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ABSTRACT 

Understanding the physiological processes that underpin primate performance is key if we are to 

assess how a primate might respond when navigating new and changing environments. Given the 

connection between an animal’s ability to thermoregulate and the changing demands of its 

thermal environment, increasing attention is being devoted to the study of thermoregulatory 

processes as a means to assess primate performance. Infrared thermography can be used to 

record the body surface temperatures of free-ranging animals. However, some uncertainty 

remains as to how these measurements can be used to approximate core body temperature. Here, 

we use data collected from wild vervet monkeys (Chlorocebus pygerythrus) to examine the 

relationship between infrared body surface, core body, and local climate, to determine to what 

extent surface temperatures reflect core body temperature. While we report a positive association 

between surface and core body temperature – a finding that has previously been used to justify 

the use of surface temperature measurements as a proxy for core temperature regulation – when 

we controlled for the effect of the local climate in our analyses, this relationship was no longer 

observed. That is, body surface temperatures were solely predicted by local climate, and not core 

body temperatures, suggesting that surface temperatures tell us more about the environment a 

primate is in, and less about the thermal status of its body core in that environment. Despite the 

advantages of a non-invasive means to detect and record animal temperatures, infrared 

thermography alone cannot be used to approximate core body temperature in wild primates. 

 

Key words: body temperature; infrared thermography; thermal camera; thermoregulation; vervet 

monkeys 
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INTRODUCTION 

As primate populations continue to decline and face an increasing risk of extinction as a 

consequence of climate change (Graham, Matthews, & Turner, 2016; Estrada et al., 2017), 

understanding the physiological processes that underlie the relationship between animal 

performance and environmental challenges is becoming increasingly important. Local climate 

exerts a strong selective pressure on animal behavior, physiology, and survivorship, and 

therefore has a profound impact on animal distributions and phenotypes (Hetem, Fuller, 

Maloney, & Mitchell, 2014; Fuller, Mitchell, Maloney, & Hetem, 2016; Mitchell et al., 2018). 

Given the obvious connection between an animal’s ability to thermoregulate and the demands of 

its thermal environment, increasing attention is being devoted to the study of body temperature 

as a means to assess primate performance in variable environments.  

Early studies investigating primate body temperature regulation in response to 

environmental variability relied on measurements obtained from captive or laboratory-housed 

subjects (Sulzman, Fuller, & Moore-Ede, 1977; Whittow, Scammell, Manuel, Rand, & Leong, 

1977; Wurster, Murrish, & Sulzman, 1985; Müller, Nieschalk, & Meier, 1985; McNab & 

Wright, 1987; Lubach, Kittrell, & Coe, 1992; Robinson & Fuller, 1999; Maloney, Mitchell, 

Mitchell, & Fuller, 2007). While this approach provides a high degree of experimental control, 

such studies do not provide the data to allow conclusions to be drawn about how a free-living 

animal responds to change in its natural habitat. Moreover, body temperatures in laboratory 

conditions typically are measured with thermosensitive probes or via telemetry with a receiver in 

close proximity, methods that are not readily transposable to studying primates in situ.  

Advancements in remote telemetry or biologging have provided insights into the body 

temperature of a small number of free-ranging primate populations. Brain and Mitchell (1999) 
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used intra-abdominal temperature-sensitive radio transmitters to record the core body 

temperature patterns of chacma baboons (Papio ursinus) under free-ranging, natural conditions. 

Their study was limited by relatively few subjects and body temperature measurements being 

collected only intermittently during the daytime over less than a month for each animal. 

Nevertheless, this study revealed the importance of high heat load as a thermal stressor to 

chacma baboons, and the importance of drinking water to prevent hyperthermia (Brain & 

Mitchell, 1999). Intra-abdominal transmitters also have been used to describe the core body 

temperature patterns associated with daily torpor in lemurs (Lemuridae spp. Schmid 2000; 

Schmid, Ruf, & Heldmaier, 2000; Dausmann, 2005). More recently, we have used intra-

abdominal data loggers to describe the seasonal patterns of core body temperature in wild vervet 

monkeys (Chlorocebus pygerythrus), the thermoregulatory consequences of both cold and heat 

stress, inter-individual differences in thermal performance, and the importance of behavioral 

(including social) thermoregulation in body temperature regulation (Lubbe et al., 2014; 

McFarland et al., 2015; Henzi et al., 2017; McFarland, Henzi, & Barrett, 2019; McFarland et al., 

2020).  

The use of intra-abdominal data loggers provides a good index of the thermal status of 

the body core, but requires animals to be captured and to undergo surgical procedures for logger 

implantation and extraction (see McFarland et al., 2015 for a full description of methods). As an 

alternative to data logging approaches there has been interest in using infrared thermography to 

make inferences about thermoregulatory processes in free-ranging animals, including primates 

(McCafferty, 2007; Cilulko, Janiszewski, Bogdaszewski, & Szczygielska, 2013; Thompson et 

al., 2017; Narayan, Perakis, & Meikle, 2019). At face value, this appears an attractive option for 

non-invasive and remote measurement of body temperature. However, infrared thermography 
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measures animal surface temperatures, and there is contrasting evidence whether surface 

temperatures (i.e., skin, fur, inner-ears, eyes) can approximate core body temperature. While 

some studies report no significant association between body surface and core body temperatures 

(Jay et al., 2007; Larcombe, 2007; Sikoski et al., 2007; Sykes et al., 2012), others have shown a 

positive correlation (Dausmann, 2005; Warriss, Pope, Brown, Wilkins, & Knowles, 2006; 

Johnson, Rao, Hussey, Morley, & Traub-Dargatz, 2011; Giloh, Shinder, & Yahav, 2012; Zanghi, 

2016). An important caveat, however, is the lack of control in these analyses for the mediating 

effect that local climate has on both surface and core body temperatures. That is, even though 

body surface and core body temperatures were shown to be positively correlated, it is possible 

that this relationship was an artefact of the local climate influencing these variables. While it 

may be reasonable to assume that skin temperature more closely reflects core body temperature 

in small animals, the mediating effect of local climate should still be considered when attempting 

to make inferences about core body temperature from surface temperatures alone. In an 

experimental study of bats (Carollia perspicillata) in controlled environmental conditions, for 

example, it was observed that the difference between an animal’s core and skin temperature was 

a function of ambient temperature, with the authors concluding that any inferences made about 

core body temperature regulation from skin temperature measurements, including in very small 

animals, should account for the effect of ambient conditions (Audet & Thomas, 1996). Even 

when care has been taken to avoid increased surface heat loads incurred by solar radiation 

(McCafferty, 2007; Thompson et al., 2017), surface temperatures are still more influenced by 

local climate than body temperature. In wild mantled howling monkeys (Alouatta palliata), for 

example, dorsal fur temperature was more strongly predicted by ambient temperatures than by 
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subcutaneous temperatures, and facial skin surface temperatures were predicted solely by 

ambient temperature and not by subcutaneous temperatures (Thompson et al., 2017). 

Here, we use data collected from wild vervet monkeys to examine the relationship 

between body surface and core body temperatures, while controlling for local climatic 

conditions. Because an endothermic animal’s core body temperature is typically buffered from 

their environment by a range of autonomic and behavioural processes (Lovegrove, Heldmaier, & 

Ruf, 1991; Angilletta, Cooper, Schuler, & Boyles, 2010; Hetem, Maloney, Fuller, & Mitchell, 

2016; Mitchell et al., 2018), we predict that surface temperatures will be more closely associated 

with local climate than with core body temperature. A better sense of the relationship between 

these variables will hopefully inform us whether infrared thermography can be used to 

approximate core body temperature. If surface temperatures are predicted by core temperatures, 

while controlling for the effect of the local climate, this would suggest that surface temperatures 

can approximate, to some extent, core body temperature. However, if surface temperatures are 

predicted by the local climate, and not core body temperatures, this would suggest that the 

surface temperatures tell us more about the environment an animal is in, and less about the body 

temperature of an animal in that environment. We use four body regions to test our hypothesis: 

the furred dorsal, ventral and tail surface and bare-skin facial surface. 

 

METHOD 

In June 2017, as part of a longitudinal project on vervet monkey thermoregulation in the Eastern 

Cape, South Africa (32o22’S, 24o52’E), we collected infrared thermography data from a subset 

of individuals living across three groups (N=14: 5 females, 9 males). These animals fed on a 

natural diet, were fully habituated to the presence of researchers, and were individually 
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identifiable by means of natural markings (Pasternak et al., 2013; McFarland, Barrett, Boner, 

Freeman, & Henzi, 2014). 

 

Infrared thermal imagery 

We collected infrared thermal images (Ntotal=294 images,  �̅�subject = 21 ± SD 14 images) 

opportunistically using a handheld infrared thermograph model T360 camera (FLIR® Systems 

Inc.). We set emissivity to 0.98. We targeted the animal’s furred dorsal, ventral, and tail surface, 

and bare-skin face surface, in each photo, to the point that some images could be used to measure 

multiple surface regions, and others not. We used the following selection criteria to determine 

the usability of infrared surface temperature measurements: (i) the animal was in plain view and 

not obscured by foliage or another individual, (ii) the animal was within 5 m of the camera, (iii) 

the targeted body surface was orientated toward the camera to avoid detection errors associated 

with sampling curved surfaces (McCafferty, 2007), and (iv) the sampled region of the body 

surface was in shade or low light levels, avoiding reflective light, thereby minimizing the effect 

of direct solar radiation on surface measurements (McCafferty, 2007). Table 1 outlines the 

distribution of the final measurements used in the current analyses. 
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Table 1. Sample of miniglobe, core body, and infrared body surface temperature measurements 

across four sites recorded from wild vervet monkeys  

 Miniglobe Core body 

Body surface 

Dorsal Ventral Face Tail 

Number of monkeys - 14 14 11 13 14 

Number of images 242 283 202 42 82 107 

Minimum temperature °C 13.0 38.2 16.2 20.5 16.9 14.8 

Maximum temperature °C 32.7 39.8 37.6 34.4 34.4 37.5 

Mean temperature ± SD ºC 23.6 ± 5.7 38.9 ± 0.3 26.3 ± 4.2  29.1 ± 3.75  27.0 ± 4.01 26.8 ± 4.9 

 

At the time each image was taken, we positioned a thermocouple attached to a matte-

black painted metal box within the frame of each thermal image (e.g., Figure 1). We calibrated 

the temperature measurements recorded by the thermal camera using the thermocouple. For each 

infrared image, we used FLIR Tools® software (FLIR® Systems Inc., 2019) to extract five 

discrete temperature measurements from the targeted body surface region and the black 

calibration box. We calculated the mean body surface and black box temperatures were for each 

image. We used the difference between the thermocouple temperature and the mean FLIR 

temperature of the black box to create a single-point calibration offset for all mean body surface 

temperatures. 
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Figure 1. An infrared image and time-matched photograph of data collection (zoomed out for 

illustrative purposes) of a vervet monkey implanted with a temperature-sensitive data logger 

 

Local climate 

We used black globe temperature to measure the local climate experienced by our study animals. 

Black globe temperature integrates the influence of air temperature, solar radiation and wind 

speed, and is thus considered a better measure of the thermal heat load experienced by an animal 

than air temperature alone (Hetem, Maloney, Fuller, Meyer, & Mitchell, 2007; McFarland et al., 

2014). We recorded black globe temperatures every minute using a calibrated, temperature-

sensitive Thermochron 4K iButton (resolution = 0.06ºC; model DS1921G; Maxim IntegratedTM) 

housed inside a matte-black painted copper ball with a diameter of 30mm (hereafter, miniglobe). 

We recorded miniglobe temperatures at the time each image was taken, within 5m of the target 

animal. Miniglobe temperatures ranged from 13.0-32.7ºC across the study period with a mean 

daily temperature of 23.6 ± SD 5.7ºC. 

 

Body temperature data 
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In June 2016, we surgically implanted, intra-abdominally, 14 adult vervet monkeys (5 females, 9 

males; distributed across three groups) with miniature temperature-sensitive data loggers (model: 

DST Centi-T, Star-Oddi, Iceland). Data loggers recorded core body temperature at five-minute 

intervals at a resolution of 0.03C and were individually calibrated to an accuracy of 0.1C. We 

recorded the body mass (kg) of all animals (�̅�female = 3.4 ± SD 0.4g, �̅�male = 5.1 ± SD 0.3g). We 

removed the data loggers at the end of June 2017. For full details of the capture and surgery 

procedure see McFarland et al. (2015). Data logger temperatures data were used to measure the 

core body temperature (to the nearest five minutes) of the same animals sampled using the 

infrared camera. Importantly, we implanted our subjects with data loggers in fulfilment of a 

long-term study of vervet monkey thermal physiology. That is, our subjects were not solely 

exposed to this procedure for the purpose of the current project.  

Observational data collection protocols were approved by the University of Lethbridge 

under Animal Welfare Protocols 0702 and 1505. Capture and surgical procedures were approved 

by the University of the Witwatersrand Animal Ethics Research Committee (Protocol # 2015-04-

14B-2017), and were treated in accordance with international ethical standards. No long-term 

sequelae were observed as a consequence of surgical intervention. Overall, this study adhered to 

the legal requirements of South Africa, and the American Society of Primatologists (ASP) 

Principles for the Ethical Treatment of Non-Human Primates. 

 

Statistical analysis 

We used a series of Bland-Altman plots to visually compare the measurement of vervet 

monkeys’ core body temperature using intra-abdominal data loggers, with surface temperature 

measured using infrared thermography (Altman & Bland, 1983). 
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We performed our analyses in R v.3.6.0 (R-Core-Team, 2019) using the ‘lme4’ package 

to model outcomes (Bates et al., 2019), the ‘rsq’ package to generate adjusted R2 values for the 

fixed effects (Zhang, 2018), and the ‘lmertest’ package to generate p-values (Kuznetsova, 

Brockhoff, Christensen, & Jensen, 2019). Prior to running each model, we checked for 

intercollinearity by calculating variance inflation factors (VIF) for the predictor variables using 

the ‘car’ package (Fox et al., 2020). The VIF scores in all of our models were < 2 and were 

therefore not considered collinear. We scaled and centered our predictor variables so we could 

directly compare the resulting coefficients. We specified a gaussian error structure with a log 

link function in all of our models to normalize the residuals. 

We originally ran a series of linear mixed models, entering subject ID as a random effect. 

However, these random effects did not explain any meaningful variance and their inclusion 

produced overfitted models with singular fit. We therefore ran a series of linear models, 

removing this random effect. The results of the linear mixed models and linear models were 

qualitatively the same. We present the results of the linear models below. 

We first ran a series of four linear models entering our four surface temperatures (i.e., 

dorsal, ventral, tail, and face) in turn as the dependent variable, and time-matched miniglobe as 

the sole predictor variable. We ran a second series of four linear models entering our four surface 

temperatures in turn as the dependent variable, and time-matched core body temperature as the 

sole predictor variable. We ran a third series of four linear models entering our four surface 

temperatures in turn as the dependent variable. We entered time-matched miniglobe temperature 

and core body temperature as predictor variables, to determine whether this model improved 

upon either of the single predictor variable models described in the first two series of linear 

models.  
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For the first two series of linear models (i.e., the single predictor variable models), we 

follow Colquhoun (2014) in describing outcomes as indicating weak (P ~ 0.05), moderate (P ~ 

0.01) or strong (P ~ 0.001) evidence for effects. Following the third series of linear models, we 

used a reduction in the Akaike Information Criterion (AIC: Akaike, 1974) of a model, using a 

ΔAICc (to control for small sample sizes) threshold of < -2.0 (Burnham & Anderson, 2002), to 

indicate whether the composite model was better than its single predictor variable equivalent. We 

used adjusted R2 values to describe how much variance in a model’s dependent variable was 

explained by its predictor variables. 

 

RESULTS 

In a series of four Bland-Altman plots (Figure 2), we observed large differences between the 

measurements of core body and surface temperatures (�̅�dorsal = 12.6 ± SD 4.4ºC, �̅�ventral = 9.4 ± 

SD 3.9ºC, �̅�tail = 12.3 ± SD 5.5ºC, �̅�face = 12.0 ± SD 4.3ºC). Temperature differences in excess of 

15ºC were common and occasionally exceeded 20ºC at low temperatures. When the mean of 

core body and surface body temperatures were higher as a result of increased surface temperature 

in warm conditions (Table 2), the differences between these variables were smaller. However, 

core body and surface temperatures were never equivalent. 
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Figure 2. A Bland-Altman plot showing the relationship between vervet monkeys’ core body 

temperature (°C) and each of the four body surface temperatures (°C) (i.e., dorsal, ventral, tail 

and face). The x-axis represents the combined mean of core body and specified surface 

temperatures (°C). The y-axis represents the difference in temperature between core body and 

specified surface temperatures. Dashed lines represent the mean ± 1.96SD. 
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Table 2. Results of the linear model analyses testing the relationship between miniglobe 

temperature and infrared surface temperatures from the following body regions: dorsal, ventral, 

tail, and face. We ran the analyses at the level of the image/subject. 

 
β ± SE t P 

Dorsal (N=153 images, N=14 subjects) 

Miniglobe temperature 0.16 ± 0.01 25.02 <0.001 

Intercept 3.26 ± 0.01 532.10 - 

Adjusted R2 (%) 81.45 

AICc 637.31 

 

Ventral (N=32 images, N=11 subjects) 

Miniglobe temperature 0.12 ± 0.01 9.30 <0.001 

Intercept 3.37 ± 0.01 274.70 - 

Adjusted R2 (%) 75.56 

AICc 139.81 

 

Tail (N=76 images, N=14 subjects) 

Miniglobe temperature 0.21 ± 0.01 20.27 <0.001 

Intercept 3.26 ± 0.01 345.44 - 

Adjusted R2 (%) 86.75 

AICc 328.56 

 

Face (N=63 images, N=13 subjects) 

Miniglobe temperature 0.14 ± 0.01 14.26 <0.001 

Intercept 3.28 ± 0.01 322.88 - 

Adjusted R2 (%) 76.69 

AICc 276.80 

 

Miniglobe temperature 

In a series of four linear models (Table 2) with miniglobe temperature as the sole predictor 

variable, globe temperature had a strong positive effect on dorsal, ventral, face, and tail infrared 

surface temperatures (all P<0.001). Miniglobe temperature explained 81% (dorsal), 76% 

(ventral), 87% (tail), and 77% (face) and of the variance in infrared body surface temperatures 

(Table 2). 
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Core body temperature 

In a series of four linear models with core body temperature as the sole predictor variable, core 

body temperature had a strong positive effect on dorsal surface temperatures (P<0.001) and a 

weak positive effect on ventral (P=0.04), tail (P=0.02) and face (P=0.048) infrared surface 

temperatures. Core body temperature explained 8% (dorsal), 11% (ventral), 6% (tail), and 5% 

(face) of the variance in infrared body surface temperatures (Table 3). 

 

Table 3. Results of the linear model analyses testing the relationship between core body 

temperature and infrared surface temperatures from the following body regions: dorsal, ventral, 

tail, and face. We ran the analyses at the level of the image/subject. 

 
β ± SE t P 

Dorsal (N=153 images, N=14 subjects) 

Core body temperature 0.05 ± 0.01 3.91 <0.001 

Intercept 3.27 ± 0.01 247.92 - 

Adjusted R2 (%) 8.24 

AICc 881.92 

 

Ventral (N=32 images, N=11 subjects) 

Core body temperature 0.05 ± 0.02 2.18 0.04 

Intercept 3.38 ± 0.02 146.63 - 

Adjusted R2 (%) 10.58 

AICc 181.31 

 

Tail (N=76 images, N=14 subjects) 

Core body temperature 0.06 ± 0.02 2.39 0.02 

Intercept 3.28 ± 0.02 138.46 - 

Adjusted R2 (%) 5.80 

AICc 477.62 

  

Face (N=63 images, N=13 subjects) 

Core body temperature 0.04 ± 0.02 2.01 0.048 

Intercept 3.29 ± 0.02 164.53 - 

Adjusted R2 (%) 4.64 

AICc 365.57 
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Miniglobe temperature and core body temperature 

Given that globe temperature was a stronger predictor of infrared surface temperatures than core 

body temperature (Tables 2 and 3), we ran a series of four linear models including both globe 

temperature and core body temperature as predictor variables, to examine whether the addition of 

core body temperature improved the performance of the model with globe temperature as the 

sole predictor (Table 4). The dorsal, ventral, tail, and face infrared surface temperature models 

were not improved by the addition of core body temperature. All ΔAICc were > -2.0 with < 1% 

additional variance explained in all cases (Table 5). The best fitting models, for all infrared body 

surface temperatures, therefore, were those that only included globe temperature as a sole 

predictor variable. 
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Table 4. Results of the linear model analyses testing the effects of miniglobe temperature and 

core body temperature on infrared surface temperatures from the following body regions: dorsal, 

ventral, tail, and face. We ran the analyses at the level of the image/subject. 

 
β ± SE t P 

Dorsal (N=153 images, N=14 subjects) 

Miniglobe temperature 0.15 ± 0.01 23.76 <0.001 

Core body temperature 0.01 ± 0.01 1.82 0.07 

Intercept 3.26 ± 0.01 536.18 - 

Adjusted R2 (%) 81.73 

AICc 636.12 

 

Ventral (N = 32 images, N = 11 subjects) 

Miniglobe temperature 0.13 ± 0.15 8.34 <0.001 

Core body temperature -0.01 ± 0.01 -0.46 0.65 

Intercept 3.37 ± 0.01 270.99 - 

Adjusted R2 (%) 74.90 

AICc 142.20 

 

Tail (N = 76 images, N = 14 subjects) 

Miniglobe temperature 0.21 ± 0.01 19.29 <0.001 

Core body temperature 0.00 ± 0.01 0.38 0.70 

Intercept 3.26 ± 0.01 343.47 - 

Adjusted R2 (%) 86.59 

AICc 330.64 

  

Face (N = 63 images, N = 13 subjects) 

Miniglobe temperature 0.14 ± 0.01 13.48 <0.001 

Core body temperature 0.00 ± 0.01 0.10 0.92 

Intercept 3.28 ± 0.01 320.45 - 

Adjusted R2 (%) 76.31 

AICc 279.08 
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Table 5. A summary of the performance (AICc and Adjusted R2 %) of the infrared surface 

temperature linear models (i.e., dorsal, ventral, face, and tail) as explained by miniglobe 

temperature and core body temperature as sole predictors, and a composite model including both 

predictor variables. † denotes best fitting model. A ΔAICc threshold of < -2.0 was used indicate 

whether a composite model was better than its single predictor variable equivalent. 

 Dependent variables 

Predictor variables 
Miniglobe 

temperature 

Core body 

temperature 

Miniglobe temperature 

and Core body 

temperature 

Δ change in performance of the 

mini globe model with the 

addition of core body 

temperature 

Dorsal 
AICc 637.31† 881.92 636.12 -1.19 

R2 81.45 8.24 81.73 0.28 

Ventral 
AICc 139.81† 181.92 142.2 2.39 

R2 75.56 10.58 74.9 -0.66 

Tail 
AICc 328.56† 477.62 330.64 2.08 

R2 86.75 5.8 86.59 -0.16 

Face 
AICc 276.80† 365.57 279.08 2.28 

R2 76.69 4.64 76.31 -0.38 

 

DISCUSSION 

Our findings reveal that infrared thermography cannot be used to approximate core body 

temperature. Vervet monkey surface temperatures measured on the furred dorsal, ventral and tail 

region, as well as the bare-skin facial region, were more strongly predicted by miniglobe (i.e., 

environmental) temperatures than core body temperatures. At low ambient temperatures, surface 

temperatures dropped substantially and furred surfaces could be more than 20ºC below core body 

temperature. Since an animal’s body surface is the interface where heat is gained by, and 

dissipated from, the body, it is unsurprising that animal surface temperature is strongly 

influenced by environmental temperature. While the core body temperatures of free-ranging 

primates can also vary in response to environmental variability (e.g., Brain & Mitchell, 1999; 
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Schmid, 2000; Schmid et al., 2000; Dausmann, 2005; Lubbe et al., 2014; McFarland et al., 2015, 

Henzi et al., 2017; McFarland et al., 2020), core body temperature is much more tightly 

regulated through a range of behavioral and physiological processes.  

Primates, like all mammals, employ a range of physiological mechanisms to cope with 

environmental challenges while maintaining homeostasis. Autonomic processes involve the 

activation of pathways in the preoptic area of the hypothalamus that regulate the balance of heat 

production and loss (Morrison & Nakamura, 2019). Individuals can also engage in behaviors that 

alter body temperature, such as changing activity patterns, posture, or selecting appropriate 

microclimates (McFarland et al., 2015, 2019, 2020; Henzi et al., 2017). Heat transfer to and from 

the body’s core is also buffered by the conductive and reflective properties of the pelt (i.e., color, 

depth, density, and condition: Scholander, 1950; Schmidt-Nielsen, 1997; McFarland et al., 

2016). Given the complexities surrounding core body temperature regulation, it would be 

surprising if surface temperatures did approximate core body temperatures. Yet, a number of 

studies have shown an association between surface temperature and core body temperature 

(Dausmann, 2005; Warris et al., 2006; Johnson et al., 2011; Giloh et al., 2011; Zanghi, 2016), 

including the current manuscript. However, the variance in surface temperature that could be 

explained by core body temperature in our study was an order of magnitude lower than that 

explained by miniglobe temperature. In addition, after controlling for the effect of miniglobe 

temperature, the relationship with surface and core temperatures became trivial. We recommend 

that future studies do not use surface temperature measurements to approximate core body 

temperature, without a full understanding of the interactions between core, surface, and 

environmental variables.  
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That is not to say that infrared thermography cannot provide important insights on 

thermoregulatory processes. Surface temperatures not only inform us about the heat load 

experienced at an animal’s surface, but may also provide information on peripheral blood flow, 

and the effect of pelage properties on heat transfer (McCafferty, 2007; Cilulko et al., 2013; 

Mathewson et al., 2018). Infrared thermography can also provide valuable insights on animal 

behavior and physiology, or to test the accuracy of biophysical heat transfer models (e.g., 

Mathewson et al., 2018). In primates, infrared thermography has been used to assess the behavior 

of otherwise unobservable nocturnal species (e.g., Rahlfs & Fichtel, 2009; Tan, Yang, & Niu, 

2013; Chen et al., 2015). Coupled with drone technology, infrared thermography has been used 

to provide population estimates by detecting animal heat-signatures in remote, difficult-to-

navigate locations (Kays et al., 2018; Spaan et al., 2019; Burke et al., 2019). Facial infrared 

thermal imaging has been used to quantify the emotional states of non-human primates 

(Nakayama, Goto, Kuraoka, & Nakamura, 2005; Kuraoka & Nakamura, 2011; Ioannou, Chotard, 

& Davila-Ross, 2015; Chotard, Ioannou, & Davila-Ross, 2018) and other animals (McCafferty, 

2007). 

In an apparent attempt to avoid the invasiveness of intra-abdominal data logging, several 

research teams have used skin or subcutaneous temperature measurements to make inferences 

about core body temperature in primates. These methods have provided information on the 

hibernation patterns of the Lesser bushbaby (Galago moholi: Mzilikazi, Masters, & Lovegrove, 

2006; Nowack, Mzilikazi, & Dausmann, 2010; Nowack, Wippich, Mzilikazi, & Dausmann, 

2013) and several lemur species (Lemuridae spp., Schmid, 2001; Dausmann, Glos, Ganzhorn, & 

Heldmaier, 2004; Dausmann, 2005; Blanco, Dausmann, Faherty, & Yoder, 2013; Kobbe, 

Nowack, & Dausmann, 2014), as well as the seasonal variability in the body temperature rhythm 
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of the larger, diurnal mantled howling monkey (Thompson et al., 2014). While subcutaneous 

body temperatures, typically recorded using devices implanted between the scapula, may more 

closely reflect core body temperature than surface temperature, they also are likely to be 

influenced by a core to periphery gradient, particularly in large mammals. The temperature of 

peripheral tissue is more strongly influenced by local climate, and peripheral blood flow, than is 

core body temperature (Mitchell et al., 2018). The subcutaneous body temperatures of mantled 

howling monkeys, for example, were strongly influenced by environmental temperature 

(Thompson et al., 2014). Furthermore, although a positive association between core body and 

subcutaneous body temperatures has been documented (Brown & Bernard, 1991; Navarro-Serra 

& Sanz-Cabañes, 2018), this does not mean that the measures are equivalent or interchangeable. 

Similar to surface temperatures, subcutaneous temperatures may deviate substantially from core 

body temperature, particularly in cold environments when endotherms peripherally vasoconstrict 

to conserve core body heat (Torrao, Hetem, Meyer, & Fick, 2011). 

Other less invasive measures of an animal’s body temperature include measuring the 

temperature of an animal’s feces to approximate its core body temperature. For example, fecal 

temperature has been used as a proxy for core body temperature in chimpanzees (Pan 

troglogytes: Jensen, Mundry, Nunn, Boesch, & Leendertz, 2009; Negrey, Sandel, & 

Langergraber, 2020) based on limited evidence that fecal temperatures approximate rectal 

temperature in humans. However, given the infrequency of defecation point-sampling, and the 

fact that core body temperatures can fluctuate over 24h, and over even shorter time intervals for 

a multitude of reasons (e.g., drinking, behavioral thermoregulation, microclimate selection, 

intensity of activity: McFarland et. al., 2015, 2019, 2020), this method offers very little 

information on the regulation of core body temperature. Continuous and remote measurement of 
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core body temperature through implanted intra-abdominal data loggers is a relatively simple and 

feasible technique that provides far greater insight into an individual’s thermal balance with its 

environment. 

When alternative methods are used to measure an animal’s surface or peripheral tissue 

temperature, one should acknowledge that these data do not necessarily reflect the thermal status 

of an animal’s core in a given environment. For subcutaneous data logging methods, in 

particular, the limited scientific value afforded by these methods should be weighed carefully 

against the ethical considerations surrounding the required animal capture and intervention. 

When it is not possible to measure body temperature within the animal’s core, we suggest that 

alternative, non-invasive physiological measures are used to provide information on a primate’s 

energy balance, hormone levels, or metabolic activity in response to environmental variability 

(e.g., Cristóbal-Azkarate, Maréchal, Semple, Majolo, & MacLarnon, 2016; Behringer & 

Deschner, 2017; Thompson, 2017; Thompson et al., 2017b). Biophysical models (e.g., Niche 

MapperTM: Porter & Mitchell, 2006) that use principles of heat and mass transfer, coupled with 

information on an animal’s morphology, behavior, and microclimate, may also be used to predict 

an animal’s energetic requirements as a function of environmental conditions (e.g., Moyer-

Horner, Mathewson, Jones, Kearney, & Porter, 2015; Natori & Porter, 2007; Zhang, Mathewson, 

Zhang, Porter, & Ran, 2018; Long et al., 2014; Mathewson & Porter, 2013; Briscoe, Kearney, 

Taylor, & Brendan, 2016; Mathewson et al., 2018), including in vervet monkeys (Mathewson, 

2018). Ultimately, an integrative approach to understanding heat transfer and physiological 

plasticity can complement accurate measures of core body temperature, to provide greater insight 

into how primates respond to environmental stress. 
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