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Abstract1

The gene repertoires of microbial species, their pangenomes, evolve very fast. Their2
study facilitates the discrimination between lineages and reveals which genes drive their3
recent adaptation. It has therefore become a key topic of study in microbial evolution4
and genomics. Yet, the increase in the number of genomes available to certain species,5
now reaching many thousands, complicates the establishment of the basic building blocks6
of comparative genomics. Here, we present PanACoTA, a tool that allows to download all7
genomes of a species, build a database with those passing quality and redundancy controls,8
define uniform annotation, and use them to build a pangenome, several variants of core9
or persistent genomes, their alignments, and a rapid but accurate phylogenetic tree. While10
many programs have become available in the last few years to build pangenomes, we have11
focused on a method that tackles all the key steps of the process, from download to phylo-12
genetic inference. This was conceived in a modular way, i.e. while all steps are integrated,13
they can also be run separately and multiple times to allow rapid and extensive exploration14
of the space of parameters of interest. The software is built in Python 3 and includes15
features to facilitate its installation and its future development. We believe PanACoTa is16
an interesting addition to the current set of bioinformatics software for comparative ge-17
nomics, since it will accelerate and standardize the more routine parts of the work, allowing18
microbial genomicists to more quickly tackle their specific questions.19

Keywords— Software, bacteria, annotation, core genomes, pangenomes, evolutionary anal-20
yses21

1 Introduction22

Low cost of sequencing and the availability of hundreds of thousands of genomes have made23

comparative genomics a basic toolkit of many microbiologists, geneticists, and evolutionary24

biologists. Many bacterial species of interest have now over 100 genomes publicly available25

in the GenBank RefSeq reference database, and a few have more than ten thousand. This26
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trend will increase with the ever decreasing costs of sequencing, the availability of long-read27

technologies, and the use of whole-genome sequencing in the clinic for diagnostics and epidemi-28

ology. As a result, researchers that would like to use available data are faced with extremely29

large amounts of data to analyze. Comparative genomics has spurred important contributions30

to the understanding of the organization and evolution of bacterial genomes in the last two31

decades [1] [2]. It has become a standard tool for epidemiological studies, where the analysis32

of the genes common to a set of strains - the core or persistent genome - provides unrivalled33

precision in tracing the expansion of clones of interest [3] [4]. The use of routine sequencing34

in the clinic will further require rapid and reliable analysis tools to query thousands, and soon35

possibly millions of genomes from a single species [5]. Population genetics also benefits from36

this wealth of data because one can now track in detail the origin and fate of mutations of37

genetic acquisitions to understand what they reveal of adaptive or mutational processes [6].38

Finally, genome-wide association studies have been recently adapted to bacterial genetics, to39

account for variants in single nucleotide polymorphism and gene repertoires [7]. They hold the40

promise of helping biologists to identify the genetic basis of phenotypes of interest. Given the41

high genetic linkage in bacterial genomes, these studies may require extremely large datasets42

to detect small effects. More specifically, reverse vaccinology is also a noteworthy application43

of these pangenomics methods, to identify novel potential antigens among core surface-exposed44

proteins of a given clade [8].45

The availability of large genomic datasets puts a heavy burden on researchers, especially46

those that lack extensive training in bioinformatics, because their analysis implicates the use of47

automatic processes, efficient tools, extensive standardization, and quality control. Many tools48

have been recently developed to make rapid searches for sequence similarity with excellent recall49

rates for highly similar sequences [9] [10] [11].50

Other tools also provide methods to rapidly cluster large numbers of sequences in families51

of sequence similarity, to get the families common to a set of genomes, to align them, or52

to produce their phylogeny, four cornerstones of comparative genomics. A number of recent53

programs have recently been published that include some of these tools to compute bacterial54

pangenomes (for a review, see [12]). Many of these programs compute alignments and clusters55

of families using programs that are very fast. Some use tools that are known to sacrifice56
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accuracy for very high speed, such as DIAMOND [9], USEARCH [13] and CD-HIT [14]. The57

latter is used, among others by Roary [15], which is currently the most popular tool to compute58

pangenomes, and Panaroo [16], a very recent tool aiming at reducing the impact of erroneous59

automated annotation of prokaryotic genomes. BPGA [17], using USEARCH or CD-HIT to60

cluster proteins, also provides some downstream analyses. PanX [18], which has an outstanding61

graphical interface, uses DIAMOND to search for similarities among genes.62

More recently, SonicParanoid introduced the use of the highly efficient and accurate pro-63

gram mmseqs2 to build pangenomes, and PPanGGOLiN used the same tool to provide a64

method to statistically class pangenome families in terms of their frequency [19] [20] [21] .65

Some recent programs also use graph-based approaches to further refine the pangenomes, such66

as PPanGGOLiN and Panaroo [16]. For that matter, the analysis of a dataset of 319 Kleb-67

siella pneumoniae genomes by both tools provide very similar results [16]. Some tools, such68

as PIRATE [22] have also been recently developped to cluster orthologues between distant69

genomes. However, all these programs lack some or all of initial and final steps that are essen-70

tial in comparative genomics, including download, quality control, alignment and phylogenetic71

inference. This spurred the development of PanACoTA (PANgenome with Annotations, COre72

identification, Tree and corresponding Alignments). To take advantage of the vast amount of73

genomic information publicly available, one needs six major blocks of operations. (1) Gather74

a set of genomes of a clade automatically. This requires some quality control, to avoid drafts75

with an excessive number of contigs. It is also often convenient to check that the genomes are76

not too redundant, to minimize computational cost and biases due to pseudo-replication. On77

the other side, it is important to check that genomes are neither too unrelated, to eliminate78

genomes that were misclassed in terms of bacterial species (or the taxonomic organisation of79

relevance). (2) Define a priori an uniform nomenclature and annotation, without which the80

calculation of pangenomes and core genomes becomes unreliable for large datasets. (3) Produce81

the pangenome, a matrix with the patterns of presence absence of each gene family in the set of82

genomes, using an accurate, simple, and fast method. (4) Use the pangenome to identify sets83

of core or persistent genes. (5) Produce multiple alignments of the gene families of the core84

or persistent genomes. (6) Finally, produce quickly a reasonably accurate phylogeny of the set85

of core/persistent genes. These four collections of data, pangenome, core genome, alignments,86
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and phylogenetic tree, are the basis of most microbial comparative genomics studies. At the87

end of this process, the researcher can produce more detailed analyses, specific to the questions88

of interest, which often lead to changes such as including/excluding taxa, changing the limits89

of sequence similarity, increasing alignment accuracy, or rebuilding phylogenies using different90

methods. Such re-definitions can be achieved more efficiently when pipelines are modular and91

allow to re-start the analyses at several key points in the process.92

Considering the current availability of pipelines for microbial comparative genomics, we have93

built one that is modular, easy to setup, uses state-of-the-art tools, and allows simple re-use of94

intermediate results. The goal was to provide a pipeline that allows to download all genomes95

from a taxonomic group and make all basic comparative genomics work automatically. The96

pipeline is entirely built in a single language, Python v3, and uses modern methods to facilitate97

its future maintenance and to limit unwanted behaviour. PanACoTA is freely available under98

the open source GNU AGPL license. Here, we describe the method and illustrate it with an99

analysis of two datasets of 225 complete and 3980 complete or draft genomes of Klebsiella100

pneumoniae. This species is interesting for our purposes because there are many genomes101

available and it has a very open pangenome [23]. The first dataset describes a situation where102

sequence quality is usually high, and the second illustrates how the method scales-up to a very103

large dataset where sequence is of lower quality or genes are fragmented due to lack of complete104

assembly. The procedure is detailed in the Methods section, whereas the illustration of its use,105

and how it changes in relation to key options in the two datasets, is detailed in the Results106

section.107

2 Methods108

PanACoTa is implemented in 6 sequential modules, described in the six sections below. It was109

designed to allow the use of a module without requiring the use of previous one(s). This allows110

to start or stop at any step and re-run an analysis with other parameters (see Figure 1 ).111

2.1 Datasets112

The first module of PanACoTA - prepare - allows to fetch all genomes from a given NCBI taxon-113

omy ID. This uses scripts from ncbi_genome_download library (https://github.com/kblin/114
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Figure 1: Overview of PanACoTA method
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ncbi-genome-download). PanACoTA retrieves the corresponding compressed non-annotated115

fasta files of the genomes from the NCBI ftp.116

In this paper, we use two datasets of Klebsiella pneumoniae genomes to illustrate how PanA-117

CoTA functions. The first one, called hereafter DTS1, contains all complete and draft genomes118

downloaded from the NCBI refseq database on October 2018 10th. The second dataset, DTS2,119

is the subset of DTS1 containing only the complete genomes (genomes with assembly_level120

= Complete Genome, based on the NCBI summary file). This initial database was then given121

to a quality control procedure, described in the next section. At the end, this module ouputs122

a database with the genomes admissible after this control step: 3980 genomes for DTS1, with123

a subset of 225 complete genomes for DTS2. The accession numbers of all the genomes are124

indicated in Table S1.125

2.2 Quality control procedure126

The goal of this module is to remove genomes that do not conform with two types of basic127

requirements in terms of assembly and taxonomy. It is done by the prepare module after128

downloading the genomes, or by the annotate module before the annotation step (if the user129

did not use the prepare module). This latter option is useful when the goal is to analyse a pre-130

defined list of genomes, some of which are eventually not available in GenBank (e.g. in-house131

sequencing). The module receives as input a set of fasta sequences.132

The first goal of this control procedure is to filter genomes in terms of sequence quality.133

Since there is usually no standard description of the quality of the sequence assembly in RefSeq134

genomes, the program infers it from the sequences. First, it is common usage to put stretches135

of ’N’ to separate contigs in a same fasta sequence. To have a better idea of the sequence136

quality, and be able to do the analysis more efficiently, we first split sequences at each stretch137

of at least 5 ’N’ (this number of 5 can be changed by the user) to get one fasta entry per138

contig. Assuming that the user is analyzing genomes from the same species, those genomes139

should have relatively similar characteristics in terms of number of contigs and length. Hence,140

PanACoTA first calculates two key measures for each genome: the total number of contigs, and141

the L90 (the minimum number of contigs necessary to get at least 90% of the whole genome).142

Very high values of these two variables are usually an indication of low quality of sequencing or143
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assembling. They often result in the annotation of numerous truncated genes that spuriously144

increase the size of pangenomes (because a real gene is split into numerous open reading frames145

that are classed in distinct families). These poorly assembled genomes also complicate studies146

of comparative genomics whenever studying genetic linkage is important, because they are147

dominated by small contigs. The thresholds can be specified by the user. Values by default are148

set to less than 1000 contigs and L90 lower than 100. Genomes exceeding one of these values149

are excluded from the rest of the analysis.150

The second part of the procedure is a filter dedicated to remove redundant and miss-classified151

genomes. This is done based on the genetic distance between pairs of genomes, as calculated152

by Mash [24]. We chose Mash for this distance filtering step because it can be computed very153

fast and is accurate for closely related genomes. Mash reduces each genome sequence to a154

sketch of representative k-mers, using the MinHash technique [25]. It then compares those155

sketches, instead of the full sequences. This output Mash distance D strongly correlates with156

alignment-based measures such as the Average Nucleotide Identity (ANI) which is based on157

whole-genome sequence comparisons using the blast algorithm [26]: D ≈ 1 − ANI. For ANI158

in the range of 90–100%, the correlation with Mash distance is even stronger when increasing159

the sketch size. Since pangenomes are typically computed for a single bacterial species, we are160

here using Mash to discriminate genomes having at least 94% identity. A few recent programs161

have been published showing slightly more accuracy than Mash, but we found them too slow162

for the use as a systematic filter. For example, using 15 cores, FastANI [27] requires around163

1h15 to compare all pairs of 200 genomes (40,000 pairwise comparisons), where Mash with a164

sketch size of 106 does the task in less than 3 minutes. Hence, a user requiring a finer grade165

study of ANI may wish to post-analyse the data from FastANI, instead of running the prepare166

module. However, it is impractical to make all pairwise analyses of very large datasets where167

one often needs to perform millions of pairwise comparisons.168

Bacterial species are usually defined as groups of genomes at more than 94% identity [28],169

and this will typically be used as the upper value for D (max_mash_dist is a modifiable param-170

eter that is fixed by default at 0.06). On the other extreme, genomes with very high similarity171

(corresponding to low Mash distances) provide very similar information. They can be excluded172

to lower the computational resources required for the analysis and to diminish eventual over-173
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sampling of certain clades, which could lead to biased results. PanACoTA sets min_mash_dist174

to 10-4 by default, but this parameter can also be specified by the user. This distance represents175

one point change every ten genes on average and may be close to the sequencing and assembling176

accuracy of many draft genomes.177

The two procedures, quality control and Mash filtering, are linked together. The information178

on the number of contigs and L90 is useful to chose the genome that is kept between a pair of179

very similar genomes. In summary, the control procedure works as follows:180

• Genomes with an excessively high number of contigs or L90 are excluded.181

• Genomes are primarily sorted by increasing L90 value, and secondarily by increasing182

number of contigs to produce a list ordered in terms of quality.183

• The genomes are compared with Mash. For that, the first genome of the ordered list (the184

one with best quality) is compared to all the others. The ones which do not obey to the185

distance thresholds are discarded. The procedure then passes to the subsequent genome186

in the ordered list (if not rejected before), compares it to all remaining genomes, and187

discards those not respecting the thresholds. The process continues until the ordered list188

is exhausted.189

The output of this module is a database with the genomes that passed the two steps of the190

quality control procedure. PanACoTA also provides a file listing the discarded genomes and191

why they were discarded.192

2.3 Annotation193

The annotation of the genomes is done by the annotate module of PanACoTA. The input is a194

database of fasta sequences, from the prepare module or directly provided by the user. If no195

information is given on the quality control of those genomes (number of contigs and L90), this196

quality control is done here (see previous section for more information on the quality control197

step).198

The goal of this module is to provide a uniform annotation of the gene positions (and199

functions) across the dataset. PanACoTA annotates all genomes with Prokka [29]. The latter200

uses Prodigal [30] to identify gene positions. It then adds functional annotations using a series201
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of programs, including BLAST+ [31] to search for homologs in a database of proteins taken from202

Uniprot and HMMER3 [32] to search for proteins hitting selected profiles from TIGRFAM [33]203

and PFAM [34]. All annotated sequences are renamed using a standard sequence header format.204

The header of each gene contains 20 characters and provides human readable information on205

the genome and contig of the gene, its relative position in the genome, and if it is at the border206

of a contig (see Figure 2).207

Figure 2: Description of the standard output header format for proteins annotated by PanA-
CoTA.

If the user does not need the functional annotation, the module gives the possibility of208

running only the gene finding part, i.e. only running Prodigal. For very large datasets it209

is much faster to use this option and annotate a posteriori only one gene per family of the210

pangenome using Prokka or more complete annotation systems like InterProScan [35]. The211

output of this step consists in five files per genome: the original sequence, the genes, the212

proteins (all in fasta format), a gff file containing all annotations and a summary information213

file.214

2.4 Identification of the pangenome215

The pangenome is computed with the pangenome module of PanACoTA. The input is the set216

of all proteins from all genomes, e.g. the sequence files of the ’Proteins’ folder generated by the217

annotate module.218
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The pangenome is the set of all protein families in the genomes. Its calculation involves com-219

parisons between all pairs of proteins, i.e. its complexity is to the square of the number of genes220

(and thus of genomes). To generate a reliable pangenome in a reasonable time, PanACoTA221

calls the MMseqs2 suite [20]. The mmseqs search module has a very good speed/sensitivity222

trade-off. In order to reduce time, it uses 3 consecutive search stages, with increasing sensitivity223

and decreasing speed. Everything is highly parallelized and optimized on multiple levels. The224

first step filters up to 99.9% of the sequences by eliminating high dissimilarities, i.e. sequences225

not having at least two consecutive kmer matches. The second step filters out another 99% of226

the remaining sequences using an ungapped alignment. This leaves a small amount of sequences227

to process with an optimized version of the Smith-Waterman alignment, where only scores are228

calculated, and not the full alignments.229

We used the mmseqs clustermodule included in MMseqs2 suite, with the default Cascaded230

clustering option. This module works in two main steps. It first clusters proteins using231

linclust [36], a linear time protein sequence clustering algorithm as a prefilter. Then, the232

representative sequences of this first step are handled by the mmseqs search module, and233

clustered according to its result. This second step is repeated three times, each time with a234

higher sensitivity at the mmseqs search algorithm module.235

For the clustering stage, PanACoTA uses the Connected component mode, because it has236

provided results consistent with our previous methods. This mode uses transitive connections237

to merge pairs of homologous genes: all vertices accessible via a BFS algorithm are members238

of a cluster. Let’s define the graph made from all pairwise comparisons between proteins as239

follows: each node is a protein and there is an edge between 2 proteins if they are similar240

(similarity beyond the given threshold). Then, two proteins are in the same family if we can241

find a path from one to the other in the graph. If desired, the user can choose any of two other242

clustering modes (Greedy Set cover, or Greedy incremental) using a dedicated parameter243

while launching the PanACoTA pangenome module. Importantly, the tuning of the options of244

mmseqs2 allows the sequence similarity analyses to be exceedingly fast or extremely sensitive245

[20]. In PanACoTA the user can change the key parameters –min-seq-id and –cluster-mode,246

and re-run the mmseqs cluster module to explore their effect on the results. More specific247

mmseqs2 parameters have, for the time being, to be used with the standalone version of the248
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program.249

The output of this step is a pangenome file containing one line per family, with the list250

of all its members. PanACoTA also provides the quantitative and qualitative matrices of the251

pangenome, as well as a tabular file giving an overview of each family composition.252

Note that, here, we do not take into account synteny between genes in the genomes, as we253

think that, for draft genomes, this has a limited interest. By exploring the families generated,254

we found very few and non-significant differences. However, if the user has very well assembled255

genomes, or has any particular reason to account for synteny, some tools have been developped,256

like panOCT [37] [38], SynerClust [39] or PANINI [40].257

If the user wants to do genome-wide association studies, the output qualitative matrix can258

be directly used as input for TreeWAS [41].259

2.5 Identification of core and persistent genomes260

The classification of gene families present in a large number of taxa is done by the corepers261

module of PanACoTA. The input is a pangenome file, like the one generated by the pangenome262

module. In early studies, the pangenome matrix was used to identify the gene families present263

in all genomes in a single copy: the core genome. However, the increase of the number of264

genomes in the dataset tends to decrease drastically the size of the core genome. This is because265

sequencing or annotation errors as well as rare deleterious polymorphism in the populations266

lead to the rapid decrease of the number of core genes with the increase in the number of input267

genomes. To overcome this problem, one now commonly identifies the persistent genome. A268

family is in the persistent genome if it contains members from at least N% of the genomes. N is269

defined by the user. The default value is 95% for datasets with more than 1000 genomes. The270

persistent genome is more robust to rare (true or artifactual) variants. On the other hand, if the271

goal of computing the persistent genome is to make a phylogenetic tree or analyze population272

genetics data, one may wish to produce sets with different thresholds. Indeed, a too high value273

will lead to a small set of persistent genes with few gaps that may be enough to infer a robust274

phylogeny. On the other side, this will exclude many gene families from other types of analyses,275

like detection of positive selection or recombination events. The definition of persistent genome276

may also vary, depending on the subsequent use of the data. PanACoTA defines three types of277
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persistent genomes (see Figure 3):278

• Strict-persistent: a family that contains exactly 1 member in at least N% genomes (N279

= 100 means it is a core-family). This definition is particularly practical to reconstruct280

phylogenies without having to handle the existence of multiple copies per genome.281

• Mixed-persistent: a family where at least N% of the genomes have exactly 1 member,282

and other genomes have either 0, either several members in the family. This definition is283

intermediate between the other two, i.e. it includes the strict-persistent and is included284

by the multi-persistent.285

• Multi-persistent: a family with at least one member in N% of the genomes. This definition286

is interesting to analyse patterns of diversification of nearly ubiquitous protein families.287

Figure 3: Different types of persistent genomes proposed by PanACoTA, with a threashold of
N = 90%.

The mixed and multi-persistent definitions are useful to include the gene families with288

variable numbers of copies in a small (mixed) or large (multi) number of genomes when studying289

the evolution of nearly ubiquitous gene families. It can be useful when one protein was split290

in several parts in a few genomes because of sequencing or assembly error(s). This protein291

family is discarded from the strict-persistent genome, while included in the mixed (and multi)292

persistent genomes.293

One should note that the module corepers does the re-analysis of the pangenome and294

therefore it does not use a reference genome whose choice can be questionable. Re-running the295

module is very fast, because it only requires the re-analysis of the pangenome matrix. Hence,296

it is easy and fast to re-run the module with different parameters in different analysis to check297

how they change the final result.298

The output of this module is a file containing the persistent families of proteins.299
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Note that if the user wants to identify the persistent genome using a statistical approach300

rather than using fixed thresholds, the gff file generated by annotate module is compatible301

with PPanGGOLiN [21]. This software generates a persistent genome corresponding to our302

multi-persistent version of the persistent genome (multigenic families are allowed).303

2.6 Multiple alignments of the persistent gene families304

The alignment of the persistent gene families is done by the align module of PanACoTA. Its305

input is a persistent genome coming from the corepers module, or independently provided by306

the user. When using the strict-persistent genome, all genes are aligned. When using the other307

definitions of persistent genomes, some genomes can lack a gene or have it in multiple copies.308

To produce phylogenetic trees from these alignments, such cases must be handled beforehand.309

When a genome lacks a member or has more than one member (mixed or multi persistent) of310

a given gene family, PanACoTA adds a stretch of gaps (’-’) of the same length as the other311

aligned genes. Adding a few "-" has little impact on phylogeny reconstruction. For example,312

it has been showed that adding up to 60% of missing data in the alignment matrix could313

still result in informative alignments [42]. In our experience, when this approach is applied to314

within-species pangenomes, it usually incorporates less than 1% of gaps. The effect of missing315

data should thus be negligible relative to the advantage of using the phylogenetic signal from316

many more genes (i.e. in contrast to using the strict-persistent genome). Alignments are more317

accurate when done at the level of the protein sequence. This has the additional advantage of318

producing codon-based nucleotide alignments that can be used to study selection pressure on319

coding sequences. Hence, PanACoTA translates sequences, aligns the corresponding proteins320

and then back-translates them to DNA to get a nucleotide alignment. This last step constitutes321

in the replacement of each amino acid by the original codon. Hence, at the end of the process,322

the aligned sequences are identical to the original sequences.323

PanACoTA does multiple sequence alignment using MAFFT [10] as it is often benchmarked324

as one of the most accurate multiple alignment programs available and one of the fastest [43]).325

It has options that allow to make much faster alignments, at the cost of some accuracy, to326

handle very large datasets. This loss of accuracy is usually low for very similar sequences as327

it is the case of orthologous gene families within species, and means that PanACoTA can very328
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rapidly align the persistent genome.329

This module returns several output files: the concatenate of the alignments of all families330

to be used for tree inference, and, for each core/persistent genome family, a file with its gene331

and protein sequences aligned.332

2.7 Tree reconstruction333

The phylogenetic inference is done with the tree module of PanACoTA. It uses as input the334

alignments of the align module or any other alignments in Fasta format.335

This is the part that takes most time in the entire pipeline, because the time required for336

phylogenetic inference grows very fast with the size of the dataset. Even efficient implementa-337

tions of the maximum likelihood analyses scale with the product of the number of sites and the338

number of taxa, which is a problem in the case of large datasets (thousands of taxa, with more339

than ten thousands sites for each one). PanACoTA proposes several different methods to obtain340

a phylogeny: IQ-TREE [44], FastTreeME [45], fastME [46] and Quicktree [47]. Whatever the341

software used, the tree module takes as input a nucleotide alignment in Fasta format (like, for342

example, the output of align module), and returns a tree in Newick format. According to its343

needs, the user can choose one of these methods to infer its phylogenetic tree. These trees can344

be used to build more rigorous phylogenetic inference using methods that are more demanding345

in computational resources, e.g. by changing the options of IQ-TREE.346

2.8 Implementation and availability347

PanACoTA was developed in Python3, trying to follow the best practices for scientific software348

development [48] [49]. For that, the software is versioned using git, allowing the tracking of349

all changes in source code during PanACoTA’s development. It is freely distributed under the350

open-source AGPL licence (making it usable by many organizations) and can be downloaded351

from https://github.com/gem-pasteur/PanACoTA.352

Hosting it on GitHub allows for issue tracking, i.e. users can report bugs, make suggestions353

or, for developers, participate to the software improvement. To provide a maintainable and354

reliable software, we set up continuous integration process: each time a modification is pushed,355

there is an automatic software installation checking, unit tests are done, and, if necessary, an356
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updated version of the documentation is generated, as well as an update of the singularity357

image on Singularity Hub.358

As introduced just before, we also provide a complete documentation, including a step by359

step tutorial, based on provided genome examples, so that the user can quickly get started.360

It also contains more detailed sections on each module, aiming at helping users to tune all361

parameters, in order to adapt the run to more specific needs. This documentation also includes362

a ’developer’ section, addressed to developers wanting to participate in the project.363

During its execution, PanACoTA provides logging information, so that user can see real-364

time execution progress (a quiet parameter is also proposed for users needing empty stdout365

and stderr). This also provides log file(s) to keep track on what was ran (command-line used,366

time stamp, parameters used etc.).367

3 Results and discussion368

All execution times mentioned in this section correspond to wall clock time on 8 cores (except369

when the number of cores is given). A summary of all execution times can be found in Table 1.370

MODULE STEP DTS1 (3980 genomes) DTS2 (225 genomes)
downloading 1h (5805 genomes) 3min (266 genomes)
quality control <4min ∼15secprepare
filter 20min ∼1min
with Prokka 5 days 10hannotate with Prodigal 6h 30min

pangenome 30min 1min
corepers (1 core) 1min 5sec

strict persistent 3h 10minalign mixed-persistent 7h 11min
Tree (IQ-TREE) strict-persistent 7h (40GB RAM) 3min10
(28 cores) mixed-persistent 24h (90GB RAM) 3min30

Table 1: Summary of execution times by (sub)module

3.1 Download and preparation of genome sequences371

The first module of PanACoTA was used to download all genomes of Klebsiella pneumoniae372

using the TaxID 573. It took approximately 1h to download the 5805 Klebsiella pneumoniae373

genome sequences (including 266 complete genomes). We used the module annotate to make374
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the quality control of those 5805 strains. For this study, we used as thresholds: L90<100 and375

number of contigs<999. The computation of L90, number of contigs and genome size, and376

the subsequent procedure of discarding genomes according to the thresholds took less than 4377

minutes. This step discarded 233 draft genomes, leaving 5572 for further analysis (see Figure 4).378

When the threshold on the number of contigs was decreased by half (number of contigs<500),379

only 52 more genomes were removed (see Figure 4b). To define the best thresholds to the380

analysis, the user can preview its dataset quality with a ’dry-run’ of the annotate module.381

Then, the user can launch the real analysis, from prepare or annotate with the adapted382

thresholds.383

The analysis of genetic distances across pairs of genomes is performed by Mash (K-mer384

size of 21 (default), and sketches of at most 10000 non-redundant min-hashed k-mers). A385

total of 1592 genomes (including 41 complete genomes) did not respect the distance thresholds386

(max_mash_dist = 0.06 and min_mash_dist 1e-4)). The vast majority (1448) were too similar387

to other genomes, whereas 144 were too distant from other strains to be regarded as bona fide388

Klebsiella pneumoniae genomes (figure 5).389

Some species can even be defined with narrower ANI values. For example, to identify bona390

fide Klebsiella pneumoniae genomes, Kleborate (https://github.com/katholt/Kleborate) uses391

Mash to compare the given assembly to a curated set of Klebsiella assemblies from NCBI. It392

considers a Mash distance of ≤ 0.01 as a strong species match, and a Mash distance between393

0.01 and 0.03 as a weak match. With our DTS1, Kleborate would have only removed 22394

more genomes, that it identifies as Klebsiella quasipneumoniae subspecies similipneumoniae.395

Our method, which is designed for any species, is thus quite consistant with Kleborate results396

regarding the specific case of K. pneumoniae genomes.397

Three genomes showed an ANI less than 84% identity, meaning they may not even be398

from the same genus, which emphasizes the necessity of this kind of analysis before computing399

a pangenome. They were removed from the analysis (GCF_900451665.1, GCF_900493335.1400

and GCF_900493505.1). Finally, these filters left 3980 genomes in the analysis, with an average401

of 5307 genes per genome, which will be called the reference database DTS1. Among them,402

there are 225 complete genomes that form the dataset DTS2 (see Figure 6).403

The functional annotation part is by far the slowest of the first modules. On a typical 5404
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Figure 4: Histograms describing the features of the 5805 K. pneumoniae genomes downloaded
from Refseq. (a) Distribution of L90 values. (b) Distribution of the number of contigs per
genome.

Mb genome, giving 2 cores to Prokka, gene finding takes around 40 seconds and functional405

annotation around 7 minutes.406

The annotation of the genomes with Prokka 1.11 took approximately 1min 50s per genome,407

i.e. around 5 days for the whole dataset. For comparison, we re-did the analysis with the option408

of restricting the analysis to prodigal 2.60. This analysis took less than 6h in total (annotation409
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Figure 5: Distribution of Mash distances for the 5572 genomes respecting the L90 and number
of contigs thresholds, but having a Mash distance higher than the threshold (0.06).

Figure 6: Summary of the procedure to construct DTS1 and DTS2.

+ formatting of all 3980 genomes), which corresponds to an average of 6 seconds per genome.410

In general, this shows that making a simple syntactic annotation leads to a considerable gain411

of time. Assuming that genes from the same pangenome family have similar functions, one can412

annotate one protein per family at the end of the process and save considerable time.413
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3.2 Building pangenomes414

We used MMseqs2 Release 11-e1a1c. The 3980 DTS1 genomes contain 20,765,062 proteins.415

It took less than 30min to create the protein database in the MMseqs2 format, cluster them416

(with at least 80% identity and 80% coverage of query and target, and other parameters kept as417

default), and retrieve the pangenome matrices. The pangenome of the smaller DTS2 dataset of418

225 genomes, 1,190,485 proteins, was computed in less than one minute. The DTS1 pangenome419

has 86607 families. Among them, 35348 (40%) are singletons (found in a single genome), which420

is concordant with values observed in Escherichia coli [50]. In DTS2 we found 24473 families,421

including 8975 (37%) singletons.422

The comparison of these two pangenomes is interesting because it reveals the robustness of423

the method to changes in sampling size, as summarized in Figure 7. A total of 2147 families424

contain only members present in both DTS1 and DTS2. This means that, for those families,425

even with all proteins of DTS1, only proteins from DTS2 were clustered together. Among those426

families, 2122 are exactly the same in both pangenomes, whereas only 25 families were split427

in the DTS1 pangenome family relative to the DTS2 pangenome. In that case, they are split,428

most of the time, into two different families of DTS1. This shows that the clustering procedure429

is quite robust to the addition of a very large number of genomes.430

Most important, we observed a total of 22744 families (that is more than 92% of all431

DTS2 families) that are identical between the independent analysis of the DTS1 and DTS2432

pangenomes. Identical here means that the DTS2 pangenome gene family is included in a433

DTS1 pangenome gene family, and the other members of this DTS1 pangenome family are only434

members of genomes not present in DTS2. Furthermore, around half of the remaining families435

from the DTS2 pangenome are included in a DTS1 pangenome gene family, which contains a436

few other proteins from DTS2 genomes. Finally, only 187 gene families of the DTS2 pangenome437

were split into 2 or 3 different families of DTS1 pangenome. In other words, 24286 families438

(more than 99%) of DTS2 pangenome are subsets of DTS1 gene families. In conclusion, the439

construction of pangenome families is robust to large variations in the number of input genomes440

(see Figure 7).441
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Figure 7: Comparison of the pangenomes generated by PanACoTA for both DTS1 and DTS2.

3.3 Core and persistent genomes442

This part of the analysis is very fast. Using only 1 core, it took around one minute to generate443

a core or persistent genome from DTS1 pangenome. PanACoTA provides a core genome and444

three different measures of persistent genome (see Figure 3). The strict-persistent genome445

corresponds to cases when the family is present in a single copy in 99% genomes and absent446

from the others. In DTS2, the set of complete genomes, the difference between the core and447

strict-persistent genome is appreciable (2238 versus 3295 families), i.e. the persistent genome is448

50% larger (see Figure 8). The difference becomes huge when the analysis is done on the much449
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larger and less accurate DTS1 dataset, where the two datasets vary by more than one order of450

magnitude (79 versus 1418 families). In such large datasets of draft genomes the analysis of451

the core genome is not very useful.452

The mixed-persistent genome includes the families present in a single copy in 99% genomes453

and present (potentially in several copies) or absent from the others. It includes the strict-454

persistent genome and is not much larger than the latter in the small DTS2 dataset. Yet,455

the difference is much larger in the DTS1 dataset (see Figure 8). While the mixed-persistent456

genome is 65% percent of the average genome in DTS1, the strict-persistent is only 27% percent457

in the same dataset. This shows the relevance of using definitions of the core genome adapted458

to the dataset in order to build robust phylogenetic trees or to analyse patterns of genetic459

diversification and natural selection.460

Finally, PanACoTA also computes a multi-persistent genome that includes all gene families461

present in at least 99% genomes, independently of the copy number. It includes all the other462

sets and is not much larger than the mixed-persistent genome (see Figure 8). Yet, it includes463

interesting families. An analysis of these reveals many genes encoding regulators, transporters464

and enzymes that are nearly ubiquitous, but often present in multiple copies. As a rule, this465

definition is interesting to study gene families present in most genomes, but present in very466

different copy number. On the other hand, it is typically not very useful for phylogenetic467

inference. Since all these sets can be computed very rapidly, it’s straightforward to compute468

them all and use them for different types of analyses.469

3.4 Phylogenetic tree inference470

PanACoTA ran mafft v.7.467 using –-auto option to align all families. For DTS1, it selected471

the FFT-NS-2 method, while for DTS2, it selected FFT-NS-i method. This was done with472

both the strict-persistent (1418 families) and the mixed-persistent (3441 families). It took 3h473

(resp. 7h) to align all the families of the strict-persistent (resp. mixed-persistent), giving, for474

each one, the input file for tree inference.475

For tree inference, PanACoTA used IQ-TREE multicore version 2.0.6, with -fast option.476

For the tree based on the alignment of the strict-persistent (3980 sequences, 1418 families477

corresponding to 1,438,179 positions), it took around 7h on 28 cores, requiring 38GB of RAM.478
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Figure 8: Comparison of the sizes of the core genome and the 3 different types of persistent
genomes, for both DTS1 and DTS2. Areas of circles are proportional to the size of the dataset.

For the tree based on the alignment of the mixed-persistent (3980 sequences, 3441 families479

corresponding to 3,393,006 positions), it took 24h using 28 cores, requiring 88GB of RAM.480

We then wished to understand the differences in phylogenetic inference in terms of the481

method used to define the persistent genome (strict and mixed persistent). We computed the482

patristic distance matrix for each tree and a Pearson correlation test showed that they are483

strongly correlated (cor = 0.99138, p < 2.2e-16). This shows that the distances provided by484

the two methods are very similar. Hence, if the strict persistent is large enough to generate a485

phyogenetic tree, it provides adequate distances between genomes. Aligning all mixed persistent486

families would just take much more time, for a similar result. However, if one is interested in487

having a robust tree topology, one should use the larger (and computationally costlier) dataset.488

Indeed, the analyses of Robinson-Foulds distance with R phangorn package shows a branch-489

weighted distance of 0.43 and an absolute distance of 2892 [51]. This is because some lineages of490

K. pneumoniae account for a large fraction of the data and these parts of the tree require long491

informative multiple alignments to produce accurate topologies. Accordingly, the differences492

in topology between the trees using the DTS2 dataset, which have much larger average branch493

lengths, show much smaller values of topological distances between the two datasets of persistent494

genome (RF=78, wRF=0.027).495

Some researchers use methods to detect recombination in genomes, remove the recombi-496
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nation tracts, and then redo the analyses. This can be done outside PanACoTA by querying497

the multiple alignments before proceeding to the phylogenetic inference. Yet, previous results498

have shown that such procedures tend to distort phylogenetic inference at a larger extent than499

simply using all the information in the multiple alignments [52] [53]), and this explains why we500

have not included such an option on PanACoTA.501

4 Conclusion502

PanACoTA is a pipeline for those wanting to test hypotheses or explore genomic patterns using503

large scale comparative genomics. We hope that it will be particularly useful for those wishing to504

use a rapid, accurate and standardized procedure to obtain the basic building blocks of typical505

analyses of genetic variation at the species level. We built the pipeline having modularity in506

mind, so that users can produce multiple variants of the analyses at each stage. We also paid507

particularly care with the portability and evolvability of the software. These two characteristics,508

modularity and evolvability, will facilitate the implementation of novel procedures in the future.509
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