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Abstract: 

Artifact elimination has become an inseparable part while processing 

electroencephalogram (EEG) in most brain computer interface (BCI) applications. 

Scientists have tried to introduce effective and efficient methods which can remove 

artifacts and also reserve desire information pertaining to brain activity. Blind 

source separation (BSS) methods have been receiving a great deal of attention in 

recent decades since they are considered routine and standard signal processing 

tools and are commonly used to eliminate artifacts and noise. Most studies, mainly 

EEG-related ones, apply BSS methods in preprocessing sections to achieve better 

results. On the other hand, BSS methods should be followed by a classifier in order 

to identify artifactual sources and remove them in next steps. Therefore, artifact 

identification is always a challenging problem while employing BSS methods. 

Additionally, removing all detected artifactual components leads to loss of 

information since some desire information related to neural activity leaks to these 

sources. So, an approach should be employed to suppress the artifacts and reserve 

neural activity. In this study, a new hybrid method is proposed to automatically 

separate and identify electroencephalogram (EEG) sources with the aim of 

classifying and removing artifacts. Automated source identification is still a 

challenge. Researchers have always made efforts to propose precise, fast and 

automated source verification methods. Reliable source identification has always 

been of great importance. This paper addresses blind source separation based on 

second order blind identification (SOBI) as it is reportedly one of the most effective 

methods in EEG source separation problems. Then a new method for source 

verification is introduced which takes advantage of components phase spaces and 

their dynamics. A new state space called angle space (AS) is introduced and features 

are extracted based on the angle plot (AP) and Poincare planes. Identified 

artifactual sources are eliminated using stationary wavelet transform (SWT). 

Simulated, semi-simulated and real EEG signals are employed to evaluate the 

proposed method. Different simulations are performed and performance indices 

are reported. Results show that the proposed method outperforms most recent 

studies in this subject. 

Keywords: EEG Source Separation, Phase Space Reconstruction, Artifact 

Removal, SOBI, Machine Learning, Classification, EEG Noise Reduction, Subspace 

Decomposition.  
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1. Introduction 

EEGs, which contain brain electrical activity, are recorded through a non-invasive 

technique by means of electrodes located on the scalp [1]. EEGs have become very 

effective signals in terms of diagnosis mental disorders like epilepsy, autism, 

depression and etc. These nonlinear and non-stationary signals can be employed 

to study cognitive states of human mind. Thanks to use of EEG in brain computer 

interfaces (BCI), disabled individuals are more likely to control different machines 

and devices such as computers, wheelchairs and etc. [9]. Now it is possible to study 

and analyze sleep disorders through EEG processing [21]. Unfortunately, in most 

practical settings EEGs are usually corrupted by environmental and physiological 

signals called EEG artifacts. Biological artifacts, including electromyogram (EMG), 

electrocardiogram (ECG), electrooclugram (EOG), eye blinking artifact and etc., 

levitate from non-cerebral sources in human body. In contrast, environmental 

noises and artifacts arise from external sources such as line power transmission, 

electric motors, electrode movement and etc. [13]. Both types of artifacts interfere 

with EEG signals easily and make interpretation and diagnosis difficult. Non-

physiological artifacts are precluded by most EEG recording devices but biological 

artifacts like EMG and EOG still remain and need to be eliminated. This fact 

motivates us to study and propose a new method in this paper to reduce biological 

artifacts. As it was mentioned above, EEGs have a wide usage in different fields so 

interpreting corrupted EEGs is of a great deal of importance. Accurate signal 

classification and precise recognition are totally dependent on artifacts and noises. 

Needless to say, artifact removal and noise suppression are inseparable parts in 

biological signal processing and the more effective the methods are the more 

precise and accurate the results will be. Therefore numerous studies have been 

conducted to eliminate noise and artifacts from EEGs [13-16].  There are several 

methods to deal with corrupted EEGs such as linear filtering, autoregressive 

modeling, adaptive filters, blind source separation (BSS) based methods, wavelet 

transforms, principal component analysis (PCA) and etc. [1-8]. Conventional 

methods like linear filters are not appropriate and effective due to inherent overlap 

in frequency domain between artifacts and cerebral activity. BSS based methods 

have been receiving a great deal of attention in EEG processing and artifact 

suppression since they isolate noise and artifacts into independent components 

(ICs) using subspace filtering [13]. SOBI algorithm utilizes the original EEG and time 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.08.287755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.287755


 

 

shifted version(s) in order to exploit temporal information and estimate 

uncorrelated components. SOBI has been employed in several studies to remove 

artifacts [10-12]. Artifact removal based on BSS methods consists of three major 

steps: (i) applying the source separation method, (ii) source identification and 

artifact removal, (iii) channel reconstruction using mixing matrix and remaining 

sources. Experimental simulations prove that these methods are practical in many 

cases. Based on previous studies, these methods are useful tools in EEG processing 

[2-4]. Several studies have been carried out in order to investigate these methods 

with the aim of removing artifacts [10-12, 15-17]. Different articles have come to a 

conclusion that Independent Component Analysis (ICA), introduced as a noise 

suppression tool for the first time in [18], is the most robust method in artifact 

elimination but is not very time fast. Among different BSS based methods, second 

order blind identification (SOBI) is reportedly the most effective one. SOBI has been 

employed to remove artifacts in several studies. Several authors have found SOBI 

the most reliable and widely used approach [2-7, 22, 23]. Several toolboxes like 

EEGLAB [20] have implemented SOBI due to its wide usage and efficiency. SOBI has 

been known as a superior method in comparison with ICA and most BSS methods. 

Therefore we decide to use SOBI in this study to extract EEG sources. More detail 

information about SOBI is brought in following sections. To achieve reliable results, 

extracted sources should be identified in order to eliminate artifacts and noise. 

Sources used to be visually identified by experts. In this method, artifactual sources 

are classified and removed by experts but most of the time this method leads to 

insufficient EEG data for further analysis. Moreover, in some cases the origin of the 

artifacts or noises are not known. Thus source identification should be applied to 

achieve reliable neural sources. Manual identification methods are time consuming 

and expensive. Additionally, in real time and practical projects, manual methods 

seem to be useless. Researchers have tried to propose automated methods to 

identify extracted sources [10, 11 and 12]. Mostly, sources are identified by 

classifiers based on their features and characteristics [9, 13]. Several features have 

been proposed by previous studies. Since biological signals are nonlinear, chaotic 

features and nonlinear analysis seem to be more likely to be successful in artifact 

removal and noise reduction [14]. This motivates us to examine phase space of the 

extracted sources in order to verify them. Phase space reconstruction is usually 

performed to transfer a signal or time series into a new space in order to analyze 

the behavior of the given signal. Most nonlinear and chaotic features like 
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correlation dimension (CD), fractal dimension (FD), Lyaponouv exponents (LE), 

recurrence quantification analysis (RQA) and etc. are extracted through the phase 

space [REF]. In 1901, W. Gibbs introduced and explained phase space 

reconstruction for the first time [REF]. This analysis is able to demonstrate signal 

characteristics. This study aims to analyze characteristic of the sources via the 

phase space. It is believed that artifacts and noise affect the amplitude of the signal 

considerably. So we tend to ignore source amplitude and consider phase 

information. With this regard, we introduce a new state space extracted from the 

phase space of the given signal. This new space is based on the angle values 

between points in the phase space and called angle space which results in a 

graphical illustration named angle plot. Moreover, Poincare planes are claimed to 

be very effective ways to describe nonlinear signals based on their representation 

in a state space, angle plot for example. Since AP is a graphical representation of 

the underlying signal, Poincare planes are employed to describe and quantify the 

AP. Suggested features are extracted based on AP and Poincare planes. Extracted 

features are normalized and then sources are classified using common and 

conventional classifiers such as multilayer perceptron (MLP) neural network, K 

nearest neighbor (KNN) and Bayes. We also apply the mixture of these classifiers 

to improve the results. Identified sources as artifacts, are fed into the artifact 

removal procedure which is based on SWT. Several studies have claimed the 

advantages to usage of SWT due to its abilities in terms of non-stationary and 

nonlinear signals [54]. We employ SWT to prevent data loss since there is always 

information leakage to artifact components while using BSS methods. SWT can 

keep cerebral activity and reject artifacts to high extent. Remained components are 

used to reconstruct clean EEG. We are of the opinion that the proposed method is 

capable of identifying neural sources and artifacts. Not only is this method able to 

verify sources precisely but also it can suppress artifacts effectively. In this study, 

we take advantage of SOBI and AP of the extracted sources to separate and then 

identify them automatically. Fig 1 shows the block diagram of the suggested 

method. Contaminated EEGs are separated into sources via SOBI algorithm. 

Estimated sources are reconstructed in phase space. We propose a method to 

extract dynamic of the phase space for each source and then quantify it through 

Poincare sections. In other words, reconstructed phase space is transferred into a 

new space called Angle Space (AS) and some quantifiers such as Poincare 
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intersections are defined to describe phase space dynamics mathematically. 

Extracted features are fed into basic classifiers to identify sources. Real and 

simulated signals are used in this study to assess performance of the suggested 

method. Different criteria like classification performance (CP), relative root-mean-

square error (RRMSE), Correlation Analysis (CA) and average mutual information 

(AMI) are defined to evaluate this method. Results show that the proposed method 

is successful and effective. Graphical illustrations are presents in order to clarify the 

upsides of the suggested method. Typical and quantitative results are reported and 

explained. Also processing time is considerably low. More detail information is 

provided in following sections.  
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Fig 1. The block diagram of the proposed method 

This paper is organized as follows: “Section 2” represents material and methods. In 

“Section 3” you can find results. “Section 4” is dedicated to discussion and finally 

the paper is concluded in “Section 5”. 

2.  Materials and Methods 

2.1. Blind Source Separation and SOBI 

The BSS makes effort to solve Eq. (1). 

𝑋(𝑡) = 𝐴𝑆(𝑡)                                           (1) 

Where 𝑋(𝑡) = {𝑥1(𝑡), … , 𝑥𝑁(𝑡)} and 𝑆(𝑡) = {𝑠1(𝑡), … , 𝑠𝑀(𝑡)} represent 

observation signals for 𝑁 channels (e.g. EEGs) and 𝑀 estimated sources 

respectively. 𝐴 is called the mixing matrix and has the size of 𝑁 ∗ 𝑀. In this model, 

EEGs are considered instantaneous linear mixture of sources through an unknown 

mixing matrix of 𝐴 [28]. 

SOBI algorithm is based on second order statistics and consists of two main stages: 

(i) signals (i.e., EEGs) are zero-meaned and whitening process is performed and (ii) 

a set of covariance matrices is constructed. Belouchrani et al. in [19] proposed SOBI 

for extracting correlated sources based on joint approximate diagonalization of a 

random set of time-lagged covariance matrices. Covariance matrix is defined based 

on Eq. (2). 

𝑅(𝑞𝑗) =
1

𝐶
∑ �̅�(𝑡)�̅�𝑇(𝑡 − 𝑞𝑗)                                      (2) 

 

Where �̅�(𝑡) and �̅�𝑇(𝑡 − 𝑝) are zero-meaned and time-delayed signals respectively 

and 𝑞 indicates time lags which are chosen a set of different values instead of a 

single time lag to improve time-efficiency of SOBI. 𝐶 is the number of considered 

time lags. Sources are supposed mutually uncorrelated and stationary. In some 

studies it is reported that SOBI is capable of functionally separating sources which 

are physiologically interpretable [24-27]. SOBI is really robust in low SNRs [27-32]. 

Since SOBI is iterative, it is found one of the fastest algorithms in comparison with 
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other BSS methods [28]. Comparing to ICA, SOBI relies on second order statistical 

analysis of signals while ICA is based on higher order statistics, which means ICA is 

more time consuming, complex and laborious [32]. These features suggest that 

SOBI method of source separation is effective and feasible. These characteristics 

motivated us to use SOBI in this study. For further information about SOBI 

algorithm and its utility refer to [29-31]. 

2.2. Phase space reconstruction 

Phase space reconstruction (PSR), part of chaos theory, has become a very useful 

and powerful tool in nonlinear signal processing. Phase space reconstruction has 

been part of numerous studies [REF]. This powerful analysis introduces a new 

transformation by retaining magnitude and phase information of signals. Several 

characteristics of a given signal can be described through the concept of phase 

space. This motivated us to study these characteristics with the goal of automated 

source identification. In 1901, phase space was introduced by W. Gibbs for the first 

time [REF]. Phase space includes state vectors describing the signal. There are 

several ways to reconstruct the phase space of a signal. Having reviewed previous 

studies, we turn to the most common method which is time delay embedding [39, 

40]. Suppose that 𝑣(𝑡) is a signal with 𝐾 time samples. We can reconstruct 𝐾 −

𝑑 + 1 vectors in the phase space as: 

𝑉(𝑖) = [𝑣(𝑖 + 𝑇)  𝑣(𝑖 + 2𝜏) …   𝑣(𝑖 + (𝑑 − 1)𝜏)]               𝑖 = 1,2, … , 𝐾 − (𝑑 − 1) (3) 

 

Where 𝑑 and 𝜏 are the embedding dimension and time delay respectively. 𝑑 and 𝜏 

are important parameters while reconstructing phase space. Several studies have 

been conducted to estimate these parameters [37, 38]. Based on previous studies, 

which are related to EEG processing through phase space, the value of 𝑑 is chosen 

as two and 𝜏 is 0.2-times the standard deviation of the signal [34-36]. 
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2.3. Angle space reconstruction 

Having reconstructed phase space of the signal, we consider the angle between 

each three points (in row) as a geometrical characteristic of the phase space. In 

other words, each line connecting points in the phase space is considered a vector. 

The angles between vectors and also the vector length are calculated in order to 

transform the phase space into a new state space called angle space (AS). Fig 2 

shows the process of reconstructing angle space from a two dimensional phase 

space. Angle space reconstruction leads to two sequences of angle values (AV) and 

vector lengths (VL) which contain valuable information about the underlying signal. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.  Phase space of a hypothetical signal. Angle and vector length are considered 

for all points in the phase space except for the first and last ones. 
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In Fig 2, 𝑃0, 𝑃1, 𝑃2 , … , 𝑃𝐾−𝑑 are the points in the phase space of a hypothetical 

signal. The first and last points are ignored. 𝜃1, 𝜃2, 𝜃3 , … , 𝜃𝐾−𝑑−1 and 

𝐿1, 𝐿2, 𝐿3, … , 𝐿𝐾−𝑑−1 are two sequences which are estimated based on the phase 

space and are necessary to reconstruct the angle space. The main goal of this 

subsection is to introduce the angle space and its characteristics. By this new 

description, signals seem possible to be classified according to their representation 

in angle space. Fig 3 illustrates AS and estimated angle and length sequences for 

the hypothetical phase space given in Fig 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. AS for the given signal in Fig.2. 
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Since signal amplitude is mostly affected by artifacts and noise, we aim to consider 

signal phase as the only source of information in this study. We believe that signal 

phase is rich enough to be used in further steps. So signal length is set to unit for 

all points in AS in order to achieve AP. Therefore we suppose the vector length 

equal to one and all angle values are transferred to the X-Y coordination on the unit 

circle in order to study angle space and its dynamics. We here decide to ignore 

vector length which is correspondent to signal amplitude. Fig 4 demonstrates the 

illustration of angle values on the unit circle (𝑟 = 1). We call this representation 

angle plot (AP). It can be considered a new representation of a signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4. AP for the given phase space in Fig 2 
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Nonlinear and dynamical systems contain two main parts which are state and 

dynamic. Both parts should be analyzed to achieve essential information of the 

system and its changes through the time [39]. In this study, angle values with 

connecting lines are plotted to represent both state and dynamics of the extracted 

sources. This analysis provides us with a new graphical representation for signals 

which is used in following steps. Different features are defined and then extracted 

from this new representation.  

 

 

 

2.4. Feature extraction based on AP and Poincare Planes (PPs) 

2.4.1. Poincare plane  

Poincare sections are considered as geometrical description of a state space. PPs 

are defined in one dimensional less than the corresponding state space. These 

planes were first introduced by Poincare and then studied by many researchers. 

PPs enable us to analyze signal trajectories and transitions. In other words, PPs are 

effective tools to study system dynamics. Therefore we made a decision to apply 

this technique. Choosing appropriate PPs is of great deal of importance. Thanks to 

suitable PPs, maximum information about system dynamics and changes is 

transferred and also down sampled [45]. Having reviewed previous studies, we 

came to the conclusion to employ five suggested PPs [46]. We call these five 

sections PP1 to PP5. Fig 5 shows the AP for a hypothetical signal explained above 

and the Poincare sections. 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.08.287755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.287755


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. Angle plot (AP) for the hypothetical phase space and Poincare planes. Stars 

show the intersections of AP with the planes. 

 

As it is obvious, in Fig 5 Poincare sections are defined and 𝑇𝑖  points show the 

intersections (or Poincare points). Table 2 represents Poincare planes and the 

abbreviations. 
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Table 1. Poincare planes used in this study 

# Abbreviation Description 
1 PP1 X axis 

2 PP2 Y axis 
3 PP3 Diagonal line (first and third quadrant bisector) 

4 PP4 Perpendicular to diagonal line (second and fourth quadrant bisector) 

5 PP5 Circular plane with the radius of 𝑟 = 0.001 
  

As mentioned before, in this study just the angle values are considered and features 

are extracted based on AP and the proposed Poincare planes. Statistical features 

containing mean, variance, skewness and kurtosis are extracted from AP. Features 

employed for source identification are explained in Table 3. Statistical features 

including average, variance, skewness and kurtosis of the angle values are 

extracted. Number of Poincare intersections for each PP is also considered as a 

feature. 

 

Table 2. Extracted features from AP and PPs for source identification 

# Feature Description Abbreviation 
1 Average of angle values  𝐴𝑣𝑒𝐴𝑃 

2 Variance of angle values 𝑉𝑎𝐴𝑃 

3 Skewness of angle values 𝑆𝑘𝐴𝑃 

4 Kurtosis of angle values 𝐾𝑢𝐴𝑃 

5 Median of angle values 𝑀𝑒𝐴𝑃 
6 Shannon’s entropy of angle values 𝑆ℎ𝐴𝑃 

7 Length of the angle time series 𝐿𝑒𝐴𝑃 
8 Number of intersections with PP1  𝑁𝑃𝑃1 

9 Number of intersections with PP2 𝑁𝑃𝑃2 

10 Number of intersections with PP3 𝑁𝑃𝑃3 

11 Number of intersections with PP4 𝑁𝑃𝑃4 
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12 Number of intersections with PP5 𝑁𝑃𝑃5 

 

For sake of simplicity just these twelve features are extracted. Results show that all 

of these features are significant. These features are extracted from each source. 

Source Identification is performed based on these features. As mentioned before, 

all features are extracted from AP in order to reduce complexity and processing 

time. 

 

2.5. Classification 

K-nearest-neighbor (KNN), Bayes classifier and multi-layer-perceptron (MLP) are 

three basic and common classifiers which generate immense interest in numerous 

studies in different fields. KNN, Bayes and MLP are employed in this paper in order 

to have a more comprehensive study. Due to the wide usage, several pattern 

recognition toolboxes have implemented these classifiers [REF]. Like other 

classifiers, these proposed classifiers recognize samples based on two major phases 

called training and testing steps. KNN is very effective while samples have spherical 

distribution is the feature space because it classifies samples based on the 

distances and nearest neighbors. MLP is able to solve complex classification 

problems. It is also efficient in most machine learning problems since it utilizes 

error back propagation algorithm to adjust weights and come to generalization in 

data recognition. We also take advantage of Bayesian classifier’s properties in 

minimizing the classification error based on probability density functions of training 

samples [REF]. Since these classifiers have different methods to identify samples, 

we can compare the results in a more appropriate way. These classifiers are 

explained precisely in other works like [REF], so we avoid reviewing them here. For 

more information refer to machine learning and pattern recognition text books like 

[REF] or articles such as [REF]. Since source recognition is the part of this study, we 

report classification accuracy for these three basic classifiers in order to compare 

the results. ***BETTER*** 

 

2.6. Wavelet-based artifact removal 
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Different algorithms can be taken into account to remove artifacts. One can set 

artifactual components to zero which is not very practical since neural information 

is very possible to leak into these components. So ignoring all artifactual sources 

might lead to information loss. Although this approach seems to be very simple, it 

leads to significant distortion in reconstructed EEGs. On the other hand, a well-

known algorithm to suppress artifacts is decomposing artifactual components by 

wavelet transform. Decomposed sub-bands are denoised by thresholding [10]. 

Several studies have suggested wavelet with the aim of artifact elimination [54, 59, 

60]. The type of wavelet transform varies in each study. It can be discrete wavelet 

transform (DWT), continuous wavelet transform (CWT) or stationary wavelet 

transform (SWT) [10]. As it is stated in [54, 61, 62], SWT is superior to DWT and 

CWT in removing biological artifacts. Additionally, SWT is translation-invariant 

which suggests its superiority to DWT while removing biological artifacts. According 

to the results in [54], we employ SWT to denoise detected artifactual components. 

Fig 6 represents the block diagram of the suggested artifact removal approach 

using SWT. 

 

 

 

 

 

Fig 6. The block diagram for the proposed artifact elimination method based on 

SWT 

 

 

We decide to use Haar wavelet because of its advantages in comparison with other 

wavelet basis functions, five level of decompositions and soft thresholding as it is 

suggested in [54]. Wavelet analysis results in obtaining approximations and details 

which correspond to strong artifacts and cerebral information respectively. 

Artifactual sources are decomposed and sub-bands are taken into thresholding 

step since in this application approximations correspond to artifacts and obviously 

Detected 
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details pertain to cerebral activity. So we apply soft thresholding to remove small 

values in details. Inverse SWT is applied to approximation and thresholded-details 

to achieve artifacts-only signals. Then the reconstructed artifacts are subtracted 

from the original signal to have clean EEGs. By thresholding, small values of leaked 

EEGs would be removed and consequently artifact-only components could be 

reconstructed, projected back to EEG channels and then subtracted from EEG data. 

SWT-based approach can be easily implemented using MATLAB wavelet toolbox 

[63]. The proposed denoising algorithm is quite common, fast and simple. This 

approach is presented in [54]. Similar to [54], we choose 5 as the level of 

decomposition and global threshold is computed by MATLAB function ddencmp.  

 

 

 

2.7. Source identification and artifact removal performance 

measures 

Although artifact removal methods are mainly evaluated based on different 

criteria, the evaluation procedure has been always problematic because there is no 

universal or general quantitative criterion [10]. Method’s effectiveness can be 

analyzed through visually inspection by experts which is subjective and not 

standard or by defining some objective measures which are described below. We 

consider both subjective and objective metrics in this study. Experts label real and 

synthesized signals and also extracted sources. So classification performance is the 

first performance measure. In addition, artifactual sources are suppressed and then 

“clean” EEG is reconstructed. Therefore, we can define other metrics to evaluate 

the proposed artifact removal method. Based on the previous studies [REF], some 

common measures are introduced as the evaluation criteria in this study. 

 

2.7.1. Classification performance 

Classification accuracy is defined based on the proportion of the number of 

correctly classified test samples and the number of total test samples. Considering 
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employing k-fold cross validation in this study, average classification performance 

(ACP) is calculated and reported for each classifier. 

 

2.7.2. Temporal and Spectral relative root-mean-square error 

Artifact removal systems can be evaluated through relative root-mean-square 

error (RRMSE) in time domain. Several studies consider this factor as an artifact 

suppression evaluation parameter [50, 57, 58]. RRMSE is defined in time domain as 

below: 

𝑅𝑅𝑀𝑆𝐸(𝑋) =
𝑅𝑀𝑆(𝑋 − �̂�)

𝑅𝑀𝑆(𝑋)
                                  (4) 

 

𝑅𝑀𝑆(𝑋) =  √
1

𝑁. 𝐾
∑ ∑ 𝑋2(𝑖, 𝑗)

𝐾

𝑗=1

  

𝑁

𝑖=1

                                   (5) 

 

Where 𝑋 and �̂� are contaminated (i.e. before artifact removal) and reconstructed 

(i.e. after artifact removal) EEGs respectively. It can be easily expanded to 

frequency domain in order to estimate relative root-mean-square error using 

power spectral density (PSD) which leads to another measure (i.e.𝑅𝑅𝑀𝑆𝐸𝑃𝑆𝐷) 

described as following: 

 

𝑅𝑅𝑀𝑆𝐸𝑃𝑆𝐷(𝑋) =
𝑅𝑀𝑆(𝑃𝑆𝐷𝑋 − 𝑃𝑆𝐷�̂�)

𝑅𝑀𝑆(𝑃𝑆𝐷𝑋)
                                (6) 

Whit 𝑃𝑆𝐷𝑋 and 𝑃𝑆𝐷�̂� indicating PSD of the clean EEG and denoised EEGs 

respectively. This measure enables us to analyze the results and evaluate the 

method with respect to spectral properties of EEGs. 

2.7.3. Average correlation coefficient (ACC) 
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Correlation coefficients (CCs) between original EEGs (not corrupted) and 

reconstructed ones are useful metrics to evaluate how effectively the proposed 

artifact removal method can eliminate artifacts. For simulated and semi-simulated 

signals, original EEGs and artifacts are available. Therefore average correlation 

coefficient (ACC) could be an evaluation measure. The third criterion in this study 

is the ACCs over all reconstructed EEG channels with respect to the corresponding 

original EEG channels [50]. 

 

2.7.4. Average mutual information (AMI) 

Correlation coefficients cannot fully describe the similarity between two signals or 

time series. Therefore we decide to employ mutual information (MI) as an index to 

evaluate the similarity of signal dynamics between original EEGs and reconstructed 

ones. Average mutual information (AMI) values are computed over all channels as 

another evaluation parameter. Several studies have applied AMI to quantify their 

methods [54, ref]. MI is computed in Eq.4 as 

𝑀𝐼 =  ∫ ∫ 𝑝(𝑋, �̂�) log (
𝑝(𝑋, �̂�)

𝑝(𝑋)𝑝(�̂�)
) 𝑑𝑋 𝑑�̂�                         (7)

+∞

−∞

+∞

−∞

 

where 𝑝(𝑋, �̂�) is the joint probability density function of 𝑋 (i.e. original EEG) and �̂� 

(i.e. reconstructed EEG after artifact removal). 𝑝(𝑋) and 𝑝(�̂�) represent marginal 

probability density functions of 𝑋 and �̂� respectively. Since AMI indicates the 

relevance between two signals, it is clear that the larger the AMI is the more 

effective the proposed method will be [54]. AMI is employed as another measure 

of capability of artifact elimination. 

 

2.8. Database   

2.8.1. Simulated Data 

Generating simulated EEGs are introduced in [48] based on the phase-resetting 

theory. According to [49], EEGs can be reconstructed by adding four sinusoids with 

randomly chosen frequencies varying from 4 to 30 Hz. Frequency values are 

selected independently and randomly to synthesize EEGs. So we can easily 
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construct pure-simulated EEGs (PSEEG) through adding four sinusoids. This method 

is also completely explained in [50]. To reconstruct a 1-min single-channel signal, 

thirty 2-sec segments are generated and concatenated together. Nineteen 

channels of EEG and also modeled artifacts are reconstructed in this way. Fig 8 

shows one example for PSEEGs. 

 

Fig 6. A 10-s illustration of PSEEGs 

 

All signals are recorded or synthesized with a sampling frequency of 256 Hz. We 

model EEGs and artifacts based on the suggested methods (by previous studies) as 

bellow: 

 EEG: summation of four 𝑠𝑖𝑛 functions at random frequencies in the range of 

4 to 30 Hz [49], 

 ECG: based on previous studies, ECG can be reconstructed by Auto-

Regressive (AR) modeling. AR parameters and the order are estimated based 

on real ECG recordings of participants. Then, artificial ECGs are 

reconstructed based on AR modeling. We choose AR order as 12 based on 
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Akaike Information Criterion (AIC) and Bayes Information Criterion (BIC) [56] 

(the average order was 11.6 with the standard deviation of 1.1), 

 EMG: temporal muscle activity is modeled by filtering (FIR) random noise in 

the frequency range of 20 to 60 Hz [53], 

 EOG: eye movement is modeled through low frequency square pulses with 

the frequency of 0.2 Hz [54], 

 Eye blinking: we synthesize eye blinking artifact using random noise band-

pass filtered between 1 and 3 Hz [53], 

 White noise: an unfiltered white noise is employed as an artifact as well. 

All five generated artifacts are synthesized in 2-sec segments. We made a decision 

to generate artifacts in segments with random length varying from 500ms to 2s. In 

other words, a 2-sec window consists of an artifact based on a random selection. 

Each modeled artifact is projected to all 19 channels via a random transformation 

matrix containing at least 10 non-zero random entries and then summed with 19-

channel PSEEGs to artificially generate simulated contaminated EEGs (SCEEG). 

Intensity of artifacts and corresponding channels are randomly selected according 

to the normal uniform distribution. Based on [50], artifacts can be added to PSEEGs 

at different levels of signal to noise ratio (SNR). Eq 3 represents the summation of 

artifacts and EEGs. 

𝑋𝐶 = 𝑋𝑃 + 𝜆. 𝑋𝐴𝑅𝑇                                                 (8) 

Where 𝜆 indicates the artifact intensity and totally affects SNR. 𝑋𝐶  shows the 

corrupted 19-channel EEGs. 𝑋𝑃 and 𝑋𝐴𝑅𝑇  demonstrate pure EEGs and modeled 19-

channel artifacts respectively. SNR is defined based on Eqs 4 and 5. 

 

𝑆𝑁𝑅 =
𝑅𝑀𝑆(𝑋𝑃)

𝑅𝑀𝑆(𝜆. 𝑋𝐴𝑅𝑇)
                                       (9) 

𝑅𝑀𝑆(𝑋) =  √
1

𝑁. 𝐾
∑ ∑ 𝑋2(𝑖, 𝑗)

𝐾

𝑗=1

  

𝑁

𝑖=1

                                   (10) 
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Where 𝑁 is the number of channels and 𝐾 shows time samples. For more 

information about simulated-contaminated EEG generation refer to [50]. Fig 9 

illustrates one example of generated artifacts and CSEEGs. 

 

 

 

 

 

Fig 7. (a) Synthesized artifacts (b) SCEEGs by projecting artifacts at 𝑆𝑁𝑅 = 0.5𝑑𝑏  

 

2.8.2. Real Data 

A 

B 
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The EEG signals are recorded from twenty individuals (10 males). 19 Ag/Ag-Cl 

electrodes according to the 10-20 international standard are placed on each 

subject’s scalp. EEGs are acquired and sampled at 256 Hz for 1 minute in each trial. 

Each individual participates in 20 separated trials. 19-channel EEGs are recorded as 

source identification from fewer electrodes is more challenging and also less time 

consuming. Furthermore, with 19 electrodes the proposed method is more likely 

to get employed in other BCI applications. EEGs are recorded while normal subjects 

are sitting in a comfortable fashion with their eyes open [52]. In the first ten trials 

for each individual, subjects are acquired not to move their head, jaw or eyebrows. 

Also eye blinking or movements are visually inspected and not considered in the 

database. Recorded EEGs are filtered through conventional filtering methods such 

as bandpass (4-60 Hz) and 50-Hz notch filters based on previous studies like [51, 

52] in order to have clean EEGs with no artifacts. Three expert clinicians controlled 

the recording process and justified clean EEGs. The first ten trials are called pure 

real EEGs (PREEG). We have PREEGs in 19 channels and ten 1-minute trials for 

twenty subjects. A sample of PREEGs is represented in Fig 6. 

 

 

Fig 8. An example for recorded PREEG for 5 s 

 

In the next phase, subjects are asked to blink both eyes (without squinting), move 

their eyes (vertically and horizontally) and eyebrows randomly for 1 minute in each 

trial. Subjects are left free to blink or move their eyes or eyebrows in their natural 
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manner. Movements are performed in separated and different trials. Eye blinking, 

eye movement and moving eyebrows are performed in the second ten trials. 

Subjects are previously informed not to move or tilt their head. Vertical and 

horizontal EOGs and also ECG are captured in both phases with the aim of helping 

clinicians while recognizing sources. It should be noted that only 19 contaminated 

EEG channels are used in further analyses and other signals are recorded due to 

getting monitored by clinicians. EEGs are filtered by conventional bandpass and 

notch filters. Subjects are controlled visually while recording signals and 

movements are recorded in time course.  In this phase, individuals participate in 

ten trials to have real contaminated EEGs (RCEEG). Then RCEEGs and extracted 

sources via SOBI algorithm are investigated and analyzed by clinicians in order to 

label sources. Fig 7 shows an illustration of RCEEGs and extracted sources through 

SOBI algorithm and labeled by experts. Experts are inquired to put each source in 

one category from all 6 groups containing EEG, ECG, EMG, EOG, eye blink and white 

noise. 
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Fig 9. (a) RCEEGs of a subject for 5s (b) extracted sources using SOBI algorithm 

 

Since artifacts including ECG, eye blinking, EMG, EOG and white noise are very 

important and prominent in most BCI applications, our focus in this study is on 

these common artifacts and other artifacts like head movement, power-line noise 

and electrical shift are ignored [10, 53]. Expert clinicians including three 

neurophysiologists are informed to control the experiments and label extracted 

source based on the mentioned artifacts. In this phase we have RCEEGs in 19 

labeled sources and ten 1-minute trials for each of twenty subjects. 

 

 

2.8.3. Semi-simulated Data 

To further investigate and study the proposed method, two semi-simulated 

datasets are provided. In the first dataset, EEGs are taken from PREEGs and 

artificially-generated artifacts are randomly projected and summed at different 

𝑆𝑁𝑅 values. Then extracted sources are identified by experts. PREEGs from each 

subject are summed with generated artifact described in the previous sub-section. 

The first set of semi-simulated contaminated EEGs (SSCEEG1) are reconstructed 
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Using Eq. 3 at different 𝑆𝑁𝑅 values. Fig 10 illustrates one typical 5-s SSCEEG at 

𝑆𝑁𝑅 = 0.5.  

 

 

 

Fig 10. Illustration of 19-channel SSCEEG1s at 𝑆𝑁𝑅 = 0.5 

 

As it can be seen in Fig 10, synthetic artifacts which are explained in the previous 

sub-section are projected with varying intensities and then added to pure EEG 

recordings. 

For the second semi-simulated dataset, we use EEG signals which are randomly 

selected from PREEGs. We also record EEGs from 20 other individuals asked to 

move their eyebrows, blink both eyes and move their eyes horizontally and 

vertically. Other types of mentioned artifacts like ECG or white noise are seen in 

the recordings. Individuals are acquired not to move their head. Experts justify 

artifacts and artifact time courses are visually inspected and recorded. Then 

artifacts are extracted via FastICA algorithm and identified by expert neurologists. 

Those extracted artifacts are just considered and then projected back to PREEGs 

for further analyses. Fig 11 illustrates one example for SSCEEG2. In this approach, 

we have 200 PREEGs (20 subjects, 10 trials) from the first group of participants and 

200 samples which are recorded from the second group of individuals. Extracted 
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artifacts are randomly selected and projected to PREEGs at different 𝑆𝑁𝑅s to 

reconstruct the second set of semi-simulated contaminated EEGs (SSCEEG2).  

 

 

 

Fig 11. (a) An illustration of SSCEEG2s at 𝑆𝑁𝑅 = 0.5𝑑𝑏. 

 

In this case, we have the second type of semi-simulated signals containing real 

artifacts and real EEGs. Figure 11 shows one example for a 5-s semi-simulated 

contaminated EEG. Needless to say, artifacts can be detected in Fig 11 easily. 

 

 

 

 

3. Results 

As mentioned before, four different datasets (SCEEG, RCEEG, SSCEEG1 and 

SSCEEG2) are provided in this study. 200 different 19-channel simulations or 

recordings are considered for each dataset. For each dataset, contaminated EEGs 

are fed into SOBI algorithm which is claimed to be a very effective method in 

separating biological signals and artifacts (specially in the case of EEG) [10]. We 
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assume that the number of sources is equal to the number of channels (𝑀 = 𝑁 =

19). All extracted sources are analyzed and labeled by experts. Generated or 

recorded signals and also extracted sources are investigated and monitored by 

expert neurologists. Samples about which reviewers do not have the same opinions 

are ignored and removed from the datasets. Experts label all extracted sources and 

control the reconstructed EEGs. Estimated sources are reconstructed in angle space 

and mentioned features are extracted based on AP. Mentioned classifiers and also 

the mixture of the classifiers are employed to classify EEGs and artifacts. We use 

ten-fold cross validation which means nine folds train the classifiers and one fold is 

used to test them each time. Classification performance is really important to 

evaluate the proposed method of automated artifact identification. As it was said 

before, three common and well-known classifiers are applied in this study. In 

testing phase, artifactual sources are identified by classifiers and then decomposed 

by SWT algorithm to perform the artifact removal procedure. Soft thresholding is 

considered and removing artifacts is carried out based on the suggested algorithm. 

After artifact identification and removal, denoised EEGs are reconstructed. We 

apply the proposed method in this study to different signal length to analyze the 

results more comprehensively. 10, 30 and 60 time windows are considered for 

signals in this study. Source identification is of a great deal of importance in the 

proposed method so all extracted sources are labeled in advance and average 

classification performance (ACP) for testing samples is reported. Table 5 represents 

the ACP and also standard deviation of classification accuracy for all datasets. ACP 

shows the average accuracy while classifying samples in each dataset and at 

different signal lengths.  

 

Table 3. Average and standard deviation of classification accuracy for all datasets 

Length Classifier SCEEG SSCEEG1 SSCEEG2 RCEEG 

10 s MLP 75.72 ± 6.55  76.64 ± 5.52 76.16 ± 6.33 75.62 ± 6.51 

KNN (K=20) 76.53 ± 7.41 76.17 ± 6.09 76.32 ± 7.11 75.85 ± 7.16 

Bayes 77.04 ± 8.69 76.39 ± 5.36 76.22 ± 6.27 75.49 ± 7.23 
Mixture 78.12 ± 5.74 79.06 ± 5.87 78.93 ± 5.85 78.86 ± 5.95 

30 s MLP 76.49 ± 7.93  75.84 ± 6.16 75.33 ± 7.41 75.37 ± 7.79 

KNN (K=20) 76.31 ± 7.01 75.92 ± 6.09 75.87 ± 6.71 75.41 ± 8.23 

Bayes 76.17 ± 7.39 75.78 ± 7.04 75.63 ± 8.08 75.49 ± 6.23 
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Mixture 78.01 ± 7.68 78.17 ± 7.98 77.93 ± 7.15 78.86 ± 5.95 

60 s MLP 77.06 ± 6.55  75.64 ± 6.52 75.16 ± 6.33 75.62 ± 7.51 
KNN (K=20) 76.53 ± 6.41 75.17 ± 5.09 75.32 ± 5.35 75.85 ± 6.16 

Bayes 76.04 ± 8.69 75.39 ± 7.44 75.22 ± 7.29 75.49 ± 7.23 
mixture 78.63 ± 7.58 77.63 ± 6.57 78.06 ± 6.32 76.93 ± 6.04 

Classification results suggest that the proposed features and classifiers are effective 

enough to identify artifacts and EEGs. It should be noted that six groups of samples 

containing EEG, EMG, ECG, EOG, eye blinking and white noise are considered in 

classification. As one can see, all accuracy results are quite high and in the same 

range. It shows that the signal length is not objective in the proposed method. That 

is to say that results for real EEGs are really similar to that of simulated and semi-

simulated ones. This motivates us to examine the mixture of these classifiers 

utilizing voting of classifiers. It can be easily seen that the mixture of three 

classifiers outperforms each of them. Therefore, we apply the mixture of classifiers 

in further analyses to evaluate the proposed method. Additionally, we can evaluate 

the proposed method considering the artifact removal aspect. For simplicity, 

results are given in three following subsections to make better comparison. We 

bring the results just for 10s EEGs in the following sections for sake of space. Since 

in most studies in this field it is of a great deal of importance to classify artifacts 

and brain activities, we also decide to classify components into two classes 

containing neural and artifactual components. Table 5 represents the results. Three 

afore-mentioned classifiers and the mixture classification model are employed. 

 

Table 4. Classification results for recognizing neural and artifactual components 

Length Classifier SCEEG SSCEEG1 SSCEEG2 RCEEG 

10 s MLP Acc 95.54±2.96 96.09±2.28 94.92±3.88 94.17±2.15 

Sen 96.83±3.02 96.11±3.64 95.07±2.61 94.02±3.98 
Spc 95.74±3.04 94.14±3.02 94.56±2.99 95.84±1.78 

Per 95.86±3.67 95.08±2.99 94.21±1.81 94.47±3.17 
KNN 
(K=20) 

Acc 95.32±3.39 94.79±3.04 95.84±3.45 96.00±2.06 

Sen 96.69±3.27 95.89±1.95 94.11±3.39 95.96±2.81 
Spc 95.57±2.99 94.99±2.92 95.10±3.00 95.52±3.08 

Per 95.34±3.26 96.53±3.55 94.46±2.94 94.98±3.08 

Bayes Acc 96.58±3.05 94.23±3.07 95.30±2.12 94.97±3.26 
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Sen 97.77±2.83 95.37±3.02 94.40±3.38 94.20±2.95 

Spc 96.65±3.16 94.77±2.99 95.49±2.08 96.02±3.92 
Per 97.03±3.12 96.12±2.98 95.74±3.04 94.87±2.87 

Mixture Acc 98.73±3.01 97.91±3.08 97.71±3.66 96.29±3.01 
Sen 97.94±3.30 98.03±3.39 96.81±2.75 96.35±3.50 

Spc 97.71±3.12 97.55±2.99 96.86±3.23 97.78±3.03 

Per 98.80±3.01 98.10±2.98 97.16±3.39 97.41±3.38 
30 s MLP Acc 94.88±3.34 96.54±2.36 96.35±3.46 95.71±3.22 

Sen 96.49±2.87 95.09±1.95 94.93±2.39 94.15±2.71 
Spc 96.41±2.90 93.51±3.71 95.96±3.11 95.88±2.67 

Per 96.42±2.98 94.26±2.21 95.12±3.71 97.53±3.73 

KNN 
(K=20) 

Acc 95.67±3.11 94.94±2.97 96.44±3.03 96.66±2.58 
Sen 93.79±2.72 97.35±3.30 95.04±3.09 95.31±3.07 

Spc 95.72±2.74 94.38±2.20 94.80±3.51 95.74±3.24 
Per 96.63±2.53 95.75±3.07 95.79±3.57 94.13±2.27 

Bayes Acc 95.49±2.84 94.81±2.58 97.91±2.84 94.82±2.85 
Sen 96.03±2.80 95.89±3.04 95.83±2.93 95.79±1.97 

Spc 95.73±3.48 94.24±3.12 96.38±3.54 95.67±3.26 

Per 94.70±2.76 95.60±3.24 94.94±2.62 94.67±2.74 
Mixture Acc 97.29±2.65 96.58±3.26 97.53±2.78 96.55±2.81 

Sen 96.21±3.16 97.49±3.92 96.73±2.08 97.33±2.96 
Spc 97.89±3.75 96.82±2.82 96.10±3.64 97.39±3.29 

Per 96.85±2.82 97.80±2.64 97.72±3.18 96.45±2.21 

60 s MLP Acc 93.93±2.36 96.42±3.09 95.7±2.89 96.87±3.33 
Sen 94.19±2.95 95.29±3.01 92.95±2.95 95.18±3.25 

Spc 92.06±2.06 95.20±2.96 94.65±3.01 94.52±2.94 
Per 96.44±3.04 96.59±3.49 94.18±2.88 95.86±3.07 

KNN 
(K=20) 

Acc 95.33±2.92 94.20±3.25 94.42±3.13 94.64±2.82 
Sen 94.25±3.19 95.70±3.23 95.51±3.17 95.46±2.93 

Spc 96.37±3.20 95.84±3.80 95.28±2.29 94.15±3.31 

Per 93.29±2.42 94.76±3.63 95.03±2.83 94.67±2.73 
Bayes Acc 94.90±2.17 95.22±3.15 95.67±2.35 95.55±3.19 

Sen 94.76±2.61 95.83±2.34 96.13±2.76 96.04±3.82 
Spc 95.32±2.52 94.85±3.57 95.35±2.97 95.88±2.34 

Per 95.31±2.79 95.10±2.88 94.70±3.43 96.26±2.69 

mixture Acc 97.14±3.01 96.72±3.19 96.02±3.06 96.66±3.11 
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Sen 98.23±2.37 97.59±2.83 96.74±2.38 97.93±3.05 

Spc 96.84±2.69 96.33±3.27 97.25±1.98 96.80±2.83 
Per 96.63±3.15 95.19±2.92 96.71±2.43 96.78±2.95 

 

In this table Acc, Sen, Spc and Per indicate classification accuracy, sensitivity, 

specificity and precision respectively. These measures suggest that how successful 

the classification process is. For more information about these criteria refer to 

pattern recognition and machine learning text books such as [REF]. Results for 2-

class recognition show that the proposed method can effectively recognize 

artifacts. The average values over all datasets and signal length for Acc, Sen, Spc 

and Per in table 5 is 96.19, 96.38, 95.97 and 95.76 respectively. It should be noted 

that ten-fold cross validation is performed to evaluate the classification. 

Classification performance is much higher than 6-class classification step. So we use 

this classification model for further analysis. Detected components as artifacts are 

fed into SWT-based artifact removal in the next step. Taking a close look at Acc and 

Sen measures, it is evident that the mixture of the classifiers is more efficient and 

successful in comparison with each of classifiers alone. So extracted sources are 

classified using the mixture model into two classes and artifactual ones are 

denoised by the proposed method employing SWT.  

 

Table 5. Average and standard deviation values for proposed features extracted 

from each component. P-value for the t-test is also included. 

# Feature 
abbreviation 

Ave ± std in the 
brain acitivity 
class 

Ave ± std in the 
artifact class 

p-value 

1 𝐴𝑣𝑒𝐴𝑃 37.46±5.17 40.02±4.92 0.0657 

2 𝑉𝑎𝐴𝑃 43.81±12.57 49.75±10.02 0.0789 
3 𝑆𝑘𝐴𝑃 0.94±0.18 0.69±0.39 0.0491 

4 𝐾𝑢𝐴𝑃 3.67±0.94 3.01±0.64 0.0476 

5 𝑀𝑒𝐴𝑃 73.31±5.58 60.15±6.70 0.0581 
6 𝑆ℎ𝐴𝑃 982312.37±37.93 977375.96±42.12 0.0464 

7 𝐿𝑒𝐴𝑃 3217.03±10.56 3102.66±9.36 0.0812 
8 𝑁𝑃𝑃1 312.87±8.56 198.56±9.03 0.0299 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.08.287755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.287755


 

 

9 𝑁𝑃𝑃2 367.35±10.11 245.73±9.26 0.0438 

10 𝑁𝑃𝑃3 312.48±11.78 456.87±10.49 0.0327 
11 𝑁𝑃𝑃4 327.87±12.07 423.87±9.06 0.0492 

12 𝑁𝑃𝑃5 189.58±7.92 163.44±6.65 0.0413 
 

To analyze the results more completely, we decide to bring features’ average and 

standard deviation in table 6. So all artifact components in all datasets are put in 

one group and sources related to brain activity in the other group. It is worth 

mentioning that for this analysis all components are normalized to the range of [-1 

1] before features’ statistics estimation in order to have the same amplitude range 

for all components. Average and standard deviation values are computed for all 

EEG recordings and simulations over each extracted feature. T-test analysis is also 

carried out to investigate the level of significance for each proposed feature. Most 

significant features are highlighted. Considering the results in table 6, we can easily 

find out that most proposed features are significant. As it is clear, all features 

related to Poincare planes have p-value less than 0.05. It shows the importance of 

nonlinear analysis of signal dynamics. Poincare planes are able to describe the 

components characteristics. In addition, some statistical features such as skewness 

and kurtosis seem to be significant. Besides, 2-class classification is carried out over 

all normalized components. Features whose p-value is less than 0.05 are selected 

for each component and then classification is carried out. Evaluation is performed 

using ten-fold cross validation. Table 7 shows the classification performance over 

all components. It is worth mentioning that all components regardless to their 

datasets are put in two classes and then classification procedure is performed.  

 

Table 6. Classification performance for the normalized components over all 

samples 

Classifier 10 s 30 s 60 s 

MLP Acc 97.63±1.57 96.36±1.32 96.43±1.38 
Sen 97.22±1.32 96.27±1.61 96.46±1.51 

Spc 97.53±1.38 97.29±1.12 95.67±1.75 

Per 96.37±1.24 96.88±1.26 96.58±1.36 
Acc 96.94±1.49 97.42±1.49 96.31±1.29 
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KNN 
(K=20) 

Sen 97.12±1.38 96.37±1.15 96.38±1.31 

Spc 96.28±1.46 97.49±1.63 96.49±1.68 
Per 97.07±1.37 97.69±1.22 95.93±1.58 

Bayes Acc 97.38±1.31 97.85±1.24 96.96±1.79 
Sen 96.21±1.18 96.93±1.36 95.41±1.43 

Spc 97.36±1.23 97.27±1.33 95.57±1.52 

Per 96.87±1.45 97.28±1.47 96.32±1.48 
Mixture Acc 98.26±1.27 97.95±1.18 98.27±1.37 

Sen 98.39±1.04 98.01±1.09 97.76±1.46 
Spc 97.63±0.95 97.98±1.27 97.83±1.45 

Per 98.84±1.01 98.21±0.98 98.46±1.33 

 

 

Taking a closer look at the recent results in tables 5, 6 and 8, it is evident that 

classification performance while using the mixture model is quite high and higher 

than several previous studies such as [52, 53]. Referring to table 5, we can even 

determine the type of the artifact with the accuracy more than 75% in all cases and 

datasets. It is noticeable in tables 6 and 8 that all components regardless to the 

datasets are classified into two classes with the accuracy and sensitivity more than 

96% and 95% respectively. These values can give us a rough estimation of the 

proposed method being effective and efficient. More results are provided in the 

following subsections. 

 

3.1. Simulated data results 

Figure 8 shows the simulation results for synthesized EEGs. In Fig. 12(a) artificial 

and contaminated EEGs are represented in 19 channels. Artifacts can be easily seen 

in this figure. Some of them are pointed out by arrows. Simulated artifacts in this 

figure correspond to the mentioned artifacts in Fig. 12(a). Fig. 12(b) demonstrates 

extracted sources via SOBI algorithm. It is evident that first three sources and the 

last one pertain to the artifacts. These sources are identified as artifacts using the 

mixture of classifiers. As it can be easily seen, noticeable EEG is leaked to these 

sources which is so important. Artifactual sources are taken into SWT-based artifact 

removal algorithm in order to get artifacts eliminated. Fig. 12(c) shows the output 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.08.287755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.287755


 

 

sources of SWT. As it is clear, SWT is effective in artifact removal. Then, EEG 

channels are reconstructed using the inverse of the mixing matrix. Fig. 8(d) 

represents the final reconstructed EEGs. Considering the pure EEGs and the results 

of the proposed method, no appreciable artifact is notified in the results. 

Moreover, reconstructed EEGs are justified by experts in order to evaluate the 

results visually. As it can be seen in Fig 12(b), brain activity leaks into artifactual 

components which is why we should not set these components to zero. These 

components are decomposed and details are thresholded using SWT. 

 

 

 

 

 

 

a 

b 
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Fig 12. Results of the proposed method for simulated signals (a) simulated and 

contaminated EEG (b) detected artifactual components (c) denoised components 

using SWT (d) reconstructed EEG 

 

 

 

In this section, we evaluate the proposed method through 200 independent 

realizations. In each realization, artifacts are separately generated at random 

intensities and then added to the simulated EEGs. Contaminated EEGs are taken 

into SOBI algorithm to get the sources separated. Estimated EEG sources are 

classified by the mentioned classifiers with respect to extracted features from the 

AP. Experts monitor and label the sources in advance to ensure the proposed 

method to work. Artifactual sources are detected and fed into SWT denoising 

procedure. Artifacts are estimated and then substracted from the original signals 

in order to achieve artifact-free EEGs. The implementation is carried out at 

different SNR values to evaluate the method more precisely. 𝐴𝐶𝑃, 𝑅𝑅𝑀𝑆𝐸, 

𝑅𝑅𝑀𝑆𝐸𝑃𝑆𝐷 , 𝐴𝐶𝐶 and 𝐴𝑀𝐼 are calculated for each implementation and shown in 

figure 9. We can compare the effectiveness of different classifiers trained with the 

suggested features. The green, blue, red and black lines indicate the results for 

MLP, Bayes, KNN and the mixture of classifiers respectively. Average values for all 

performance measures are displayed for different length of signals and at different 

SNRs. 
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Fig 13. Performance parameters using simulated data at various SNR values in 

terms of 𝐴𝐶𝑃, 𝑅𝑅𝑀𝑆𝐸, 𝑅𝑅𝑀𝑆𝐸𝑃𝑆𝐷 , 𝐴𝐶𝐶 and 𝐴𝑀𝐼 

 

As it is clear the mixture of classifiers outperforms the other classification models 

at all SNR values. All performance criteria are almost close for MLP, KNN and Bayes 

but the mixture classification model is more effective. It is worth mentioning that 

the mixture of classifiers can preserve the original EEGs when they are highly 

contaminated (e.g. SNR<0.5). It should be noted that average values for each 

performance parameter at different SNRs are reported and displayed. It should be 

mentioned that as SNR decreases all performance criteria degrade sharply. 

 

3.2. Semi-simulation results 

As mentioned before, we have collected two different datasets for semi-simulated 

signals to investigate the method performance more precisely. The proposed 

method is applied to both semi-simulated datasets. Fig 14 illustrates the results 

related to SSCEEG1. This dataset consists of actual pure EEGs contaminated by 

simulated artifacts. In Fig 14, all performance criteria suggest that the proposed 
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method is quite effective. Similarly, Fig 14 indicates that the mixture of classifiers 

leads to improved results for different signal length. 

 

 

 

 

Fig 14. Performance measures for SSCEEG1  

 

Since experts control the generated signals and label all of the extracted sources 

we can easily measure the performance parameters. Additionally, we have the 

pure EEGs in both semi-simulated datasets. So evaluation measures containing 

ACP, RRMSE, RRMSE PSD, ACC and AMI can be calculated for SSCEEG1 and 

SSCEEG2. Figure 15 shows the performance measures for the second dataset of 

semi-simulated EEGs called SSCEEG2 at different SNRs. Results for SSCEEG2 are 

quite similar to that of SSCEEG1. This similarity indicates that the considered EEG 

model to generated EEGs for simulated dataset is quite reliable and realistic.  
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Fig 15. Performance measures for SSCEEG2  

 

Like what was expected, results prove of the proposed model for pure EEGs and 

also artifacts. Since the results for SSCEEG2 are almost close to that of SSCEEG1, we 

can conclude that the proposed method is quite practical in real applications and 

situations. It should be noted that in SSCEEG2, pure real EEGs are randomly 

selected among participants and randomly-selected real artifacts are added to 

them at different SNRs. In contrast to SSCEEG2, SSCEEG1 dataset contains pure real 

EEGs contaminated by artificially-generated and randomly-selected artifacts.  

 

 

 

 

3.3. Real data results 

In this section we apply the proposed method to real contaminated EEGs. There 

are 200 EEG recordings and all EEGs and extracted sources are monitored and 
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labeled by experts. These EEGs contain severe artifacts to evaluate the suggested 

artifact removal procedure. Since there is no ground truth available for real data, 

we cannot report performance parameters. In other words, for real EEGs 

evaluation procedure is performed in a quantitative way including visualization 

criteria like topography or spectral density and temporal analysis. It should be 

noted that source classification accuracy for real data is previously reported in table 

3. As sources are labeled by experts just classification accuracy is available as a 

quantitative measure. For real contaminated EEGs visual inspection is performed 

by experts in order to evaluate the proposed method more truly. Figure 16 shows 

a real contaminated EEG recording from a participants in a 5-second segment. 

 

 

 

Fig 16. (a) Real contaminated EEG and (b) extracted sources using SOBI 

a 

b 
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As one can easily see, SOBI is able to separate sources and isolate artifacts. 

Although the source separation algorithm is quite effective, it is clear that brain 

activity leaks to most artifactual sources. This motivates us to employ automated 

artifact detection using the mixture of mentioned classifiers. All detected artifact 

components are processed via the proposed artifact elimination method based on 

SWT. In Fig 16, an EEG recording contaminated with all mentioned artifacts is 

represented. Taking a closer look at extracted sources in Fig 16(b), it is clear that 

sources 1,2,3,4,5,6,7,8,9,12 and 16 are artifactual. All of these sources are detected 

by the proposed classification model. Fig 17 shows the reconstructed EEG and its 

sources after artifact removal. 

 

 

Fig 17. (a) Reconstructed EEG through the proposed method and (b) EEG 

components. 

a 

b 
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Some muscle activity can be seen in Fp1, Fp2 and F8. Moreover it might be realized 

that artifacts such as ones related to eye movement and blinking still remain in the 

reconstructed EEG. To analyze the results more completely, we decide to consider 

the topography maps and power spectral density before and after applying the 

proposed method. Fig 18 illustrates the topography maps for extracted sources and 

similarly Fig 19 represents power spectral density for channels.  

 

 

 

 

Fig 18. Topography maps for components related to (a) contaminated and (b) 

reconstructed and cleaned EEG. 

a 

b 
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Considering the results in Fig 19, artifacts are easy to distinguish in most 

components. Eye movement and blinking are clear with respect to the channel 

locations. The 12th component, for example, shows the activity in both sides of 

forehead which is related to ECG and can be seen in F8 channel. The topography 

map for components after artifact removal ensure the proposed method to work 

effectively. Hot spots are easy to see in topography maps before artifact removal.  

Fig 20 shows the power spectral density for all channels before and after the 

proposed method.  

 

 

Fig 19. Power spectral density of channels for (a) contaminated real and (b) cleaned 

EEGs  

 

a 

b 
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We also decide to study the results in frequency domain more comprehensively. 

Therefore, four channels contaminated by severe artifacts are selected and power 

spectral density for those channels are represented in Fig 21. These five selected 

channels contain Fp1, Fp2, F8 and T7. Red and green colors denote EEGs before 

and after applying the proposed method respectively. 

 

 

 

 

a 

b 
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Fig 20. Power spectrum for (a) Fp1, (b) Fp2, (c) F8 and (d) T7. Red and green lines 

correspond to EEGs before and after applying artifact elimination respectively. 

4. Discussion 

In this study, we have managed to suppress different kinds of artifacts through an 

automated procedure. Conventional methods usually take advantage of filtering 

frequency bands which is not effective and practical since there is an overlap 

between EEG and most artifacts and noise in the frequency domain. Several surveys 

[2, 3, 4, 10, 11 and 12] have come to a conclusion that ICA-based methods can solve 

this problem. In [2 and 4] most BSS methods are evaluated at different levels of 

SNR and comparable results are achieved in those studies. On the other hand, these 

methods need artifactual sources to be determined by experts or classifiers which 

means that they are semi-automated. This motivates us to introduce a new 

automated artifact recognition system in the current study. Additionally, in some 

studies like [53], some features such as signal amplitude or slope are considered to 

recognize artifacts which is not appropriate and practical in most real cases. Due to 

the presence of noise and also different EEG recording systems and procedures, 

these measures require to be set for every single recording. In [50 and 54], authors 

have used correlation coefficients to sort extracted sources. In that study, the first 

and the last sources are considered artifactual and related to EOG and EMG which 

might result in information loss. Since we are not aware of the number of 

artifactual sources, in some cases there might be different numbers of artifactual 

sources from different types. These measures such as correlation coefficient and 

mutual information are not able to distinguish and recognize all components. 

Additionally, some sources are combinations of two or three artifacts which is why 

they cannot be completely recognized using just one or two criteria. In addition, 

there might be other types of artifacts such as those pertaining to eye movement 

or the white noise. So it seems that the proposed method in [54] is not very useful 

in most practical and real situations. To the best of our knowledge, there is no 

global measure or feature based on which artifactual sources can be recognized 

very accurately. That is the reason why we try to introduce an automated artifact 

recognition method based on the components’ dynamics in this study. Based on 

[50], BSS methods can effectively isolate brain activity and artifacts. Therefore, 

components are extracted based on one of best BSS methods which is called SOBI 

and is one the most common and effective source separation methods. Moreover, 
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in numerous studies such as [2, 3, 4, 9, 10, 50] SOBI is claimed to be one of most 

effective and successful source separation methods which is able to isolate 

artifactual components. SOBI can effectively separate neural activities and artifacts 

[2 and 4]. Time-lagged covariance matrices are iteratively used in SOBI while 

separating sources. In addition, SOBI reduces computation complexity and is simple 

to implement [2, 3, 9 and 10]. Therefore SOBI is applied in this study. Because of 

EEGs and artifacts being non-stationary and nonlinear, we decide to examine the 

phase space of the components in order to recognize artifact ones and eliminate 

them. Several studies have proven of equivalency of phase space and the original 

system according to topological characteristics. In other words, phase space is likely 

to provide more and / or different information in comparison with common feature 

extraction methods [43]. It is believed that signal phase is of great importance while 

processing non-stationary and nonlinear signals and more information is 

embedded in signal phase in comparison with the signal magnitude. This is our 

motivation to go for the phase space of the components and propose a new state 

space called angle space. Angle space is capable of representing components’ 

dynamics. To study the properties of the angle space more completely, we decide 

to reconstruct the angle space for three different signals containing a sinusoid, a 

random and chaotic time series. Fig 20 represents the angle plot for these signals. 

It is evident that angle plots are significantly different. These signals are sampled at 

the same sampling rate and have the same length. 

 

a 
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Fig 21- angle plot for (a) sinusoid (b) random (c) chaotic signals.  

 

The sinusoid signal has the frequency equal to 10 Hz. The random time series is 

zero-mean with unit variance. The chaotic signal is achieved employing the logistic 

regression with the tuning parameter equal to 3.9. To investigate more, we decide 

to reconstruct the angle plot for all types of artifactual components. These angle 
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plots are shown in Fig 21. Expectedly, angle plots are significantly different and can 

be recognized visually. For further analysis, we should describe the angle plot using 

some measures. 
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Fig 22- angle plots for single channel artifactual EEGs severely contaminated by (a) 

ECG, (b) EMG, (c) EOG, (d) eye blinking and (e) white noise. (f) angle plot for artifact-

free EEG. All signals are sampled at 256 Hz and have the length equal to 10 s. 

 

As it is clear, we can easily distinguish different types of artifacts visually in Fig 21. 

Some features and quantifiers are required to present the angle space 

mathematically. Poincare planes are applied to quantify the angle space of 

components. Besides, some statistical features are extracted from angle space. It 

is shown that extracted features from a higher dimensional transformations are 

more significant and discriminant than those in EEGs. Based on the results in table 

5, most extracted features are significant and effective to distinct neural activity 

and artifacts. Three common classifiers, including MLP, KNN and Bayes, are 

employed to classify components. We also employ the mixture of the mentioned 

classifiers which is more accurate based on the achieved results. Experts have 

labeled all extracted sources and also monitored all recordings and simulations. 

Results show that the mixture of those three classifiers is more accurate while 

recognizing neural and artifactual components. As mentioned before, accuracy 

while classifying components into neural activity and five different types of artifacts 

is high enough and comparable to previous studies. Artifact sources, recognized by 

the classification model, are fed into SWT-based artifact elimination procedure 

which is introduced and evaluated in [54]. SWT has some remarkable 

characteristics in comparison with DWT and CWT which are explained before. In 

previous studies, all components are thresholded using wavelet transform or 

f 
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artifact ones are set to zero. Both approaches might pose serious problems 

especially in real BCI applications with large number of channels. This fact is also 

mentioned in several studies [10, 53, 54]. In this study, we are able to detect 

artifactual sources and eliminate artifacts using SWT. This suggested approach 

leads to better results in comparison with conventional methods which mostly 

result in desired information loss. In [54], several denosing methods are compared 

and based on the results, it is mentioned that eliminating artifacts using SWT is 

more efficient than threshloding all components using wavelet or setting artifact 

sources to zero. That is why we go for SWT-based artifact removal. In contrast to 

several studies such as [50, 53, 54], the proposed method in this study is completely 

automated and more precise. Since previous studies use different performance 

criterion and measures, it is impossible to compare their results with that of the 

current study. But we have tried to compute major evaluation parameters in order 

to have a fair comparison. In addition, previous studies have applied their methods 

to different datasets. So it seems to be difficult to compare the results. In terms of 

computation complexity, it should be noted that it takes the proposed method less 

than 0.25 s to analyze a 1-min and 19-channel EEG recording sampled at 256 Hz 

and remove artifacts. For all simulations and recordings, the processing time is 

under 0.25 s which is practical for BCI applications and also diagnosis purposes. All 

implementations are performed using MATLAB (release R2016a) running on 

Windows 7 Laptop PC with Intel(R)Core(TM)2 Duo 2.0 GHz processor with 4 GB 

RAM. The average processing time and the standard deviation for real EEG 

recordings and simulated EEGs are 0.21 s and 0.09 s respectively. Since other similar 

methods are compared with SWT-based artifact removal in [54], we avoid to review 

them here for sake of space. In this study, since only artifactual components are 

fed into SWT-based artifact removal procedure, it is clear that the proposed 

method has less computation complexity in comparison with methods which 

analyze all components. 

 

Table 8. Average processing time at signal length 10 s, 30 s and 60 s over all 

components 

Signal length 10 s 30 s 60 s 
Processing time 0.08 ± 0.02  0.17 ± 0.03 0.23 ± 0.05 
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Table 10 shows the average processing time and the standard deviation for all 

components at signal length of 10 s, 30 s and 60 s. There might be other BSS 

methods suggested in some studies like [50] which claims that some other BSS 

methods outperform SOBI in particular situations but while considering all 

evaluation measures such as processing time and simplicity, it is obvious that SOBI 

is slightly better than most BSS methods. 

 Since support vector machine (SVM) is claimed to be one the best and most 

common classifiers in the previous studies like [67], we decide to employ SVM with 

the polynomial kernel to classify components. Extracted sources are classified into 

two groups named brain-activity and artifacts. The SVM’s kernel and also other 

parameters are set based on trial and error. SVM Classification results are no better 

than other mentioned classifiers. SVM has almost the same results since the 

average accuracy is somewhat equal to other classifiers. The reason is mainly 

related to the separability in the feature space. Ten-fold cross validation is 

performed to evaluate SVM. Results show that the mixture classification model can 

slightly better recognize components. One can say that SVM can also be included 

in the mixture. This motivates us to take advantage of SVM in order to build the 

mixture classification model with the aim of artifact recognition. Table 12 

represents the classification results. It is worth mentioning that components are 

classified into “brain-activity” and “artifacts” groups. Ten-fold cross validation is 

carried out.  

Table 10- Classification accuracy of all the classifiers and also the mixture of them. 

Average values are mentioned here. 

Classifier SCEEG SSCEEG1 SSCEEG2 RCEEG 

SVM Acc 96.76 ± 1.13 96.63 ± 1.26 95.26 ± 1.23 95.66 ± 1.14 

Sen 96.34 ± 1.09 96.17 ± 1.15 96.39 ± 1.16 96.73 ± 1.17 

Spc 96.91 ± 1.17 95.24 ± 1.01 94.29 ± 1.39 96.54 ± 1.21 

Per 97.07 ± 0.96 96.39 ± 1.12 95.09 ± 1.08 96.21 ± 1.18 
MLP+K
NN+Bay
es+SVM 

Acc 99.39 ± 0.75 99.28 ± 0.64 98.22 ± 0.91 98.78 ± 1.01 

Sen 99.12 ± 0.82 98.92 ± 0.57 98.84 ± 0.77 98.39 ± 0.94 
Spc 98.86 ± 0.67 98.76 ± 0.99 99.03 ± 0.82 99.08 ± 0.85 

Per 99.26 ± 0.52 98.51 ± 0.97 98.47 ± 0.88 98.94 ± 0.97 
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For sake of space and also due to simplicity, we decide to bring average values for 

10 s, 30 s and 1-min components in each dataset. It should be noted that we use 

ensemble voting to build the mixture of the classifiers. Results in table 12 suggest 

that the proposed mixture is able to recognize artifacts and separate them from 

brain activity. It is worth mentioning that the final mixture of experts which includes 

SVM, is more reliable and accurate than other proposed classification models. So 

we can realize that this mixture can be performed in future to classify artifacts and 

neural activity. Additionally, SVM’s results are slightly better than MLP and Bayes 

but statistical analysis shows no difference between classifiers while used alone. In 

contrast to single classifiers, the mixture classification models have better results 

and higher accuracies. Based on t-test, both mixtures (MLP+KNN+Bayes and 

MLP+KNN+Bayes+SVM) have significantly higher results than other classification 

models. As it is mentioned, we apply the voting between classifiers which means 

the test sample falls into the class with more votes. In terms of 3-classifier mixture, 

one class easily has more votes but in 4-classifier mixture, if the votes are equal, 

we go for SVM’s vote since it has slightly better results than other classifiers. It 

should be noted that voting is one of the simplest and fastest methods to fuse 

different classifiers. 

 To investigate more, we prefer to analyze the feature space more. To do that, all 

components from all datasets are normalized and then 12 suggested features are 

extracted from each source. We perform principal component analysis over all 

samples from different datasets and then normalize the components to achieve 

main and important components from the feature space. The two first components 

are plotted in Fig 21. Red and blue circles indicate artifactual and neural 

components respectively. 2000 samples are selected randomly from each class i.e. 

neural activity and artifacts to have equal number of samples in each class.  
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Fig 23 – Scatter plot of the two largest principal components of the feature space 

over all datasets. 

 

It is clear that feature space is separable. It can be verified that the proposed 

features can efficiently determine artifactual and neural components in this study. 

As we mentioned before, contaminated EEGs at different signal length are analyzed 

through the proposed method. Results show that although classification 

performance is the same for almost all components at different length, 10-s 

components are better classified in comparison with components with the length 

of 30 s and 60 s. As it is mentioned before, the phase space and consequently the 

angle space are able to demonstrate and represent the signal dynamics even at 

short length of the signal. This nonlinear analysis provides us with some new 

features which do not vary based on the length of the signal. That is why we can 

recognize sources very well regardless to the signal length. We have also tried 

different sampling rates. Real and simulated signals are sampled at the sampling 

rate of 128, 256, 512 and 1024 Hz. No significance difference is found in the results 

between different sampling rates. Similar results at different signal length and 

sampling rates suggest that the proposed method is quite effective and practical 

for different purposes such as BCI and diagnosis. Also it should be noted that all 

results are acceptable and comparable in terms of visual subjective inspection and 
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also quantitative objective measures. It is worth mentioning that that in this study 

we focus on removing stereotyped biological artifacts. Non-stereotyped artifacts 

such as head and electrode movement might cause special pattern while recording 

EEG. These artifacts should be eliminated before the proposed artifact removal 

procedure. Fortunately, these artifacts can be easily discarded from the data by 

visual inspection.  

In term of computer simulations, it should be mentioned that all simulations 

regarding the proposed method have been implemented in MATLAB. We also take 

advantage of EEGLAB [REF] in order to separate and analyze sources.  

 

5. Conclusion 

In this paper, we introduce a new method to suppress different types of artifacts 

and noise based on BSS (SOBI), wavelet transform (SWT) and a mixture of classifiers 

(MLP, KNN, Bayes and SVM). A preprocessing chain is suggested and evaluated in 

this paper. Results suggest that the proposed method can be employed to 

eliminate EEG artifacts. We have come to a conclusion that the proposed method 

is effective, fast and simple. Based on the results in this study and previous 

suggestions, hybrid methods which include BSS methods and artifact elimination 

procedures are recommended in order to correctly remove artifacts and noise from 

EEG [10]. Single channel artifact removal methods such as wavelet transform have 

been widely employed in most recent studies [2, 3, 10, 11]. It is mentioned and 

proved in [3] that wavelet transform should be a posterior step to BSS methods. It 

is also mentioned that automated methods are superior to methods based on 

visual inspection in terms of artifact elimination and EEG interpretation.  

 

 

SOBI is based on independent component analysis which means that we should 

take some assumptions into consideration. In other words, some assumptions have 

been fulfilled in this study. These assumption are as following: 

 component projections are mixed and summed linearly at channels, 

 components are independent and 
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 components have non-gaussian distribution. 

Considering artifacts and EEG, it is no exaggeration to say that the mentioned 

assumptions are realistic in most recordings and simulations in this study. Several 

studies like [53], have considered these assumptions and proved that linear 

decomposition methods such as SOBI seem to be appropriate to separate EEG 

components. Similar to most previous studies in this field, these assumptions are 

considered in this study. On the other hand, there are several advantages to 

employing BSS methods like SOBI in EEG analysis. SOBI allows direct examination 

of components in term of dynamics relate to separate or related regions in brain. 

In addition, most stereotyped artifacts are isolated by SOBI in different 

components. 

Another important point is about low-dimension EEG signals. In this study, it is 

assumed that the number of sources is equal to or less than the number of 

channels. Therefore, sufficient number of EEG channels is required to correctly 

estimate sources. Moreover, it is considered that the number of artifacts is less 

than or equal to the number of components and channels. These assumptions 

might cause problems while dealing with low-dimension EEG signals. In that 

situation, some decomposition methods such as empirical mode decomposition 

might be a good solution to decompose EEGs as the first step. Then BSS methods 

can be applied to decomposed signals. 

Since the mixture of several classifiers is employed in this study, it should be noted 

that over-fitting and under-fitting might cause some problems. It can be considered 

one of the weak points while applying classifiers in automated artifact recognition 

methods. This problem could be tackled by considering training and testing errors 

together and also performing some validation methods such as k-fold cross 

validation.  

It is worth mentioning that, no global measure is available to evaluate and compare 

different methods in this field. Besides, previous studies have tested methods on 

different datasets and simulations. This make the results inconsistent. That is why 

most previous studies have trouble reproducing other methods. In this study, we 

have tried to evaluate the proposed method through several approaches. 

Temporal, spectral performance parameters are considered in this study. We will 

try to define new evaluation criteria in future work. It should be noted that, the 
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results reveal the fact that although the proposed method outperforms most 

previous studies and is quite fast, effective and practical, it fails in a few cases while 

dealing with highly-contaminated EEGs. This motivates us to make attempts to 

introduce new methods in future. The proposed method has been applied to real, 

semi-simulated and simulated EEGs in order to remove artifacts in BCI applications. 

In future, this method could be applied to ictal and inter-ictal EEGs for diagnosis 

purposes and EEG interpretation. In future work, we are going to employ and 

evaluate the proposed method in real time BCI applications. Other BSS methods, 

classifiers and artifact elimination procedures could also be introduced and 

compared with this study. In addition, the proposed method could be employed to 

eliminate other types of artifacts such as power-line interference and head 

movement. However, these purposes are beyond the scope of the current study. 
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