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Abstract 

Dendritic cells (DCs) are professional antigen-presenting cells that induce and regulate adaptive immunity 

by presenting antigens to T cells. Due to their coordinative role in adaptive immune responses, DCs have 

been used as cell-based therapeutic vaccination against cancer. The capacity of DCs to induce a 

therapeutic immune response can be enhanced by re-wiring of cellular signalling pathways with 

microRNAs (miRNAs). Since the activation and maturation of DCs is controlled by an interconnected 

signalling network, we deploy an approach that combines RNA sequencing data and systems biology 

methods to delineate miRNA-based strategies that enhance DC-elicited immune responses.  

Through RNA sequencing of IKKβ-matured DCs that are currently being tested in a clinical trial on 

therapeutic anti-cancer vaccination, we identified 44 differentially expressed miRNAs. According to a 

network analysis, most of these miRNAs regulate targets that are linked to immune pathways, such as 

cytokine and interleukin signalling. We employed a network topology-oriented scoring model to rank the 

miRNAs, analysed their impact on immunogenic potency of DCs, and identified dozens of promising 

miRNA candidates with miR-15a and miR-16 as the top ones. The results of our analysis are incorporated 

in a database which constitutes a tool to identify DC-relevant miRNA-gene interactions with therapeutic 

potential (www.synmirapy.net/dc-optimization).  
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INTRODUCTION 

Dendritic cells (DCs) play an important role in regulating adaptive immunity by presenting antigens to T 

cells (1). Due to the unique function of DCs in the coordination of adaptive immune responses, they have 

been tested as cell-based vaccination against tumours (2). To obtain immunogenic potency ex vivo, 

monocyte-derived DCs need to go through a complex maturation process, in which DCs are exposed to a 

monocyte-conditioned medium or a cocktail of cytokines (3, 4). These treatments result in various 

phenotypic changes in DCs, such as upregulation of co-stimulatory surface markers (e.g., CD80 and 

CD40) and secretion of pro-inflammatory cytokines (e.g., IL-12 and TNFα). The matured DCs loaded with 

cancer antigens are infused into patients and trigger a selective immune response by migrating into the 

peripheral lymphatic tissue, where they encounter and activate tumour-specific T cells (5).  

The capacity of DCs to induce an immune response can be improved by molecular engineering. Pfeiffer 

and co-workers enhanced DCs through electroporation with mRNA encoding a constitutively active variant 

of IKKβ (caIKK), a kinase upstream of NF-κB that is a key regulator of the immune response (6, 7). 

Specifically, the kinase phosphorylates IκB resulting in desequestration of the transcription factor (TF) NF-

κB and its translocation into the nucleus, where it regulates expression of immune-related genes such as 

cytokines (8, 9). This engineered IKKβ promotes constant activation of NF-κB signalling, and the cells 

expressing it (hereafter labelled caIKK-DCs) can induce repeated expansion of Melan-A-specific cytotoxic 

T cells with a memory phenotype (7). Such DCs are currently under evaluation as vaccine in a phase I 

clinical trial for the treatment of uveal melanoma patients (NCT04335890). 

Our hypothesis is that DCs can be further improved using non-coding RNAs, in particular microRNAs 

(miRNAs), interacting with key regulators of DC activation and maturation. miRNAs are a class of small 

endogenous non-coding RNAs with a length of 22-25 nucleotides. Through the inhibition and modulation 

of the transcription and translation of specific protein-coding genes, miRNAs can alter the basal state of 

cells and the outcome of stimulatory events (10, 11). Increasing evidence shows that miRNAs play a 

crucial role in the development and function of DCs (12, 13). They serve as important regulators of 

complex networks by targeting key signalling genes to regulate proliferation and cell death as well as 

homeostasis (14). It has also been found that miRNAs are pivotal in both adaptive and innate immunity, 

e.g., by controlling the differentiation of immune cell subsets and their immunological functions (15). In 

particular, miRNAs can modulate the immune response by inducing apoptosis, affecting homeostasis, and 

changing the cytokine profile of DCs (16). Further, one can use miRNAs, alone or in combination, in 

therapeutic setups to inhibit expression of selected genes in cancer and other targeted cells (17–19). 

To facilitate the re-wiring of DCs, it is crucial to understand the intracellular regulatory processes involved 

in DC maturation and activation. However, the regulatory networks eliciting the activation and maturation 

of DCs involve multiple interconnected signalling and transcriptional circuits, and their understanding and 

proper manipulation requires the combined use of high-throughput data and systems biology methods (20, 

21). We here present a systems biology approach to understanding the role that miRNAs play in 
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regulating the function of DCs in immunotherapy (Figure 1), and exploit this knowledge to enhance their 

potential to stimulate an immune response using miRNAs.  

In this study, we chose the caIKK-DCs as an ideal model system to identify miRNAs that are involved in 

DC-activation via NF-κB signalling and can boost pro-inflammatory signals. We think the identified 

miRNAs can enable the DCs to repetitively stimulate T cell expansion. To this end, we performed RNA 

sequencing (RNA-seq) to obtain the transcriptomic profile (i.e., protein-coding genes and miRNAs) of 

caIKK-DCs in relation to standard DCs. Next, we analysed miRNA-gene interactions at the pathway level 

and reconstructed regulatory networks underlying immunological functions of DCs. We then performed 

network-based prioritization of miRNAs by integrating their expression profiles and their strength of 

association with other protein-coding genes.  

Our analysis identified dozens of miRNA candidates with miR-15a-5p and miR-16-5p as top ones in the 

regulation of caIKK-DCs. We showed that both miRNAs may exert a strong regulatory effect on genes 

involved in NF-κB signalling and also target chemokines and cytokines regulating T-cell response. 

Moreover, we delineated molecular mechanisms through which the miRNAs alter the immunogenic 

potency of caIKK-DCs. The results of our analysis are available in a web database that facilitates their 

exploration and visualization (www.synmirapy.net/dc-optimization), thereby providing researchers with a 

tool to select functional miRNA-gene interactions with therapeutic potential in DCs for experimental 

investigation. 
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 MATERIALS AND METHODS  

Generation of monocyte-derived dendritic cells from blood samples 

Monocyte-derived DCs were generated as previously described (22). In brief, blood samples from seven 

healthy donors were collected after approval was granted by the responsible institutional review board 

(Ethikkommission der Friedrich-Alexander-Universität Erlangen-Nürnberg, Ref. no. 4158) and written 

informed consent was obtained. Peripheral blood mononuclear cells were isolated from whole blood using 

density gradient centrifugation. Monocytes were extracted from the non-adherent fraction by plastic 

adherence, were cultured in DC medium (RPMI (Lonza, Verviers, Belgium) containing 1% non-autologous 

human plasma (Sigma-Aldrich, St Louis, USA), 2 mM L-glutamine (Lonza), and 20 mg/L gentamicin 

(Lonza), and were differentiated into DCs by application of 800 U/mL GM-CSF (Miltenyi Biotec, Bergisch 

Gladbach, Germany) and 250 IU/mL IL-4 (Miltenyi Biotec) on days 1, 3, and 5. After six days in culture, 

DCs were matured for 24 hours using a cytokine cocktail consisting of 200 IU/mL IL-1β (CellGenix, 

Freiburg, Germany), 1 000 U/mL IL-6 (CellGenix), 10 ng/mL TNF (Beromun, Boehringer Ingelheim 

Pharma, Germany), and 1 μg/mL PGE2 (Pfizer, Zurich, Switzerland). 

RNA in vitro transcription and DC electroporation 

Generation of in vitro transcribed RNA with mMESSAGE mMACHINE™ T7 ULTRA transcription-kits 

(Thermofisher scientific, Waltham, USA) and the electroporation of cocktail-matured DCs (cmDCs) was 

carried out as previously described (23). For transcriptome analyses, cmDCs were electroporated using 

30 µg RNA encoding constitutively active IKKβ (caIKK) since its introduction into mature DCs has been 

shown to improve activation of T cells (7) and natural killer cells (24). DCs electroporated with RNA 

encoding melanoma antigen recognized by T cells 1 (Melan-A) were used as control, and such DCs were 

shown to have no influence on the DCs’ transcriptome profile (25). After electroporation, DCs were 

cultured in DC medium containing GM-CSF and IL-4 at the concentrations indicated above.  

RNA sequencing processing and differential gene expression analyses 

Total RNA including small RNAs was extracted four hours after electroporation using the RNeasy Plus 

Mini Kit (QIAGEN GmbH, Hilden, Germany) and the generated samples were sequenced using an 

Illumina HiSeq-2500. Demultiplexed reads were filtered for ribosomal RNAs, transfer RNAs, mitochondrial 

rRNAs, and mitochondrial tRNAs. The reads were aligned to the human reference genome (hg19) using 

STAR (v2.5.2b) and assigned to genes using Subread (v1.5.2). Only uniquely mapping reads that could 

unambiguously be assigned to a single gene were considered for analysis (Supplementary Table S1).  

For miRNA expression quantification, we performed a quality check of the RNA-seq reads with FastQC 

(26), mapped the short sequences to the human reference genome (hg19) using BWA (27), and 

calculated raw read counts of mature miRNAs that are known and annotated in miRBase v21 (28) 

(Supplementary Table S2; See Supplementary Materials for details).  

Before differential expression analysis, we aggregated read counts of Ensembl identifiers that represent 

the same gene and discarded genes with less than 5 read counts in any sample to increase power for 
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detecting differentially expressed genes (29, 30). Next, we used DESeq2 (31) in R version 3.6.3 (32) to 

assess differential expression for protein-coding genes and miRNAs. Then, we performed independent 

filtering on the results to remove genes that have no or little chance of showing significant evidence 

(Supplementary Table S3 and S4). Specifically, the independent filtering uses the mean of normalized 

counts as a threshold to optimize the number of adjusted p-values ≤ 0.05 (31). If the normalized 

expression of a gene was lower than the threshold, it was discarded. The Benjamini-Hochberg method 

was then used on the set of remaining genes to correct for multiple comparisons (33). Genes with 

adjusted p-values ≤ 0.05 were regarded as significantly differentially expressed.  

Gene set enrichment analysis 

We extracted all curated pathways from the Reactome pathway knowledgebase (release 68) (34) together 

with their hierarchical and biological classification according to the database developers. We retraced 

Reactome’s pathway hierarchy by assigning every pathway from Homo sapiens to its corresponding root 

categories, such as signalling transduction and immune system (see Supplementary Materials for details).  

As a result, we obtained a table of Reactome pathways matched to the 26 root categories (Supplementary 

Figure S3 and Supplementary Table S5). 

We applied a competitive gene set test to perform gene set enrichment analyses for Reactome pathways. 

The algorithm CAMERA (35) tests whether the genes in the set are lowly or highly ranked in terms of 

differential expression relative to genes not in the set, with a positive gene set score indicating a shared 

tendency for upregulation of the corresponding genes, and vice versa (see Supplementary Materials for 

details). All genes identified as differentially expressed from our RNA-seq data were used as the 

background gene list for the enrichment analysis. All obtained p-values were corrected using the 

Benjamini-Hochberg method. Pathways with false discovery rate (FDR) ≤ 0.05 were regarded as 

significantly up- (positive score) or down-regulated (negative score) in our comparison of caIKK-DCs with 

controls (Supplementary Table S5). The gene set enrichment analysis was performed using the CAMERA 

implementation in the package limma (36) in R. 

Regulatory network reconstruction 

We downloaded functional interactions from the Reactome database (release 68). The collection includes 

protein-protein interactions, transcriptional regulation, gene co-expression, protein domain interaction, 

Gene Ontology (GO) annotations and text-mined protein interactions, which cover almost half of the 

human proteome (37). There are different types of directional molecular interactions including: activation, 

inhibition or repression, and co-expression or complex formation. The biochemical reactions covered are 

phosphorylation and ubiquitination. We processed the list to transform bidirectional interactions into their 

two unidirectional constituents. The result list contained 435,043 unidirectional interactions among 13,852 

protein-coding genes. 

To derive miRNA-gene interactions, we first obtained conserved and non-conserved miRNA binding sites 

as predicted by Targetscan version 7.2 (38). Then, we filtered the predicted interactions with experimental 
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evidence from miRTarBase version 8.0 (39) and starBase version 2.0 (40). By doing so, we obtained a list 

of miRNA-gene interactions (Supplementary Table S6) that contain putative miRNA binding sites with 

experimental support, such as high-throughput experiments (e.g., RNA-seq, microarray, and Ago CLIP-

sequencing) and/or low-throughput experiments (e.g., q-PCR, reporter assay, and Western blot). 

The obtained lists of protein-coding genes’ functional interactions and miRNA-gene interactions were used 

to reconstruct gene regulatory networks from Reactome pathways. Specifically, for a pathway of interest, 

we built a network around its participating genes and calculated the pairwise Pearson correlation 

coefficients between interaction partners from their normalized count values in caIKK-DCs. The 

normalized counts were obtained using the regularized logarithm method (31). In the reconstructed 

networks, we used the Pearson correlation coefficients to filter out interactions that disagree with their 

regulation type. We assumed that positive interactions (i.e., activation) require positive Pearson 

correlations and negative interactions (i.e., inhibition) negative Pearson correlations between interacting 

molecules. Interactions annotated as gene co-expression or formations of protein complexes were kept, 

assuming that the involved genes can affect each other’s expression or activity in both directions.  

Furthermore, we added annotation to the reconstructed networks’ components in the form of differential 

expression profiles (i.e., fold-change and FDR), types of genes (e.g., protein-coding gene or miRNA), 

gene interaction types (e.g., functional interaction or post-transcriptional regulation), gene interaction 

strengths as denoted by the Pearson correlation coefficients introduced above, and immune categories of 

genes. Immune categories of protein-coding genes were annotated using curated data from the Immport 

database (41). Data from the TcoF database were used to identify TFs in our networks (42). 

Gene prioritization in regulatory networks 

We prioritized genes in a network using SANTA in R (43). The algorithm determines a score of relative 

importance for each node in a network through a clustering model that accounts for network topology 

(distances between nodes) and node weights (in our case, a measure of differential expression called 

perturbation). Briefly, a gene is assigned a high score when itself and its close neighbours in the network 

have a higher-than-average node weight. The closeness, or distance, between genes is calculated by 

finding the shortest path through the network.  

The node weight is given by the gene’s perturbation (i.e., -log10(adj-p)  |log2(fold-change)|). Both 

adjusted p-value and log2 fold-change of the gene were taken from the differential gene expression 

analysis. The distances between neighbouring nodes were calculated as 1 - |p|, where p represents the 

Pearson correlation coefficient between the two interacting genes. Higher correlation coefficients (i.e., 

higher interaction strengths) correspond to lower edge length and thus shorter distance between the 

nodes. The calculated score was used to prioritize genes (see Supplementary Materials for details). As 

our networks contain both miRNAs and protein-coding genes that have different types of interactions, 

miRNAs and protein-coding genes were ranked separately. 
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Mapping of microRNA-gene interactions into the curated DC network 

To generate the curated DC network, we made use of a previously published network of macrophage 

pathways (51), since macrophages and DCs are generally considered to be quite similar. We manually 

added pathways for antigen processing and presentation that were not present in the macrophage map 

through a comprehensive database search in Reactome. The enriched DC network is a restructuring (see 

(51) for details on the algorithm) of the curated version that also incorporates miRNA-gene interactions 

identified () in this study. The reconstructed network is accessible at https://vcells.net/dendritic-cell.  

MicroRNA cooperativity analysis 

We used the TriplexRNA database (44) to identify miRNAs that can cooperate with significantly 

differentially expressed miRNAs in caIKK-DCs to repress protein-coding genes of interest. The obtained 

RNA triplexes were further filtered using pre-computed equilibrium concentrations and minimum free 

energies. We kept the RNA triplexes with equilibrium concentrations ≥ 50 nM and minimum free energies 

≤ -25 kcal/mol and regarded the participating miRNAs as cooperative partners to repress protein-coding 

genes. 

Data visualization 

The gene regulatory networks for significantly enriched pathways were drawn using ggraph (45) and 

igraph (46) in R. Heat maps were plotted using Complexheatmap (47) in R. Scatter and bar plots were 

drawn using ggplot2 (48) in R. Sankey diagram was drawn using networkD3 (49) in R. The clustered 

Reactome pathways were visualized using Cytoscape version 3.72 (50). 
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RESULTS 

Transcriptome analysis reveals miRNA expression changes in caIKK-DCs  

To characterize the gene expression profiles of DCs treated by caIKK, we collected blood samples from 

seven healthy donors and generated monocyte-derived DCs (see Materials and Methods). Each of the 

matured DC cultures was split for the subsequent experiment: One half was electroporated with mRNA 

encoding constitutively active IKKβ (caIKK, encoded by an engineered IKBKB) and the other half with 

mRNA encoding the melanoma antigen Melan-A (encoded by MLANA). The latter was used as control, as 

maturated DCs transfected with Melan-A mRNA did not show any significant changes in their 

transcriptomic profiles compared to untreated DCs (25).  Our data showed that caIKK electroporation 

induced maturation and activation in DCs, including secretion of pro-inflammatory cytokines such as IL-6, 

IL-8, IL-12, and TNFα (Supplementary Figure S1A), upregulation of co-stimulatory surface markers such 

as CD25, CD40, CD70, CD80, CD86, and OX40L (Supplementary Figure S1B), and increased maturation 

as indicated by the expression of CD25 and CD70 in the seven donors (Supplementary Figure S1C). 

Four hours after electroporation, RNA was isolated and assessed via bulk RNA sequencing (RNA-seq). 

We chose this early time point because we were interested in mRNA levels, which are expected to quickly 

respond to the activation of NF-κB as a result of continuous IKKβ activation. From the RNA-seq data, we 

identified 63 protein-coding genes and 44 miRNAs that were significantly differentially expressed (DE) 

between caIKK-DCs and controls (Supplementary Table S3 and S4; see Materials and Methods). Among 

the protein-coding genes, MLANA (encoding Melan-A) and IKBKB (encoding IKKβ) were the most down- 

and upregulated in caIKK-DCs, respectively (Supplementary Figure S2A). This is in line with the fact that 

the mRNA content of the two genes was artificially altered in the respective populations and can be 

considered a quality control for the experimental results. For the miRNAs, miR-146a/b and miR-155 were 

upregulated in caIKK-DCs, in consistence with them being transcriptional targets of NF-κB (52) and being 

upregulated in mature DCs (53). By performing principal component analysis, we assessed the clustering 

tendency in the RNA-seq data. Controls and caIKK-DCs showed better separation when restricting the 

input to the measured miRNAs rather than the whole transcriptome (Supplementary Figure S2B). In 

addition, the DE miRNAs unequivocally separated the caIKK-DCs from the controls in hierarchical 

clustering (Supplementary Figure S2C). These results suggested that caIKK-DCs harbour a distinct 

miRNA expression profile.  

The gene signature induced in caIKK-DCs is associated with NF-κB activation  

To understand the molecular function of the identified DE genes in the caIKK-DCs, we performed gene set 

enrichment analysis using the Reactome pathway database. The database contains more than 2,000 

cellular pathways curated from 30,721 peer-reviewed publications and classified into 26 root categories 

(34), thereby enabling a systematic and comprehensive analysis of DE genes. The 26 categories consist 

of a set of pathways that are annotated to be hierarchically and functionally linked. We calculated 

enrichment scores for each pathway which reflect the degree to which its corresponding gene set tends to 

be up- or downregulated in caIKK-DCs (Figure 2A; see Materials and Methods). 
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We found that the DE genes in caIKK-DCs are significantly enriched in 195 Reactome pathways, most of 

which belonged to the Reactome categories signal transduction and immune system (Figure 2B; 

Supplementary Figure S3 and Table S5). In the category of immune system, 65 out of 182 pathways were 

identified as significantly enriched, including cytokine signalling pathways and pathways associated with 

innate and adaptive immune response. This suggested that the continuous activation of IKKβ in DCs has 

a generalized effect on DC-mediated immune responses. In addition, we identified 12 enriched pathways 

that are directly associated with NF-κB activation and signalling (see Supplementary Table S5), such as 

NF-κB activation by IκB kinase complexes. This was consistent with the current model of the canonical 

NF-κB activation pathway, in which IKKs phosphorylate IκB resulting in desequestration of NF-κB and its 

translocation into the nucleus, where it regulates expression of immune-related cytokine genes and 

others(8, 9). All these NF-κB pathways had positive enrichment scores, indicating that the genes involved 

are more likely to be up-regulated in the caIKK-DCs. The results were in line with our expectation that the 

caIKK-DCs can trigger a stronger immune response as a result of NF-κB desequestration by constitutive 

activation of IKKβ. 

Significantly differentially expressed miRNAs in caIKK-DCs regulate an abundance of enriched 

immune pathways by targeting hundreds of their protein-coding genes 

To identify potential miRNA-gene interactions regulating the immunogenic potency of DCs, we first 

obtained putative miRNA-gene interactions for the significantly DE miRNAs (see Materials and Methods). 

We kept the putative interactions that are validated by experiments. For each identified miRNA-gene 

interaction, we then computed the Pearson correlation coefficient between miRNA and target gene 

expression. The interactions with negative correlation were regarded as reliable and functional, as 

miRNAs canonically repress translation initiation or stimulate mRNA degradation (54) and miRNA-

mediated gene activation usually results from indirect regulation mechanisms (55). The data showed that 

36 out of the 44 miRNAs are involved in the regulation of protein-coding genes belonging to 195 enriched 

pathways of the 26 Reactome root categories (Figure 3A).   

In individual pathway categories, the number of molecules (i.e., protein-coding genes, DNA/RNA, drugs, 

and chemical compounds) ranged from 27 to 2727, and genes identified by our RNA-seq data covered 

between 51% and 95% of the molecules in the respective category. For all categories except digestion 

and absorption, the DE miRNAs were identified to regulate 1 to 103 protein-coding genes (denoted by the 

numbers on the heat map grid cells in Figure 3A). Some miRNAs were found to regulate the expression of 

dozens of protein-coding genes in more than ten categories, suggesting that they act as regulatory hubs in 

caIKK-DCs. For example, miR-15a-5p, miR-16-5p, miR-20a-5p, and miR-424-5p can potentially regulate 

more than 80 protein-coding genes in the category signal transduction (Figure 3B), and they also have 

more than 60 targets in immune system. In contrast, miR-15a-3p and miR-9-3p target only BCL2 and 

MAPK1 in immune system, suggesting a specific role for them in regulating cytokine signalling in caIKK-

DCs (Supplementary Figure S4). Furthermore, we found that some miRNAs target a high fraction of 

enriched pathways belonging to specific Reactome root categories (denoted by the colour of heat map 
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grid cells in Figure 3A). For instance, miR-16-5p regulates 61 out of 64 enriched immune system 

pathways and 34 out of 36 enriched pathways in signal transduction. This suggested that it plays a vital 

role in regulating the immunogenic potency of caIKK-DCs. On the other hand, some categories included 

abundant enriched pathways that are regulated by multiple DE miRNAs. Interesting cases were pathways 

associated with protein metabolism, RNA metabolism, programmed cell death, and cell cycle. This result 

suggests that the DE miRNAs in caIKK-DCs are involved in regulating synthesis, processing, and 

modification of mRNAs and proteins and can also participate in other biological processes, such as cell 

cycle and cell apoptosis. Taken together, the DE miRNAs in caIKK-DCs target and potentially coordinate 

the activity of immune-relevant pathways in a pleiotropic fashion. 

Network-based prioritization of miRNAs in caIKK-DCs 

The ubiquitous, pleiotropic, and concerted gene regulation by miRNAs makes it challenging to quantify the 

relative impact of each individual miRNA. To prioritize the DE miRNAs according to their potential to act 

synergistically with NF-κB in DC activation, we applied a network-based method that integrates their 

expression and interaction profiles. 

First, we reconstructed one gene regulatory network for each of the 26 pathway categories. The 

reconstructed networks were composed of miRNA-gene interactions and functional interactions among 

protein-coding genes. Interactions were discarded when the sign of their Pearson correlation coefficient of 

expression disagreed with their regulation type, such as inhibition or activation (see Materials and 

Methods). Depending on the category, the size of the corresponding networks varied from 1,915 genes 

and 57,520 interactions (for signal transduction) to 30 genes and 153 interactions (for mitophagy). To 

prioritize the network components involved in regulating the immunogenic potency of DCs, we used a 

clustering model (43) to calculate a node score (Figure 4A; see Materials and Methods). 

The score ranked IKBKB, whose expression was greatly increased by mRNA electroporation, as the top 

protein-coding gene in 51 out of 59 networks in which it is involved (Supplementary Table S7; 

Supplementary Figure S5). This result is consistent with our expectation that the intentionally modulated 

gene in experiments is prioritized, and thus demonstrating the ability of the model to identify crucial 

regulatory genes in the experiments. In the two prominent categories signal transduction and immune 

system, the NF-κB family and genes related with immune signalling or antigen processing and 

presentation tended to rank higher than other genes (Supplementary Figure S6). This result again justified 

the ability of the model to prioritize important genes in networks, as members of the NF-κB family are 

downstream targets of IKBKB while signalling and antigen presentation genes are supposed to be crucial 

regulating immune function of DCs. 

Furthermore, we analysed the data to identify crucial miRNAs for each Reactome root category. As shown 

in Figure 4B, miRNAs with higher node weights (i.e., stronger perturbation) generally ranked higher in a 

category, as miRNA scores and node weights showed a positive correlation, ranging from 0.19 to 0.98. 

Specifically, miR-503-5p, miR-503-3p, and miR-146-5p had the highest perturbation in the DE miRNAs, 

and they ranked top in 22 out of 26 categories. However, the interaction profile also plays a role, as for 
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example in signal transduction, the three top-ranking miRNAs miR-101-3p, miR-16-5p, and miR-15a-5p 

had lower perturbation than miR-146-5p but interacted with more protein-coding genes. In addition, the 

three above miRNAs and miR-144-3p ranked top in immune system, most probably due to the reason that 

they regulate a large number of protein-coding genes associated with immune signalling pathways. To 

facilitate the visualization of our results, we integrated the data and the identified miRNA-gene interactions 

into a comprehensive, manually curated regulatory network including key pathways in DC priming and 

activation according to the literature (see Materials and Methods; https://vcells.net/dendritic-cell). 

Taken together, the reconstructed regulatory networks underlying different cell functions allowed us to 

identify important miRNA regulators based on their expression and interaction profiles. The miRNAs with 

the highest scores possibly exert regulatory functions, and manipulation of their expression levels may 

enhance the immunogenic potency of DCs. 

Potential miRNA-gene interactions to improve caIKK-DCs 

To characterize the functional role that miRNAs play in caIKK-DCs, we delineated landscapes of miRNA-

gene interactions in the significantly enriched pathways that were found in corresponding categories (see 

Figure 5 and www.synmirapy.net/DC-optimization). The interaction landscapes are a way of systematically 

mapping relevant gene interactions, and in our case they served as a tool for identifying functional miRNA-

gene interactions in DC priming and activation. As we were particularly interested in identifying miRNAs 

that can enhance the caIKK-DCs’ immunogenic potency, we focused on analysing miRNA-mediated gene 

regulation in the category immune system. In this category, we identified hundreds of miRNA-gene 

interactions in significantly enriched pathways, including toll-like receptor, cytokine, and interleukin 

signalling as well as MHC processing and presentation. All of these pathways had positive enrichment 

scores, indicating that the involved genes tended to be upregulated in caIKK-DCs according to our 

analysis. Most protein-coding genes used as indicators of DC activation and maturation (2, 53, 56, 57) 

were found to be upregulated in the enriched pathways (Supplementary Table S8). The activation of NF-

κB signalling led to upregulation of surface proteins that can prime T cells (e.g., CD40, CD70, CD80, and 

CD86), chemokines (e.g., CCL3 and CXCL10) that are necessary for T-cell migration, TNF superfamily 

members that can induce crosstalk between T cells and DCs (e.g., TNF, TNFRSF4, and TNFSF9), and 

cytokines that are responsible for stimulating proliferation and activation of T cells (e.g., CXCL8, IL6, 

IL12A, and IL12B).  

Furthermore, our data showed that the identified DE miRNAs have a regulative influence (represented by 

Pearson correlation ≤ -0.3) on protein-coding genes associated with NF-κB activation, cytokines, 

chemokines, and TFs that are associated with immunophenotypes of DCs (Figure 6). Some of the DE 

miRNAs were found to cooperate with other miRNAs to regulate the expression of a protein-coding gene 

(see Materials and Methods). This mechanism, known as miRNA cooperativity, is characterized by more 

efficient inhibitory effects on the target’s expression compared to the regulation by individual miRNAs (17–

19). Moreover, for most of the identified miRNAs, our analysis proposed specific modulation of their 

expression levels to improve immunogenic potency of DCs. However, in some cases, such as miR- 34a-
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5p and miR-20a-5p, up- or downregulating their expression levels may result in contradictory effects in 

DC-mediated immune response, thereby requiring further analysis and experimental investigation. In the 

following paragraphs, we illustrate and discuss specific functions of the miRNAs in caIKK-DCs. 

Chemokines direct cell migration via induction of chemotaxis. For example, CCL5 and CXCL10 improve 

CD8+ T-cell infiltration (58) and CCL20 plays a role in recruiting regulatory T cells and T helper (Th) 17 

cells (59, 60). CXCL10 is repressed by miR-16-5p and CCL20 is targeted by miR-21a-5p with its 

cooperating miR-25-3p. This suggested that the miRNAs exert an inhibitory function in the recruitment of T 

cells. miR-21a-5p also targets IL12A, a subunit of the inflammatory cytokine IL-12 that is necessary for 

CD8+ T-cell clonal expansion, function and memory (56, 61). 

Control of DC survival is necessary for maintaining their homeostasis (62, 63). We showed that miR-15a-

5p with its cooperating miRNAs (i.e., miR-156-5p and miR-876-5p) and miR-20a-5p target BCL2, and 

miR-101-3p targets MCL1. The repression of the BCL2 family of anti-apoptosis genes by these miRNAs 

suggested their ability to undermine the survival mechanism of DCs. 

miR-424-5p and miR-224-5p can co-repress IRF4, which is a member of the interferon-regulatory family 

and can regulate differentiation of specific DCs that can induce Th 2 cell responses (64). miR-20a-5p and 

miR-144-3p regulate the MAPK signalling pathway by targeting MAPK1 and MAP3K8 respectively, and 

these MAP kinases have been found to activate the IKK complex that triggers NF-κB activation (65, 66) 

and also to regulate release of TNFα by DCs (67). miR-34a-5p has a strong regulative influence on CD44 

whose presence is important for the immune synapse between DCs and T cells that subsequently 

regulates T-cell activation (68) and apoptosis (69). miR-34a-5p also targets TNFAIP8 whose knockdown 

in DCs has been found to promote DC maturation and activation followed by increased proliferation and 

differentiation of T cells (70). miR-9-5p can cooperate with miR-139-5p to repress CXCR4 that is required 

for DC migration into the skin’s draining lymph nodes (71). miR-142-3p with its cooperating miR-429 and 

miR-142-5p target the small GTP-binding protein RAC1 that controls the formation of dendrites in mature 

DCs and their migration toward T cells (72). 

Some identified DE miRNAs target protein-coding genes involved in regulating the DC-mediated secretion 

of cytokines that are important for the T-cell response. The repression of NFATC3 by miR-424-5p and its 

cooperating miR-370-3p suggested a regulating influence on the production of IL-2 that is involved in T-

cell priming (73, 74). STX3 has been shown to play a role in trafficking of IL-6 or MIP-1α in DCs and thus 

regulating their secretion (75) and is targeted by let-7e-5p, miR-146a-5p, and miR-146b-5p with its 

cooperative partner miR-519d-3p. The deficiency of IRAK1 in plasmacytoid DCs abrogates IFNα 

production, leading to a remodulation of T cell function (76–78), and IRAK1 is a target of miR-142-3p. 

Finally, miR-16-5p and miR-15a-5p can cooperate with miR-203a-3p to repress IL-15, an interleukin which 

can induce T-cell proliferation, enhance cytolytic effector cells including natural killer and cytotoxic T cells, 

and reinforce B-cell stimulation (79). A recent in vivo study has shown that an IL15-enhanced DC vaccine 

is a potent delayer of tumour growth, improves mouse survival, and induces a stronger Th1-skewed T-cell 

response (80). The two miRNAs also target the receptor TNFSF9 (also known as CD137), whose 
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stimulation in DCs by its ligand CD137L can lead to secretion of IL-6 and IL-12 and induce T-cell 

proliferation (56, 81, 82). In addition, miR-16-5p and miR-15a-5p were identified to strongly repress IKBKB 

itself. Since both miRNAs were found to be downregulated in caIKK-DCs, this implied a positive feedback 

loop in NF-κB signalling as the miR-15/16 cluster is a transcriptional target of NFKB1 (83). The results 

suggested both miRNAs as promising candidates for improving the immunogenic potency of caIKK-DCs, 

as they not only have the ability to strengthen NF-κB activation but also to improve DC-induced immune 

responses through regulating cytokines and chemokines. 
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DISCUSSION AND CONCLUSIONS 

We applied a systems biology approach to investigate the regulatory functions of miRNAs in caIKK-DCs. 

Due to the promiscuous binding of miRNAs, it is challenging to identify relevant miRNA-gene interactions 

for experimental validation and cell re-engineering (84, 85). Our approach, which integrates transcriptomic 

profiling, networks of curated signalling pathways, and a prioritisation score, allows the systematic 

identification of condition-specific miRNA-gene interactions.  

Through RNA sequencing of monocyte-derived DCs matured with a cytokine cocktail and electroporated 

with caIKK mRNA, we identified DE protein-coding genes and miRNAs in the caIKK-DCs. The identified 

DE miRNAs correctly separated the caIKK-DCs from the control, suggesting a well-defined transcriptional 

response to caIKK that is consistent with our understanding that miRNAs act as post-transcriptional 

regulators of expression in DC differentiation and function (86). Among the identified miRNAs there were 

several, such as miR-15a-5p, miR-16-5p, miR-20a-5p, and miR-424-5p, which target a considerable 

number of genes. Such hubs have been shown to be important regulators, as they represent sites of 

signalling convergence in gene regulatory networks and coordinate cell development and function (87–

89). In contrast, other DE miRNAs, such as miR-15a-3p and miR-9-3p, exert a narrow function by 

regulating the expression of specific protein-coding genes in the caIKK-DCs. 

Integration of the transcriptomic response into the curated pathways from Reactome provides an 

understanding of the functional changes at the pathway level. The gene set enrichment analysis 

highlighted cytokine, interleukin, and toll-like receptor signalling pathways that are involved in regulating 

various aspects of innate and adaptive immune responses (90). Such results may be compromised when 

other pathway databases such as KEGG (91) and WikiPathways (92) are employed, as the relevant 

pathways and molecular interactions in the pathways are different from Reactome (93, 94). To circumvent 

this issue, one possibility could be to extract the overlapped networks between the different databases of 

pathways; however, this is not always possible due to the differences in annotation of genes and 

interactions. An alternative option is to integrate the data and the detected miRNA-gene interactions into 

comprehensive, manually curated regulatory networks based on the current literature on DC regulation. 

This way, one can put the newly discovered relevant interactions into the context of the existing 

knowledge and facilitate the mining and interpretation of the omics data (95, 96). However, when used 

inappropriately, knowledge-based networks mainly rediscover existing knowledge but may overlook 

insights gained from the evaluation of an all-encompassing network.  

We reconstructed regulatory networks from Reactome pathways and used them to rank genes and 

miRNAs according to their predicted impact on DC function. Systematic computation of such a ranking 

supports and facilitates experimental efforts, allowing them to focus on the most promising candidates. 

Gene prioritization algorithms have been widely used in recent times to rank genes in networks (97, 98). 

For instance, the PageRank algorithm designed to analyse the relative importance of websites was 

adapted to identify crucial genes in biological networks (99), and diffusion-based methods were used on 

dense networks to prioritize genes (100). We used a gene prioritization algorithm that utilizes the guilt-by-
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association principle to rank genes based on their own perturbation, i.e., differential expression profile, 

and their weighted distances to other perturbed genes in a network. The algorithm prioritized dozens of 

miRNAs, of which miR-16-5p and miR-15a-5p are the top candidates to regulate the immunogenic 

potency of DCs. 

Finally, an in-depth analysis of the identified miRNA-gene interactions in immune signalling pathways 

showed diverse roles of the DE miRNAs in regulating DC-mediated immune response. For instance, miR-

16-5p and miR-15a-5p may have strong regulatory influence on IKBKB that activates NF-κB and on 

TNFSF9 that controls cytokine secretion of DCs; both miRNAs could have weak inhibitory effects on BCL2 

that maintains DC homeostasis and on cytokines (such as CXCL10 and IL15) that regulates T-cell 

response but may cooperate with other miRNAs to more efficiently repress the protein-coding genes. 

While these predictions were made based on validated miRNA binding sites and negative correlation 

between the expression levels of miRNAs and their targets, they cannot quantify the strength of individual 

repression effects (101). The results suggested both miRNAs as potential candidates for improving 

immunogenic potency of caIKK-DCs through strengthening NF-κB stimulation and also synergistically 

regulating other genes related with immunogenic potency.  

For most identified crucial miRNAs, our analysis suggested up- or downregulation of their expression 

levels to improve immunogenic potency of DCs, but in some cases the pleiotropic nature of miRNAs in 

regulating gene expression makes it difficult to decide how to experimentally modulate their expression. In 

addition, it is worth noting that the results reflect the early transcriptional response that may differ from that 

in the long-term. From an experimental perspective, the next step would be to analyse the kinetics of the 

expressions of miRNA and mRNA after the activation of NF-κB. Further, it remains to be tested how co-

electroporating the selected miRNAs, or artificial antagonists thereof, with caIKK or introducing them into 

the cells after a delay will alter the DCs’ phenotype and immunogenic potency. 

Taken together, our approach enables the systematic analysis and identification of functional miRNA-gene 

interactions that can be experimentally tested for improving DC immunogenic potency. Additionally, since 

the approach is not specific for DCs, it can be adapted to study miRNAs in other immune cells and 

relevant immunotherapies. 
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DATA AVAILABILITY 

The RNA-seq data of DCs is deposited in ArrayExpress. 

The database for selecting functional miRNA-gene interactions with therapeutic potential in DCs for 

experimental investigation is available at: www.synmirapy.net/DC-optimization.  

The curated DC network containing identified miRNA-gene interactions and the RNA-seq data are 

available at https://vcells.net/dendritic-cell. 
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The identified differentially expressed genes in DCs are used for pathway enrichment analyses and 

reconstruction of gene regulatory networks. A network topology-oriented scoring model is employed to 

prioritize miRNAs in different pathway categories of DCs. Finally, a literature review of the top ranking 

miRNAs in immune signalling pathways elaborates their potential function for improving immunogenic 

potency of caIKK-DCs.   
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category’s number of significantly enriched pathways that are regulated by the miRNA. For example, if an 

entry shows n with a colour corresponding to m on the figure legend, it means a miRNA regulates n 

targets in m significantly enriched pathways of a category. The bar plot on the left indicates the per-

category percentage of the protein-coding genes (black bars) that were found in our RNA-seq data, with 

the total number of molecules in the category given next to it. The bar plot on the right indicates the 

percentage of enriched pathways (black bars) per category, with the total number of pathways in the 

category given next to it. The figures at the bottom tabulate how many categories a miRNA regulates. The 

top annotation shows statistics from the differential expression analysis for the miRNAs (i.e., fold-change 

in log2 scale and FDR). (B) The network shows miRNA-gene interactions in the category signal 

transduction. The four miRNAs (miR-16, miR-15a, miR-20a, and miR-424) that have the largest number of 

targets were selected. The node size is proportional to the node degree. The node colour represents a 

gene’s fold-change in log2 scale. The node shape denotes the type of a gene, including protein-coding 

(square) and miRNA (circle), with their names shown in blue and black labels, respectively. TFs are drawn 

as diamonds with their names shown in purple font. The colour of node borders represents different 

categories of annotated immune genes, with the gene names given as labels. The edge colour shows 

Pearson correlation coefficients between the expression of miRNAs and that of their targets. 
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genes. On the heat map grid, the rank of a miRNA in a category is given as a number, and the colour 

represents the number of protein-coding genes targeted by it. For example, if an entry shows k with a 

colour corresponding to n on the figure legend, it means that the miRNA ranks kth (1st is the highest 

ranking) and regulates n targets in the category; A white grid cell means that the miRNA has no targets in 

the category and thus no ranking. The top annotation shows node weights of the miRNAs. The numbers in 

parentheses on the left side list how many genes and edges the reconstructed regulatory network of the 

category possessed. The box plots on the left show the distribution of edge weights (denoted by Pearson 

correlation coefficients between genes) in the networks. The bar plots on the right show the Pearson 

correlation coefficients between a miRNA’s perturbation and its score. The numbers at the bottom show 

the times miRNAs ranked 1st in the pathway categories. 

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.09.10.287847doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.10.287847


 

Figure 5. Landscape of miRNA-mediated DC gene regulation in immune signalling pathways. The 

heat map has two components that share a set of columns corresponding to 98 DE protein-coding genes 

that are targeted by the DE miRNAs. In the upper component, rows represent pathways from the category 

immune system, and grid cell colours indicate whether a protein-coding gene is involved in the pathway 

(grey), involved in the pathway and an immune gene (grey grid cells with red borders), or not involved in 

the pathway (white). The figures next to a pathway name indicate how many DE immune genes (left) and 

how many protein-coding genes found in our RNA-seq data (right) belong to it. The top annotation 

highlights genes with different characteristic immune function using a colour code. The annotation on the 

right side shows the statistics of the gene set enrichment analysis including the enrichment score and the 

FDR. The bar plot between the heat map components shows the log2 fold-change of the genes in caIKK-

DCs (blue: downregulated; red: upregulated). In the lower component, the rows represent the ranking 

miRNAs in immune system (from high to low) and the grid cells show the regulative influence of a protein-

coding gene by a miRNA, which is estimated by the Pearson correlation coefficients between their 

expression profiles. If a gene is a known immune gene, the corresponding grid cell has a red border. The 

numbers in the parentheses next to the miRNA names show the number of DE immune genes and the 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.09.10.287847doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.10.287847


number of DE protein-coding genes that are regulated by a miRNA. The right annotation shows the results 

of the differential expression analysis including the log2 fold-change of miRNA expressions and their 

FDRs. For lack of space, we show only enriched pathways with more than 30 protein-coding genes picked 

up in the RNA-seq data, and in each pathway, only a subset of protein-coding genes that are estimated to 

be strongly influenced by the miRNAs (Pearson correlation ≤ -0.3) are shown. The complete landscape of 

miRNA-gene interactions in immune system is shown in Supplementary Figure S7. 
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improve immunogenic potency of caIKK DCs (: upregulation; : downregulation; : both direction due to 

the pleiotropic nature of miRNA in regulating gene expression). Connections between miRNAs and 

protein-coding genes show regulative influence of protein-coding genes by miRNAs (strong: Pearson 

correlation ≤ -0.5; weak: -0.3 ≤ Pearson correlation < -0.5). The connections between protein-coding 

genes and phenotypes denote how a gene regulates a phenotype, and such information was obtained 

from literature. For instance, miR-424-3p and miR-224-5p target the IRF4 that is known to positively 

regulate differentiation of DCs. The two miRNAs cooperatively repress the protein-coding gene, and the 

downregulated miR-424-3p exerts a weak inhibitory effect on the expression of IRF4. A detailed 

discussion of the results can be found in the main text. The corresponding miRNA-gene interactions in 

immune system and annotated gene-phenotype associations can be found in Supplementary Table S9 

and Table S10, respectively.  
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