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ABSTRACT  29 

Mother-to-child transmission (MTCT) through breastfeeding remains a major 30 

source of pediatric HIV-1 infection worldwide. To characterize plasma HIV-1 subtype C 31 

populations from infected mothers during pregnancy that related to subsequent breast 32 

milk transmission, an exploratory study was designed to apply next generation 33 

sequencing and a custom  bioinformatics pipeline for HIV-1 gp41 extending from heptad 34 

repeat region 2 (HR2) through the membrane proximal external region (MPER) and the 35 

membrane spanning domain (MSD). Viral populations during pregnancy from women 36 

who transmitted by breastfeeding, compared to those who did not, displayed greater 37 

biodiversity, more frequent amino acid polymorphisms, lower hydropathy index and 38 

greater positive charge. Viral characteristics were restricted to MPER, failed to extend 39 

into flanking HR2 or MSD regions, and were unrelated to predicted neutralization 40 

resistance. Findings provide novel parameters to evaluate an association between 41 

maternal MPER variants present during gestation and lactogenesis with subsequent 42 

transmission outcomes by breastfeeding. 43 

 44 

IMPORTANCE 45 

HIV-1 transmission through breastfeeding accounts for 39% of MTCT and continues as 46 

a major route of pediatric infection in developing countries where access to 47 

interventions for interrupting transmission is limited. Identifying women who are likely to 48 

transmit during breastfeeding would focus therapies during the breastfeeding period to 49 

reduce MTCT. Findings from our pilot study identify novel characteristics of gestational 50 

viral MPER quasispecies related to transmission outcomes and raise the possibility for 51 
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predicting MTCT by breastfeeding based on identifying mothers with high-risk viral 52 

populations.  53 

INTRODUCTION 54 

Mother-to-child HIV-1 transmission (MTCT) can occur during pregnancy, delivery 55 

(perinatally) or by breastfeeding and contributes substantially to global morbidity and 56 

mortality for children under-5 years of age. Rates of perinatal MTCT range from 15% to 57 

45% in the absence of any interventions, but can be reduced to less than 5% with 58 

appropriate antiretroviral treatment (1-5). HIV-1 transmission through breastfeeding 59 

accounts for 39% of MTCT and continues as a major route of pediatric infection in 60 

developing countries (6), when access to interventions for interrupting transmission are 61 

limited (7).  62 

Viruses that establish MTCT either perinatally or through breastfeeding display 63 

limited diversity, as well as relatively short and under-glycosylated gp120 regions (8-12), 64 

similar to gp120 regions among transmitter/founder viruses in general (13-16). The 65 

membrane-proximal external region (MPER) of gp41 contains linear epitopes for 66 

broadly HIV-1 neutralizing antibodies (bn-HIV-Abs), e.g. 2F5, 4E10, Z13, Z13e1 and 67 

10E8, and is accessible to plasma bn-HIV-Abs (17-21). Elevated maternal antibody 68 

titers to HIV-1 envelope (env) gp41 and/or gp120 epitopes are directly associated with 69 

perinatal MTCT (22-26). Our previous study of HIV-1 MPER sequences from HIV-1 70 

infected mother-baby pairs in the Zambia Exclusive Breastfeeding Study (ZEBS), a 71 

clinical trial to prevent MTCT of HIV-1 through breast milk (27-29), suggests that 72 

polymorphisms in MPER occur naturally and can confer resistance to broadly 73 

neutralizing anti-MPER antibodies (29). Thus, it is plausible to hypothesize that HIV-1 74 
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MPER variants in mothers who transmit HIV-1 to their babies by breastfeeding (TM) 75 

display a greater extent of genetic polymorphism in MPER compared to those who do 76 

not transmit (NTM). 77 

Cross-sectional as well as longitudinal studies of cell-free HIV-1 find persistent 78 

mixing and synchronous evolution of viruses between plasma and breast milk in the 79 

ZEBS and other cohorts indicating that HIV-1 quasispecies in plasma are representative 80 

of virus populations in breast milk (27,30-34), although compartmentalization of cell-81 

associated viruses in breast milk is reported in other studies (30,35). A sophisticated 82 

phylogenetic analysis of longitudinal HIV-1 env V1-V5 sequences from plasma and 83 

breast milk of transmitting mothers suggests that the most common ancestral virus(es) 84 

in breast milk originate during the second or third trimester of pregnancy, close to the 85 

onset of lactogenesis (27). Consequently, plasma HIV-1 variants during pregnancy 86 

might harbor genetic features related to subsequent breast milk transmission.  87 

 To examine the relationship between maternal viruses during gestation and 88 

subsequent transmission outcomes through breastfeeding, a pilot study of ZEBS 89 

maternal plasma subtype C HIV-1 from second or third trimester of pregnancy were 90 

evaluated by next generation sequencing (NGS) to provide broad coverage of HIV-1 91 

quasispecies at the population level and sensitive detection of low-frequency variants. A 92 

custom bioinformatic pipeline was developed to assess biodiversity, amino acid 93 

substitutions within linear epitopes of known bn-HIV-Abs targeting gp41 MPER, and 94 

biochemical features (hydropathy and charge) of plasma subtype C HIV-1 gp41 MPER 95 

variants, and compared to the adjacent heptad repeat region 2 (HR2) or membrane 96 
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spanning domain (MSD) among mothers who transmitted or did not transmit HIV-1 97 

through breastfeeding.   98 

MATERIALS AND METHODS 99 

Study cohort. A nested, case-control study included a subset of eight women 100 

infected by subtype C HIV-1 enrolled in ZEBS (27-29). All subjects were therapy-naïve, 101 

except for a single peripartum dose of nevirapine according to the Zambian government 102 

guidelines during the enrollment period (2001 - 2004). Written informed consent for 103 

participation in the ZEBS study was obtained from all participants. From the larger 104 

cohort, our study included plasma samples from four women who transmitted HIV-1 105 

during the early breastfeeding period (TM) (defined by infants who became HIV-1 DNA 106 

positive after 42 days following prior negative tests), and four infected women who did 107 

not to transmit (NTM) [defined by infants who remained HIV-1 DNA negative through 108 

the completion of all breastfeeding for a median (quartile range) of 6.5 (4.0 – 18.8) 109 

months)] (Table 1). Maternal plasma samples were collected prospectively during the 110 

second/third trimester of pregnancy [median (quartile range): 80 (32 - 164) days before 111 

delivery] (Table 1). At the time of sampling, the two groups of women were balanced for 112 

median (quartile range) of age [TM, 25.5 (22.5 - 31.5) years vs. NTM, 27.0 (20.3 - 34.5) 113 

years] (p = 0.87), CD4 T-cell count [TM, 146 (117 - 187) cells/µl vs. NTM, 202 (132 - 114 

240) cells/µl] (p = 0.27), plasma viral load [TM, log10 5.2 (4.9 - 5.5) HIV-1 RNA copies/ml 115 

plasma vs. NTM, log10 5.2 (5.0 - 5.3) HIV-1 RNA copies/ml plasma] (p = 1.00), and 116 

breastfeeding period [TM, 4.0 (4.0 – 11.5) months vs. NTM, 6.5 (4.0 – 18.8) months] (p 117 

= 0.53). This genetic protocol was approved by the Institutional Review Boards of the 118 

University of Florida, the Sabin Research Institute, and Children’s Hospital Los Angeles. 119 
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Generation of amplicon library. Viral RNA was extracted from 280 µl of plasma 120 

using QIAamp Viral RNA Mini Kit (Qiagen, Valencia, CA). A library of HIV-1 env gp41 121 

amplicons (318 nucleotides in length, including HR2, MPER, and 5’ MSD) was 122 

generated for each subject from 2,000 HIV-1 RNA copies by RT-PCR using 123 

SuperScriptTM One-Step RT-PCR (Invitrogen, Carlsbad, California) followed by 124 

amplification using GoTaq colorless Master Mix (Promega, Madison, WI) (36). First 125 

round amplification used forward primer 251 (5’-GGG GCT GCT CTG GAA AAC TCA 126 

TCT-3’) and reverse primer 585 (5’-AAA CAC TAT ATG CTG AAA CAC CTA-3’) 127 

[nucleotides 8,011 - 8,035 and 8,345 - 8,469, respectively, in HIV-1HXB2 genome (37)], 128 

while second round amplification used forward A-257 (5’-129 

CGTATCGCCTCCCTCGCGCCATCAG GCT CTG GAA AAC TCA TCT GCA CCA-3’) 130 

and reverse B-575 (5’-CTATGCGCCTTGCCAGCCCGCTCAG  ATC CCT GCC TAA 131 

CTC TAT TCA CTA-3’) (positions 8,017 - 8,041 and 8,335 - 8,359, respectively) with 132 

adaptors A or B (underlined nucleotides in respective primer) incorporated at the 5’ 133 

ends. Amplicons were gel purified using QIAquick Gel Extraction Kit (Qiagen) as 134 

described (38), and submitted to the Interdisciplinary Center for Biotechnology 135 

Research at University of Florida for Titanium Amplicon 454-pyrosequencing reading 136 

from adaptor B using a Genome Sequencer FLX (454 Life Sciences) according to the 137 

manufacturer’s protocol.  138 

Sequence analysis. A bioinformatics pipeline was developed to facilitate 139 

analysis of large numbers of HIV-1 gp41 HR2-MPER-MSD sequence reads. The 140 

median (quartile range) number of raw reads was 56,647 (43,142 - 75,450) per subject. 141 

Sequences were submitted to NCBI public access database with accession numbers 142 
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pending. A quality control step filtered a median (quartile range) of 7.5% (5.2% - 13.2%) 143 

low quality reads with ambiguous nucleotides, more than one error in either primer tag, 144 

or a length outside mean ± 2 SD length range, leaving median (quartile range) of 52,408 145 

(37,541 - 71,533) quality sequences per sample. Depth of sequencing provided median 146 

(quartile range) of 27 (19 - 36)-fold coverage of input 2,000 HIV-1 RNA copies with no 147 

significant difference in sequence number or fold coverage among the samples between 148 

the groups. Quality MPER sequences were extracted from the entire HR2-MPER-MSD 149 

sequences by aligning to HIV-1HXB2 and to HIV-1 subtype C consensus sequence 150 

generated from HIV sequence database (39).   151 

Nucleotide sequences were clustered at 3% genetic distance using ESPRIT 152 

(38,40,41) to develop a consensus sequence for each cluster that represents a 153 

sequence variant. Complexity of the HIV-1 population within each individual was 154 

evaluated by neighbor-joining (NJ) phylogenetic tree generated from consensus 155 

sequences with the maximum-likelihood composite model implemented in MEGA v5.2 156 

(42,43). Statistical support was assessed by 1,000 bootstrap replicates. NJ trees were 157 

annotated manually in Adobe Illustrator CS4 (Adobe Systems Incorporated, San Jose, 158 

CA) to display frequencies of HIV-1 cluster variants. Frequencies of amino acid 159 

differences at each position compared to subtype B HIV-1HXB2 were calculated. Non-160 

synonymous substitutions resulting in alteration of viral sensitivity to bn-HIV-Abs, 161 

including 2F5, 4E10, 10E8 and Z13e1, were identified by mapping to known 162 

resistant/sensitizing mutations (see Fig. S1) (21,29,44-60). Number and frequency of 163 

amino acid differences were compared between TM and NTM sequences. Positive 164 

selection at epitope-composing positions was inferred by Phylogenetic Analysis by 165 
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Maximum Likelihood (PAML) (61). Hydropathy index and charge of each MPER 166 

consensus sequence were calculated using an in-house code (41,62,63).  167 

Polymorphisms across all sequences were evaluated by biodiversity, expressed 168 

as operational taxonomic units (OTU), using rarefaction, while Chao1 algorithms in 169 

ESPRIT (40). Rarefaction curves display HIV-1 diversity over sequencing depth, and 170 

Chao1 infers maximum biodiversity within 2,000 input HIV-1 RNA copies (38,40,41). 171 

 Statistical analysis. Groups were compared by unpaired t-test. Statistical 172 

analyses were performed using SAS version 9.1 (SAS Institute, Cary, NC) with P < 0.05 173 

(two sided) defined as significant. Logistic regression was used to examine the effects 174 

of predicted hydropathy or charge of HIV-1 gp41 MPER and their interactions 175 

(exposures) on transmission (outcome). 176 

RESULTS 177 

Population structure. To evaluate the complexity of viral population structure 178 

within each individual, unrooted phylogenetic trees were constructed from consensus 179 

MPER sequence clusters. Overall, the analysis showed that sequences were correctly 180 

assigned to each individual with no sequence mixing among subjects. Within each 181 

subject HIV-1 populations were organized into one to three dominant clusters with 182 

thousands of sequences per cluster (Fig. 1). Dominant sequence clusters generally 183 

included a median (quartile range) of 47% (19% - 63%) of sequences. Sequences 184 

representing 0.25% to 10% of the viral population within an individual also appeared in 185 

low frequency (0 to 4) clusters surrounded by swarms of clusters with less abundant 186 

variants, usually representing < 0.25% of the population. The structure of viral 187 

populations based on gp41 regions was indistinguishable between TM and NTM and 188 
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similar to HIV-1 populations based on gp120 V3 (38).   189 

Biodiversity of HIV-1 MPER quasispecies. Biodiversity of HIV-1 MPER 190 

nucleotide sequences within each individual was assessed using rarefaction curves. 191 

HIV-1 MPER nucleotide sequences among TM displayed biodiversity ranging from 26 to 192 

110 OTU, which was approximately 50% greater than biodiversity ranging from 18 to 77 193 

OTU among NTM (Fig. 2A). When maximum biodiversity within 2,000 HIV-1 RNA 194 

copies was estimated, viral populations among TM, compared to populations among 195 

NTM, displayed a trend toward greater median maximum biodiversity [median (quartile 196 

range): 87 (66 - 160) OTU versus 33 (28 - 125) OTU, respectively, p = 0.33]  (Fig. 2B).  197 

To determine if differences in biodiversity between TM and NTM were restricted 198 

to MPER or extended to adjacent regions in gp41, similar analyses were applied to HR2 199 

and to MSD sequences (Fig. 2). Overall, mean estimated maximum biodiversity was 200 

more than 2-fold greater in HR2 than in MPER among TM or NTM groups, reflecting in 201 

part that the HR2 region (102 nucleotides) is almost twice as long as MPER (66 202 

nucleotides). MSD encoding regions are similar to MPER in length and displayed similar 203 

biodiversity between NTM and TM groups, although maximum biodiversity in MSD 204 

compared to MPER was reduced among TM group (Fig. 2B). 205 

Amino acid substitutions in HIV-1 MPER.  Biodiversity evaluated at the 206 

nucleotide sequence level was reflected in diversity among amino acid residues in 207 

MPER (Fig. 3), as well as in HR2 and in MSD regions (see Figs. S2 and S3), indicating 208 

that a preponderance of nucleotide polymorphisms within each region involved 209 

nonsynonymous changes. HIV-1 MPER variants among TM had changes at more 210 

amino acid positions than NTM [median (quartile range) 14 (12 - 16) vs. 9 (8 - 14) 211 
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positions per person, respectively], with amino acid changes in six positions (663, 666, 212 

672, 673, 680 and 681) observed exclusively in TM viral populations. HIV-1 MPER 213 

variants from TM also had more amino acid substitutions per position than NTM 214 

[median (quartile range): 7 (4 - 9) vs. 3 (1 - 7) respectively, p = 0.04]. While the MPER 215 

reference sequence for subtype B includes a single N-linked glycosylation motif 216 

(positions 674 to 676), the subtype C consensus MPER sequence lacks a similar motif. 217 

Although some polymorphisms at position 674 would introduce a motif at low frequency, 218 

the number of N-linked glycosylation motifs in MPER was similar among viral 219 

populations from TM and NTM. MPER amino acid residues under positive selection 220 

were limited (N674G and K683R in TM1, S668K in TM4, N677R in NTM2, and K665R, 221 

T676S and K683R in NTM4) with no significant difference between TM and NTM (Fig. 222 

3). 223 

Changes in antibody response epitopes in MPER. Amino acid substitutions in 224 

MPER epitopes might alter susceptibility (i.e., sensitivity or resistance) to bn-HIV-Abs, 225 

including 2F5, 4E10, 10E8 and Z13e1 (see Fig. S1). A bioinformatics approach was 226 

applied to evaluate a potential impact on neutralization susceptibility by amino acid 227 

polymorphisms in MPER among the sequences. Overall, the neutralization effects by 228 

many of the MPER polymorphisms identified by deep sequencing were undefined (Fig. 229 

3), although no known sensitizing variants, even at low frequency, were identified in any 230 

subject (44,46,50,53,64). In contrast, some MPER polymorphisms were predicted to be 231 

associated with resistance to neutralization by 2F5, Z13e1, 4E10, or 10E8 (21,29,45,47-232 

49,51-55,57,58,60,65-67). For example, all subjects harbored dominant virus 233 

populations with known subtype C amino substitutions E662A, K665S and A667K 234 
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conferring 2F5 resistance (48,53,65-67). Additional 2F5 resistant polymorphisms D664N 235 

and K665E/Q/R/T/A (45,47,48,51,54,60,68) were identified in 3 individuals (TM1, NTM3, 236 

and NTM4). At least one of four 4E10 resistant substitutions (F673L, N674D/S, 237 

T676/I/A, or N677S) was identified in each individual (29,49,50,52,54,55,58). 238 

Resistance substitutions to Z13e1 (D674N/S/T) (57) appeared in several TM (TM3 and 239 

TM4) and NTM (NTM1 and NTM3), while 10E8 resistant mutation F673L (52) was 240 

observed only in TM4. Overall, polymorphic substitutions with predicted resistance 241 

phenotypes were identified with variable frequency in most individuals independent of 242 

transmission outcomes.  243 

 Distinct biochemical characteristics of HIV-1 MPER populations 244 

between TM and NTM. To evaluate whether or not predicted amino acid substitutions 245 

might alter the biochemical features of MPER, distribution of hydropathy or charge at 246 

the population level within TM or NTM MPER was assessed (Fig. 4A). TM viral 247 

populations compared with NTM demonstrated a left-shift towards increased 248 

frequencies of hydrophilic MPER variants with a median (quartile range, QR) 249 

hydropathy index of -10 (QR, -12.5 to -9.6), significantly lower than NTM variants with a 250 

median of -7.3 (QR, -10.4 to -5.1) (p <0.0001). The difference in hydropathy index 251 

between TM and NTM was concentrated among variants that appeared with reduced 252 

frequency (≤ 20%) (P < 0.0001), but not among high frequency variants (> 20%) (p = 253 

0.34). Low-frequency variants were uniquely identified by NGS, and not found when 254 

clonal or single genome sequences were analyzed (29) (data not shown). When charge 255 

of MPER amino acids was assessed, a clear right-shift towards an increase in 256 

frequencies of MPER variants with greater positive charges occurred in TM with 257 
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significantly greater net charges (median 2.0; QR, 1.0 to 2.0) compared with NTM 258 

(median 1.0; QR, 1.0 to 2.0) (p<0.001) (Fig. 4B). The distinct differences in biochemical 259 

features between TM and NTM gp41 populations were restricted to MPER and failed to 260 

extend into flanking HR2 or MSD domains (Fig. 4).  261 

Logistic regression analysis indicated that an increase in MPER hydrophobicity 262 

was significantly associated with reduced odds of transmission by breast feeding (p < 263 

0.0001), while positive charged MPER regions showed a close relationship with breast 264 

milk transmission (p < 0.0001). Logistic regression statistics revealed a significant 265 

interactive effect on transmission between hydropathy and charge (p<0.0001). For 266 

negative, neutral or positive charged regions, odds ratios were 0.741, 0.416 and 0.781 267 

respectively for a one-unit increase in net hydropathy (95% confidence interval 0.738 - 268 

0.744, 0.413 - 0.419 and 0.699 - 0.873, respectively). Charge has an opposite effect on 269 

transmission for negative and positive hydropathy. Increase of net charge was 270 

significantly associated with reduced odds of transmission for negative hydropathy (OR 271 

= 0.627, 95% CI, 0.622 - 0.632), while for positive hydropathy, net charge increase was 272 

significantly associated with elevated odds of transmission (OR = 6.358, 95% CI, 3.772 273 

- 10.718). 274 

DISCUSSION 275 

Breast milk is essential for infant development and health particularly in resource 276 

limited settings (69-72). Unfortunately breast feeding remains a major source of global 277 

pediatric HIV-1 infection reflecting, in part, limited parameters to identify women at high 278 

risk for viral transmission by breastfeeding and the challenges of providing therapeutic 279 

interventions for the duration of the breast feeding period (73-76). HIV-1 variants that 280 
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establish new infections by breastfeeding generally occur at low frequency in the 281 

transmitting viral population, are characterized by shorter and underglycosylated gp120 282 

Envelopes, and may represent escape from neutralizing antibodies targeting epitopes in 283 

both gp120 and gp41 MPER (9-12,77). Our exploratory studies of HIV-1 variants by 284 

metagenomic approaches identified distinct features of gestational MPER populations 285 

that distinguished between women who did or did not subsequently transmit during 286 

breastfeeding. Transmission outcome groups in our study were well balanced in age, 287 

plasma viral load, CD4 T-cell counts and breastfeeding practices, which in combination 288 

with the depth of sequencing from each individual provided statistical sensitivity. As 289 

anticipated virus populations in plasma during pregnancy among women who 290 

subsequently transmitted via breastfeeding displayed greater biodiversity. A higher 291 

frequency of HIV-1 MPER variants with hydrophilic and positively charged amino acid 292 

residues among TM compared with NTM was discovered. The characteristics could only 293 

be evaluated at the population level by NGS, as conventional clonal sequencing biases 294 

the population towards dominant variants. Phenotypic differences in peripheral blood 295 

viral populations overtime that related to subsequent transmission were evident by the 296 

third trimester of pregnancy about the time of lactogenesis (27). While our current study 297 

was designed as a cross sectional comparison of maternal virus populations during 298 

gestation, whether or not biochemical differences among maternal viral populations 299 

present during pregnancy persist during breastfeeding and are related to infecting cell-300 

free or cell-associated viruses in nursing babies are important questions for subsequent 301 

studies (78).  302 

Positive selection for any single amino acid change was limited, as was 303 
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modulation of glycan motifs across MPER. Sensitivity to bn-HIV-Ab, either alone or in 304 

combinations, by the novel amino acids in each MPER allele within an individual is 305 

difficult to predict with complete accuracy, may differ by subtype (77) and necessitates 306 

direct assessment for neutralization susceptibility (79). Absence of clear bn-HIV-Ab 307 

resistance genotypic profiles during pregnancy that distinguish between TM and NTM 308 

does not rule out a subsequent role for neutralization resistance in MTCT by breast 309 

milk. Yet, polymorphic amino acid positions within MPER during pregnancy frequently 310 

mapped outside motifs associated with known bn-HIV-Ab, raising the possibility that 311 

factors other than antibody selection contribute to the differences in MPER 312 

characteristics between TM and NTM. For example, a significant role in membrane 313 

fusion played by MPER requires functional assays to evaluate the consequences by 314 

biochemical variants of MPER for viral entry into different host cells or for crossing 315 

mucosal barriers. 316 

HIV-1 gp41 MPER plays a critical role in HIV-1 fusion by perturbing the 317 

architecture of the bilayer envelope (80-83). Distribution of hydrophobic amino acid in 318 

MPER can modulate membrane fusion (80,84). Electrostatic interaction between viral 319 

particle and negatively charged lipid membrane may also play a role in viral entry (85). 320 

Logistic regression analysis indicated an interactive effect of hydropathy and charge of 321 

HIV-1 MPER variants on breast milk transmission outcome in our study. Similar to our 322 

study of gp41 MPER, a significant difference in hydropathy in gp120 between TM and 323 

NTM in intrauterine transmission was reported in another study (86), suggesting that 324 

intrauterine transmission is associated with maternal envelope quasispecies with altered 325 

cellular tropism or affinity for coreceptor molecules expressed on cells localized in the 326 
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placenta. Together, both studies raise the possibility that antibody-independent 327 

mechanisms might contribute to transmission.  328 

A novel aspect of our study is that differences in MPER were compared to 329 

flanking regions in gp41. While MPER regions displayed a trend toward increased 330 

maximum biodiversity, the striking biochemical characteristics of viral populations 331 

associated with MTCT by breastfeeding were restricted to MPER. Although HR2 and 332 

MSD segments that flank MPER were diverse, patterns of diversity were unrelated to 333 

transmission outcomes, perhaps reflecting HR2 interactions with HR1 or a role for MSD 334 

in anchoring gp41 in membranes (64,87-90). Overall, deep sequencing coupled with an 335 

efficient bioinformatics pipeline provided unprecedented coverage of HIV-1 gp41 MPER 336 

quasispecies combined with sensitive detection of low frequency variants that can only 337 

be captured by high coverage of input viral copies. Low frequency variants within viral 338 

populations are particularly critical and clinically relevant as transmitting viruses. Our 339 

proof of principle studies indicating that detailed characteristics of viral quasispecies 340 

months before transmission relate to transmission outcomes raises the possibility for 341 

predicting MTCT by breastfeeding and identifying mothers with high-risk viral 342 

populations.  343 

344 
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Table 1. Demographic, immune and viral characteristics of study subjects. 736 

Study 

group 

Maternal Infant age (days) 

Age 

(years) 

Trimester CD4 T cell 

(cells/µl) 

Viral 

Loada 

Duration of 

breastfeeding 

(months) 

Negative 

PCRb 

Positive 

PCRb 

TM1 22 2nd 154 5.3 14 34 62 

TM2 27 3rd 110 5.5 4 35 63 

TM3 33 3rd 198 5.0 4 37 70 

TM4 24 3rd 137 4.9 4 28 63 

NTM1 19 3rd 181 5.3 4 738  

NTM2 24 2nd 115 5.0 22 731  

NTM3 36 3rd 223 5.3 4 730  

NTM4 30 2nd 246 5.1 9 639  

 737 

a: Log
10

 HIV-1 RNA copies/ml plasma; b: HIV-1 DNA 738 

739 
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FIGURES NAD LEGENDS 740 

 741 

Fig. 1. Organization of HIV-1 gp41 MPER populations.  An unrooted neighbor-joining 742 

tree for each individual was developed from the deep sequencing data set clustered at 743 

3% genetic distance. Each branch represents a consensus sequence of HIV-1 gp41 744 

MPER within 3% genetic distance. Symbols represent the proportion of total deep 745 

sequences in a cluster: Ο, ≤ 0.25%; ■, > 0.25 % to 10%;     , >10%. 746 

747 
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 748 

Fig. 2. Biodiversity among HIV-1 viral populations.  Nucleotide deep sequences of 749 

HIV-1 MPER (66 bp), or HR2 (108 bp), or MSD (63 bp) from each individual were 750 

clustered at 3% genetic distances and displayed as rarefaction curves (A) and Chao1 751 

values (B). A. Y-axis, number of OTU (number of sequence clusters); x-axis, percent of 752 

total deep sequences (sequences sampled ÷ total number of sequences x 100%). 753 

Rarefaction curves show HIV-1 variants from TMs (red) or NTMs (black), respectively. 754 

Numbers of OTU at the end of curves represent biodiversity calculated from rarefaction 755 

curve at the sequence depth (100% of deep sequences). B. Y-axis, maximum number 756 

of OTU within 2,000 input viral copies estimated by Chao1 algorithm based on 757 

rarefaction curve of HIV-1 variants from each subjects (40); x-axis, study group, TM or 758 

NTM, respectively. Symbols: Ο, subject #1; □, subject #2; ◊, subject #3; ∆, subject #4. 759 

Red symbols, TM; black symbols, NTM 760 
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Fig. 3. Amino acid changes in MPER compared with HXB2 sequence. Amino acid 763 

residue (a single letter code) which differs from HXB2 sequence was shown in each 764 

space with red letter representing amino acid residue resistant to bn-HIV-Ab(s) and 765 

black letter depicting amino acid with unknown effect on bn-HIV-Ab susceptibility. Color 766 

scheme is used to define frequency of amino acid substitution with beige representing 767 

residues in > 80% of HIV-1 MPER variants; green depicting residues in > 10% to 80% 768 

of HIV-1 MPER variants; and grey representing residues in < 1% to 10% of HIV-1 769 

MPER variants. Substitutions outlined in pink are resistant to 2F5; purple are resistant 770 

to 4E10; blue are resistant to 10E8; and yellow are resistant to Z13e1. Residues under 771 

positive selection are circled by red. N-linked glycosylation motifs (NXS/T) are outlined 772 

by dark brown. a: epitope reported in HIV molecular immunology database (91); b: 773 

subtype C consensus sequence generated from HIV sequence database (39); c: gp160 774 

amino acid residues 662 to 683 are residues 151 to 172 in gp41 (37); dash (-): amino 775 

acid identity between HIV-1HXB2 and subtype C consensus. 776 

777 
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 778 

Fig. 4. Biochemical characteristics of HIV-1 viral variants. Frequency distribution of 779 

A. hydropathy indexes with each symbol representing the percent of consensus 780 

sequences with that particular hydropathy index, or B. net charge of HIV-1 viral variants 781 

with each symbol depicting percent of consensus sequences with that particular net 782 

charge of MPER, HR2 or MSD from TMs (red symbols) or NTMs (black symbols). 783 

Symbols: Ο, subject #1; □, subject #2; ◊, subject #3; ∆, subject #4. Inserts in A and B 784 

show significantly lower hydropathy index and significantly higher net charge 785 

respectively in HIV-1 MPER variants from TM in contrast to NTM with each point 786 

representing hydropathy index (A) or net charge (B) of each consensus MPER 787 

sequence. 788 

 789 

790 
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SUPPLEMENTAL FIGURES 791 

 792 

Fig. S1. Amino acid changes known to alter HIV-1 sensitivity to bn-HIV-Ab(s). Amino acid 793 

residue (a single letter code) known to alter HIV-1 sensitivity to bn-HIV-Ab(s) is shown in each 794 

space with red letter representing Ab-resistant amino acid substitution (1-15), and green letter 795 

depicting amino acid substitution increasing sensitivity to Ab-neutralization (5,16-19). Colors 796 

code epitopes of known HIV-1 MPER antibodies, and correspondent resistant/sensitizing amino 797 

acid residues with pink for 2F5, purple for 4E10, blue for 10E8 and yellow for Z13e1. a: 798 

epitope reported in HIV molecular immunology database (20); b: subtype C consensus 799 

sequence generated from HIV sequence database {Los Alamos National Laboratory, 14 A.D. 73 800 

/id}; c: gp160 amino acid residues 662 to 683 are residues 151 to 172 in gp41 (21); dash (-): 801 

amino acid identity between HIV-1HXB2 and subtype C consensus. 802 

803 
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 804 

Fig. S2. Amino acid changes in HR2 compared with HXB2 sequence. Amino acid residue(s) 805 

(single letter code) differing from HXB2 sequence is/are illustrated at each position of HR2 with 806 

red letter representing T20-resistant mutation (22-24).   807 

808 
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 809 

Fig. S3. Amino acid changes in MSD compared with HXB2 sequence. Amino acid 810 

residue(s) (single letter code) differing from HXB2 sequence is/are illustrated at each position of 811 

MSD with GXXXG motif and R696 underlined due to their important roles in membrane fusion 812 

and fusion abolishing mutation G694/R or R696/E/D highlighted in red (25-27).  813 

814 
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