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Abstract  
Diffuse large B-cell lymphoma (DLBCL) is a common, aggressive cancer of notorious genotypic and 
phenotypic heterogeneity. A major challenge is predicting response to drug treatment, which has typically 
been done using genomic tools alone with little success.  A novel method that incorporates phenotypic 
profiling for predicting the effectiveness of therapy for individual patients is desperately needed.  
BioDynamic Imaging (BDI) is a technique for measuring time-dependent fluctuations in back-scattered 
light through living tumor tissues to identify critical changes in intracellular dynamics that are associated 
with phenotypic response to drugs. In this study, BDI and RNA sequencing (RNA-seq) data were collected 
on tumor samples from dogs with naturally occurring DLBCL, an animal model of increasingly recognized 
relevance to the human disease.  BDI and RNA-seq data were combined to identify correlations between 
gene co-expression modules and linear combinations of biomarkers to provide biological mechanistic 
interpretations of BDI biomarkers.  Using regularized multivariate logistic regression, we combined RNA-
seq and BDI data to develop a novel model to accurately classify the clinical response of canine DLBCL to 
combination chemotherapy (i.e. CHOP).  Our model incorporates data on the expression of 4 genes and 3 
BDI-derived phenotypic biomarkers, capturing changes in transcription, microtubule related processes, 
and apoptosis.  This pilot study suggests that the combination of multi-scale transcriptomic and 
phenotypic data can identify patients that respond to a given treatment a priori in a disease that has been 
difficult to treat. Our work provides an important framework for future development of strategies and 
treatments in precision cancer medicine.   
 

Introduction 
Diffuse large B-cell lymphoma (DLBCL) is a common, aggressive form of non-Hodgkin lymphoma 
diagnosed in approximately 25,000 human patients each year, 1/3 of whom will die from the disease(1, 
2).  This cancer is characterized by molecular and biochemical heterogeneity that have confounded the 
use of targeted drugs to improve cure rates from conventional chemoimmunotherapy (3).  The current 
standard of care chemotherapy regimen for DLBCL is a combination therapy that combines rituximab, 
cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate (Oncovin®), and prednisone (i.e. R-
CHOP).  Chemotherapy often fails due to drug resistance (4), and no targeted therapy has been 
developed which significantly improves survival (5-7).  Challenges in predicting treatment efficacy for 
individual patients, coupled with a lack of understanding in the development of R-CHOP resistance 
mechanisms, is a significant cause of this difficulty.  The International Prognostic Index, the most 
commonly used prognostic tool, is based on simple clinical attributes (8, 9).  While there are molecular 
prognostic schemes based on gene expression (10-14), there is no available method for accurately 
predicting response to chemotherapy regimens in individual patients with DLBCL.  Thus far, genetic 
analysis alone is insufficient to predict the response of individual cases of DLBCL to drug therapy. 

  In spite of the importance of developing personalized therapy in DLBCL, progress has been slow 
(4). Locus heterogeneity, an outbred population, and poor clinical documentation lead to difficulties in 
human cancer gene mapping and predictive model development (15). While murine models have led to 
important breakthroughs in DLBCL research (16, 17), these models have limited translational application 
to precision cancer treatment (18, 19).  Dogs with DLBCL have been proposed as a valuable model in 
which to develop novel personalized medicine strategies for humans with this cancer.  Pet dogs develop 
DLBCL at a high rate, and the disease has similar clinical features to those seen in humans (15, 20).  Pet 
dogs with DLBCL are treated with CHOP and exhibit heterogeneity in their response to CHOP 
chemotherapy as seen in humans’ receiving R-CHOP, making the dog model especially appropriate for 
informing precision medicine strategies to treat human DLBCL (20, 21).   
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BioDynamic Imaging (BDI) has been proposed as an accurate method to discriminate between 
DLBCL that will respond favorably versus unfavorably to treatment (22).  BDI is an optical imaging 
technology that records phenotypic responses of fresh, living, three-dimensional tumor tissues to 
chemotherapeutic drugs in the ex vivo environment (5-7, 22-24). This phenotypic profiling occurs 
through the use of Doppler spectroscopy to characterize change in subcellular motion within tumor 
tissues following drug exposure.   In a clinical setting, these motion-based responses are recorded from 
fresh ex vivo tissue biopsies with intact tumor microenvironments.  These responses are then 
statistically associated with clinical outcomes such as objective tumor response or survival time. 
Although preliminary results show that BDI classifies chemosensitivity of naturally-occurring DLBCL in 
dogs (22), the relationship of BDI data to molecular processes underlying a tumor!s phenotypic drug 
response has yet to be defined. 

We hypothesized that transcriptomic profiling could be correlated with BDI biomarkers, allowing 
us to characterize BDI biomarkers based on biological processes.  Furthermore, we hypothesized that 
combined analysis of subcellular motion and gene expression patterns would enable the development 
of a machine learning model that could accurately classify DLBCL biopsies as sensitive or resistant to 
CHOP chemotherapy 

In this study, we use intracellular dynamics data obtained from BDI and combine it with gene 
expression data from RNA sequencing (RNA-seq), defining the Doppler spectroscopic signatures 
recorded by BDI in terms of discrete biological processes.  We also show that this integration creates an 
improved classifier of clinical chemotherapy response in canine DLBCL. Due to the success of machine 
learning applications across chemistry and biology (25-27), we explore multiple machine learning 
methodologies used to develop this classifier and discuss the implications of this model’s predictions for 
the biology of these tumors.  The novelty of this work is that it combines RNA-seq with BioDynamic 
imaging and provides a biological mechanistic interpretation of BDI biomarkers. The majority of similar 
work in the literature uses a single analytical technique to predict a clinical result whereas our results 
suggest that multi-scale modeling approaches could offer an improved method for predicting the clinical 
response of human cancers to anticancer drugs. 

. 

Material and Methods 
Assessment of clinical endpoints 
Clinical management of study animals is detailed in Supplemental Methods. The primary clinical 
endpoints were objective response to chemotherapy and progression-free survival (PFS).  The metric for 
assessing objective response was a caliper-based measurement measurements of a minimum of 1 and 
maximum of 5 peripheral lymph nodes.  Objective response was classified according to established 
criteria (28) and is detailed in Table 1.  Complete remission (CR) was defined as complete absence of 
detectable cancer following CHOP treatment.  Partial remission (PR) was defined as >30% (but <100%) 
reduction in the sum of the longest diameters of up to 5 peripheral lymph nodes.  Progressive disease 
(PD) was defined as >20% increase in the sum of the longest diameters of up to 5 peripheral lymph 
nodes, or the appearance of new lesions.  Stable disease (SD) was defined as measurable tumor burden 
not meeting the criteria for PR or PD.  Progression-free survival was defined as the time in days from 
initiation of chemotherapy to detection of PD or to death from any cause, whichever came first. All dogs 
enrolled in this study underwent incisional wedge biopsy or surgical extirpation of a peripheral lymph 
node at the time of study entry (i.e. prior to initiation of chemotherapy) to provide tissue for 
histopathologic confirmation of DLCBL.  Portions of these biopsy samples were reserved and processed 
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for BDI and additional tumor biopsy portions were frozen in liquid nitrogen or homogenized in TRIzol 
reagent (ThermoFisher) within 30 minutes of harvesting for collection of tumoral RNA.   

Table 1. Details on the nineteen dogs evaluated in this study. Each patient is assigned a unique sample ID for pre- 
and post-chemotherapy and a tumor sample barcode to represent the dog both before and after treatment. Since 
the post treatment RNA-seq data is only used to identify additional genes and not used for the creation of any 
models, the Dog Identifier is used in all future figures and tables. PFS = progression-free survival, CR= complete 
remission, PR= partial remission. 

Sample 
Number 

Sample 
Identifier 

Clinical 
Outcome 

Breed Best Overall Response PFS 
(days) 

1 12BDI Sensitive Mixed breed dog CR 232 
2 100BDI Sensitive German shepherd CR 252 
3 80BDI Sensitive Mixed breed dog CR 294 
4 RL84BD Resistant Great Dane CR 98 
5 95BDI Sensitive Basset hound CR 244 
6 RL52CC Sensitive Bloodhound CR 267 
7 75BDI Sensitive Rottweiler CR 327 
8 42BDI Resistant Bernese mountain dog CR 84 
9 LY54CJ Sensitive Mixed breed dog CR 237 

10 LY11JD Sensitive Standard poodle CR 286 
11 LY16JW Resistant Mastiff CR 97 
12 RL10KM Resistant Rottweiler CR 89 
13 RL69KG Sensitive Golden Retriever CR 293 
14 LY99LB Resistant Mixed breed dog PR 43 
15 43BDI Sensitive Mixed breed dog CR 315 
16 LY54SM Sensitive Mixed breed dog CR 1,018 
17 37BDI Resistant Mixed breed dog PR 43 
18 94BDI Sensitive Mixed breed dog CR 273 
19 RL02YB Sensitive Mixed breed dog CR 284 

 
RNA-seq and analysis 
All solid tumor specimens were stored in liquid nitrogen, while RNA samples were stored at -80°C until 
the time of RNA extraction.  RNA extraction was performed using the RNeasy kit (Qiagen).  Poly A 
selection and library preparation was performed using the TruSeq Stranded kit (Illumina) followed by 
sequencing on a NovaSeq6000.  Read trimming of the 2x150 reads was performed using Trimmomatic 
v.0.32 (29) followed by mapping to the CanFam3.1 genome using STAR v.2.5.4b (30) and counting using 
HTSeq v.0.7.0 (31). A differential expression analysis was performed using the DESeq2 (32) package and 
later edgeR (33-35) to select intersecting differentially expressed genes (DEGs). The Benjamini-Hochberg 
method(36) corrected for multiple testing and genes with FDR < 0.05 were denoted as significant.  
ClusterProfiler (37) was used to perform pathway and enrichment analyses. Enrichment and associations 
were deemed statistically significant at an adjusted p-value of 0.05. 
Data are available at GEO accession number GSE156220. 
BDI 
Complete details of the physics and optical engineering behind BDI can be found in (38, 39) and details 
of the application of BDI for drug screening can be found in (6, 23). The procedures for using BDI for 
measuring the response to chemotherapy, including sample handling and stabilization procedures, can 
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be found in (22).  Fresh tumor biopsy samples are processed into multiple small tissue samples of 
approximately 1mm3 volume, then immobilized in single wells of a 96-well plate before application of ex 
vivo drug treatments.  Drug treatments consisted of a DMSO control, CHOP combination 
chemotherapeutic agent, as well as the individual components of CHOP in RPMI 1640 medium 
containing 0.1% DMSO. The CHOP therapy drugs were prepared containing doxorubicin (10µM), 4-
hydroxycyclophosphamide (5µM), vincristine (60nM), and prednisolone (0.6µM). The longitudinal time 
course consists of 18 Loops over 12 hours: 6 Loops prior to drug through 12 Loops after drug.  During the 
measurement of a sample in a single well 2000 digital holography (DH) camera frames are acquired of 
each sample at 25 fps.  Each digital hologram is converted to the image domain through spatial 2D fast 
Fourier transforms (FFTs) to create a single image-domain section, termed an optical coherence image 
(OCI).  A stack of 2000 image-domain sections (optical coherence images) constitute a time series for 
each pixel.  The sample is masked from the background by the choice of an intensity threshold.  The 
pixel-based time series is converted to a fluctuation power spectrum through temporal FFTs.  The 
resulting pixel-based spectra are averaged into a single spectrum for a given sample on a given Loop.  
The baseline spectrum S(ω,0) is defined as the average of the last 4 Loops spectra prior to the 
treatment.  A series of logarithmic fluctuation power spectra at successive times and subtracting the 
average baseline is used to generate the drug-response spectrograms, which display the shift in Doppler 
spectral content of the sample over the course of the assay.  
 
BDI analysis and summarization 
The drug-response spectrogram is defined by Equation 1: 

𝐸𝑞1:										𝐷(𝜔, 𝑡) = 𝑙𝑜𝑔𝑆(𝜔, 𝑡) − 𝑙𝑜𝑔𝑆(𝜔, 0) 
where the time index t represents the Loop number and 𝜔 represents the Doppler frequency.  A 
spectrogram is generated for a given dog and a given treatment averaged over the wells.  A data quality 
figure is assigned to each well based on multiple quality control criteria.  The data quality has a base 
value of unity and is reduced by a factor of 2 for each criterion that is not satisfied by the well data.  The 
spectrograms are averaged over the replicate wells for the treatment weighted by the data quality per 
well.  Each dog’s response is thus represented by an average spectrogram for each treatment.  This 
time-frequency representation next must be converted into feature vectors, which form the basis of 
BDI-derived biomarkers of a tissue’s phenotypic response to a given drug.  The time-frequency 
spectrograms are converted into feature vectors with elements associated with parts or patterns of the 
spectrograms.  In addition to spectrogram-based features, there are also preconditions (such as light-
scattering brightness and spectral density dynamic range) as well as drug-induced changes in these 
preconditions.   

All raw biomarkers are defined in Table S1.  The time-frequency decomposition is approached 
globally and locally.  Global patterns are generated as low-order Legendre polynomials.  These 
polynomials are taken as an inner product over the spectrograms to generate Legendre coefficients that 
represent the global features of the spectrograms.  Only orders 0, 1 and 2 are used along the frequency 
and time axes to generate 9 global features.  Local patterns are simply low, mid, and high-frequency 
bands with average, linear and quadratic time dependence, which generates 9 local features.  The 
preconditions consist of normalized standard deviation (NSD), backscatter brightness (BSB), number of 
pixels in the sample mask (NCNT), the spectral dynamic range (DR), the Nyquist floor (NY), the knee 
frequency (KNEE), the half-width (HW), the spectral slope (S) and the linear slope (SF).  Each 
precondition is changed by the drug treatment, providing additional features that are the changes in the 
preconditions from baseline to the endpoint of the assay. Information on BDI biomarker definition is 
provided in the Supplemental Methods (Tables S1-S3).  There are 27 drug-response features: 18 are 
based on spectrograms and 9 are drug-induced changes in preconditions, which are concatenated for 
each drug.   
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Modeling of chemotherapy response 
In early versions of our work, we investigated other machine learning models, including Support Vector 
Machine (SVM), Partial Least Squares (PLS), Random Forest (RF), and decision trees (DT). These models 
did not out-perform logistic regression, a finding congruent with other works which attempt to model 
clinical results using machine learning techniques(40). This can be explained by the fact that other 
machine learning models typically become over trained with such small training sets (a fact which we 
discovered early on in the modeling process). Additionally, these models are more difficult to analyze 
and perform feature selections upon, so given our early success with logistic regression we decided to 
not pursue additional models. Models were trained on data and feature selection was performed by 
selecting BDI biomarkers with greater than a 0.90 area under the precision recall curve (AUPRC) and 
high confidence protein coding DEGs, identified by both edgeR and DESeq2 as statistically significant and 
with greater than a 0.95 AUPRC.  The Cohen Kappa statistic (41) was used to quantify model success 
based on inter-model reliability due to the unbalanced nature of the data. The resistant tumor samples 
were designated as the positive case and the sensitive tumor samples designated as the negative case. 
Kappa values of 0.80-0.90 are interpreted as strong, and above 0.90 is near perfect predictive ability (42, 
43).  The Caret package (44) was used to train models using leave-one-out cross validation (LOOCV) for 
hyperparameter tuning. Leave one out testing (LOOT) was used to enable testing of the final model.  
Cross-correlation of BDI and transcriptomic variables 
A network analysis was performed, identifying modules of co-expressed genes using WGCNA (45).  
Log(FPKM) values were used after filtering genes with <0.3 FPKM in 20% of samples.  A soft thresholding 
power of 14 was chosen, which was the lowest power at which the scale-free topology had a fit R2 of 
greater than 0.85 (46, 47).  A signed adjacency matrix was computed and hierarchical clustering 
followed by a dynamic tree-cut algorithm identified modules with a minimum size of 30 genes.  The first 
principal component of each of the modules (eigengenes), were used to correlate the modules with BDI 
biomarkers.   

Results 
RNA-seq and BDI capture transcriptional and phenotypic changes associated with chemotherapy 
resistance  

Initially, we set out to characterize transcriptional and phenotypic changes associated with 
CHOP resistance in canine DLBCL.  Importantly, the generation of RNA-seq data also provides an 
opportunity to map between gene expression and the BDI biomarkers, thus improving the 
interpretability of BDI results.  RNA-seq and BDI were performed on tumors from nineteen pet dogs with 
DLBCL (Table 1). Of these tumors, 6 were categorized as resistant and 13 were considered sensitive to 
CHOP. Resistant tumors were considered those from dogs with a PFS of approximately ≤ 90 days.  
Previous work suggests that dogs with such tumors are in the lowest quartile for PFS (21), a 
subpopulation that derives negligible benefit from CHOP.   

The canine RNA-seq data showed a high degree of variability between dogs (Figure S1), a 
characteristic also observed in human DLBCL (48).  A total of 70 differentially expressed genes (DEGs) 
were identified between sensitive and resistant dogs, 27 of which are downregulated, and 43 are 
upregulated in resistant tumors (Figure 1A, Table S4).  Gene expression changes mirror those identified 
in studies of R-CHOP resistance in human DLBCL patients. The most significantly enriched pathway 
amongst DEGs (Table S5) shows activation of the Jak-Stat pathway in the CHOP-resistant tumors 
(adjusted p-value=1.81x10-4), drawing a similarity between human and canine DLBCL (49). The gene set 
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enrichment analysis (GSEA) (50) (Figure 1B, Table S6)  likewise highlights a number of processes that are 
also involved in R-CHOP resistance in humans, while no enriched pathways were identified in sensitive 
samples (FDR<0.05).  The oxidative phosphorylation pathway has previously been implicated in 
chemotherapy resistance, including in DLBCL (51, 52). Additionally, MYC targets are enriched in resistant 
samples, a finding that fits with the pathogenic role that constitutively activated MYC plays in human B-
cell lymphomas (53).  In addition to these pathways, the mTor signaling pathway, the complement and 
coagulation cascades, allograft refection, inflammatory related processes, and E2F targets were all 
shown to be enriched, similar to what has been shown in drug-resistant and -refractory DLBCL in 
humans (54).  

BDI generated 81 biomarkers resulting from the 5 drug treatments (combination CHOP, along 
with individual monotherapy drugs), which are provided in Table S7.  While these BDI time-frequency 
spectrograms provide robust measures of ex vivo changes in intracellular motion in response to CHOP 
combination and monotherapy treatment, the discrete biological mechanisms that underly each BDI 
biomarker were previously unknown, complicating biological interpretation of BDI data.  For this reason, 
BDI and RNA-seq data were cross-correlated, in an attempt to bridge the gap between biological 
mechanism and BDI biomarkers. 
 
BDI biomarkers correlate with biological processes ranging from small to large-scale intracellular 
movements 

Initially, a cross-correlation analysis was performed using a permutation test to quantify 
significance of correlations between BDI biomarkers and gene expression, followed by an enrichment 
analysis on the genes correlated with individual biomarkers.  However, due to the large size of the data 
(81 BDI features and thousands of expressed genes), results were uninterpretable. To address this 
problem, genes and BDI markers were grouped into linear combinations of the individual features.  
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Figure 1.  RNA-seq differential  
expression and enrichment  
results. A.Volcano plot with statistically  
significantly differentially expressed  
genes colored pink if they have higher  
expression in resistant samples and  
blue if they have higher expression in sensitive samples. B. Barchart showing the normalized enrichment score 
(NES) for the gene set enrichment analysis (GSEA) for significantly enriched gene sets at FDR<0.05.  Positive 
enrichment scores indicate that the genes in the gene set have higher expression in resistant samples than sensitive 
samples.  No genes sets were significantly enriched in sensitive samples.  
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We had observed a number of significant linear relationships between biomarkers (Figure 2A), 
specifically in changes in preconditions as well as a few describing global changes across all frequencies 

and all times.  Therefore, 
a principal component 
analysis (PCA) was used 
to generate a set of 
orthologous features for 
each drug treatment, 
providing us with sets of 
linear combinations of 
BDI biomarkers (Table 2).  
Within all drug 
treatments, the first 3 
principal components 
contain the vast majority 
of the variability in the 
data, thus generating 15 
features. The top 3 PCs 
contain 93.2% of the 
variability in the CHOP-, 
88% in 
cyclophosphamide-, 
79.3% in doxorubicin-, 

BDI Linear Combination Top 3 BDI Variables (with loadings) 
CHOP1 AllF0chop (26.3), DDRchop (20.2), MID0chop (15.7) 
CHOP2 DDRchop (36.2), ALLF0chop (22.1), DSFchop (21.2) 
CHOP3 SDIP0chop (53.7), LOF0chop (14.3), DSFchop (8.3) 
DOX1 DNSDdox (21.3), DNYdox (15.24), DBSBdox (14.5) 
DOX2 DHWdox (36.0), ALLF0dox (12.9), DDRdox (11.4) 
DOX3 DHWdox (24.0), DSFdox (19.1), MID0dox (11.4) 
VINC1 DSFvinc (44.5), DDRvinc, 35.87, LOF0vinc (5.3) 
VINC2 DHWvinc (50.5), DNYvinc (12.9), DBSBvinc (11.2) 
VINC3 DHWvinc (34.4), DNYvinc (12.9), LOF0vinc (14.6) 
PRED1 DHWpred (46.1), DDRpred (31.0), DNYpred (6.8) 
PRED2 DSFpred (37.4), DHWpred (34.7), DDRpred (12.5) 
PRED3 DNYpred (56.8), DSFpred (23.1), DHWpred (7.2) 
CYCLOP1 DSFcyclop (37.7), DDRcyclop (35.7), DHWcyclop (16.57) 
CYCLOP2 DNYcyclop (46.5), DNSDcyclop (36.8), LOF0cyclop (8.4) 
CYCLOP3 DHWcyclop (57.9), DNYcyclop (15.0), DDRcyclop (11.1) 

B.

A.

Figure 2.   Linear relationships exist 
amongst BDI variables. A. A 
spearman correlation matrix shows 
linear relationships exist between 
many BDI variables.  B. Gene 
dendrogram generated by average 
linkage hierarchical clustering on 
log transformed FPKM values. The 
color row underneath the 
dendrogram shows the module 
assignment determined by the 
Dynamic Tree Cut.    

Table 2. Table of the linear combinations of BDI biomarkers along with the major 
contributing raw biomarkers. BDI biomarkers are named according to the drug 
treatment followed by the principal component number.  The top 3 raw BDI 
variables contributing the most to each linear orthologous BDI variable are shown, 
along with the loadings in parentheses. 
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90.6% in prednisone-, and 86.2% of the variability in vincristine-treated samples.  Therefore, going 
forward, we focused on the 3 PCs that explain the majority of the variation in the data.  For each of the 
five drug treatments, the loadings were used to determine the contribution of the original BDI 
biomarkers to each principal component.  

We likewise summarized gene expression data into groups of correlated genes.   Co-expression 
networks were identified in the RNA-seq data and correlated to BDI data.  A total of 16 modules of co-
expressed genes (Figure 2B), with sizes ranging from 44 to 2270 genes (Table 3) were identified.  The 
networks were annotated with biological processes that are enriched in the genes grouped together in 
the modules (Table S8).  Module eigengenes were then defined as the first principal component of the 
expression matrix of the corresponding co-expression module.  The co-expression module eigengenes 
were cross-correlated with the top linear combinations of BDI biomarkers (Table 3, Figure 3) as well as 
the raw BDI biomarkers (Table 3, Figure S2).  Here, we focus on correlation with modules that are 
enriched for processes that would result in changes in subcellular motion, which BDI detects and 
quantifies.

 
Figure 3. Network analysis and correlation with BDI biomarkers.  Spearman correlations between identified co-
expressed modules of genes and linear combinations of BDI biomarkers, generated by taking the first 3 principal 
components within each drug treatment.  Colors indicate strength and direction of correlation and significance is 
indicated with adjusted p-values, provided in parentheses. 

A number of precondition changes are related to large-scale intracellular movements and shape 
changes in cells through correlation of BDI linear combinations with co-expression modules 8, 12, and 
13.   Module 8 is strongly enriched for microtubule related processes including components of the 
dynein motor protein complex. Module 8 is correlated with changes in intracellular speeds (DHW) 
through linear combinations DOX2 and PRED1 (Table 3).  Through the linear combination of CHOP2, the 
change in the dynamic range of spectral density (DDR) is likewise correlated with large-scale movement 
through Module 8.  Changes in intracellular speeds (DHW) is correlated with modules 12 and 13, which 
correspond to changes in cellular shape through cytoskeleton and extracellular matrix reorganization, 
respectively(55) through VINC2 and PRED1.  The change in the spectral slope (DSF) are likewise strongly 
correlated with changes in cellular shape (Modules 12 and 13, Table 3) through the linear combinations 
CHOP3 and CYCLOP1.    

Correlations between co-expression modules and a number of raw BDI biomarkers with weak or 
nonexistent linear relationships with other markers were also observed. Golgi to endosome transport 
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(Module 15, Table 3) is correlated with the global biomarker describing high frequency regions of the 
spectra across all times (HI0) under all drug treatments assayed. The correlation of the HI0 BDI 
biomarkers with a module enriched for Golgi to endosome transport fits with previous observations 
showing that high frequency regions of the spectrograms are indicative of fine movements, such as 
vesicle transport (24).  The biomarker HI2dox, which captures quadratic time dependencies at high 
frequencies as well as LOF0dox and LOF0pred, which captures low frequency regions of spectrograms 
across all times in doxorubicin and prednisone treated samples, respectively, are correlated with 
apoptosis (Module 4, Table 3) as are CDIP1cyclop and CDIP2pred.  These correlations fit with previous 
experiments that correlated BDI markers to apoptosis through the use of drugs that induce 
mitochondrial toxicity and apoptosis (23).   

 

Module # Module Color # genes  Enriched processes Associated BDI Biomarkers  Associated BDI Linear 
Combination  

1 cyan 102 Protein assembly, 
ribosomal related 

processes 

CDIP1dox(-), DSFpred(+), LOF0pred(+) PRED2(+) 

2 green 410 Lipid transport, 
transport 

AllF0dox(-), CDIP0chop(-), CDIP0doc(-), 
DNYcyclop(+), all MID0 (-) 

DOX3(-), CYCLOP2(-) 

3 lightcyan 44 Protein synthesis and 
elongation, ribosomal 

proteins, cellular 
stress response 

CDIP0dox (-), CDIP1dox(-),CDIP1cyclop, 
CDIP1pred(-), DSBdox(+), all MID0(-)  

4 brown 637 apoptosis, 
degredation 

processes 

CDIP1cyclop (+), CDIP2pred(+),HI2dox(-), 
LOF0dox(+), LOF0pred(+), SDIP0chop(+) 

PRED2(-) 

5 salmon 104 Immune & 
inflammation related 
processes, response 

to stimulus 

AllF1dox(+), AllF1vinc(-), AllF2vinc(+), 
CDIP1dox(+), LOF0dox(+), MID0dox(+) 

DOX1(+), DOX3(+) 

6 yellow 600 Splicing, 
transcriptional 

regulation 

CDIP0dox(+), CDIP0pred(+), DSBdox(-) DOX2(-), PRED1(+) 

7 greenyellow 147 Mitosis, cell cycle, 
spindle formation, 

proliferation, 
organelle fission 

AllF1vinc(-), CDIP2chop(+),CDIP2pred(+) PRED2(-) 

Table 3.  Modules of co-expressed genes, functions and associated BDI biomarkers.  BDI biomarkers not correlated 
with other biomarkers were assessed individually for correlation with co-expression modules. The direction of the 
correlation (positive or negative) is shown in parentheses.  The top positive and negative correlation (statistically 
significant and strongest linear relationship) for each BDI linear combination is shown. 
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All together, this cross-correlation analysis provides a set of testable hypotheses for novel 
interpretations of BDI biomarkers.  This opens the door toward enhancing the utility of BDI and suggests 
that BDI can provide a means by which to draw biological conclusions about treatment effects in live ex 
vivo tissue biopsies.  Likewise, these cross-correlation analyses also recapitulate known associations 
between BDI biomarkers and molecular processes, such as those previously observed using drug 
treatments known to alter vesicle transport and apoptosis  (23, 24), providing increased confidence in 
the correlations between the biological functions enriched in co-expression modules and the BDI 
variables.     
 

Multi-scale data integration and modeling accurately classifies chemotherapy response 
 After BDI and RNA-seq data were collected from tumors, the goal was to determine whether a 

multi-scale model could be fit that would accurately classify tumor samples as sensitive or resistant to 
CHOP chemotherapy from pre-treatment data alone.  The focus was on pre-treatment data alone in 
classifying samples because of the high impact such a model could have, in which a clinical outcome 
could be predicted before patients are needlessly subjected to chemotherapy that does not improve 

8 red 246 Microtubule related 
processes, many 

genes that encode 
components of the 
cytoplasmic dynein 

motor protein 
complex 

AllF0chop(-), CDIP0chop(-), CDIP0dox(-), 
CDIP0pred(-), CDIP1pred(-),  CDIP2chop(+), 
CDIP2pred(+), MID0chop(-), MID1pred(-), 

MID1pred(-) 

DOX2(+), CHOP2(+) 

9 black 230 Cell 
migration/adhesion, 

locomotion 
  

10 blue 727 miRNA regulation, 
post 

transcriptional/transla
tional regulation 

AllF0dox(-), AllF1dox (-), CDIP0cyclop(-
),LOF0pred(+), LOF1dox(-), MID0dox(-), 

MID2dox(+),  SDIP0chop(-), SDIP1dox(+), 
SDIP2pred(+) 

DOX1(-) 

11 turquoise 2270 Chromatin 
organization, RNA 

biosynthesis 

SDIP2vinc(+), CDIP0cyclop(-), CDIP1cyclop(-), all 
HI0(-), HI2dox(+), SDIP0chop(-)  

12 midnightblue 44 Actin cytoskeleton 
related, fibril 

formation 

SDIP2chop(+), SDIP2vinc(+) CHOP3(+), VINC2(+) 

13 purple 205 EMT, extracellular 
matrix organization,  

AllF1chop(+), all CDIP0(-), all CDIP2(+), all 
DBSB(+), H1cyclop(+) 

PRED1(-), CYCLOP1(-) 

14 magenta 208 Taxis CDIP0dox(-), CDIP2pred(-)  

15 pink 225 Golgi to endosome 
transport 

CDIP0cyclop(-),CDIP1dox(+), all HI0(-), 
SDIP0pred(-), SDIP2vinc(+)   

16 tan 146 Immune activation SDIP1vinc(-), DSBdox(+), all HI0(-),SDIP0chop(-)  
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survival time.  A total of 45 high confidence protein coding DEGs (Table S9) were combined with BDI 
biomarkers to yield a total input space of 126 features.  

Traditionally, evaluating a machine learning model requires one to partition the data into three 
parts: a training set, a validation set, and a testing set. The training set is directly introduced into the 
machine learning model and the weights and other parameters of the model are identified from this set. 
This model is then applied to predict the results of the validation set and the model is allowed to be 
retrained multiple times using different hyperparameters to optimize performance. A final model is 
created using a combination of the training and validation sets. Note that the validation set is allowed to 
change multiple times so that it encompasses all of the data in the training set in a scheme referred to 
as cross validation, which allows the model hyperparameters to be adjusted for a large amount of data. 
The final model is then used to predict the results of the test set to obtain final statistics for the 
performance of the model.  In addition to LOOCV, an evaluation paradigm called Leave One Out Testing 
(LOOT) was used to test models.  Details of LOOT and a visual diagram of this process is given in Figure 
S3.  

In these studies, we use absolute shrinkage and selection operator LASSO (L1) and ridge (L2) 
regularized logistic regression, which are established machine learning techniques that generalize well 
to data not seen in training or validation sets (40, 56).  It should be noted that many of the BDI 
biomarkers were exceptionally strong predictors, and the three chosen were not the only such 
biomarkers identified.  Rather, the low kappa value of 0.1894 in the model utilizing all 81 BDI biomarkers 
suggests that the model is overfit and thus aggressive feature selection methods were employed in the 
current setting.  

To increase generalization, feature selection was employed based on variable Area-Under-the-
Precision-Recall-Curve (AUPRC) (Table S10-11). BDI biomarkers with an AUPRC > 0.90 and high 
confidence RNA-seq variables with an AUPRC> 0.95 were selected.  The 3 BDI biomarkers (SDIP1dox, 
LOF0chop, and ALLF1pred) yielded a model with a kappa of 0.43 and an accuracy of 73.68% (Table S12). The 
RNA variables selected were ZFP92, KIAA1217, SH2D4A, and FGFR4 (Figure 4A).  ZFP92 encodes a zinc-
finger protein 92 homolog (E-value= 1.66x10-76 in BlastP(57)), SH2D4A encodes a potential tumor-
suppressor protein (58) and KIAA1217 encodes a protein implicated in lung cancer progression (59).  
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Figure 4. Visualization of logistic regression 
feature characteristics. A. Boxplots of expression of 
gene used in the model. B.  Spearman Correlations 
between the top 20 BDI variables and RNA-seq 
variables where green boxes show the variables 
used to build the logistic regression model. C. A 
principal component analysis plot shows how the 
selected variables separate resistant versus 
sensitive lymphoma tumors.  
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FGFR4 encodes a receptor for fibroblast growth factors that is involved in cell proliferation, 
differentiation and migration(60) and is associated with poor prognosis in lymphoma (61) and in the 
development of drug resistance (62, 63). Two of the 3 BDI biomarkers (SDIP1dox, and LOF0chop) from the 
logistic regression model, were determined to be related to transcriptional/translational processes, and 
cellular shape changes through correlation with linear combination of BDI biomarkers CHOP3, 
respectively.  Unfortunately, the BDI biomarker ALLF1pred was not significantly correlated with any co-
expression modules.  It is possible that this biomarker will be defined through the analysis of a much 
larger dataset, which would no doubt increase the power of the cross-correlation analyses. 
There is no significant linear correlation between the RNA and the BDI biomarkers selected and a 
Principal Component Analysis shows that these 7 variables separate the 19 dogs (Figure 4B-C).  A model 
trained on these 7 variables yielded a kappa of 1.00 with an accuracy of 100% (Table 4, Table S13), 
showing that the selected variables enable prediction of poor clinical response to CHOP therapy.  Hence, 
combining gene expression and phenotypic data in a regularized multivariate regression model enables 
accurate classification of response to CHOP from pre-treatment data only, and therefore could 
significantly outperform models that incorporate data describing only gene expression(64) or 
phenotypic changes(22).   

Table 4. Summary of Leave One Out Testing. Top features are defined as the BDI and RNA variables with the 
highest AUPRC values. 

 
 
 

Discussion 
This study illustrates the value of the canine model to study chemotherapy resistance to DLBCL 

and captures the response to therapy as well as the development of CHOP resistance in terms of both 
phenotypic and transcriptional responses.  While a caveat of these studies is the small sample size, the 
study population was selected for clinical homogeneity.  All dogs in this study had advanced-stage 
disease, yet none was affected by significant cancer-associated morbidity or comorbid disease.  Thus, 
the DEGs and BDI biomarkers included in our models are likely to have captured biological variability 
inherent to the dogs’ cancers themselves rather than other host-related variables.  The small sample 
size also resulted in our classifier “lumping” dogs with primary refractory DLBCL (two dogs with a best 
response of PR) together with those with initially responsive DLBCL that rapidly became CHOP-resistant 
(four additional dogs with CR lasting approximately 90 days; Table 1).  It is probable that these two 

Model Accuracy Precision Recall F1 TEST SET Kappa MEAN 
Validation 

Kappa 

ALL BDI 
BIOMARKERS 

0.6316 0.4 0.3333 0.3636 0.1074 0.1894 

ALL RNA 
VARIABLES 

0.6842 0.5 0.1667 0.25 0.1094 0.3906 

TOP 3 BDI 
BIOMARKERS 

0.7368 0.57 0.6667 0.6154 0.4172 0.4272 

TOP 4 RNA 
VARIABLES 

0.8947 0.75 1 0.8571 0.7765 0.7671 

BDI AND RNA 
VARIABLES  

1 1 1 1 1 0.9922 
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subpopulations of dogs have biologically and phenotypically distinct cancers, and that a classifier to 
resolve these two groups of dogs could be developed from a larger study population.  Therefore, our 
results should be considered preliminary, and subject to revision as more data are collected.  

We use cross-correlation of RNA-seq co-expression modules with BDI biomarkers to provide 
mechanistic interpretations of BDI biomarkers.  These results both recapitulate previously known 
interpretations of biomarkers markers and identify novel interpretations of the BDI biomarkers.  Such 
mechanistic interpretations of BDI biomarkers provides additional power to BDI, a technique that 
already has substantial clinical utility.  In the future, these results should be confirmed both using a 
larger sample size as well as correlation with additional targeted drug treatments.  A further 
improvement on the work performed herein would be to perform spatially resolved gene expression 
analyses to couple gene expression data with BDI data, which is already both temporally and spatially 
resolved.  This would no doubt provide additional power for the identification of mechanistic 
interpretations of BDI data.  Similarly, these analyses should be performed in additional samples to see 
whether these biological interpretations hold true in additional types of cancer as well as across other 
treatments.  

We show that the integration of multiscale data describing cellular and molecular dynamics in a 
machine learning model classifies chemotherapeutic response in a relevant animal model of DLBCL.  
While the BDI biomarkers are strong predictors, the small sample size in this study necessitated 
aggressive feature selection.  The three BDI biomarkers that we included in the most accurate models 
are not to be taken as the only important BDI biomarkers.  Likewise, because different BDI biomarkers 
are associated with different biological processes, the BDI biomarkers with the most powerful predictive 
capacity may change depending on the treatment and cancer type assayed.  Next, external validation 
should be performed on independent samples to validate the model.  Future studies on targeted 
therapies as well as the cytotoxic drugs studied here should be performed with larger samples sizes.   

We show that BDI is a powerful technology for predicting treatment response and provide 
biological interpretations of the BDI spectrograms.  As this technology is a powerful method for 
characterizing cellular response to environments in living tissue, this resource is expected to aid in 
future interpretation of these data and the phenotypic responses accordingly.  While genetic and 
transcriptomic profiles can be used to identify signatures for classifying samples, phenotypic variability 
often obfuscates the clinical validity of such methods.  The studies here make a strong case for building 
predictive multivariate models that incorporate phenotypic and transcriptomic measures of drug 
response, such BDI, on live ex vivo tissue.  Such approaches are needed in order to move personalized 
medicine forward and to predict therapeutic efficacy for individual patients. 
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