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Abstract

Accumulating evidence suggests that visual perception operates in an oscillatory fashion
at an alpha frequency (around 10 Hz). Moreover, visual attention also seems to operate
rhythmically, albeit at a theta frequency (around 5 Hz). Both rhythms are often associated
to "perceptual snapshots" taken at the favorable phases of these rhythms. However, less is
known about the unfavorable phases: do they constitute "blind gaps," requiring the observer
to guess, or is information sampled with reduced precision insufficient for the task demands?
As simple detection or discrimination tasks cannot distinguish these options, we applied a
continuous report task by asking for the exact orientation of a Landolt ring’s gap to estimate
separate model parameters for precision and the amount of guessing. We embedded this
task in a well-established psychophysical protocol by densely sampling such reports across
20 cue-target stimulus onset asynchronies in a Posner-like cueing paradigm manipulating
involuntary spatial attention. Testing the resulting time courses of the guessing and precision
parameters for rhythmicities using a fast Fourier transform, we found an alpha rhythm
(9.6 Hz) in the precision parameter and a theta rhythm (4.8 Hz) in the guess rate for invalidly
cued trials. These results indicate that the perceptual alpha rhythm reflects fluctuations in
spatial resolution, while the attentional theta rhythm provides periodic enhancement of this
resolution. We propose a tentative model for this interplay and argue that both rhythms
result in an environmental sampling characterized by fluctuating spatial resolution, speaking
against a strict succession of blind gaps and perceptual snapshots.
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1 Introduction

In our everyday life, we experience our visual perception as a seamless, continuous flow. More
than a century ago, Bergson (1911, p.332) introduced the metaphor of a "cinematograph inside
us" taking "snapshots [...] of the passing reality," which seems to contradict our everyday
experience. With his film metaphor, he postulated our visual perception to consist of a succession
of "perceptual snapshots" and "blind gaps," comparable to a filmstrip. In the last two decades,
this idea has inspired researchers to accumulate evidence for a rhythmic succession of such
snapshots (see VanRullen and Koch, 2003; VanRullen, 2016, for a review). However, while this
research has demonstrated that behavioral accuracy is best during the favorable “peaks” of this
rhythm, less is known about the less favorable “troughs” in between two snapshots: do they
reflect veritable gaps where nothing is processed, or moments of insufficient precision?

Numerous studies have demonstrated that visual perception operates rhythmically, such that
perceptual snapshots are taken at favorable phases of the rhythm (VanRullen, 2016). Empirical
evidence for perceptual rhythms comes from studies demonstrating the effect of the phase of
ongoing neuronal oscillations in the alpha range (8-12 Hz) at the moment of stimulus onset on
stimulus detection (Busch et al., 2009; Mathewson et al., 2009) or detection of TMS-induced
phosphenes (Dugué et al., 2011). Moreover, the speed of a person’s alpha rhythm determines the
temporal resolution of their visual perception (Samaha and Postle, 2015). Accordingly, Dugué
and VanRullen (2017) have proposed that the occipital cortex takes perceptual snapshots at its
natural frequency, i.e. the alpha rhythm (Rosanova et al., 2009).

Another type of rhythm has been found in studies on covert attention, i.e. selective visual
processing in the absence of eye movements (Carrasco, 2011). Numerous studies have investigated
this “blinking spotlight of attention” (VanRullen et al., 2007) using a psychophysical dense-
sampling approach, in which a hypothetical ongoing brain rhythm is reset by a visual event
(e.g. a visual cue; Lakatos et al., 2009) and performance is probed with a target stimulus at
some delay following the resetting. Densely sampling performance across many delays with
fine temporal resolution makes it possible to submit the resulting performance time course to
a spectral analysis , e.g. a fast Fourier transform (FFT). With this approach, theta rhythmic
(4-7 Hz) reorienting of spatial attention has been demonstrated in difficult search tasks (Dugué
et al., 2015b, 2017), forced choice tasks with two horizontally distributed target locations (Dugué
et al., 2016; Landau and Fries, 2012; Song et al., 2014; Senoussi et al., 2019) and even in paradigms
evoking sustained attention (Fiebelkorn et al., 2013). Helfrich et al. (2018) and Fiebelkorn et al.
(2018) have suggested that this attentional theta rhythm originates from the fronto-parietal
attentional network.

How might perceptual and attentional rhythms cooperate? Dugué and VanRullen (2017) have
proposed that the occipital cortex samples visual information at its natural alpha frequency
while receiving theta rhythmic feedback from higher-order (attentional) brain regions whenever
attention is deployed. This feedback may then reset the occipital alpha rhythm, which in turn
results in phase-coupling of theta and alpha rhythms and superimposes a theta rhythm in
perceptual performance. Fiebelkorn and Kastner (2019) proposed that the attentional theta
rhythm reflects moments of sampling at the attended location and moments of suppressed
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sampling, providing moments of opportunity for shifting covert or overt attention to a new
location. Furthermore, they suggested other rhythms to be nested within the theta rhythm, such
that its sampling-phase is associated with gamma and beta oscillations, while its shifting-phase
is associated with alpha oscillations.

Interpretations of such rhythms in perceptual performance have often focused on the rhythm’s
favorable phase, as illustrated by terms like “sampling” or “perceptual snapshots”. By contrast,
the nature of the unfavorable phases has received much less attention. The “perception as
snapshots” metaphor implies that no information is processed during unfavorable moments in
between two snapshots, just like no image is represented on film in between two movie frames,
leaving the observer virtually blind. If a stimulus occurs during such a blind gap, the observer
would have to guess. Alternatively, perceptual rhythms may constitute fluctuations in precision
(e.g. spatial resolution), such that unfavorable phases represent moments when precision is
insufficient for the task at hand. Notably, in a forced-choice detection or discrimination task,
poor performance under insufficient precision can be indistinguishable from mere guessing.
However, using a continuous report task, the contribution of guessing and precision to overall
performance can be estimated independently (Suchow et al., 2013). In brief, participants are
instructed to observe a critical stimulus feature (e.g. orientation of the gap in a Landolt ring),
and then reproduce that feature as accurately as possible. Across trials, the distribution of
reproduction errors is well described by a mixture of two independent processes: a circular-
Gaussian distribution around the stimulus’ true feature value whose standard deviation indicates
the (im)precision of the observer’s representation, and a uniform distribution indicating the
probability of not having any representation at all, i.e. guessing (Figure 1). For example, Asplund
et al. (2014) demonstrated that the attentional blink impairs performance specifically by reducing
the probability of representing the target, but not by reducing perceptual precision. By contrast,
Harrison et al. (2016) showed that visual masking mostly degraded the precision of stimulus
representations rather than reducing the probability of having any representation.

The present study made use of this mixture modelling approach to investigate whether rhythms
in perceptual performance indicate fluctuations in spatial resolution or in guessing. To this
end, we used a continuous report task and asked participants to report the orientation of the
gap of a Landolt ring, which has been demonstrated as a useful stimulus for testing spatial
resolution (Anton-Erxleben and Carrasco, 2013; Gobell and Carrasco, 2005; Yeshurun and
Carrasco, 1999). Prior to the target ring, we presented an uninformative exogenous cue in order
to capture automatic (involuntary) attention and to reset ongoing perceptual and attentional
rhythms, and sampled participants’ performance across 20 densely spaced cue-target stimulus
onset asynchronies (SOAs, see Landau and Fries, 2012, for a similar paradigm).

Given that the cue was uninformative about the target’s location, we predicted a rhythmic
reorienting of the attentional spotlight. Specifically, we expected to find a theta rhythm in
the time course of either the precision or the guessing parameter of the mixture models across
SOAs in both valid and invalid trials. Moreover, we expected this rhythm to be in anti-phase
for valid and invalid trials, indicating that the spotlight of attention moves back and forth
between locations, thereby improving performance only at one position at a time. Importantly,
we reasoned that such a rhythm in the time course of the guessing parameter would indicate a
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succession of perceptual snapshots and blind gaps, whereas a rhythm in the precision parameter
would indicate a succession of moments with varying spatial resolution.

2 Methods

This study comprises a pilot experiment and the main study. The purpose of the pilot was to
determine the earliest cue-target SOA with a robust validity effect (i.e. higher performance at the
cued location; see below), which is indicative of the shortest latency of attentional deployment.
This SOA then served as the shortest SOA in the main study. Apparatus and procedures were
identical in both experiments unless stated otherwise.

Design and sample size of the main study were preregistered (see Data Accessibility). Any
deviations from the preregistration and unregistered, exploratory analyses are explicitly indicated
as such.

Both studies were conducted in accordance with the ethical standards laid down in the World
Medical Association Declaration of Helsinki (World Medical Association, 2013) and were approved
by the ethics committee of the faculty of psychology and sports science, University of Muenster
(#2018-36-RM).

2.1 Participants

Fourteen participants, including the first author, participated in the pilot study (10 women, all
right-handed, 5 right-eye dominant, aged 19–30 years, Mage = 24.2, SDage = 3.4). An additional
participant was not able to perform the task and quit the experiment early.

Fourteen participants participated in the main study (10 women, 13 right-handed, 11 right-
eye dominant, aged 18–28 years, Mage = 21.4, SDage = 2.6). An additional participant did
not complete the preregistered minimum number of sessions and was therefore excluded. One
participant had previously participated in the pilot experiment. The sample size was determined
a priori based on similar studies using a dense sampling approach (Dugué et al., 2015b, 2017;
Fiebelkorn et al., 2013; Landau and Fries, 2012; Senoussi et al., 2019).

All participants in both studies were recruited at the University of Muenster, had normal or
corrected-to-normal vision, provided written informed consent, and were compensated with
course credits or 8€/h.

2.2 Apparatus

Participants performed the experiment in a dimmed room, seated in a fixed chair in front of
a calibrated 24” Viewpixx/EEG LCD Monitor (120 Hz refresh rate, 1 ms pixel response time,
95% luminance uniformity, 1920*1080 pixels resolution; www.vpixx.com). A chin rest was used
to stabilize the head position and keep the distance to the screen at approximately 86 cm. A
stationary eye-tracker (EyeLink 1000+; www.sr-research.com) was used for monocular tracking
of the participant’s dominant eye at 1000 Hz sampling rate. Calibration of the eye-tracker was
carried out using the default nine-point calibration grid. Calibration took place at the beginning

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.10.283069doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.10.283069
http://creativecommons.org/licenses/by/4.0/


Attentional theta enhances alpha rhythmic sampling 5

of each session and, if necessary, in experiment breaks or when participants broke fixation in
three consecutive trials. Responses were given with a Logitech RX250 optical USB mouse
(www.logi.com). The experiment was presented using Matlab 2018b (www.mathworks.com) and
the Psychophysics Toolbox (Brainard, 1997) on a Linux system (Intel Core i5–3330 CPU, a 2
GB Nvidia GeForce GTX 760 GPU, and 8 GB RAM).

Millisecond precision of the stimulus presentation timing was ascertained by means of a photodiode
test prior to the experiment, following recommendations outlined in De Clercq et al. (2003). For
all critical events, expected on-screen time differed from measured on-screen time by less than
0.6 ms on average (see Supporting Information, Figure 1 for details).

2.3 Stimuli

For an overview of the stimulus arrangement see Figure 1A. All stimuli were presented on a
medium gray background (52.2 cd/m2). Two placeholders indicating target locations (thin square
outlines, size = 2.8° visual angle, 102.3 cd/m2) were positioned at 3.5° to the left and right of the
central fixation marker (diameter = 0.7°, black and white, 0.2 cd/m2 and 102.3 cd/m2; see Thaler
et al., 2013). The cue consisted of four white dots (102.3 cd/m2, diameter = 0.21°) surrounding
one of the two target locations (0.6° distance to the imaginary outline of the target location
boundary and 1.26° distance to the edge of the upcoming target). The Landolt ring (diameter =
1.4°, thickness = 0.175°) was centered at one of the two target locations and had a gap (size =
0.05°) at a randomly drawn position (0 to 360°). The Landolt ring’s gray tone was individually
determined for each participant and was adjusted by means of a staircase algorithm (see below)
throughout the whole experiment (M = 43.99 cd/m2, SD = 1.32 cd/m2). For the response, a
closed dark gray ring (diameter = 2.8°, thickness = 0.35°, 36.1 cd/m2) was presented at the
center of the screen.

[Figure 1 about here.]

2.4 Procedure

The procedures were similar for the pilot experiment and the main study, except for the number
of sessions and the range of SOAs tested.

The pilot experiment comprised a single recording session of 480 trials. Prior to those test trials,
participants performed between 12 and 36 easy practice trials with higher contrast to familiarize
with the task and 84 test-like trials for finding an appropriate starting contrast for the staircase
procedure (see below). Only three SOAs were probed: 128 ms, 159 ms and 192 ms. These SOAs
were chosen to cover the time interval in which the earliest facilitatory effects of exogenous cueing
have been reported (cf. Carrasco, 2011).

The main study comprised nine recording sessions of approximately 1 h-duration each to collect
a total of 3840 trials per participant. The first session (480 trials) served as a practice session to
familiarize the participant with the task and to give the staircase a sufficient number of trials
for finding an appropriate target contrast for the remaining 8 test sessions. Each test session
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consisted of 16 practice trials and 480 test trials. During practice trials, participants received
feedback about the correct gap position, the position they reported and the error in degrees.
Each session was divided into 30 blocks of 16 trials separated by small breaks (self-paced, but at
least 15 s). A total of 20 SOAs ranging from 192 ms to 983 ms in steps of 41.65 ms were tested,
leading to 96 trials per SOA and validity condition (see below).

The trial sequence is illustrated in Figure 1A. Every trial started with a fixation cross and two
placeholders for target locations for 1500 to 1900 ms (randomized across trials), followed by a
non-informative visual cue that was flashed for 33.3 ms around one of the two potential target
locations. After a variable SOA following the cue (see above), the target was flashed for 33.3 ms
at either the previously cued location (valid, 50%) or at the opposite location (invalid, 50%).
Target offset was followed by a brief blank screen for 116 ms. Finally, a gray ring was presented
at the center of the screen and participants reported the position of the gap in the target Landolt
ring. Participants were asked to deliver their response with a mouse click as accurately as possible
within 5 seconds. Trials with too slow responses were aborted and repeated at the end of the
respective session. After response, an inter-trial-interval with a blank screen was presented for a
random duration from 300 to 600 ms. Cue and target positions were counterbalanced within
each block; SOAs were counterbalanced within each session.

To ensure that the task was challenging, but not too difficult, and to reduce the variability
between participants, we used an adaptive staircase procedure (QUEST; Watson and Pelli, 1983),
which adjusted the target’s contrast to keep accuracy pinned at 70% (for mean and standard
deviations of presented luminances; see Stimuli). On each trial, a target contrast was selected
based on the data from the 100 preceding trials. To this end, accuracy was operationalized by
artificially dichotomizing the continuous reports and considering all responses within ± 90° from
the correct gap position a “hit”.

2.5 Fixation monitoring

Participants were required to keep fixating the central fixation marker during the interval from
800 ms before cue onset until target offset. Online fixation monitoring automatically aborted
trials in which fixation was broken to repeat them at the end of the respective session. Broken
fixations were defined as eye movements > 1.4° away from the center of the fixation cross or
blinks (percentage of aborted trials due to broken fixations across participants in pilot study:
M = 5.72%, SD = 5.24%; main study: M = 6.91%, SD = 4.55%). Note that this criterion for a
broken fixation is more conservative than the preregistered value of 2°, which would have allowed
participants to even fixate the border of the target locations.

2.6 Analysis

The analysis was performed using R (Version 3.6.1) and RStudio (Version 1.2.1335) with the
circular package (Agostinelli and Lund, 2017). Mixture models were estimated using the
MemToolbox (Suchow et al., 2013) under Matlab 2020a (www.mathworks.com). All scripts are
publicly available (see Data Accessibility).
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The error for each trial was defined as the shortest angular distance between the reported and
the true gap position, ranging from -180° to 180° with 0° indicating a perfect match (see Figure
1B). Separately for each participant, SOA and validity condition, the resulting error distribution
was modelled using a standard mixture model with parameters sd (precision) and g (guessing;
see Figure 1B).

To test for a validity effect (indicating a facilitation at the cued position), paired t-tests were
performed to compare g and sd between valid and invalid trials. For the pilot experiment,
two-tailed t-tests were performed separately for each SOA using a Bonferroni correction leading
to an adjusted alpha level αcorr = .05

3 . For the main study, a one-tailed t-test was performed
on data of the first SOA (192 ms) and on data averaged across the first three SOAs (192 ms to
275 ms).

2.6.1 Spectral Analysis

The time courses of model parameters sampled across SOAs in the main study were obtained
separately for each participant and validity condition. These time courses were then averaged
across participants and detrended (e.g. Fiebelkorn et al., 2013, 2018; Huang et al., 2015; Huang
and Luo, 2020; Song et al., 2014; Re et al., 2019) to eliminate both the DC component and slow
trends which would otherwise dominate the first frequency bin. The linearly detrended time
courses were z-scaled to make spectral amplitudes comparable between sd and g and analyzed
with an FFT yielding amplitude values for 10 frequencies ranging from 1.2 to 12 Hz with a
frequency resolution of 1.2 Hz.

We also conducted an exploratory analysis in which valid and invalid trials were collapsed before
mixture modelling and subsequent spectral analysis, leading to 192 instead of 96 trials per
mixture model.

For statistical testing, we performed permutation tests to bootstrap a spectral amplitude
distribution under the null hypothesis that there is no temporal structure (within or across
validity conditions, respectively). A total of 10.000 permuted datasets were created by shuffling
the SOA labels of the original dataset within participants and validity conditions (or collapsed
across validity for the exploratory analysis). The same preprocessing and FFT as described
above were then carried out for each permuted dataset, resulting in a probability distribution
of spectral amplitudes under the null hypothesis. To test for significant rhythms, the observed
amplitude in each frequency bin was then compared to this probability distribution.

To correct for multiple comparisons, a Bonferroni correction of the alpha level was applied
to control for the 10 tests across frequencies in the preregistered analysis and the exploratory
analysis, leading to a corrected alpha level of αcorr = .05

10 = .005. Thus, the observed amplitudes
were compared to the .995-Quantile of the distribution obtained from the permuted data.

For significant amplitude peaks, an additional phase analysis was conducted to test if the phase
at that frequency was consistent across participants. Unlike the analysis of spectral amplitude,
which was based on an FFT of the grand-averaged parameter time courses, the analysis of phase
was based on FFTs computed separately for each single participant’s detrended and z-scaled
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time course. A Rayleigh-test was used to test for significant phase concentration against the null
hypothesis of a uniform phase distribution (Pewsey et al., 2013; Watson and Williams, 1956).

3 Results

Data and analysis scripts are publicly available (see Data Accessibility). The analysis is focused
on the mixture model parameters g and sd. Corresponding time courses of raw mean absolute
errors are displayed in Figure 2 in the Supporting Information.

3.1 Pilot experiment

Mixture model parameters g and sd are displayed in the Supporting Information, Figure 3. The
guessing parameter g was lower in the valid than in the invalid condition. Two-tailed paired
t-tests corrected for multiple comparisons showed a significant difference only for 192 ms, i.e. the
longest cue-target SOA tested (125 ms: t(13) = −1.45, p = .17; 158 ms: t(13) = −0.27, p = .80;
192 ms: t(13) = −3.90, p = .002). For the precision parameter sd, none of the SOAs showed
a significant difference (125 ms: t(13) = 1.28, p = .22; 158 ms: t(13) = 0.69, p = .50; 192 ms:
t(13) = 1.50, p = .16).

Based on these results, 192 ms was selected as the shortest SOA for the main study.

3.2 Main study

3.2.1 Guessing parameter g

The guessing parameter g at the 192 ms SOA only showed a tendency of being lower in valid
compared to invalid trials (one-tailed t-test: t(13) = −1.46, p = .08). When merging the first
three SOAs covering a time window of 83 ms from 192 ms to 275 ms after cue onset, we found a
significantly lower g in valid compared to invalid trials (one-tailed t-test: t(13) = −1.86, p = .04,
see Figure 2).

[Figure 2 about here.]

In the exploratory analysis, an FFT of the g time course, collapsed across validity conditions,
revealed a peak in the amplitude spectrum at 4.8 Hz (p = .0009, maintained after Bonferroni
correction; Figure 3B). At this frequency, a Raleigh-test showed marginally significant phase-
consistency across participants (R = 0.46, p = .051; Figure 3D).

In the preregistered analysis, an FFT of the g time courses (Figure 3A), computed separately
for valid and invalid trials, also revealed a peak in the amplitude spectrum at 4.8 Hz in
the invalid condition (p = .018; Figure 3B). However, this peak was not maintained after
Bonferroni correction (i.e. corrected alpha level of α = .005; Figure 3C). A Rayleigh-test found
significant phase-consistency across participants for the 4.8 Hz bin in the invalid condition
(R = 0.46, p = .047).
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3.2.2 Precision parameter sd

Precision sd was not significantly lower in valid than in invalid trials, neither at the first SOA
(192 ms; one-tailed t-test: t(13) = 0.26, p = .60), nor when the first three SOAs (192 ms to
275 ms) were merged (one-tailed t-test: t(13) = .03, p = .51).

In the exploratory analysis, an FFT of the sd time course, collapsed across validity conditions,
did not yield any significant amplitude peaks (but note the peak at 9.6 Hz in Figure 4B).

In the preregistered analysis, an FFT of the sd time courses (Figure 4A), computed separately
for valid and invalid trials, revealed significant peaks in the amplitude spectrum at 9.6 Hz in
the invalid condition (p = .002, maintained after Bonferroni correction) and at 10.8 Hz in the
valid condition (p = .038, not maintained after Bonferroni correction; Figure 4B). For both peaks
Rayleigh-tests found significant phase-consistency across participants (9.6 Hz in invalid condition:
R = 0.47, p = .045; see Figure 4D; 10.8 Hz in valid condition: R = 0.46, p = .047).

[Figure 3 about here.]

[Figure 4 about here.]

4 Discussion

We tested the hypothesis that perceptual and attentional rhythms are better characterized as
oscillations in spatial resolution than as an alternating succession of perception during "perceptual
snapshots" and guessing during "blind gaps." To this end, we used an exogenous cueing task and
dense sampling of cue-target SOAs (similar to Landau and Fries, 2012). Importantly, participants
reported the position of a small gap in a Landolt ring in a continuous report task, allowing us
to estimate their precision separately from guessing (Suchow et al., 2013). We expected either
precision or guessing to oscillate at a frequency in the theta range, and in counter-phase for
valid and invalid cues. Instead, we found a theta rhythm (4.8 Hz) for the guessing parameter for
data collapsed across both cueing conditions, which was readily evident for data collapsed across
both cueing conditions but was also present in invalid trials in particular, and an alpha rhythm
(9.6 Hz) for the precision parameter, mostly for invalid trials.

4.1 Exogenous cueing of spatial attention

In order to induce covert shifts of spatial attention, we used a cueing procedure with exogenous,
uninformative cues (i.e. 50% validity). Using such a cue, numerous studies have demonstrated
improved performance for valid compared to invalid trials at short SOAs, indicating a transient
and automatic shift of attention (Carrasco, 2011). Indeed, we found a similar validity effect in
the form of reduced guessing at early SOAs between 192 ms in the pilot study to 275 ms in the
main study. The validity effect might have been delayed in the main study because the minimal
SOA was longer and SOAs were much longer on average compared to the pilot. Several studies
have demonstrated that the range of tested SOAs can affect participants’ temporal expectations,
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which in turn can affect the latency even of "automatic," exogenous cueing effects (Milliken et al.,
2003; Lamy, 2005). Importantly, while the validity effect itself was only transient, as expected
with exogenous cues, the cue’s main purpose was a temporal and spatial reset of the ongoing
attentional rhythm. Thus, while the transient validity effect demonstrates the cue’s effectiveness,
we were most interested in sustained rhythmicities in performance following this reset.

4.2 Attentional theta rhythm

As predicted, we found a strong rhythmic fluctuation across SOAs in performance with a frequency
of 4.8 Hz (Figure 3). A theta rhythm in behavioral performance has been attributed to a rhythm
in the deployment of attention (VanRullen, 2016; Dugué and VanRullen, 2017) resulting from
the succession of moments of sampling at the attended location and moments of suppressed
sampling, providing windows of opportunity for shifting covert or overt attention to a new
location. According to the “Rhythmic Theory of Attention” (Fiebelkorn and Kastner, 2019),
the purpose of this temporal organization is to resolve potential conflicts between sensory and
(oculo-)motor functions.

We found this theta rhythm only for the guessing parameter and, contrary to our expectation,
the rhythm was strongest when data from valid and invalid trials were collapsed. The latter
finding indicates that the theta rhythm was not in anti-phase at valid and invalid locations,
in which case the two rhythms should have canceled out when collapsed. This is particularly
surprising given that Landau and Fries (2012), using a similar exogenous cueing procedure, found
antiphasic performance rhythms for valid and invalid trials, indicating rhythmic attentional
reorienting between both locations. However, while we could not confirm this antiphasic pattern,
tentative evidence for reorienting was provided by the finding that the theta rhythm was stronger
in invalid than in valid trials. While only the analysis of both conditions combined yielded a
rhythm strong enough to survive the severe correction for multiple (i.e. 10-fold) tests, the invalid
condition also showed a pronounced rhythm (p = .018, uncorrected) and phase-concentration,
while the valid condition clearly did not. This result is, in fact, in line with previous findings:
performance on invalid trials critically requires reorienting attention away from the cued to the
non-cued location, whereas no such reorienting is required in valid trials (Dugué et al., 2016;
Senoussi et al., 2019). As such reorienting is only possible during the windows of opportunity
provided by certain phases of the attentional theta rhythm (Fiebelkorn and Kastner, 2019),
performance is phase-locked to this clocking rhythm. Thereby, when sampled across many trials,
this phase-locking is expected to yield a rhythmic fluctuation of performance, stronger in the
invalid condition. Hence, we argue that our data are indicative of a periodic reorienting of spatial
attention.

4.3 Perceptual Alpha Rhythm

In addition to the theta rhythm, we found a significant rhythm in the precision parameter at a
frequency of 9.6 Hz for invalid trials (Figure 4). Such an alpha rhythm is frequently found in
behavioral studies as well as in studies on the impact of ongoing brain rhythms on perceptual
performance, and has been interpreted as a perceptual rather than as an attentional rhythm
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(see VanRullen, 2016, for a review). Dugué and VanRullen (2017) have proposed that it reflects
the occipital cortex’ “natural” sampling rhythm, meaning that the rhythm persists even in the
absence of direct sensory stimulation and without attentional requirements (Rosanova et al., 2009).
Furthermore, they have proposed that the alpha rhythm can exist alongside with the attentional
theta rhythm in tasks that do require deployment of attention. Specifically, they assume that
theta-rhythmic feedback from higher-order (attentional) areas to the occipital cortex resets the
occipital alpha rhythm, thereby inducing a theta rhythm in this area as well. Consequently, the
occipital theta and alpha rhythms are expected to be phase-coupled. This reasoning explains not
only why we found evidence for both rhythms, but also the prevalence of the alpha rhythm in
invalid trials: if attentional reorienting required in invalid trials is phase-locked to the attentional
theta rhythm (Fiebelkorn and Kastner, 2019), and if the perceptual alpha rhythm in turn is
reset by and hence phase-coupled to the theta rhythm, performance in invalid trials is expected
to fluctuate at an alpha frequency (Senoussi et al., 2019).

While previous theories on perceptual rhythms (VanRullen, 2016) have related rhythmic fluctu-
ations in behavioral performance to fluctuations of a perceptual threshold, the nature of this
threshold has not been clearly specified: does it imply a succession of perceptual snapshots and
blind gaps, or a succession of moments with varying precision, i.e. spatial resolution? This
question would have been difficult to answer with conventional forced-choice discrimination tasks,
where both mechanisms could yield the same performance. By contrast, the continuous report
task in combination with a stimulus that specifically taxes spatial resolution (Anton-Erxleben
and Carrasco, 2013; Gobell and Carrasco, 2005; Yeshurun and Carrasco, 1999) makes it possible
to compare guessing and precision parameters as proxies for either mechanism. Our finding of an
alpha rhythm in the precision parameter, but not in the guessing parameter, supports the idea
of a fluctuation in spatial resolution. Only when tested in a forced-choice task, such a gradual
variation in resolution gives rise to a dichotomous pattern of correct and incorrect responses,
depending on whenever the current resolution is sufficient or insufficient for the task at hand.
Thus, while numerous studies have demonstrated rhythms in forced-choice detection (Dugué and
VanRullen, 2014; Dugué et al., 2015b, 2017; Fiebelkorn et al., 2013; Landau and Fries, 2012) and
discrimination performance (Dugué et al., 2016; Senoussi et al., 2019), we provide first evidence
for the underlying mechanism.

4.4 Rhythmic attentional enhancement of perceptual sampling

Dugué and VanRullen (2017) have proposed that the occipital cortex samples the environment at
an alpha frequency (i.e. the perceptual rhythm), while the deployment of attention superimposes a
theta rhythm through periodic feedback (i.e. the attentional rhythm) leading to a phase-coupling
of both rhythms. While the coexistence of both rhythms is also supported by other theories
(Fiebelkorn and Kastner, 2019), neuronal studies (Fiebelkorn et al., 2018), and behavioral studies
(Senoussi et al., 2019; Tomassini et al., 2017), the present findings make it possible to specify the
interplay between both rhythms even further: first, alpha-rhythmic perceptual sampling reflects
fluctuations in spatial resolution (see Figure 5A, center column). Second, when attention is
deployed, the attentional theta rhythm (Figure 5A, left column) provides periodic enhancement
of spatial resolution that is superimposed on and phase-coupled to the alpha rhythm. Such an
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attention-induced improvement of spatial resolution has indeed been demonstrated by numerous
studies (Anton-Erxleben and Carrasco, 2013; Gobell and Carrasco, 2005; Yeshurun and Carrasco,
1999), albeit without testing for rhythmicities in this improvement. The present findings indicate
that this compound rhythm comprises favorable phases with maximal spatial resolution (Figure
5A, right column, shaded regions), specifically when the favorable phases of the theta and alpha
rhythms coincide. Depending on the task demands for spatial resolution, unfavorable phases
may render spatial resolution insufficient for performing the task, requiring the observer to
guess. In sum, our results indicate that both rhythms concurrently contribute to environmental
sampling characterized by fluctuations in spatial resolution, arguing against a strict succession of
perceptual snapshots and blind gaps.

Accordingly, our account implies that different task demands can give rise to different patterns of
performance. If a task makes low demands for spatial resolution and thus attentional enhancement
is not necessary for performing the task (Figure 5B, left column), spatial resolution is expected to
fluctuate predominantly at an alpha rhythm. However, when demands for spatial resolution are
so high that additional theta-rhythmic attentional enhancement is necessary (Figure 5B, right
column), guessing is expected to fluctuate predominantly at a theta rhythm. For the kind of task
used in the present study, which makes intermediate demands for spatial resolution (Figure 5B,
middle column), both an alpha rhythm in spatial resolution and a theta rhythm in guessing are
expected. Thus, task demands might be a critical factor that determines which of either rhythm
will be predominant.

These predictions are supported by Dugué et al. (2017), who found a theta behavioral rhythm for
a difficult conjunction search and an alpha rhythm for the easier feature search task. Likewise,
Chen et al. (2017) observed a shift from lower to higher frequency oscillations with decreasing
task demands. Importantly, the predicted effect of task demands on the predominant frequency
can be found across numerous studies using a great variety of tasks. Specifically, studies using
difficult tasks, as indicated by low accuracy (50 to 70%), have reported mostly theta-rhythmic
fluctuations of performance (Drewes et al., 2015; Dugué et al., 2017; Fiebelkorn et al., 2013;
Hogendoorn, 2016; Landau and Fries, 2012; Re et al., 2019). Studies using tasks with intermediate
difficulty (70 to 80% accuracy) have been less consistent, with some reporting only an alpha
rhythm (Dugué and VanRullen, 2014), only a theta rhythm (Benedetto et al., 2016; Chen et al.,
2017; Dugué et al., 2015a, 2016; Fiebelkorn et al., 2018; Tomassini et al., 2015), and some
reporting both rhythms (Senoussi et al., 2019; Tomassini et al., 2017). By contrast, studies using
easy tasks (accuracy > 80%), have reported mostly alpha-rhythmic fluctuations of performance
(Chen et al., 2017; Dugué et al., 2017; Song et al., 2014). Thus, both the present findings and
extant literature strongly suggest that the impact of the theta and alpha rhythms on behavioral
performance is determined by task demands.

[Figure 5 about here.]

4.5 Outlook for future studies

Our account of the interaction between an attentional theta rhythm and a perceptual alpha
rhythm predicts that task demands determine which rhythm will be dominant in behavioral
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performance: alpha will be dominant under low demands for spatial resolution, while theta will
be dominant under high demands (Figure 5). While a manipulation of task demands was beyond
the scope of the present study, a systematic manipulation of task demands in future studies
would make it possible to test this prediction directly.

The current study is limited in that neuronal rhythms are inferred from the time course of
behavioral performance rather than from neural activity. Thus, converging evidence from
EEG/MEG studies using the same continuous report task as used here could help to substantiate
our findings, specifically by localizing the sources of these rhythms (see Dugué and VanRullen,
2017; Fiebelkorn et al., 2018; Helfrich et al., 2018, for candidate areas). Furthermore, application
of TMS or tACS could provide evidence for a causal link between neuronal rhythms and spatial
resolution (Dugué et al., 2011, 2019).

4.6 Conclusion

We provide evidence for the interaction of the two most frequently reported visual sampling
rhythms, i.e. the attentional theta and the perceptual alpha rhythm (Dugué and VanRullen,
2017; Fiebelkorn and Kastner, 2019). Specifically, the results suggest that the perceptual alpha
rhythm reflects fluctuations in spatial resolution, while the attentional theta rhythm provides
periodic enhancement of this resolution. Both rhythms support environmental sampling through
fluctuating spatial resolution, speaking against a strict succession of perceptual snapshots and
blind gaps.
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Figure 1: Method. (A) Trial Sequence (proportions modified for illustration). After a fixation interval,
an exogenous cue (four dots) was briefly flashed around either the left or right target location. After
one of 20 SOAs (ranging from 192 ms to 983 ms in steps of 41.65 ms) a target Landolt ring was
briefly flashed either at the cued (valid) or uncued (invalid) location. The gap of the Landolt ring
appeared at a randomly drawn position (0 to 360°). The target was followed by a short blank interval
before a gray ring appeared around the fixation position. Participants reported the position of the gap
via mouse-click on the matching position on the ring. (B) For each continuous report, the deviation
from the correct gap position was calculated. For each SOA and validity condition, the resulting
error distribution (ranging from -180° to 180°) was then modelled as a combination of a gaussian
whose standard deviation represents a participant’s precision (sd; pink line) and a uniform distribution
representing the amount of guessing (g; green line). sd and g parameter estimates were obtained with
a standard mixture model (Suchow et al., 2013).
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Figure 2: Main study; validity effect across the first three SOAs for guessing parameter g. Error
bars indicate standard errors according to Morey (2008). Asterisk indicates p < .05. Small black dots
indicate single participant means. Grey lines connect dots of the same participants across validity
conditions. Colored distributions indicate g distribution within conditions.
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Figure 3: Main study; results for guessing parameter g. Note that colored lines show analysis results
split by validity while gray lines show results collapsed across validity. Error bars indicate standard
errors according to Morey (2008). (A) time course of g across SOAs. (B) FFT amplitude spectra. Dark
shaded area indicates the .95-Quantile of the permutation test, corresponding to an uncorrected alpha
level of .05. Light shaded areas indicate the Bonferroni-corrected alpha level. Asterisk indicates the
4.8 Hz peak, significant after Bonferroni correction. (C) Histogram of the amplitude distribution for the
significant 4.8 Hz bin obtained by repeating all analyses steps on 10.000 permuted datasets (SOA labels
were shuffled within participants). Dark gray dashed line indicates the uncorrected alpha level, light
dashed line indicates the Bonferroni-corrected alpha level. The black solid line indicates the observed
amplitude value. (D) Phase distribution across participants for the 4.8 Hz oscillation (collapsed across
validity). Gray arrow indicates the phase distribution’s central tendency. (E) Detrended grand average
time course collapsed across validity (grey line). The black line represents a sinusoidal fit with a fixed
frequency of 4.8 Hz.
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Figure 4: Main study; results for precision parameter sd. Note that colored lines show analysis results
split by validity while gray lines show results collapsed across validity. Error bars indicate standard
errors according to Morey (2008). (A) time course of sd across SOAs. (B) FFT amplitude spectra.
Dark shaded area indicates the .95-Quantile of the permutation test, corresponding to an uncorrected
alpha level of .05. Light shaded areas indicate the Bonferroni-corrected alpha level. Asterisk indicates
the 9.6 Hz peak, significant after Bonferroni correction. (C) Histogram of the amplitude distribution
for the 9.6 Hz bin in the invalid condition obtained by repeating all analyses steps on 10.000 permuted
datasets (SOA labels were shuffled within participants and validity condition). Dark gray dashed
line indicates the uncorrected alpha level, light dashed line indicates the Bonferroni-corrected alpha
level. The orange solid line indicates the observed amplitude value. (D) Phase distribution across
participants for the 9.6 Hz oscillation in the invalid condition. Orange arrow indicates the phase
distribution’s central tendency. (E) Detrended grand average time course for the invalid condition
(orange line). The black line illustrates a sinusoidal fit with a fixed frequency of 9.6 Hz.
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Figure 5: Theta-rhythmic attentional enhancement of the perceptual alpha rhythm. (A) The
attentional theta rhythm (left) continuously modulates the perceptual alpha rhythm (middle) through
rhythmic enhancement. This modulation results in a compound rhythm (right) which then benefits
from favorable moments with enhanced spatial resolution (purple-shaded areas). (B) The spatial
resolution provided by this compound rhythm yields different patterns of behavioral performance
depending on task demands for spatial resolution (left column: easy; center column: intermediate;
right column: difficult). Top row: fluctuations in spatial resolution under three different task demands
(horizontal line). Dark shaded regions indicate moments with sufficient resolution; light shaded regions
indicate moments with insufficient resolution in which observers need to guess. Middle row: this
interaction of the compound rhythm and task demands leads to different rhythmicities in accuracy
timecourses. Bottom row: spectral analysis performed on these timecourses will yield different spectral
peaks: a predominant alpha rhythm under low task demands (left), no clear dominance of either
rhythm for intermediate task demands (center), and a predominant theta rhythm under high task
demands (right).
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Figure 1: Stimulus timing test. (A) Test protocol. The test procedure was adopted from De Clercq
et al. (2003). To estimate stimulus presentation timing precision, the experiment was run with a subset
of trials (n = 80). A photodiode was positioned in the top left corner of the screen to measure luminance
emitted by the screen throughout a trial. To be informative about stimulus presentation time, the
experimental code was adjusted so that background color was changing from white (102.3 cd/m2) to
black (0.2 cd/m2) with each timing-critical event, namely cue onset & offset, target onset & offset and
response ring onset. Otherwise, all settings were identical to the real experiment as described in the
Methods. Luminance changes measured by the photodiode were recorded with a Biosemi Active Two
EEG system (www.biosemi.nl) on a separate recording computer. The experimental computer also
sent triggers to the recording computer whenever code commands corresponding to presentation of
any of the timing-critical events was executed. (B) Exemplary luminance time course for a single trial
in which an SOA of 192 ms was expected. Colored vertical lines indicate the respective trigger for the
time-critical event, while the grey ribbon represents the normalized luminance values measured by
the photodiode. Note that the non-stable, jagged luminance course (resembling a CRT more than an
LCD monitor) as well as the (stable) approximately 6 ms rise time between the onset triggers and
the first luminance peaks are characteristic for the scanning backlight mode of the Viewpixx/EEG
LCD Monitor (www.vpixx.com). (C) Timing deviations across trials for cue duration, SOA and target
duration. Note that the deviations in the very first trials (8.33 ms or 16.66 ms, corresponding to two
cycles of the monitor’s 120 Hz refresh rate) are due to internal optimizations within Matlab and are
thereby limited to the first trials after starting the experiment. It is important to emphasize that, in
a real experiment, these deviations will always fall into the timing-uncritical practice trials at the
beginning of each session. Thus, mean deviances after the initial five trials indicate an almost perfect
stimulus timing on the screen (Mcue = .02 ± .22 ms, MSOA = .06 ± .25 ms, Mtarget = .03 ± .24 ms).
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Figure 2: Main study; time course of mean absolute response errors separately for valid and invalid
trials. Error bars indicate standard errors according to Morey (2008).
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Figure 3: Pilot study; time courses of mean absolute response error, g, and sd across SOAs, separately
for valid and invalid condition. Error bars indicate standard errors according to Morey (2008). Asterisk
indicates significant two-tailed t-test after Bonferroni correction.
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