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ABSTRACT 

Brain atlases provide reference parcellations of the brain that are essential for population 
neuroimaging studies.  We present a new high-resolution, single-subject atlas labeled into two 
parcellation schemes: 1) the anatomical BCI-DNI atlas, which was labeled based on known 
morphological and anatomical features; and 2) the hybrid USCBrain atlas, which used additional 
functional information to guide the sub-parcellation of cerebral cortex. Particular attention was 
paid to the image acquisition, processing and labeling methods to capture fine anatomical details, 
accommodating for the high-quality data common in recent imaging studies. 

A single-subject, high-resolution T1-weighted image was acquired and was then processed by an 
expert neuroanatomist using semi-automated methods in BrainSuite. The brain’s features were 
meticulously extracted with manual corrections to bias-field and masking steps, thereby providing 
accurate tissue classification and anatomical surface modeling. Guided by sulcal and gyral 
landmarks, labeled anatomical regions were drawn manually on coronal single-slice images to 
generate the BCI-DNI atlas, which contains 66 cortical and 29 noncortical regions. The cortical 
regions were further sub-parcellated based on connectivity analysis of resting fMRI data from 
multiple subjects in the Human Connectome Project (HCP) database, which were coregistered to 
the single subject. The resulting USCBrain atlas contains a total of 130 cortical and 29 noncortical 
regions. In addition to the anatomical and functional parcellations, we also provide a delineation 
between sulcal valleys and gyral crowns, which offer an additional set of 26 sulcal subregions per 
hemisphere.  

The intended use of the USCBrain atlas is to label individual brains through structural 
coregistration. To assess utility, we computed the adjusted Rand indices between individual sub-
parcellations obtained through structural-only coregistration to the USCBrain atlas and sub-
parcellations obtained directly from each subject’s resting fMRI data. The gyral sub-parcellations 
generated by atlas-based registration show variable but generally good overlap with the resting 
fMRI-based subdivisions. In addition to the crisp parcellations, a probabilistic map is included to 
provide users a quantitative measure of reliability for each gyral subdivision. Both atlases can be 
used with the BrainSuite, FreeSurfer, and FSL software packages. 
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1. INTRODUCTION 

Atlas-based identification of neuroanatomy plays an integral role in studies of neurological 
disease, cognitive neuroscience, and development and aging, as well as in clinical applications 
including stereotaxic neurosurgery planning (Dickie et al., 2017). The most commonly used form 
of atlas registration aligns the anatomical images of single subjects to a reference image based on 
brain anatomy. Anatomical MRI enables visualization of regions through contrasting image 
intensities between grey matter, white matter, and cerebral spinal fluid (CSF). Furthermore, it 
enables identification of the major sulci and associated gyral subdivisions, providing the 
morphological details required for both anatomical registration and brain segmentation. Once 
registered, labels from an atlas can be transferred to the MRIs of individual subjects for automated 
segmentation of the brain into regions of interest (ROIs). Advanced imaging methods have 
improved the anatomical details that can be captured with high-resolution imaging, enabling more 
accurate alignment and precise identification of anatomical boundaries.  

Multiple approaches have been developed to delineate regions of the brain based on its structural, 
functional and cellular architecture. Manual labeling of the brain based on anatomical landmarks, 
e.g., sulci and gyri, remains the most common method of parcellating the brain for atlas creation. 
Single-subject templates, such as the Tailarach Atlas and the Automated Anatomical Labeling 
(AAL) Atlas, were parcellated using anatomical images of a single subject (Collins et al., 1995; 
Talairach and Tournoux, 1988; Tzourio-Mazoyer et al., 2002). Alternative imaging methods have 
been used to identify cytoarchitectonic, myeloarchitectonic, or functional features, which are used 
in turn to parcellate the brain (Chakravarty et al., 2006; Chong et al., 2017; Essen and Drury, 1997; 
Yeo et al., 2011; Zilles and Amunts, 2010). Diffusion MRI has been used to parcellate the cortex 
based on differences in myelination within distinct brain regions, as well as through delineation of 
regions based on structural connectivity between these regions (Glasser et al., 2014). Similarly, 
functional MRI (fMRI) can be used to identify contiguous regions of cortex that show similar 
functional properties (Bhushan et al., 2016; Joshi et al., 2018; Margulies et al., 2009). Parcellation 
methods based on fMRI include region growing (Blumensath et al., 2012), graph cut (Chong et 
al., 2017; Li et al., 2018; Shi and Malik, 2005), hierarchical clustering (Cordes et al., 2002) and 
ICA (Calhoun et al., 2009). Individual variations and limited data from single-subject templates 
may not be representative of the larger population. To address individual variation, multi-subject 
templates, including average brain and probabilistic atlases, attempt to account for the variability 
of brain architecture across a population (Desikan et al., 2006; Fischl, 2012; Mazziotta et al., 1995). 
Multi-subject functional atlases are created by anatomical coregistration onto a common space 
followed by group parcellation based on fMRI (Chong et al., 2017; Craddock et al., 2013; Glasser 
et al., 2016; Yeo et al., 2011). Lastly, multi-modal combined with multi-subject approaches have 
pooled data across subjects and used multiple imaging contrasts to build an atlas with an integrated 
pattern classification strategy (Glasser et al., 2016). In that work, Glasser and colleagues used a 
large number of multimodal features from Human Connectome Project (HCP) data to parcellate 
the cerebral cortex into 180 unique regions per hemisphere (Glasser et al., 2016). 

It is important to note that the studies and atlases cited above have not agreed on a common 
parcellation scheme and each method has its own assumptions. Given the broad array of available 
techniques and atlases, selection of the most appropriate method of parcellation or choice of atlas 
depends heavily on the application. Arguments, however, can be made for the continued use of 
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anatomical segmentations. For example, a practical challenge in using parcellations that are not 
based on standard anatomical landmarks is how to compare findings with earlier studies that are 
based on classically defined gyral labels. Regions in newly defined parcellations can overlap with 
multiple historically defined regions leading to ambiguity in referencing these regions for meta-
analysis. Additionally, anatomically defined labels can be used as a guide for clinicians to identify 
and delineate regions for surgical planning. For example, sulcal landmarks are the first salient 
anchors for cortical subdivisions in defining resection targets in neocortical epilepsy. However, 
limiting the volume of brain tissue surgically resected could help retain more function, but there 
is insufficient information in structural MRI alone to justify subparcellation beyond delineation of 
the major gyri. Linking gyral sub-parcellations to functional specialization based on fMRI 
connectivity could help explain why differing seizure semiologies arise from the same gyrus in 
patients with epilepsy (Mailo and Tang-Wai, 2015).  This in turn could provide surgeons with 
information to better delineate focal resections by defining boundaries that are more precise in 
comparison to the standard gyral divisions. Therefore, a parcellation scheme that retains the salient 
guidance of sulcal landmarks while also using functionally-defined subgyral parcels could provide 
a principled approach to gyral subdivision while retaining the classically defined gyral boundaries.  

In this paper, we present an anatomical atlas (BCI-DNI atlas) and a hybrid anatomical-functional 
atlas (USCBrain atlas), which are intended to be used for coregistration and labeling of MR 
images. The BCI-DNI atlas was prepared using a high-resolution 3D T1-weighted (T1W) MRI 
images of a single subject. The atlas was meticulously extracted and manually delineated with 
anatomical labels based on known sulcal and gyral landmarks (Damasio, 2005; Pantazis et al., 
2010). It was designed to be used with a robust registration algorithm that attempts to use maximal 
anatomical information for alignment of both cortical surface and volumetric anatomy, such as 
those provided by BrainSuite or FreeSurfer (Joshi et al., 2012b, 2007; Postelnicu et al., 2009). MR 
imaging techniques continue to improve, allowing the brain’s anatomy to be captured at 
increasingly higher resolution. Use of a high-resolution atlas may help improve accuracy and 
reproducibility of registration and segmentation as the techniques available for researchers and 
clinicians continue to grow along this trajectory. 

Additionally, we have developed a principled approach to sub-parcellating anatomically-defined 
ROIs based on rfMRI data. The intended goal of the resulting USCBrain atlas is to define 
functionally distinct subdivisions of the gyri defined in the BCI-DNI atlas. Use of functional data 
enables gyral subdivision in the absence of anatomical landmarks. We used resting fMRI (rfMRI) 
signals to compute connectivity activity between neighbouring vertices to identify boundaries 
between functionally distinct regions within each gryal ROI. At very fine scales, we expect the 
boundaries of these functional regions to vary significantly with respect to individual sulcal 
anatomy (Miller et al., 2009; Ono et al., 1990). We therefore limit the number of subdivisions of 
each gyrus (≤ 4) based on a Silhouette score (Rousseeuw, 1987) and use an independent data set 
from 60 subjects to evaluate the consistency of the resulting subdivisions across subjects. Each 
label was named by combining its anatomically defined ROI and its location within the ROI (e.g., 
anterior-, middle-, or posterior- cingulate gyrus). The rfMRI analysis and parcellation were 
performed on the cortical surface. The cortical surface parcellation was then mapped back to the 
original volume, resulting in an atlas with mutually consistent volumetric and cortical surface 
labels. A probabilistic atlas was also generated for the USCBrain atlas. In addition to the 
anatomical and functional parcellations, we also provide a delineation between sulcal valleys and 
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gyral crowns which offer an additional set of 26 sulcal subregions per hemisphere. Both 
parcellations in the atlas have general applicability to cognitive neuroscience and clinical research 
studies. The BCI-DNI and USCBrain atlases are available for download and use with our open-
source software, BrainSuite as well as with FreeSurfer and FSL, to coregister and label MR images 
(http://brainsuite.org/atlases). 

2. MATERIALS AND METHOD 

2.1 The BCI-DNI Anatomical Brain Atlas 

2.1.1 Image Acquisition 

We acquired a high-resolution 3D MPRAGE image (TE=4.33 ms; TR=2070 ms; TI=1100ms; Flip 
angle=12 degrees; resolution=0.547x0.547x0.802mm) on a 3T Siemens MAGNETOM Trio using 
a 32 channel head coil. Fat suppression was achieved using spectrally-selective excitation of the 
water protons. Data was acquired 5 times and averaged to improve SNR at this resolution. The 
subject was a typical right-handed woman in her mid-thirties. Her brain is brachycephalic with no 
obvious anomalies. 

2.1.2 Brain Extraction 

T1-weighted images were processed using BrainSuite (http://brainsuite.org/) in a semi-automated 
fashion to classify tissue types, extract and render the surfaces of the inner, mid and pial cortices 
(Shattuck and Leahy, 2002). Bias field correction was performed using both automatic processing 
and manual guidance to maximize grey-white tissue contrast and ensure accurate tissue 
classification (Shattuck et al., 2001). Manual edits were performed on the cortical boundaries to 
correct inclusion of meninges or exclusion of cortex, on the occipito-cerebellar boundaries to 
correct inclusion of cerebellum or tentorium or exclusion of the occipital tissue, and on the grey-
white boundaries to preserve fine sulcal and gyral detail. 

2.1.3 Anatomical Labeling 

An l  a S co
r R ) d d m  sulcal and gyral f
a ( . V deep gyral 
b n t . C i

t i t t m -c   fo  
. C s l  d

 u g m d ( , 
d w t  l for consistency between surface mesh labels 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2020. ; https://doi.org/10.1101/2020.09.12.294322doi: bioRxiv preprint 

http://brainsuite.org/
http://brainsuite.org/
https://doi.org/10.1101/2020.09.12.294322
http://creativecommons.org/licenses/by-nc-nd/4.0/


a t  . A f i
l  

S  
  

, , a  
w e l  w

r .  c -
c  ,  i
t A  l f R l  

at  

Twenty six sulcal curves were delineated on the 
midcortical surfaces using our sulcal tracing 
protocol 
(http://neuroimage.usc.edu/CurveProtocol.html) 
(Joshi et al., 2010). Additional sulci were marked 
on the second set of curves, totaling 39 sulci on 
the left hemisphere and 37 sulci on the right 
hemisphere (Table 2 in the Appendix). The 13 
(right) and 11 (left) additional sulci are not 
included in our sulcal tracing protocol but are still 
commonly found. (Damasio, 2005; Duvernoy, 
1999; Pantazis et al., 2010) 

Figure 1. The BCI-DNI anatomical atlas with 
95 regions of interest (66 cortical, 29 
noncortical) manually labeled by an expert 
neuroanatomist. Labeled left (top row) and 
right hemisphere (middle row) of the lateral 
(left column) and mesial (right column) mid-
cortical surfaces.  (bottom row) Single-slice 
skull-stripped MPRAGE image with labels 
overlaid on coronal (left), axial (middle) and 
sagittal (right) orientation. 
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2.2 The USCBrain Hybrid Brain Atlas 

The anatomical parcellation defined by the BCI-DNI atlas was subdivided using rfMRI data from 
the Human Connectome Project (HCP). The BCI-DNI atlas labels were transferred to the HCP 
grayordinate space (Glasser et al., 2013) in which the HCP’s minimally preprocessed rfMRI data 
were available. After sub-parcellation the labels were transferred back to the original BCI-DNI 
atlas space.  

 

Figure 2. The procedure for delineation of sulcal regions. (a) First, the mean curvature maps 
were computed and thresholded. (b) The 26 sulcal curves were transferred to the surface.  (c) These 
were used to correct for the interruptions along the sulcus in the curvature maps. (d) The 26 sulcal 
curves were used to label the individual sulcal regions. (e) These regions were further refined using 
connected component analysis and morphological smoothing. (f) The same sulcal regions as in (e) 
shown on the original mid-cortical surface.  
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2.2.1 Study Population and Data Preparation 
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The BCI-DNI atlas was processed through the FreeSurfer pipeline to generate cortical meshes for 
inner and pial surfaces and to coregister these meshes to the fsaverage brain atlas in FreeSurfer 
using spherical mapping and curvature-based registration. The BCI-DNI labels from the inner 
BrainSuite cortical surface were transferred to the inner FreeSurfer cortical surface mesh. This 
transfer is possible because both software packages generate very similar cortical surfaces. For 
both cortical hemispheres, using the coregistered spherical maps provided with the HCP data, the 
labels from the BCI-DNI atlas were transferred to the 32K Conte-69 surface meshes by nearest 
neighbor interpolation. These spherical maps are used as intermediate representation for cortical 
surface representation by FreeSurfer as part of the HCP pipeline (Fischl et al., 1999).  As a result, 
for each subject a BCI-DNI-atlas labeled 32K Conte-69 mesh in the grayordinate coordinates was 
obtained, the same space in which the HCP rfMRI data was also available. 

2.2.2 Resting fMRI Based Sub-Parcellation 

For each ROI from the BCI-DNI atlas in the grayordinate representation (Figures 3a&b), we 
computed a similarity matrix for each subject using the rfMRI data. The similarity measure was 
calculated between each pair of vertices in the ROI using their respective time series 𝑋𝑋 and 𝑌𝑌 as 
𝑠𝑠(𝑋𝑋,𝑌𝑌) = 𝜋𝜋 − cos−1(𝑋𝑋 ⋅ 𝑌𝑌), where the dot-product 𝑋𝑋 ⋅ 𝑌𝑌 indicates the Pearson correlation 
coefficient between the time-series and cos−1(⋅) represents the principal value of the inverse 
cosine function. We chose this measure because cos−1(𝑋𝑋 ⋅ 𝑌𝑌) in the range [0,𝜋𝜋) represents the 
geodesic distance between the two unit-length vectors 𝑋𝑋 and 𝑌𝑌 and is therefore a true metric on 
the hypersphere. This pairwise similarity matrix was input to the spectral-clustering normalized 
graph-cut algorithm (Shi and Malik, 2005, Craddock et al., 2013) to subdivide each ROI. The 
spectral clustering algorithm chooses a set of graph cuts defining the region boundaries that 
minimizes the ratio of the total edge weight along the cuts to the total edge weight within regions. 
As a result, the gyrus is subdivided such that the subdivisions have distinct connectivity profiles. 
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To determine the optimal number of subdivisions, we computed the silhouette score (Rousseeuw, 
1987). This measure compares the similarity of each vertex to other vertices in its own cluster in 
comparison to all other clusters, and has been previously proposed as an optimality metric that can 
be used to automatically choose the number of different clusters in general clustering applications 
(de Amorim and Hennig, 2015). Silhouette scores vary from -1 to +1, where a large positive value 
indicates that the vertex matches the assigned cluster well and a small or negative value indicates 
a poor fit. The average silhouette score over all subjects for a different number of subdivisions N 
was computed and the N that maximized the average silhouette score was chosen for each ROI. 
For example, Figure 3c indicates an optimal value of N=3 for right cingulate.  

 

Figure 3. The process of subdivision is shown in the figure with right cingulate as an 
illustrative example: (a) right cingulate gyrus from BCI-DNI atlas; (b) label transferred to the 
grayordinate space of HCP in which the fMRI data is available; (c) silhouette score computed 
for different numbers of clusters; (d) subdivisions performed for one of the 40 subjects; (e) 
seed-based connectivity using centroid vertex of each subdivision is computed to show 
differences in connectivity of each subdivision; (f) agreement maps across 40 subjects; (g) the 
subdivision labels transferred back to the midcortex of the BCI-DNI brain; (h) subdivision 
agreement maps transferred back to the midcortex of the BCI-DNI brain 
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The sub-parcellations were computed for the 40 HCP subjects. The cluster labels assigned to gyral 
subdivisions by the clustering algorithm have an arbitrary order and are not consistent across 
subjects. We used the Hungarian algorithm (Kuhn, 1955) to reorder the cluster labels so that they 
were maximally consistent across subjects. The final subparcellation of the ROIs was generated 
by taking a majority vote (random assignment in case of ties) of labels at each vertex over the 40 
subjects (Figure 3d). Qualitative verification of the subparcellation was performed by visualizing 
the functional connectivity patterns between subparcellations of each anatomical ROI. The 
geometric centroid vertex within a cluster was used as the seed point to compute the correlation of 
its time series to that of all other vertices throughout the brain. Correlations were averaged across 
subjects and displayed as illustrated in Figure 3e. To check the consistency of labels across the 40 
subjects, we computed a label agreement map as follows. At each vertex, we performed pairwise 
comparisons of labels between each pair of subjects and assigned a value of 1 if they are same or 
0 if they are different. The agreement map was then computed as the average over all possible 
pairs, consisting of values in the range (1/N,1) where N is the number of subdivisions. High 
agreement scores were expected towards the center of the labels while low scores were expected 
near the edges. Sharp boundaries between subdivisions are indicative of consistency of 
subdivisions across subjects and were deemed preferable. A grayscale modulated agreement map 
is shown for right cingulate in Figure 3(f). We then mapped the labels and agreement maps for 
each of the subdivided gyri from the 32K Conte-69 inner surface mesh back to the BCI-DNI atlas 
inner cortical surfaces using nearest neighbor interpolation as described in section 2.2.1 (Figure 
3(g,h)). The inner, mid cortical, and pial surfaces generated by BrainSuite have the same number 
of vertices and are in correspondence with each other. Therefore, labels were copied directly from 
the inner cortical surface to the mid and pial surfaces. 

We note that the optimal number of regions was identical for homologous ROIs in the left and 
right hemispheres in most cases. For example, for cingulate gyrus (Figure 3) the silhouette scores 
had a maximum for 3 subdivisions for both hemispheres. However, in some ROIs the optimal 
number of left and right subdivisions differed, specifically in the angular, middle occipital, middle 
temporal, and superior temporal gyri. The angular gyrus (Figure 4) showed maximum silhouette 
scores for 2 (left) and 3 (right) subdivisions respectively. However, on inspection the connectivity 
maps were distinct, and the agreement maps also showed distinct boundaries for 3 subdivisions in 
both hemispheres. Therefore, the angular gyrus was subdivided into 3 regions for both 
hemispheres, as illustrated in Figure 4. A similar process of inspection of the connectivity and 
agreement maps was used to select equal numbers of subdivisions in left and right homologous 
regions for the other gyri listed above. In addition, while the inferior temporal gyri had optimal 
silhouette scores for 2 subdivisions bilaterally, 3 subdivisions were chosen because of the large 
size of the gyrus and the fact that connectivity and agreement maps indicated a clear and distinct 
delineation of three regions across subjects.   
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2.3 Validation    

To evaluate the consistency of labeling of gyral subdivisions using the USCBrain atlas, we 
investigated how precisely the boundaries of the sub-parcellations could be identified by 
coregistration of the atlas to subject using T1W MRI data only. The rationale for using the 
USCBrain atlas-based parcellation instead of individual rfMRI based parcellation is that in most 
neuroimaging studies, T1W images are acquired with enough anatomical detail for robust 
registration. Conversely, resting fMRI data are not routinely collected, and even when available 
they are rarely of the quality for reliable functional segmentation, in terms of resolution, temporal-
duration, and artifact contamination, as the HCP data used here. Therefore, we investigated 
whether the cortex can be sub-parcellated into functionally meaningful regions using anatomically 
driven coregistration alone. 

An additional separate set of 60 HCP subjects, with T1W images and four 15-minute rfMRI 
sessions were selected and processed as described above. We compared consistency between: (a) 
sub-parcellations by atlas coregistration to the individual T1W image, as described in section 2.2.1; 

 

Figure 4: Subdivision of the angular gyrus for left and right hemispheres: (a) silhouette 
analysis; (b) 2 subdivision labels; (c) the corresponding agreement map; (d) 3 subdivision 
labels for the same gyrus; and (e) corresponding agreement map. As can be seen, 3 
subdivisions resulted in crisper agreement maps for the right hemisphere. For the left 
hemisphere, while 2 subdivisions showed better agreement maps, 3 subdivisions showed a 
still acceptable agreement map and a high silhouette score. We therefore choose 3 
subdivisions to maintain symmetry between the two hemispheres. 
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and (b) sub-parcellations for that same individual obtained using each of the four sessions of rfMRI 
data for each subject as described section 2.2.2. We then compared the sub-parcellation results 
from (a) to the results from (b) using the Adjusted Rand Index (ARI) (Rand, 1971) for each of the 
4 sessions and all subjects (60*4=240) for all ROIs. The ARI ranges from 0 to 1, where 0 indicates 
labeling performance equivalent to random assignment while 1 indicates perfect agreement. We 
do expect to see intra-subject variability in the functional parcellation for different rfMRI sessions 
because repeated rfMRI scans within the same subject can capture different connectivity patterns 
(Miller et al., 2009). The measures of uncertainty in parcellations determined from individual 
rfMRI data then provides a baseline score with which to compare parcellation based on registration 
of the USCBrain atlas. If the ARI between atlas coregistration and rfMRI-based sub-parcellations 
is comparable to the ARI between different sessions of rfMRI, then registration of the atlas would 
serve as an appropriate surrogate for individual rfMRI based parcellation.  

2.4 Interoperability with BrainSuite, FreeSurfer, and FSL 

The atlases were created to be used with the BrainSuite (http://brainsuite.org), FreeSurfer 
(https://surfer.nmr.mgh.harvard.edu) and FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) software 
packages. BrainSuite and FreeSurfer both use a subject’s T1w images as input and generate 
cortical surface representations. These surfaces are mapped to a flat (for BrainSuite) or spherical 
(for FreeSurfer) space, and then coregistered in that space to similarly mapped atlas surfaces 
(Fischl, 2012; Joshi et al., 2012b). FSL, on the other hand, does not generate cortical surface 
representations, but performs whole brain volumetric registration using 3D nonlinear registration 
(Andersson et al., 2007). BrainSuite also performs volume registration using a cortically 
constrained approach so that the cortical surface and volume alignment results are mutually 
consistent.   

The approximate processing time required for registration and labeling on typical image volume 
(image size: 128 × 256 × 256; resolution: 1.33 × 1 × 1 mm3) using a desktop workstation (speed 
Intel Xeon model E5630, 24GB RAM) were, for each software package: 1.5 hours for BrainSuite 
to perform surface and volume registration and labeling; 20 hours for FreeSurfer to perform surface 
labeling only; and 1.2 hours for FSL (FLIRT+FNIRT) to perform volume labeling. Scripts and 
instructions for using the atlases with each software package are available at 
http://brainsuite.org/using-atlases. 

3. RESULTS 

3.1 Parcellation 

The BCI-DNI anatomical atlas is shown in Figure 1 with the cortical labels on the mid-cortical 
surface and the volume labels on the sagittal, coronal and axial slices. A full description of the 
atlas and downloadable files can be found on our BrainSuite website 
(http://brainsuite.org/svreg_atlas_description/). This atlas has 95 ROIs delineated in the volume, 
of which 66 of these regions are cortical subdivisions (33 per hemisphere). The 76 sulcal curves 
are also included with the atlas. 
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The USCBrain atlas is displayed in Figure 5. Of 
the 33 initial anatomical cortical regions per 
hemisphere in the original BCI-DNI atlas (Table 1 
in the Appendix), 23 ROIs were subdivided, 
resulting in a total of 65 regions per hemisphere. 
The remaining 8 original ROIs did not exhibit 
sufficient internal variation in functional 
connectivity in their rfMRI data to justify 
subdivision. Most anatomical ROIs were 
subparcellated into 2 or 3 regions. As expected, 
large anatomical ROIs, such as the superior, 
middle and inferior temporal gyri, middle frontal 
gyrus, and cingulate cortex, were subdivided into 
two or more subdivisions, while smaller ROIs, 
such as the temporal pole, paracentral lobule, and 
Heschl’s gyrus, were not subdivided.  

3.2 Intersubject Label Consistency 

A grayscale modulated image showing agreement 
in labels across the 40 subjects of the sub-
parcellated atlas generated by majority vote is 
shown in Figure 6. The value at each voxel reflects 
the percentage of subjects that matched the label at 
that voxel. The grayscale ranges from black, 
indicating no consistency, to white, indicating 
perfect consistency across subjects. These maps 
show near-perfect consistencies (~1) near the 
centers of the sub-parcels, as well as at the 
boundaries of anatomical parcels and reduced consistencies (~.5) at the boundaries of the 
functional sub-parcels. A few regions showed higher variability, including the right inferior 
temporal gyrus and the right angular gyrus, as well as the bilateral inferior occipital gyri, where 
values were as low as 0.7 in the center of each of these regions, indicating substantial functional 
variability with respect to the sulcal and gyral anatomy that guides coregistration to the original 
BCI-DNI atlas.  

 
 

Figure 5. The USCBrain atlas with 130 
cortical regions of interests subdivided using 
rfMRI data. The figure shows the mid-cortical 
surface of the atlas, color coded for each sub-
parcellated region. Labeled left (top row) and 
right (bottom row) hemisphere and mesial 
(right column) and lateral (left column) mid-
cortical surfaces. (bottom row) Single-slice 
skull-stripped MPRAGE image with labels 
overlaid on coronal (left), axial (middle) and 
sagittal (right) orientation. 
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Figure 6. Grayscale modulated plot showing agreement of the USCBrain atlas labels across the 
40 subjects. White (value of 1) indicates perfect agreement at that vertex. The probability maps 
were generated on the surface as shown in (a) and transferred to the volume as shown in (b). Red 
curves indicate ROI boundaries of the BCI-DNI atlas. 
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3.3 Anatomical vs Functional Labeling 

As noted earlier, we chose an additional set of 60 HCP subjects for the purpose of validation, 
which were disjoint from the set of 40 subjects used to generate the atlas. Box plots of the ARIs 
for each of the cortical ROIs in the BCI-DNI atlas are shown in Figure 7. For each ROI, we show 
consistency between atlas and rfMRI based subparcellation on the left and consistency between 
different rfMRI sessions on the right. The ROIs that were not subdivided show perfect agreement 
with an ARI of 1 but are included in the figure for completeness. For the 60 validation subjects, 
overall the sub-parcellations generated by atlas-based registration relative to rfMRI results showed 
consistently lower average ARI than those based on comparison of individual rfMRIs from 
different sessions. With the high quality and 15-minute duration of the HCP data, not surprisingly, 
using an individual subject’s rfMRI data typically generated a better functional parcellation of that 
subject than using the atlas. However, as noted above, most studies do not routinely acquire 
comparably high quality rfMRI data. In this case, the atlas-based subparcellations serve as a 
surrogate for individual rfMRI-based parcellation. The results in Figure 7 show that the majority 
of regions in the atlas have mean ARIs for atlas vs rfMRI within the inter-quartile range of the 
rfMRI vs rfMRI results.  In some areas consistency is rather poor, including left and right middle 
orbitofrontal and lingual gyrus, left superior temporal gyrus, left post-central gyrus, angular gyrus, 
and superior occipital gyrus. These results are discussed in more detail below.  
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4. DISCUSSION 

The aim of this work was to develop a new brain atlas that has two levels of parcellation. The 
anatomical BCI-DNI atlas provides a parcellation of cortex based on established anatomical sulcal 
and gyral patterns. The hybrid USCBrain atlas then provides a refined parcellation that attaches 
subgyral labels based on functional connectivity using resting fMRI data from 40 subjects of the 
Human Connectome Project (HCP). 

 

Figure 7: Adjusted rand indices (ARIs) for 60 subjects for left and right hemispheres. Each ROI 
has two box plots. The first (left) box plot compares atlas based sub-parcellation to rfMRI sub-
parcellation. The second (right) box plot compares rfMRI based sub-parcellations across sessions.   
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Subdelineations were determined according to measurements of rfMRI connectivity. Parcellations 
of individual subjects yielded reasonable results in our validation studies based on 60 additional 
HCP subjects (Figure 7), which established the level of consistency of these functional boundaries 
for each region. In order to quantify expected intersubject variability, we also provided a 
probabilistic agreement map (Figure 6).  

4.1 Brain Asymmetry 

A degree of asymmetry was observed between the right and left hemisphere in both the curvature 
patterns that determined the boundaries in the BCI-DNI atlas (Figure 1) as well as the functionally 
driven boundaries in the USCBrain atlas (Figure 4). Notably, the functional boundaries 
subdividing the angular gyrus and its surrounding connected gyrus, as well as the middle and 
inferior temporal gyrus, were more asymmetric based on the topographical location of the 
boundaries. Regions of the medial and dorsolateral prefrontal cortex, including the cingulate gyrus 
and precentral gyrus, were less asymmetric. However, all pairs of homologous regions in the brain 
showed some degree of  asymmetry (homologous boundaries jittered anywhere from 1mm to 
>1cm), as should be expected in human brain anatomy. Symmetry in the number of clusters each 
gyrus was subdivided into was enforced in the USCBrain atlas. In all four gyri where the silhoutte 
analysis gave differing number of subdivisions for left and right hemispheres, reasonable results, 
in terms of distinct connectivity patterns, good intersubject agreement, and sihoutte values relative 
to their maximum, were observed after matching the number of subdivisions as described in 
Section 2.2.2.  

4.2 Region Size 

Silhouette scores (Section 2.2.2) were the main factor that we used to determine the optimal 
number of subdivisions for each cortical gyrus. Most large ROIs, such as the cingulate gyrus and 
the middle frontal gyrus, were subdivided into 2 or 3 regions, while most small ROIs, such as the 
transverse frontal gyrus and pars opercularis, were subdivided into 2 regions or not divided at all 
(see Tables 3 & 4 in Appendix). Silhouette scores consistently dropped after 2 or 3 subdivisions. 
The USCBrain atlas resulted in 130 unique cortical ROIs and 65 cortical ROIs per hemisphere. 
While it has been proposed in earlier literature that the cortex consists of an estimated 180 unique 
functional regions per hemisphere (Nieuwenhuys, 2013), the silhouette analysis used here 
indicates support for only the 130 cortical regions based on the rfMRI data. Validating these 
regions is a current challenge in this field as we do not have cytoarchitectonic information at a fine 
enough resolution for the whole brain that is representative of the population to validate finer 
parcellations. Additionally, we considered the practical uses of this atlas along with the current 
challenges of signal acquisition of fMRI data, which has limited accuracy and sensitivity. The 
chances of misidentification of functional boundaries become increasingly error-prone as ROIs 
become smaller.  

4.3 Intersubject Variability 

The results comparing consistency in Figure 7 indicate, perhaps unsurprisingly, that 
subparcellation based on repeated within-subject rfMRI studies yields more consistent individual 
results than that obtained by mapping the USCBrain atlas with gyral subdivisions to the individual 
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subject reflecting individualized functional parcellations. However, as noted above, rfMRI data 
are frequently unavailable. The observation that the ARIs for the majority of ROIs fall within 
average interquartile range when compared to repeated functional parcellations indicates that they 
represent meaningful subdivisions of these gyri. This is further supported by the agreement maps 
shown in Figure 6, where it is clear that for the great majority of ROIs, individual differences in 
functional parcellations occur close to the boundaries of the subdivisions. This variability tended 
to be limited to a few millimeters in most cases and reflected the typical variability we see in brain 
anatomy across the human population.  Furthermore, a single atlas, regardless of the data used, 
cannot capture individual variability in functional boundaries. For that purpose an individualized 
parcelation is required as described, for example, in (Chong et al., 2017; Wang et al., 2015).  Given 
the absence of anatomical landmarks to guide gyral subdivisions, use of the rfMRI based 
subdivision here serves as a workable surrogate. The plots in Figure 7, and probabilistic maps 
included with the atlas, provide the user with an indication of the degree to which these 
subdivisions reflect preservation of distinct functional areas within gyri. 

The bilateral insula, cingulate gyrus, and post-central gyrus had very little intersubject variability. 
The insula’s anterior and posterior regions are divided by its principal sulcus, which can be 
identified very easily (Bauernfeind et al., 2013; Damasio, 2005) and have very distinct functional 
properties. Similarly, the cingulate gyrus’s 3 subdivisions have been well described in the literature 
and have shown to have very functionally distinct properties (Vogt et al., 1987). A few regions 
showed significantly lower performance (high variability/less consistency) using anatomical 
parcellation in comparison to functionally-based parcellation, indicating high intersubject 
variability in the corresponding functional boundaries. These regions, such as the right pars 
triangularis, right superior occipital gyrus, left lingual gyrus, and right superior parietal gyrus, are 
expected to have less reliable identification in individual subjects 

Conversely, bilateral superior parietal gyrus, right supramarginal gyrus, left middle frontal gyrus 
and left superior occipital gyrus had large confidence intervals and low medians for the ARIs 
showing lower repeatability in Figure 7. Regions such as the pars triangularis, angular gyrus, and 
temporal lobe also tended to have less agreement across the 40 subjects in their functional 
boundaries in Figure 6. This lack of agreement can be explained by normal variance observed 
across subjects in these regions. The pars triangularis is determined by 2 sulcal branches which 
extend from the Sylvian sulcus which can be hard to identify and, in some cases, only a single 
branch may be present in an individual (Damasio, 2005; Keller et al., 2007; Ono et al., 1990). The 
superior parietal gyrus extends into the angular gyrus, which connects into the occipital lobe. This 
region is a multisensory cortex, which has very complex connection patterns and functional 
properties. Finally, the temporal lobe’s sulcal patterns have been noted to have some of the highest 
complexities and variability across subjects (Ono et al., 1990). We expected to see less consistency 
in frontal lobe due to the presence of susceptibility-related field distortion and in fMRI data. 
However, this does not seem to be the case, reflecting the high quality of fMRI data and 
preprocessing in the HCP dataset.  

Users should be more cautious when interpreting functional data in regions with high variability 
across the population and with less stable signal across sessions, as they may lead to studies with 
lower reproducibility. Therefore, we provide the confidence map in Figure 6 and ARI values in 
Figure 7 to give users quantitative measures of uncertainty for the USCBrain atlas. The agreement 
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probability map shown in Figure 6 can be transferred to the subject using the one-to-one 
correspondence established by registration. This probability map in conjunction with the labels 
gives probabilistic labeling of subjects where the transferred agreement map indicates the 
reliability of the subdivisions. This agreement probability map is packaged with the USCBrain 
atlas.  

4.5 Atlas Usage 

The BCI-DNI atlas and the USCBrain atlas are intended to be used for coregistration and 
segmentation of individual T1W brain images. Brain labeling or coregistration is a necessary 
preprocessing step for many studies performing group comparisons, correlations, and regional 
brain analysis. Individual T1-weighted images can be used to register images of other contrast 
(e.g., fMRI or DTI) from the same individual using simpler rigid registration methods. Labels, as 
well as the agreement probability maps, can therefore be transferred from the atlas to any of the 
subject images to identify anatomical and functional regions. Alternatively, images can be 
transformed to the atlas space for voxel-wise analysis or vertex-wise analysis on the surface. 

These atlases were specifically customized and will have optimal performance when used with the 
BrainSuite software package (http://brainsuite.org) (Joshi et al., 2012b, 2007; Shattuck and Leahy, 
2002). BrainSuite includes a robust registration algorithm that uses anatomical information from 
both the surface and volume of the brain images for accurate automated coregistration which 
allows consistent surface and volume mapping to a labeled atlas. It uses a multi-step registration 
and refinement process based on morphological and image intensity features and known variations 
in human brain anatomy and is consistent with use of a detailed single-subject atlas. The BCI-DNI 
atlas is packaged with the BrainSuite software (http://brainsuite.org/download). Both the BCI-DNI 
and USCBrain atlases with anatomical and functional segmentations can be separately downloaded 
to be used with BrainSuite (http://brainsuite.org/atlases). Compatibility with Freesurfer and FSL 
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is provided as described in section 2.4 and compatible files and scripts are available for public use 
(http://brainsuite.org/using-atlases/). The BrainSuite preprocessing pipeline will output surface and 
volumetric labeling of individual subjects. The Freesurfer pipeline outputs surface labeling and 
FSL outputs volumetric labeling of T1W images. As seen in Figure 8, BrainSuite and Freesurfer 
yield very similar results. BrainSuite and FSL produce similar results subcortically in volumetric 
labeling, however, FSL tends to have more bleeding across the gyral boundaries. 

5. CONCLUSION 

In this study, we generated the anatomical BCI-DNI atlas based on single subject anatomy, which 
was then used as a starting point for generating the hyrid USCBrain atlas with labels based on 
single-subject anatomy as well as functional data from a population of 40 subjects. The 
parcellations defined in the atlas are based on both the known anatomical landmarks defined by 
gyri as well as functional subdivisions of these gyri. The intended use of this atlas is to sub-
parcellate cortical gyri into finer sub-divisions in the absence of anatomical landmarks in 
applications such as neurosurgery and studies in cognitive neuroscience. The relatively high degree 
of intersubject labeling agreement in the validation study indicates the utility of this atlas for 
labeling subjects using anatomically driven coregistration. This atlas can be downloaded and used 
with our BrainSuite software (http://brainsuite.org/atlases). The atlas is also compatible with 
FreeSurfer and FSL.  

Figure 8: The atlas was used for labeling a representative subject using BrainSuite, FreeSurfer 
and FSL. (a) BrainSuite software can be used with the USCBrain Atlas to perform surface and 
volume labeling. The USCBrain Atlas can also be used with (b) FreeSurfer, to perform surface 
labeling, and (c) FSL (FLIRT+FNIRT) to perform volume labeling. 
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Appendix  

1. ROIs and sulci labeled in BCI-DNI atlas  

Frontal Lobe 
superior frontal gyrus middle frontal gyrus pars opercularis 
pars triangularis pars orbitalis pre-central gyrus 
transverse frontal gyrus gyrus rectus middle orbitofrontal gyrus 
anterior orbitofrontal gyrus posterior orbitofrontal gyrus lateral orbital gyrus 
paracentral lobule cingulate gyrus subcallosal gyrus 
Parietal Lobe 
post-central gyrus supramarginal gyrus angular gyrus 
superior parietal gyrus pre-cuneus 

 

Temporal Lobe 
temporal pole superior temporal gyrus transverse temporal gyrus 
middle temporal gyrus inferior temporal gyrus fusiform gyrus 
parahippocampal gyrus hippocampus* amygdala* 
Occipital Lobe 
superior occipital gyrus middle occipital gyrus inferior occipital gyrus 
lingual gyrus cuneus  
Subcortical and Others 
caudate nucleus* putamen* globus pallidus* 
nucleus accumbens* thalamus* inferior colliculus* 
superior colliculus* mamillary body* pineal gland* 
lateral ventricles* third ventricle* fourth ventricle* 
cerebral aqueduct* brainstem* corpus callosum* 
cerebellum* insula  

Table 1. 95 Regions of interests (ROI) labeled on the BCI-DNI anatomical brain atlas. 66 of these 
regions are cortical ROIs and are labeled on the surface. *indicates non-cortical ROIs that are not 
labeled on the surface. 
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central sulcus* precentral sulcus* 
superior frontal sulcus* inferior frontal sulcus* 
ascending branch of the Sylvian fissure* horizontal branch of the Sylvian fissure* 
diagonal sulcus lateral orbital sulcus* 
frontomarginal sulcus* cingulate sulcus* 
paracentral sulcus* superior supra orbital sulcus* 
inferior supra orbital sulcus olfactory or medial orbital sulcus* 
H shaped sulci, mesial H shaped sulci, lateral 
H shaped sulci, transverse sylvian fissure terminal split * 
superior temporal sulcus* inferior temporal sulcus* 
occipito temporal sulcus* collateral or medial occipito temporal sulcus* 
transverse temporal sulcus* circular sulcus* 
postcentral sulcus* intraparietal sulcus* 
primary sulcus of Jensen secondary sulcus of Jensen 
parieto occipital sulcus* subparietal sulcus* 
calcarine sulcus* calcarine sulcus terminal T 
transverse occipital sulcus* superior lateral occipital sulcus 
inferior lateral occipital sulcus anterior occipital sulcus 

Table 2. 26 sulci labeled on each hemisphere of the BCI-DNI anatomical brain atlas according to 
the BrainSuite curve protocol (http://neuroimage.usc.edu/CurveProtocol.html). Additional sulci 
are marked on the second set of curves totaling 39 sulci on the left hemisphere and 37 sulci on the 
right hemisphere. *indicates sulci as described in the original BrainSuite curve protocol. 
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2. Silhouette Coefficients  

ROI (Left hemisphere) 
Average Silhouette Score 
2 
Clusters 

3 
Clusters 

4 
Clusters 

5 
Clusters 

6 
Clusters 

Precuneus 0.46 0.32 0.25 0.253 0.26 
Angular gyrus 0.54 0.42 0.36 0.33 0.30 
Anterior orbito-frontal gyrus 0.21 0.20 0.23 0.21 0.24 
Cingulate 0.38 0.46 0.36 0.33 0.28 
Cuneus 0.30 0.29 0.28 0.27 0.24 
Fusiforme gyrus 0.49 0.27 0.30 0.21 0.22 
Gyrus rectus 0.41 0.28 0.22 0.23 0.15 
Inferior occipital gyrus 0.42 0.47 0.42 0.42 0.40 
Inferior temporal gyrus 0.51 0.38 0.31 0.30 0.24 
Lateral orbito-frontal gyrus 0.48 0.31 0.27 0.22 0.26 
Lingual gyrus 0.43 0.38 0.27 0.28 0.25 
Middle frontal gyrus 0.39 0.33 0.29 0.24 0.24 
Middle occipital gyrus 0.55 0.51 0.45 0.31 0.26 
Middle orbito-frontal gyrus 0.15 0.14 0.13 0.15 0.17 
Middle temporal gyrus 0.44 0.31 0.40 0.32 0.28 
Parahippocampal gyrus 0.21 0.17 0.18 0.15 0.16 
Pars opercularis 0.37 0.31 0.23 0.23 0.18 
Pars orbitalis 0.29 0.25 0.23 0.25 0.28 
Pars triangularis 0.29 0.34 0.33 0.31 0.29 
Post-central gyrus 0.41 0.38 0.29 0.32 0.30 
Posterior orbito-frontal gyrus 0.15 0.18 0.21 0.22 0.24 
Pre-central gyrus 0.39 0.30 0.33 0.29 0.27 
Subcallosal gyrus 0.13 0.16 0.24 0.25 0.25 
Superior frontal gyrus 0.45 0.26 0.21 0.23 0.27 
Superior occipital gyrus 0.41 0.33 0.31 0.27 0.22 
Superior parietal gyrus 0.33 0.33 0.29 0.33 0.33 
Supramarginal gyrus 0.48 0.39 0.35 0.32 0.31 
Superior temporal gyrus 0.31 0.28 0.27 0.31 0.28 
Temporal pole 0.22 0.21 0.20 0.19 0.17 
Transvers frontal gyrus 0.38 0.25 0.24 0.21 0.22 
Transverse temporal gyrus 0.23 0.17 0.15 0.19 0.19 
Insula 0.37 0.28 0.21 0.18 0.20 

Table 3: Silhouette coefficients for different numbers of clusters for each anatomical ROI in the 
left hemisphere. Final subdivisions chosen for the USCBrain atlas are labeled in red. 
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ROI (Right hemisphere) 
Average Silhouette Score 
2 
Clusters 

3 
Clusters 

4 
Clusters 

5 
Clusters 

6 
Clusters 

Precuneus 0.48 0.35 0.22 0.29 0.25 
Angular gyrus 0.28 0.37 0.33 0.31 0.33 
Anterior orbito-frontal gyrus 0.21 0.18 0.19 0.20 0.21 
Cingulate 0.34 0.43 0.37 0.31 0.24 
Cuneus 0.36 0.28 0.28 0.28 0.25 
Fusiforme gyrus 0.49 0.29 0.24 0.21 0.16 
Gyrus Rectus 0.21 0.14 0.15 0.15 0.11 
Inferior occipital gyrus 0.34 0.36 0.38 0.39 0.33 
Inferior temporal gyrus 0.58 0.37 0.31 0.25 0.22 
Lateral orbito-frontal gyrus 0.29 0.16 0.20 0.18 0.17 
Lingual gyrus 0.34 0.20 0.28 0.26 0.25 
Middle frontal gyrus 0.37 0.27 0.27 0.23 0.23 
Middle occipital gyrus 0.40 0.51 0.36 0.36 0.32 
Middle orbito-frontal gyrus 0.16 0.15 0.15 0.15 0.15 
Middle temporal gyrus 0.36 0.33 0.38 0.32 0.26 
Parahippocampal gyrus 0.26 0.15 0.13 0.17 0.15 
Pars opercularis 0.38 0.26 0.23 0.19 0.14 
Pars orbitalis 0.22 0.20 0.21 0.22 0.22 
Pars triangularis 0.26 0.24 0.17 0.20 0.21 
Post-central gyrus 0.43 0.39 0.37 0.31 0.27 
Posterior orbito-frontal gyrus 0.13 0.15 0.16 0.16 0.18 
Pre-central gyrus 0.36 0.32 0.37 0.33 0.29 
Subcallosal gyrus 0.17 0.19 0.23 0.27 0.31 
Superior frontal gyrus 0.46 0.26 0.23 0.23 0.28 
Superior occipital gyrus 0.57 0.45 0.33 0.23 0.27 
Superior parietal gyrus 0.37 0.33 0.32 0.29 0.28 
Supramarginal gyrus 0.39 0.34 0.32 0.33 0.35 
Superior temporal gyrus 0.35 0.36 0.27 0.24 0.26 
Temporal pole 0.19 0.19 0.19 0.18 0.15 
Transvers frontal gyrus 0.35 0.22 0.19 0.19 0.19 
Transverse temporal gyrus 0.20 0.14 0.15 0.14 0.17 
Insula 0.30 0.23 0.20 0.19 0.14 

Table 4: Silhouette coefficients for different numbers of clusters for each anatomical ROI in the 
left hemisphere. Final subdivisions chosen for the USCBrain atlas are labeled in red.  
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