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Abstract 

Cancer cell metabolism is dependent on cell-intrinsic factors like genetics, and           

cell-extrinsic factors like nutrient availability. In this context, understanding how these           

two aspects interact and how diet influences cellular metabolism is important for            

developing personalized treatment. In order to achieve this goal, genome-scale          

metabolic models (GEMs) are used, however, genetics and nutrient availability are           

rarely considered together. Here, we propose an integrated metabolic profiling, a           

framework that allows to enrich GEMs with metabolic gene expression data and            

information about nutrients. First, the RNA-seq is converted into Reaction Activity           

Score (RAS) to further scale reaction bounds. Second, nutrient availability is           

converted to Maximal Uptake Rate (MUR) to modify exchange reactions in a GEM.             

We applied our framework to the human osteosarcoma cell line (U2OS).           
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Osteosarcoma is a common and primary malignant form of bone cancer with poor             

prognosis, and, as indicated in our study, a glutamine-dependent type of cancer. 
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Introduction 

A widely recognized hallmark of cancer is reprogramming of cellular metabolism           

which aims at promoting the rapid cell proliferation and long-term maintenance, thus            

facilitating the uptake and conversion of nutrients into biomass1-6. Determining the           

metabolic requirement of proliferating cancer cells in order to modulate their           

metabolism might be a key factor to improve cancer treatment 7. The genetic            

alterations in oncogenes and tumor suppressor genes promote cancer reprogramme          

cellular metabolism supporting tumorigenesis1,2,8. Therefore, the energy and nutrient         

requirements necessary for rapid proliferation can be realized. However, genetic          

alteration is not the only cell-intrinsic determinant of cancer cell metabolism; the            

second is the origin of the cell. All cancers begin when one or more genes in a cell                  

mutate 9. Therefore, there is not one cancer-type cell, and each cancer cell combines             

the metabolic features that come from the origin tissue/organ and from the            

mutation(s).  

Understanding the regulation of the metabolic pathways by genetic factors provide           

new insights into the required metabolic aspect of tumorigenesis and can also            

potentially provide therapeutic metabolic targets.  
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Cancer cell metabolism similar to any other cell in living organisms is also determined              

by cell-extrinsic factors, including interactions with the environment7,10. There are          

numerous environmental factors that can affect cancer cell metabolism, where in           

particular diet, which affects nutrient availability, is one of the most important            

determinants1,2,7,11,12.  

Many metabolic signatures are similar across different kinds of cancer cells like the             

Warburg Effect, where cells prefer aerobic glycolysis over oxidative phosphorylation          

followed by lactic acid fermentation, even in the presence of oxygen and functioning             

mitochondria3,6. However, it does not mean that all cancer cells are addicted to             

glucose and can not survive without it.  

Here, we aim to contribute to the recently growing understanding of how certain             

cancer types respond to various nutrient availability and how the access to and             

utilization of nutrients by cancer cells affect the rate of proliferation. We provide a tool               

based on a genome-scale metabolic model (GEM)13-17 for approaching and testing           

hypotheses on how nutrient availability affects cancer cell metabolism and          

progression. 

Furthermore, opposing the modulation of genetics, modulating the access to          

nutrients seems to be more feasible and safe. However, first the metabolic            

requirements of a particular cancer type should be defined.  

In order to determine the nutrient requirement, we propose to utilize GEMs,            

transcriptomic and nutrient availability data. Moreover, we investigate nutrient         

requirements of cancer cells in different conditions with altered availability of           

nutrients, and examine its influence on transcription of metabolic genes.  
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In this paper, we focused on the human osteosarcoma cell line (U2OS).            

Osteosarcoma is a common and primary malignant form of bone cancer. It generally             

affects children and adolescents, where it represents the eighth-most common form           

of childhood cancer. With its poor prognosis, it is the second most important cause of               

deaths related to cancer in both children and adolescents18. 

This paper has a multidisciplinary character, ranging from genomics and metabolism           

to in silico  modeling. Therefore, we state the following research questions: 

1) Do nutrient availability changes affect metabolism of the U2OS cells? 

2) Do changes in glucose and/or glutamine availability impact the growth rate           

and metabolic requirement of U2OS cells? 

3) Does simultaneous integration of the gene expression and nutrient availability          

data into a GEM provide accurate prediction of cell growth and metabolite            

consumption/production? 

To achieve our goals we performed integrated metabolic profiling of the U2OS cell             

line that includes experiments and genome scale modeling. By gathering          

transcriptomic data from these cells in varying microenvironments, the effect of           

nutrient availability on cancer cell metabolism was studied. We focused on the            

questions whether this cell line is glucose-dependent, and whether U2OS cells           

require glutamine in order to grow and survive. Finally, we addressed the question             

whether diet (using altered nutrient availability) affects the transcription level of the            

cells and can alter the expression of the metabolic profile. As a modeling platform we                

used the genome-scale metabolic models13-17 that can be used to predict metabolic            

flux values for metabolic reactions using optimization techniques, such as Flux           

Balance Analysis (FBA)16,17 and Flux Variability analysis (FVA)19, which uses linear           
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programming. GEMs allow to describe an entire set of stoichiometry-based,          

mass-balanced metabolic reactions with gene-protein-reaction (GPR) associations.  

In our study, we utilized the most comprehensive human metabolic network model to             

date, Recon3D20, and a novel method, named Gene Expression and Nutrients           

Simultaneous Integration (GENSI)21 to create cell specific models. GENSI translates          

the relative importance of gene expression and nutrient availability into the fluxes.            

Further, we used our models to predict the influence of glucose and glutamine             

availability on the biomass synthesis flux and cancer related metabolic behaviors like            

the consumption of glucose and glutamine and the production of lactate. Our            

integrated study that includes experiments on the cell line and the computational            

simulation on RECON3D-based metabolic reconstruction shows that the U2OS is          

independent of the glucose level and the presence of glutamine is essential for cell              

viability.  

The contribution of this paper is sixfold: 

1) We provide an integrated GEM-based metabolic profiling framework for         

identification of the nutrient requirements. 

2) We prove that genome-scale models like RECON3D provide a great platform           

for integration of transcript and nutrient availability data in order to create            

specific models for studying cell metabolism. 

3) We prove that translation of the relative importance of gene expression and            

nutrient availability data into the fluxes based on observed experimental          

feature(s) is a reliable method to build specific models.  

4) We identified the impact of glucose and glutamine availability on the           

metabolism and proliferation rate of the U2OS cells. 

5) We identified that the U2OS cell line is a glutamine-dependent cancer type. 
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Results 

GEM-based metabolism profiling methodology 

To study the influence of nutrient availability on the growth rate and the metabolic              

behaviour we used the U2OS cell line and seven DMEM derived media containing             

different concentrations of glucose and glutamine (or L-alanine-glutamine), see Table          

1 in the Materials & Methods section. The U2OS cell line consists of epithelial              

adherent cells and exhibits a fast growth rate. 

We cultured them altering the metabolic microenvironment until the growth rate           

achieved a steady state. Further, we performed the proliferation assays and isolated            

mRNA from the cells and metabolites from the medium. We performed RNA-seq            

analysis using the NextSeq 550 Sequencing System (Illumina) a nd generated          

transcriptomic data after proper quality control and filtration. The RNA sequencing           

data were then processed (see Materials & Methods) and used for creation of the              

specific GEM models. Since GEMs include known functions of protein-encoding          

genes, they can be used as platforms for analyzing mRNA expression data to             

elucidate how changes in gene expression impacts cell metabolism and          

phenotypes22-28. Here, we additionally integrated the nutrient availability data by          

constraining the bounds of the exchange reactions. Our supervised approach that           

integrates both RNA-seq and nutrient availability data is based on the recently            

published GENSI20 method that utilizes the Reaction Activity Score (RAS) approach           

for mapping the transcriptome into a metabolic network 23. GENSI creates          

GEM-based specific models by integrating both data into the fluxes based on            

observed feature(s) that distinguish conditions. The proposed integrated metabolic         

profiling framework is schematically depicted in Fig. 1. 
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Fig. 1 A visualization of the steps in GEM-based metabolic profiling. GEM-based            

integrated metabolic profiling requires three inputs: a GEM model, gene expression and            

nutrient availability data and one feature of the cells that distinguish cells cultured in different               

conditions. In the first step of GENSI21, the RNA-seq is converted into RAS score 24 that is                

defined for any reaction associated with a gene in the GEM as a function of the expression    i               

of the genes encoding for the subunits and/or the isoforms of the associated enzyme(s).              

Nutrient Availability (NA) is converted to Maximal Uptake Rate (MUR) that is defined for an               

exchange reaction in GEM and describes the rate of the maximum possible uptake over  j              

the time for substances available for cells. NA is limited by a composition of media used in                 

our experiments. Obtained GEM-RAS-MUR models are then used for metabolic profiling           

using optimisation methods such as FBA16,17 and FVA19.  

 

Formulation of the specific GEM model 

A central challenge in understanding and treating cancer comes from its multi-scale            

nature. To gain an insight into the impact of the access to nutrients on metabolism               

and the rate of biomass synthesis, we integrated both; transcriptomic and nutrient            

availability data into the most extensive genome-scale model of human metabolism           

RECON3D21 and studied their meaning using the FBA16,17,19 approach. 
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In the GENSI framework the flux bounds of the reactions that are associated with              

genes are set proportionally to RAS scores that are computed based on RNA-seq             

data. In our work, the flux bound of the reaction is equal to RAS i multiplied by a       vi      i         

factor ( ), where is the factor independent of the reaction identity. α  α  vi =  × RASi   α          

When reaction is reversible, its forward flux is bounded by and its backward flux   i          vi      

is bounded by . When the reaction is irreversible, the flux bound in the   − vi      i         

impossible direction remains zero and the flux bound in the possible direction is set              

to . While exchange fluxes are correlated with relative estimates of consumption vi            

and/or secretion rates. Nutrient availability data was converted into a maximum           

uptake rate that describes the rate of the maximum possible uptake over the time for               

substances available for the model. Here, we defined for the exchange        MURj     

reaction in the GEM as the absolute value of a difference in concentration of the  j                

substance in an extracellular environment over 48h, for more details see Materials sj             

& Methods.  
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Fig. 2 Dependencies between values of in-silico biomass flux (y-axis) and values of             
factor α (x-axis) for different combinations of GEMs with RAS and MUR. a The              

dependency for GEM with RAS and without MUR. b The dependency for GEM with MUR and                

without RAS. c The dependency for GEM with RAS and MUR. 

 

Following the GENSI framework, we found the value of the factor by computing           α    

the steady state flux pattern for the maximal biomass synthesis flux for various             

combinations of RAS and MUR within GEMs. Possible values of were between          α    

0.000001 and 1, see Fig. 2. For the factor value equal to 0.00042, we observed that                

predictions for limitations imposed by nutrient availability and gene expression, i.e.,           

GEM-RAS-MUR, matched almost ideally maximal biomass synthesis fluxes        

corresponding to the proliferation rate observed in experiments (Fig. 2c and Fig. 3c).             

Interestingly, the growth rate does not depend on the glucose concentration in the             

presence of 4 mM of the glutamine (or L-alanine-glutamine).  
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Fig. 3 In-silico biomass flux predictions and observed proliferation growth rates.           

a,b ,c ,d Maximal in-silico biomass flux predictions for U2OS across the specific models            

created for each condition based on: transcriptomic data (GEM-RAS)* (a), nutrients           

availability data (GEM-MUR)* (b), transcriptomic data and nutrient availability data          

(GEM-RAS-MUR)* (c), transcriptomic data from the condition Glc25Gln4 and nutrient          

availability data (GEM-RAS(Glc25Gln4)-MUR) (d). e Reciprocal of the cells doubling time           

calculated from a linear equation describing the change in cell number over the time. ** 

* No data for conditions Glc10Gln0 and Glc2Gln0 due to the fact that cells were not able to survive                   

and the RNA could not be isolated. 

** For Glc10Gln0 and Glc2Gln0 the doubling time was not available due to the fact that the growth rate                   

was less than or equal to zero. 
 

In the absence of glutamine, the cells were unable to survive and started dying after               

hours of culturing (Fig. 3e). Since cells could not proliferate without glutamine we             

were not able to create GEMs for Glc10Gln0 and Glc2Gln0 due to lack of the               

RNA-seq data. We then built GEM-RAS(Glc25Gln4)-MUR models using RNA-seq         

data from cells cultured in Glc25Gln4 medium, which was our starting condition.            
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Computed biomass fluxes across seven different nutrient availability data (Fig. 3d)           

clearly show that without glutamine the U2OS cells have the least chance of survival.              

The biomass flux for the cases without glutamine was much smaller (Fig. 3d). The              

results of this prediction are consistent with the viability of cells and show that the               

presented framework is a good approach to predict survival of cells in new             

conditions.  

To examine whether only gene expression level has impact on the biomass            

synthesis, we formulated five RECON3D-based models via constraining reactions         

associated with genes as a function of RAS without changing exchange reactions            

( GEM-RAS). We did observe the impact of mapping the gene expression, however,            

there was no value of the factor for which predicted biomass fluxes and growth       α         

rates are correlated (Fig. 3a). This result seems to confirm that genetics is not the               

only determinant of the metabolic phenotype. 

Next, we decided to test whether integration of only nutrient availability changes the             

prediction of the fluxes (GEM-MUR). We built seven GEM-MUR models via           

constraining exchange reactions by MUR calculated for each condition. We did not            

change the bounds of reactions associated with genes. As we expected, the results             

again did not meet the experimental observations, leading even to an experimentally            

unobserved situation of a high growth rate for Glc10Gln0 and Glc2Gln0 (Fig. 3b). 

The predictions of biomass flux for GEM-RAS-MUR models were aligned with our            

proliferation assay (compare Fig. 3c and Fig. 3e); the biomass flux proportional to the              

reciprocal doubling time is glucose-independent and decreases as the amount of           

glutamine changes. 
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Flux variability analysis to investigate the nutrient requirement  

To test the prediction of the GEM-RAS-MUR models we performed FVA analysis for             

allowed exchange reactions while supporting biomass production rate. We further          

explored the range of uptake (if negative) or secretion (if positive) fluxes of glucose,              

glutamine and lactate by plotting the range of fluxes for corresponding exchange            

reactions (Fig.4).  

Our main observation was that glutamine uptake is essential for all conditions. The             

minimum of the flux of the glutamine exchange reaction was alway less than zero              

(Fig. 4c) (however, for the condition Glc2Gln0.5 the value was relatively small). In             

medium Glc2Gln0.5 it is then required at a very low amount of glutamine to achieve               

optimal growth. Whereas the minimum uptake of glucose is much less than its             

availability and equal to 2mM/48h for most conditions (Fig. 4a). Only for the condition              

with Glc2Gln0.5 the minimum flux was equal to 0.24 mM/48h. The overall prediction             

of the maximum flux of lactate seems to be in accordance with the glucose              

consumption: around 10mM/48h for conditions Glc25Gln4 and Glc10Gln4 and         

7mM/48 for conditions containing 2mM of glucose (Fig. 4e).  
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Fig. 4 Predicted and observed ranges of the uptake/secretion of glucose, glutamine            

and lactate. 

a,c ,e The range of fluxes of glucose (a), glutamine (c) and lactate exchange reaction (e)               

consistent with the maximal biomass flux and steady state across five different media. b,d ,f              

The concentration of glucose (b), glutamine (d) and lactate (f) in five different media before               

and after carrying out experiments.*  

* The concentration of the cells at t=0 was 200 000 cells/ml. 

 

In-silico predictions were then verified experimentally by measurement of the glucose           

and glutamine consumption, and lactate consumption. It turned out that all of the             

available glutamine were consumed by cells in all cases. While the excess of glucose              
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in the conditions Glc10Gln4 and Glc25Gln4 were not utilized by cells. Interestingly,            

the production of lactate was similar for Glc10Gln4 and Glc25Gln4, while cells            

cultured in Glc25Gln4 consumed two times more glucose than cells growing in            

Glc10Gln4.  

 

Discussion 

Cancer is one of the world's most serious health problems. Recently, cancer            

metabolism and nutrition have gradually become important topics in theoretical and           

clinical research. In contrast to traditional chemotherapy, where the goal is to kill             

cancer cells mainly via blocking the transcription, the nutrition-based approach          

assumes that cancer cell metabolism is influenced by metabolic constraints imposed           

by a diet. Perturbations to dietary compositions contribute to changes in plasma            

metabolite levels that in turn influence metabolite levels in the tumor           

microenvironment and thereby alter cancer cell metabolism and therapeutic         

responses. Nutrient levels in the tumor/cancer cell microenvironment can have          

profound impacts on the cell metabolism, growth and drug sensitivity7,10-12.  

Here, we follow this line of research and propose a framework for exploring the              

impact of the diet on cancer cell metabolism and progression using the cancer cell              

line and medium compositions as an experimental setup. We performed the           

integrated metabolic profiling through enriching genome-scale modeling with        

metabolic gene expression and nutrient availability data. In our study, we focused on             

the metabolism of bone osteosarcoma that is one of the most common primary             

malignant bone tumors 18. 
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As a GEM model we used Recon3D20 that is a computational resource and functions              

as the most extensive, updated and expanded human metabolic network model. With            

its efficiency to connect genes to biochemical pathways, it can emphasize the            

promising prospects of structural analysis in genome-scale models for identifying          

genes related to disease and the potential for developing new treatment, biomarkers            

or drug repurposing. Moreover, as we recently showed, it could also be utilized as a               

platform for integration of the cell-intrinsic factor (gene expression level) and           

cell-extrinsic factor (nutrient availability) and contribute to the understanding of the           

impact of the nutrients availability on cancer metabolism20.  

Here, we proposed a general framework of the integrated metabolic profiling that            

incorporates information about gene expression and nutrient availability to a GEM           

that could be further used to accurately predict cell growth rates and            

nutrients/metabolites consumption/production. For this purpose, we utilized the        

GENSI framework to scale reaction bounds using RAS, and then MUR to introduce             

information about nutrient availability to external reactions. 

In our experiments, we considered seven different conditions in which various           

amounts of glucose and glutamine (mM) were available, see Table 1 in Materials &              

Methods. First, we noticed that in the case of no glutamine (Glc10Gln0 & Glc2Gln0),              

all cells died within two weeks; that was a clear indication of the importance of the                

glutamine availability for the cell growth. Furthermore, the conditions Glc10Gln4 and           

Glc2Gln4, as well as the condition Glc25Gln4, displayed roughly similar and high            

growth rates (Fig. 3e), indicating a more important role of glutamine compared to             

glucose in the growth of U2OS cells. This fact is further supported by the growth               

rates of the conditions Glc2Gln0.5 and Glc2Gln2, where Glc2Gln2 clearly presented           

a higher growth rate (almost as high as conditions with Gln4) in comparison to              
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Glc2Gln0.5. We were able to answer our research questions (1 and 2) that the U2OS               

cell line is a glutamine-dependent cancer type and glucose has very limited influence             

on the cancer cell growth. 

Next, we showed that our integrated metabolic profiling allowed us to obtain a GEM              

that provides highly accurate predictions. For this purpose, we first verified whether a             

combination of RAS and MUR (GEM-RAS-MUR) is crucial to match model           

predictions with observed quantities and compared them against a GEM with           

information about RAS (GEM-RAS) and a GEM with MUR (GEM-MUR). The results            

in Fig. 3 seem to confirm that genetics or nutrient availability used separately are              

insufficient determinants of the metabolic phenotype. Only their combination         

(GEM-RAS-MUR) allowed us to obtain accurate predictions of the cell growth. 

Lastly, we applied flux variability analysis to the GEM obtained within the proposed             

framework (GEM-RAS-MUR) to compare uptake/secretion fluxes of selected        

metabolites with measured quantities. In Fig. 4 we confronted predicted fluxes by the             

FVA (Fig. 4a, 4c & 4e) against the measured quantities (Fig. 4b, 4d & 4f) of glucose,                 

glutamine and lactate. Interestingly, the predictions given by the FVA closely reflect            

real consumption/production. This outcome provided further evidence that the         

proposed integrated metabolic profiling framework can be used to develop models           

capable of  accurately imitating highly complex processes like cancer metabolism. 

In conclusion, the results obtained in our experiments indicate that the           

GEM-RAS-MUR model for the U2OS cell line obtained within our framework could be             

used to accurately predict cell growth and metabolite consumption/production. This          

answers our last research question positively and opens new research perspectives           

for applying our framework to different types of cancer, but also other illnesses. The              

combination of transcriptomic data together with information about nutrients seems to           
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be essential for developing accurate in-silico models like GEMs. Lastly, our study            

also highlights the huge potential of GEMs as a platform to incorporate big data like               

RNA-seq. 

 

Materials & Methods  

Culturing U2OS Cancer Cells 

U2OS (Human Osteosarcoma) cells were cultured in Dulbecco’s Modified Eagle          

Medium (DMEM; GibcoBRL, Grand Island, NY, USA), supplemented 10% Fetal          

Bovine Serum (FBS) and 1% antibiotics (penicillin and streptomycin) at various initial            

concentrations of glucose and glutamine/L-alanine-glutamine (Table 1). Six of the          

compositions were made using Advanced DMEM that does not contain glucose,           

glutamine, phenol red and the sodium pyruvate. Glc25Gln4 is commercially available           

(DMEM glutamaxTM). The cells were first cultured in DMEM glutamaxTM for two weeks             

until a sufficient amount of cells was acquired. Then cells were split over seven              

experiments and cultured for three weeks to adopt. Cells cultured in condition 3 and              

4 started dying immediately.  

Table 1. The seven different medium compositions used to culture U2OS cells. 

Condition name Glucose (mM) Glutamine (mM) 

Glc10Gln4 10 4 

Glc2Gln4 2 4 

Glc10Gln0 10 0 

Glc2Gln0 2 0 

Glc25Gln4 25 4* 

Glc2Gln0.5 2 0.5 

Glc2Gln2 2 2 
*L-Alanyl-Glutamine 
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Growth rate/Cell proliferation assay.  

The total number of cells in the consequent supernatant was determined by            

hemocytometer counting. Mean growth rate was determined by counting cells in four            

non-overlapping sets of sixteen corner squares selected at random.  

Isolation and measurement of the metabolites from medium 

Samples from each medium were collected in time 0 and 48h, repeated three times              

for a total of three independent experiments for every medium composition.           

Metabolites were isolated using the protocol described in Sapcariu et al. 29 with minor              

modification. The samples were filtered using 0.22μm syringe filters (BGB Analytik           

Vertrieb GmbH, Rheinfelden, Germany), freeze dried and stored until measurement          

in -80℃. Standard solutions for glutamine, glucose and lactate were prepared in the             

same way as well as control samples. High-performance liquid chromatography          

(HPLC) was performed using the HPLC-DAD_RID LC-20AT Prominence (Shimadzu,         

Columbia, USA) machine with a UV Diode Array Detector SPD-M30A NexeraX2           

or/and a Refractive Index Detector RID 20A and an analytical ion-exclusion Rezex            

ROA-Organic Acid H+(8%) column (250x4.6 mm) with guard column (Phenomenex,          

Torrance, USA) (5 mM H2SO4 in MilliQ water (18.2 MΩ),isocratic, 0.15 ml/min. flow             

rate). Injection volume was 15 μl (Autosampler: SIL-20AC, Prominence, Shimadzu),          

column oven temperature was 55 ⁰C (Column oven: CTO-20A, Prominence,          

Shimadzu) and the pressure was 29 bar. 

Isolation and analysis of RNA 

5.000.000 cells from each medium condition were taken for RNA analysis, also            

repeated three times for a total of three independent experiments for every cell             

condition. The RNA extraction was done using the TRI Reagent Protocol from Sigma             
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Aldrich 

( https://www.sigmaaldrich.com/technical-documents/protocols/biology/tri-reagent.html ), after  

which all samples were treated with DNase using the TURBO DNA-free Kit from             

Invitrogen. Nanodrop was used for determining RNA concentrations when needed.          

With the Agilent 2100 Bioanalyzer System the quality of the RNA was checked, as              

well as the RNA Integrity Number (RIN), using RNA Pico Chips. rRNA depletion and              

library preparation for sequencing was completed with the NEBNext protocol          

(‘Protocol for use with NEBNext rRNA Depletion Kit (Human/Mouse/Rat) (NEB          

#E6310) and NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB             

#E7760, #E7765)’) from New England BioLabs. Using a 2200 TapeStation System           

with Agilent D1000 ScreenTapes (Agilent Technologies), the size distribution of the           

libraries with indexed adapters was assessed. Quantification of the libraries was           

performed on a QuantStudio 3 Real-Time PCR System (Thermo Fisher Scientific),           

which was done using the NEBNext Library Quant Kit for Illumina (New England             

BioLabs) according to the manufacturer's directions. On a NextSeq 550 Sequencing           

System (Illumina), the libraries were clustered and sequenced (75 bp) utilizing a            

NextSeq 500/550 High Output Kit v2.5 (75 Cycles) (Illumina). 

RNA-seq data processing 

RNA-seq data was available in .fastq file format. There were three measurements per             

condition. The RNA-seq data was processed according to the following pipeline: 

1. Sequences were mapped against the human reference genome using         

Burrows-Wheeler Aligner (BWA; version 0.7.17,     

https://sourceforge.net/projects/bio-bwa/). The output of this step were files in         

.sam format. 
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2. The .sam files were transformed to sorted bam files using Samtools           

( https://anaconda.org/bioconda/samtools). 

3. Gene occurrences were calculated using featuresCounts from the Subread         

package (https://anaconda.org/bioconda/subread). 

In all cases, the Homo Sapiens (human) genome assembly GRCh38 (hg38) from            

Genome Reference Consortium Build 38     

( https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/) was used as the     

reference genome. 

Mapping transcriptomic data to the fluxes with Recon3D 

Mapping transcriptomics data to the fluxes with Recon3D includes two steps: 1)            

Conversion of RNA-seq into RAS, 2) RAS to fluxes of reactions with            

Gene-Protein-Reaction association rules.  

RNA-seq data was converted to RAS, for each condition and each reaction, based             

on protocol declined by Graudenzi, A. et al. 24 according to Gene-Protein-Reaction           

association rules (GPRs). The formula includes AND and OR logical operators. AND            

rules are employed when distinct genes encode different subunits of the same            

enzyme, i.e., all the subunits are necessary for the reaction to occur. OR rules              

describe the scenario in which distinct genes encode isoforms of the same enzyme,             

i.e., either isoform is sufficient to catalyze the reaction. In the next step RASi is               

converted to a lower bound of the reaction having GPR association rules as     vi      i       

follows:  

AS f (RNA eq)  R =  − s  

v 
il ≤ vi ≤ v 

iu  

 ≠ 0 ⇒ vv 
il il =  − 1 × α × RASi  
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 ≠ 0 ⇒ v αv 
iu il =  × RASi  

where is the vector of fluxes through all reactions having a gene rule, and v              vil   viu  

are the vectors of lower and upper bounds on the reaction . i  

Mapping Nutrient Availability (NA) to fluxes with Recon3D 

Mapping NA to fluxes with Recon3D includes two steps: 1) Conversion of NA to              

Maximum Uptake Rate (MUR), 2) Conversion of MUR to fluxes of exchange            

reactions. We define a for each exchange reaction based on NA data for    MURj       j       

each condition. In the next step is converted to a lower bound of exchange      MURj        vjl    

reaction  as follows: i   

UR   M =  dt
|d[S ]| =  Δt

|ΔS |  =  t −tF I

|[S ]−[S ]| 
F

 
xI  

v 
jl ≤ vj ≤ v 

ju  

 ×MURv 
jl =  − 1  

where is the vector of fluxes through exchange reactions with the environment of vi              

the system, and are the vectors of lower and upper bounds on these fluxes,  vjl    vju             

is a Maximum Uptake Rate that is defined as the rate of the maximumURM                

possible uptake over the time for each substance available to the model.  

 

In our case, MUR is defined for the exchange reaction in a GEM as the absolute           j        

value of the difference in the concentration of the substrate in extracellular          Sj    

environment ( |) over the 48h.[S ] S ]|  
jF − [  

jI   
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Simulations 

In the simulations of maximal biomass flux we applied the computational technique of             

Flux Balance Analysis (FBA)16 to the human genome-wide metabolic map Recon3D20           

using the COBRA toolbox in MATLAB and Python 30,31. FBA solves the following linear             

programming problem:  

Z = c v 
T  

 

v  S = 0  

 V  
l ≤ V ≤ V  

u  

where S is the stoichiometry matrix indicating how many molecules of each            

metabolite are produced or consumed in each reaction, is the vector of fluxes         V       

through all reactions including exchange reactions with the environment of the           

system, ɑ and are the vectors of lower and upper bounds on these fluxes, c  V l     V u              

is a vector of weights generating the linear combination of fluxes that constitutes the              

objective function Z.  

 
In the simulations of maximal and minimal fluxes for defined exchange reactions we             

applied the computational technique of Flux Variability Analysis (FVA)19. FVA is used            

to find the minimum and maximum flux for reactions in the network while maintaining              

some state of the network, e.g., supporting maximal possible biomass production           

rate. FVA  entails the following linear programming problem:  

/min         vmax 
v

 
v

 
i  

v  S = 0  

v ≥γZw 
T  

0  

v 
l ≤ v ≤ v 

u  

where is the optimal solution to the FBA problem with biomass reaction  w vZ  
0 =   

T
0             
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as the objective function, represents the biomass objective (vector of weights    w 
T        

generating the linear combination of fluxes that constitutes the objective function ),           Z  

is the vector of fluxes through all reactions, is a parameter that controls whetherv          γ        

the analysis is done w.r.t. suboptimal network states ( ) or to the optimal state        ≤γ  0 < 1       

( ). γ = 1   

 
Data and source code availability 

All related data sources such as gene featureCounts, RAS scores, and GEM models             

can be found at https://github.com/e-weglarz-tomczak/GEM-RAS-MUR 
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