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Abstract—There is growing interest in using adaptive neuro-
modulation to provide a more personalized therapy experience
that might improve patient outcomes. This paper describes the
design of the ‘DyNeuMo Mk-1’, a fully-implantable, motion-
adaptive research stimulator that titrates stimulation based on
the patient’s movement state (e.g. posture, activity, shock, free-
fall). The design leverages off-the-shelf consumer technology
that provides inertial sensing with low-power, high reliability
and modest cost. We used a three-axis accelerometer and its
embedded digital motion processor to enable real-time stimu-
lation adaption based on configurable motion parameters. The
algorithm configurability and expanded stimulation parameter
space allows for a number of applications to be explored in
both central and peripheral applications. The implantable system
was designed, prototyped and verified using ISO 13485 design
controls, including ISO 14971 risk management techniques to
ensure patient safety, while enabling novel algorithms. With
the design controls in place, first-in-human research trials are
now being prepared to explore the utility of automated motion-
adaptive algorithms. The design highlights how consumer elec-
tronics technology can be leveraged for efficient and reliable
medical device development. The implantable system automati-
cally provides activity- and posture-based responsive stimulation
which can be configured by the clinician to optimize therapy.
Intended applications include adaptive stimulation for movement
disorders, synchronizing stimulation with circadian patterns, and
reacting to transient inertial events such as shocks for urinary
incontinence.

Index Terms—Neural implants, Brain stimulation, Activity
recognition, Accelerometers, Adaptive control, Closed loop sys-
tems, Design methodology, Risk analysis, Safety management.
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I. INTRODUCTION

The field of adaptive neuromodulation is an active area of
development, with particular emphasis on the use of bioelectric
signals to inform the control algorithm [1]. For example, the
Neuropace RNS is approved in the U.S. for refractory epilepsy
[2]. While promising, the ultimate benefit of the responsive
stimulation for epilepsy is still debated, and refinement of
the algorithmic approach is an active area of study [3].
Likewise, in the field of movement disorders, particularly
Parkinson’s disease, adaptive stimulation has shown promise
for improving outcomes while lowering energy use [4], [5].
However, the signals recorded from sub-cortical targets are
1) relatively small (1 µVrms), 2) prone to artefacts from
stimulation, cardiac signals and motion, and 3) the optimal
configuration of algorithms are still debated and might prove
complex for programming [6]. In addition, the resolution of
small bioelectric signals in the presence of stimulation puts
significant constraints on the relationship between sensing and
stimulation electrodes, which can severely limit the therapy
options [4], [5], [7], [8]; recent work to bypass these con-
straints potentially compromise the tissue-electrode interface’s
safety due to leakage currents and single-fault errors [9].

One alternative to strictly “neural closed-loop” methods is
to use wearable sensors to determine an estimation of the
patient or symptom state as a feed-forward method to adjust
stimulation. The widespread adoption of inertial sensing in
consumer wearable electronics has resulted in many features
ideal for use in implantable closed-loop neuromodulation
systems: 1) low power (order of 10 µW), 2) high reliability and
shock immunity, and 3) embedded “digital motion classifiers”
that facilitate motion classification [10]. Inertial sensing has al-
ready been applied in medical implants to automatically titrate
stimulation. Notable examples include activity-based titration
of cardiac pacemakers [11], and posture responsive adjustment
of stimulation for spinal cord stimulation [12]. Investigational
work using the Activa PC+S has also demonstrated the use
of inertial sensing in deep brain stimulation (DBS) appli-
cations, with wrist-mounted inertial sensors being used to
control stimulation in real-time in both essential tremor [13]
and Parkinson’s disease [14]. Despite the potential research
and therapeutic opportunities allowable by integrating inertial
closed-loop functionality into brain neuromodulation devices,
there are no such devices broadly available for research.

In this paper, we introduce the Dynamic Neuro Modulator
Mark 1 (DyNeuMo Mk-1), a cranial mounted motion-adaptive
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Fig. 1. System block-diagram using the IEC 60601-1-10 physiologic control framework. Blue boxes are derived from user needs, while tan boxes are derived
from risk mitigations. Both sources of design inputs inform the system specifications for the DyNeuMo Mk-1. Reproduced with permission from [1].

neurostimulator for use in human investigational studies into
inertial-sensing based closed-loop therapies, based on the
Picostim system by Bioinduction [15].

Unlike classical DBS devices, implanted in the chest cavity
with electrode leads routed through the neck, the DyNeuMo
and predicate Picostim systems utilize a cranial mounted de-
sign. This approach has several advantages, summarized here
from [15]. The surgical procedure is considerably simplified
requiring only a single incision, reducing both surgical and in-
fection risk for patients, while also improving the productivity
of surgical teams. Avoiding tunnelling of leads through the
neck significantly reduces the risk of lead wire breakage or
fibrosis around the lead, a cause of stiffness and pain. Overall
a cranial mounted device improves patient safety, while also
significantly reducing expected treatment costs.

To support first-in-human research, we used ISO 13485–
compliant design controls throughout the project. The paper
will follow a similar structure to a typical medical device
design flow, starting with the assessment of our device re-
quirements motivated by anticipated user needs and risk man-
agement. We will then discuss in detail the implementation
of our design before demonstrating the system’s functionality
through verification testing. Planned future research projects
for system validation are presented, as well as a discussion of
the advantages and limitations of the implemented approach.
The inertial-focused research stimulator will expand the pos-
sible research space in human feasibility studies, providing an
alternative method for adaptive, patient-specific therapies.

II. DESIGN INPUTS AND REQUIREMENTS

We designed the DyNeuMo Mk-1 to be used as a research
system for exploring how we might improve therapies with
automated algorithms. The system-level requirements are sum-
marized in Table I.

As a first design requirement, our research tool must pre-
serve the stimulation capabilities of predicate therapy systems,
to ensure there is no compromise to clinical care options. This
approach is consistent with other state-of-the-art research tools
provided for therapy research [16], [17]. The DyNeuMo Mk-
1 provides stimulation capability equivalent to predicate deep
brain, chronic pain, sacral (incontinence), and gastric stimula-
tors, based on publicly-available manufacturer specifications.

As a general research tool, we aim to support a variety
of potential use-cases. Motion-based states of interest include
tremor (oscillations), general activity, gait and freezing, abso-
lute posture, falls, and transient shocks. The detection of these
motion states can then be applied by researchers exploring im-
proved therapies for postural and gait instability in Parkinson’s
disease, transient stress events in mixed incontinence, posture
effects in orthostatic hypertension, and titration of stimula-
tion through circadian (sleep-wake) cycles. In addition to
automated stimulation titration, inertial sensing also provides
diagnostic information on patient activity without an added
instrument burden on the user. The sensor also provides an
alternative input for the patient to discretely interact with their
device through explicit motor inputs, such as tap-activation.

The practical implementation of a motion-adaptive stimula-
tor motivates additional design requirements. To help train and
program the classifier, we need a method to gather individual
patient data and configure the algorithm classifier based on
their specific characteristics. We also need to implement a
control method to map motion classification to the desired
stimulation state. To minimize the impact on device longevity
or avoid increasing recharge burden, the addition of the algo-
rithm must not significantly increase the power consumption
compared to baseline therapy, e.g. roughly < 400 µW for
Parkinson’s disease bilateral stimulation. Finally, we need a
safe verification process to confirm the functional operation
of the motion-adaptive algorithm in each patient.
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Fig. 2. Top: system block diagram for the DyNeuMo Mk-1 including the baseline functionality provided by the predicate Picostim (light blue) and the motion-
adaptive algorithm additions (tan). Bottom: actual physical components for the DyNeuMo Mk-1 research system. Note that the research tool is observable
through the firmware and software versions; mechanical components are largely reused. The USB connector between the patient programmer and tablet is for
in-clinic programming. Research subjects use the handheld controller for at-home recharge and manual adjustments.

III. RISK MITIGATIONS FOR MOTION ADAPTIVE
ALGORITHMS

In parallel with defining user needs for research, we fol-
lowed the ISO 14971 risk management process to identify and
address potential harms to the patients. Particular emphasis
was placed on the automated algorithms, and the IEC 60601-1-
10 was used as guidance for the design of physiologic control
systems. Fig. 1 helps to illustrate the design considerations for
closed-loop medical systems using this framework [1].

Using the physiologic control framework, we identified
concerns and specified system mitigations. With an automated
system, we need to limit stimulation to known-safe levels as
the algorithm commands state changes. This “actuation limit”
can be achieved by limiting the algorithm’s access to specific
pre-configured programs (patterns of stimulation) [18], [19].
The clinician-researcher then effectively defines a boundary
on parameter states, with assurance that the algorithm never
exceeds these limits. We also need to provide visibility to the

users, both subject and clinician, on the immediate algorithm
state. This observability was implemented on the patient
controller with specific state alerts, including both the state
of the algorithm (enabled/disabled) and the active stimulation
program. All available states were also verified in software
testing. Aligned with this specification, the patient controller
also provides a mechanism to enable and disable the adaptive
algorithm with a button press. Supporting the deactivation fea-
ture and stimulation limits, a pre-selected open-loop “fallback”
program is also defined, which the stimulator defaults to upon
manual exit of the algorithm [18]. Timing safeguards were
also added including ramped transitions in intensity between
stimulation programs (Fig. 6) to avoid subject discomfort such
as paresthesia [20], and timing interlocks to avoid inadvertent
rapid transitions at classification boundaries. As an additional
safeguard out of precaution, we specified that the adaptive
motion algorithm should be disabled during recharge to pre-
vent changes in the stimulation program and ensure a known
stimulation state is maintained throughout the process.
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TABLE I
SYSTEM-LEVEL SPECIFICATIONS FOR THE DYNEUMO-MK1 INVESTIGATIONAL RESEARCH SYSTEM

User Needs

Predicate Therapy Support The research system must support existing stimulation parameters for
therapy delivery (amplitude, frequency, pulse width)

Supported Therapy Research Deep brain stimulation, chronic pain (spinal cord), incontinence and
bladder control (sacral, pudendal nerve), gastroparesis (enteric)

Adaptive Sensing Scheme Inertial accelerometer (three axis) – with DC accuracy for posture detection
and AC capability for activity, tremor, gait, shocks and free-fall – flexibility
for configuration to specific therapy needs

Algorithm Training Support Ability to stream data for classifier training

Algorithm Power Allowance The adaptive algorithm must draw no more than 20% of the nominal
therapy power (e.g. 80 µW for deep brain stimulation)

Algorithm Latency < 20 ms from event detection to stimulation adjustment

Algorithm Verification Minimal-risk verification procedure for the algorithm

Risk Mitigations

Stimulation (Actuation) Limits Pre-defined limits on the stimulation level to ensure patient safety;
this includes transition ramps between stimulation program settings for
tolerance (e.g. avoid paresthesia)

State Monitoring and Alerts Algorithm state clearly shown on patient interface, ability to enable/disable
with a button press; data logger for algorithm transitions for issue resolution

Fallback Mode Pre-defined stimulation program for emergency exit from algorithm;
disengagement of the automated algorithm during recharge

Physiological Dynamics Stimulation timing interlocks to avoid inadvertent rapid transitions at
classification boundaries

IV. SYSTEM DESIGN IMPLEMENTATION AND
CONFIGURATION PROCESS

The DyNeuMo Mk-1 was implemented using the physio-
logic control model as the design framework (Fig. 1) [1]. To
summarize the overall mental model of the design, our aim
is to supplement the selection of stimulation parameters using
manual and timer-scheduled adjustments with the addition of
motion-adaptive changes. This can be considered an additional
response loop that adjusts stimulation based on characteristic
motion profiles. Using this abstracted framework, we sum-
marize here the key attributes of the design, and how the
user engages the adaptive stimulation functionality. The system
block diagram is shown in Fig. 2 details the control and signal
routing.

The inertial sensing is provided by an embedded ADXL346,
an ultra-low power microelectromechanical system (MEMS)
three-axis accelerometer manufactured by Analog Devices
[21]. The classifier leverages the digital motion processor
(DMP) embedded in the ADXL346. The DMP is configured
through the clinician interface through a read/write register
field. While this interface requires referring to the register
table in the manufacturer-provided documentation [21] to fully
utilize, it does provide full accessibility to the DMP, which
was deemed desirable for research teams exploring custom
algorithms. The sensing axis, combination of axes, thresholds,
AC/DC coupling, and timing constraints for rules/threshold-

based classification provided by the DMP are all accessible in
the register field. To lower the user burden, a set of reference
register tables is provided to facilitate DMP configuration
using representative use cases for algorithms based on absolute
posture, general activity/inactivity, and transient shocks.

The control policy is implemented by allowing the DMP
to raise interrupts in the system. For this, DMP event marker
signals are attached to digital inputs of the embedded micro-
controller, and set as external interrupt sources. In the current
design, two unique interrupts can be generated, based on the
DMP register configuration (Fig. reffig3a). DMP interrupts are
then able to select between two pre-configured stimulation
programs to apply to the electrodes. The association between
the stimulation program and the interrupt source is configured
on the clinician’s tablet programmer. In addition to the DMP-
driven stimulation programs, the clinician also sets the default
fallback program (per risk management) during configuration.
The final control policy constraint is to ensure that the
stimulation amplitude ramps during program transitions are
acceptable to the patient; the ramp rate represents a user-
controlled trade-off between side-effects, such as paresthesia
and response time [22].

Given the multiple control inputs, we also needed to define
the priority of changes being sent to the stimulation controller
(Fig. 3b). Based on the analysis of use cases, we chose to use
the latest command arising from either the motion classifier,
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Fig. 3. Block diagrams showing (a) the pathway for the interrupts generated by the DMP and (b) the dynamic stimulation controller with its three types of
inputs in increasing order of priority: fixed or scheduled, inertial detection, and manual control.

or manual intervention to determine the stimulation state.
In addition to avoiding any confusion on prioritization, this
approach also allows for an intuitive hierarchy of expected
changes: fixed patterns of stimulation from the scheduler
are overwritten by more frequent motion-based therapy fine-
tuning, while manual intervention can always override these
automated adjustments, including disabling them completely.

Once the motion-adaptive algorithm is configured, the ver-
ification of the automated system is supported through wire-
less telemetry to the patient programmer. When the motion-
adaptive algorithm is activated with a button press, the screen
indicator shows the current stimulation program in use. As the
patient changes their motion state, the clinician-researcher can
then verify that the expected stimulation program is activated
by monitoring updates telemetered to the patient controller.

We also developed a system for classifier training and verifi-
cation. The training module included real-time data streaming
at 10 Hz through the MICS-band radio, while logging the
accelerometer data to a file that can be used to determine
register values for a motion-specific classifier. An example of
the real-time streaming is provided in Fig. 4 which is compared
to an external reference accelerometer. As illustrated in Fig. 5,
the training module includes a wearable sensor that acts as a
twin of the implant. The digital twin allows for register settings
and classifier outcomes to be established before committing to
the implant. Note that while streaming, the register table on the
Clinician PC (tablet programmer) is also updated to display
the implant’s embedded classification state. The streaming rate
was chosen to balance time resolution and power constrains.

V. SYSTEM VERIFICATION

System verification ensures that the DyNeuMo Mk-1’s
motion adaptive algorithms have provided the desired auto-
mated stimulation adjustments, while not compromising the
existing functionality of the Picostim. Most of the system
hardware and software leverages the Picostim predicate, and
verification testing protocols for functional areas such as stim-
ulation, telemetry, and biocompatibility. The DyNeuMo Mk-1
incremental verification efforts focused on the accelerometer,

firmware and software changes required to implement motion-
adaptive stimulation.

We specifically focused on the expected use cases that lever-
age posture sensitivity, activity sensitivity, and tap/shock acti-
vation. Verification protocols demonstrated that the ADXL346
registers could be programmed appropriately for detection of
specific inertial states, and that stimulation was then adjusted
accordingly. For example, Fig. 6 shows a representative pos-
ture activation that occurs when a subject transitions from
laying down to upright (at time t1). Inertial transition points,
timing interlocks, stimulation program mapping, and ramp
rates were verified to operate as expected. Note that temporal
responsiveness is fully programmable, as an example when
a subject is laying down (at time t2), the DMP could wait
for several minutes to avoid symptoms while transitioning to
sleep; however while standing up it could respond immediately
to prevent falls. Other verification examples included activity
vs inactivity (e.g. for essential tremor control or gait detection)
by testing the AC-coupled accelerometer mode for classifica-
tion. Finally, we verified tap/shock detection, which could be
useful for transient events such as those related to urinary
incontinence, or as a mechanical patient input that eliminates
their need for interaction using the handheld controller. As
illustrated in Fig. 7, the stimulator can respond in under 15 ms
to a transient event, which falls within the reported acceptable
latency for responding to mixed incontinence stress events
[23]. The stimulation will stay active until the timing threshold
for inactivity is met; in this case, one second. For improved
specificity when required, the functionality of the double tap
constraint, which can help prevent false positives, was also
verified.

In addition to algorithm functional performance, we also
verified other system requirements such as power consump-
tion, patient interface controls, and the human factors for al-
gorithm programming. The power consumption of the MEMS
sensor, including classification, is approximately 40 µW, or
10% of the nominal therapy for a Parkinson’s or essential
tremor patient. Note that this estimate does not include any
potential energy savings by turning down stimulation at night
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Fig. 4. Validation of the data stream used for gathering user specific training data for the classifier to recognize specific motion states. a) Data streamed
from the DyNeuMo Mk-1 implantable system through the MICS-band radio, shown with interpolation. b) Reference accelerometer data used for external
calibration. Note that the embedded accelerometer closely follows the reference, albeit at a lower sampling rate. Ultimate classifier specificity is limited using
the DMP approach (see Section VII).

Fig. 5. Prototyping system for inertial measurements and classification. Left: the reference accelerometer can be mounted on different body locations for
sensor measurements and classifier assessment; shown here on a bicycle helmet for assessing cranial placement. Right: user interface for displaying the signals,
reading and writing registers, and assessing classifier outputs and interrupts.

or during periods of low activity. Other key performance
results are summarized in Table II.

VI. SYSTEM VALIDATION THROUGH CLINICAL TRIALS

We consider system validation to be addressed through
research protocols targeting specific disease states. To facilitate
these experiments, the DyNeuMo Mk-1 is being released as a
research tool for the clinical neuroscience community includ-
ing the design history files required to support investigational
device approvals. In-line with our user requirements, we aim
to support existing therapies that might benefit from motion-
adaptive stimulation; if the algorithm is not successful, it can

be disabled and the patient benefits at a minimum from the
predicate therapy.

For the initial validation case, we are exploring the treatment
of orthostatic hypertension, gait imbalance, and sleep distur-
bances using deep brain stimulation of the pedunculopontine
nucleus [24], [25]. Our choice of this protocol is motivated by
the relationship between inertial signal inputs, clinical state,
and stimulation parameters that can be explored with motion-
adaptive stimulation. Pending promising outcomes from this
trial, we can expand out to other disease states where explicit
mappings between inertial signals and desired stimulation ex-
ist, such as tremor, cervical dystonia, and urinary incontinence
[14], [26].
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Fig. 6. Data from the posture algorithm verification showing a stimulation transition including transition ramps and adjustable response timing. Note that
activity response is immediate (t1), while detection of an inactivity event requires acceleration staying within the inactivity band for an adjustable interval
t2–t3 (nominally one second in this example).

Fig. 7. Timing characterization for stimulation. Top panels: the initiation of stimulation due to a transient shock, that ceases after a programmed second of
inactivity. Bottom panels: Resolving the response time to the shock, which shows stimulation initiating roughly 12.6 ms after detection.

VII. LIMITATIONS OF THE DYNEUMO MK-1 ADAPTIVE
ALGORITHM

The DyNeuMo Mk-1 does have significant limitations worth
noting; these are both technical and physiological. Perhaps
most importantly, the current embodiment limits the measure-
ment of motion to the device implantation site. In the case

of a cranially-mounted system such as the predicate Picostim
for deep brain stimulation, the specific measurement of hand
tremor is therefore not supported; a more general correlation
with general motion is required, which limits the specificity of
the adaptive algorithm. An additional specificity error arises
from the measurement limitations of a three-axis accelerome-
ter. Specifically, the DMP can be confounded when estimating
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TABLE II
TECHNICAL SPECIFICATIONS FOR THE DYNEUMO-MK1 INVESTIGATIONAL RESEARCH SYSTEM

Sensor Characteristics

Inertial sensing 3-axis accelerometer, sensitive to 4 mg activity variations; dynamic range
programmable ±2 g to ±16 g; typical sampling rate is 50 Hz

Stimulation Characteristics

Channel Access 8 independent electrodes, typ. arrangement is 2 leads × 4 electrodes

Stimulation overview 2 independent channels, current-controlled, charge-balanced mono-
phasic / symmetric biphasic with programmable interphasic delay

Multiplexing Full matrix configuration across electrodes (inc. the case reference)

Stimulation magnitude 0–15 mA (0.05 mA increments) and 0–450 µs pulse width, fractionalized
distribution available for guarded cathodes, etc; programmable and
independent ramp rates

Recharge characteristics Programmable passive and active recharge, with variable recharge ratio

Stimulation frequency 1–500 Hz frequency stimulation; can go sub-Hz with cycling enabled;
independent frequencies available across stimulation channels

Stimulation cycling Adjustable cycle timing for enabling burst stimulation

Stimulation programs Up to 8 independent programs can be configured in the IPG and accessed
by algorithms or patient controller

Algorithm Characteristics

Motion Classification Absolute orientation, activity vs non-activity (parameterized), shocks and
free-fall detection

Stimulation Control policy Detected classification states mapped to pre-configured stimulation
programs with pre-specified transition ramp rate. Two independent
stimulation programmes tied to motion states, and a default fall-back.

Risk mitigations Algorithm implementation aligns to 60601-1-10 specifications for
physiologic control loops (e.g. limits, alerts, data logs, fallback modes)

Other System Characteristics

Battery capacity, recharge cycle 50 mAh 3.6 V Lithium Ion, minimal fade, < 2 h recharge

Mechanical Characteristics Cranial-mount, 7.4 cc titanium package, with 2 leads for 4 contacts/lead,
typical bal-seal style modular fixation system

Telemetry/External Sensor and
Stimulation Synchronisation

MICS-band radio, > 1 m distance, with hand-held module

MRI compatibility (in process) MRI conditional imaging for 1.5 T and 3 T imagers

Electrodes Modular design with ability to customize lead length and electrode spacing;
currently supports brain stimulation and peripheral extradural electrodes
and cuffs

Clinician programmer Standard consumer tablet running Windows 10

posture by the superposition of linear acceleration with the
gravitational field. This concern can be addressed somewhat by
adjustment of the time and level constraints before generating
an interrupt, but this mitigation is a trade-off with transition
latency. While a gyroscope might help improve specificity, it
also requires significantly more power than most therapies due
to the principles of MEMS-based Coriolis sensing. Finally, our
use of interrupt source to determine the stimulation program
currently limits us to transitions between two stimulation
states. If this is found to be severely limiting, we could perform

more advanced interrupt masking and explore adaptive DMP
register adjustments in the future. As one example of phys-
iological limitations, the time dynamics between stimulation
and physiological response need to align with the adaptive
algorithm capabilities. For example, if stimulation requires
extended time to take effect, then the utility of adaptive
stimulation titration might be limited. At this time, we believe
that several clinically-meaningful adaptive algorithms can be
implemented with the first generation research tool, and we
can refine future designs based on relevant clinical experience.
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VIII. SUMMARY

There is growing interest in adaptive medical devices,
particularly using neuromodulation, to improve therapies
by automatically adjusting stimulation based on clinically-
relevant physiological features. In response to the worldwide
demand for research tools to support clinical studies into adap-
tive neuromodulation techniques, we have developed a fully-
implantable medical device that responds to inertial signals.
The advantages of our approach are that it is 1) relatively
easy to configure the classifier for clinically-relevant states,
2) relatively inexpensive to manufacture, and 3) highly reliable
as a method. The limitations of this approach include limited
specificity for detection away from the implant location, and
confounds from superimposed motion when posture measure-
ment is the goal. Even with these limitations, intertial sensing
could be a practical solution for several unmet needs, which
can be validated in first-in-human studies using the DyNeuMo
Mk-1 research system. It could also serve as a secondary
input to improve the performance of alternative methods using
bioelectrical signals. As consumer electronics and the internet-
of-things continue to evolve, we believe future medical devices
will benefit from continued adoption of mainstream technol-
ogy, which will provide meaningful clinical solutions with
favourable economics and reliability.
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