case Study 1, the IF is a static, idempotent
function of a single image – which can be checked against a
static threshold, to determine a priority ‘bin’ or tier to store the
image. In Case Study 2, the prioritization of the queue of im-
ages waiting to be uploaded is revised online, as the underlying
model is revised. The strength of our proposed model is that,
having de�ned an IF, by making small changes to the policy,
the user is able to recon�gure the pipeline for di�erent deploy-
ment scenarios and datasets, with di�erent resulting resource

allocation. The HASTE toolkit is an initial implementation of
this vision. An avenue for future work will explore the creation
of IFs through training in real-time, using active learning and
potentially also reinforcement learning.
The policy-driven approach of resource prioritization pro-

posed under the HASTE pipeline paradigm can be generalized
to optimize utilization of di�erent forms of constrained com-
putational resources. In some contexts (such as Case Study 1)
we are concerned with processing data streams for long-term
storage, so storage requirements (and associated costs) are the
key concern. In other contexts, with a focus on real time con-
trol, automation and robotics, the priority can be more about
achieving complex analysis with low-latency. In Case Study 2
this is manifest as a need to achieve edge to cloud upload in
the shortest possible time.
The di�erent policies for the two case studies re�ect this: in

Case Study 1, the user de�nes a policy to ‘bin’ images according
their interestingness score (i.e. image quality), these thresh-
olds are pre-de�ned by the user. That is to say, the user decides
explicit interestingness thresholds, and this determines the re-
sources (in this case, storage) which are allocated, and the �nal
cost. In similar deployment scenarios where cloud storage is
used (especially blob storage) costs would depend on the num-
ber of images within each interestingness bound. Whereas in
Case Study 2, by modelling the predicted extent of message
size reduction as an IF within the HASTE tools, we can de�ne a
policy to prioritize image processing and upload with the goal
of minimizing the total upload time for the next step in the
pipeline.
These policies induce two forms of DH: In Case Study 2, the

DH is manifest as a priority queue, updated in real time as new
images arrive, are pre-processed, and eventually removed –
whereas the available resources (CPU, network) are �xed. By
contrast, the data hierarchy in Case Study 1 is static, de�ned
by �xed thresholds on interestingness score – in this case, it is
the resources (in this case, storage, and consequent processing)
which are variable, determined by how many images end up in
each tier of the hierarchy.
Finally we note that the IF and policy could also be used to

prioritize data based on some measure of con�dence. In many
scienti�c analyses there exists a signi�cant amount of uncer-
tainty in several steps of the modeling process. For example in
a classi�cation setting the class labels predicted can be highly
uncertain. If in the top tier of the hierarchy wewould place only
those data points for which we are con�dent in the predicted
label, downstream analysis would see a reduction in noise and
an increased separability of the (biological) e�ects under study,
as discussed in [27].

Conclusion

In this paper we have proposed a new model for creating in-
telligent data pipelines, and presented a software implementa-
tion, the HASTE Toolkit. We have shown how these tools can
be leveraged in imaging experiments to organize datasets into
DHs. We have shown bene�ts in terms of cost reduction and
performance improvement, in terms of compute resources of
various kinds). In our case studies, we have studied some typ-
ical deployment scenarios, and shown how prioritization can
be achieved in these scenarios. Conceptualizing data analysis
pipelines around IFs allows better use of various computing
resources, and provides a conceptual structure for us to think
about the involvement of humans in such pipelines (and their
monitoring), as well as a means of managing scienti�c experi-
mentation – either with instruments or through simulation.
The proposed HASTE pipeline model is intended as a means

of bringing structure to large scienti�c datasets – a means of
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curating a Data Lake [28], whilst avoiding creating a data swamp
[29, 30]. It is e�ectively a design pattern creating an data hier-
archy from “runtime knowledge" about the dataset – extracted
in real time. The HASTE Toolkit is intended to help scientists
achieve this.
The key contribution made by the HASTE Toolkit is the de-

sign of an API which allows the user to express how they would
like their data to be prioritized, whilst hiding from them the
complexity of implementing this behaviour for di�erent con-
strained resources in di�erent deployment contexts. Our hope
is that the toolkit will allow intelligent prioritization to be
‘bolted on’ to new and existing systems – and is consequently
intended to be usable with a range of technologies in di�erent
deployment scenarios.
In the general context of big data, the HASTE Toolkit should

be seen an e�ort to address challenges related to data streams
and e�cient placement and management of data. It provides
the technical foundation for automatically organizing incom-
ing datasets in a way that makes them self-explainable and
easy to use based on the features of data objects rather than tra-
ditional metadata. It also enables e�cient data management
and storage based on data hierarchies using dynamic policies.
This lays the foundation for domain experts to e�ciently select
the best-suited data from a massive dataset for downstream
analysis.
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