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Brassinosteroids (BRs) are plant steroid hormones
that are known to regulate cell division and stress re-
sponse. We used a systems biology approach to in-
tegrate multi-omic datasets and unravel the molecu-
lar signaling events of BR response in Arabidopsis.
We profiled the levels of 32,549 transcripts, 9,035 pro-
tein groups, and 26,950 phosphorylation sites from
Arabidopsis seedlings treated with brassinolide (BL,
most active BR) for six different lengths of time. We
then constructed a network inference pipeline called
Spatiotemporal Clustering and Inference of Omics
Networks (SC-ION) that was able to integrate these
multi-omic data into one, cohesive regulatory net-
work. Our network illustrates the signaling cascade of
BR response, starting with kinase-substrate phospho-
rylation and ending with transcriptional regulation.
We used our network predictions to identify putative,
relevant phosphorylation sites on the TF BRI1-EMS-
SUPPRESSOR 1 (BES1); the importance of which
we experimentally validated. Additionally, we identi-
fied an uncharacterized TF, which we named BRON-
TOSAURUS (BRON), that regulates cell division. Fur-
ther, we show that bron mutant roots are hypersen-
sitive to BL. Together, this work demonstrates the
power of integrative network analysis applied to multi-
omic data and provides fundamental insights into the
molecular signaling events occurring during BR re-
sponse.
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Introduction
Brassinosteroids (BRs) are involved in a number of
important biological processes including cell elonga-
tion and division, photomorphogenesis, reproduction,
and both biotic and abiotic stress responses. The BR
signaling pathway has been well-established in Arabidop-
sis (23, 39, 41). BRs are first sensed by the plasma
membrane-localized receptor BRASSINOSTEROID IN-
SENSITIVE 1 (BRI1) (11, 17, 24). Upon BR binding,
BRI1 recruits co-receptors including BRI1-ASSOCIATED
RECEPTOR KINASE 1 (BAK1) that are required for its
activation (26, 36). In the absence of BR, the GSK3
kinase BRASSINOSTEROID INSENSITIVE 2 (BIN2)

phosphorylates numerous substrates including the tran-
scription factors (TFs) BRI1-EMS-SUPPRESSOR 1
(BES1) and BRASSINAZOLE-RESISTANT 1 (BZR1)
(16, 25, 36, 63, 66). This phosphorylation inactivates
BES1/BZR1 through cytoplasmic retention, degrada-
tion and/or reduced DNA binding. When BRs are
present, the BRI1/BAK1 complex activates a kinase
signaling cascade resulting in the inactivation of BIN2
and the dephosphorylation of BES1/BZR1. This allows
BES1/BZR1 to regulate target gene expression in the
nucleus (15, 40, 49, 57, 62–64). While there are many
conserved GSK3 phosphorylation sites in BES1/BZR1
proteins, the exact sites that are phosphorylated by BIN2
and the sites responsible for negative regulation of BES1
activity are not well defined.

The role of BR in modulating cell division is well-
documented, particularly in the Arabidopsis root. It has
been shown that BL has a dose-dependent effect on cell
division in the root meristem: roots treated with higher
levels of BL have more meristematic cells. Additionally,
the bes1-D gain-of-function and bri1-116 loss-of-function
mutants have altered cell cycle progression, which impli-
cates that plant cyclins may be involved. Accordingly, it
has been shown that CYCLIN D3;1 (CYCD3;1) is induced
by BL and can rescue cell division defects in the bri1-116
mutant (14, 19). BR has also been implicated in stem
cell division and maintenance: roots treated with BL have
excessive QC divisions and altered expression patterns of
QC cell identity markers (14, 30, 53).

The BR signaling pathway in Arabidopsis is highly de-
pendent on the levels of protein phosphorylation, mod-
ulation of protein levels, and downstream transcriptional
regulation. Therefore, we determined the dynamic re-
sponse to BR signaling in Arabidopsis by performing large-
scale transcriptome and (phospho)proteome profiling of
seedlings treated with BL for different lengths of time. We
then inferred a set of integrated, TF-centered Gene Reg-
ulatory Networks (GRNs) using our newly-developed Spa-
tiotemporal Clustering and Inference of Omics Networks
(SC-ION) pipeline. These networks illustrated how the
phosphorylation state of TFs is important for predicting
their downstream target genes. Additionally, SC-ION al-
lowed us to infer one network per time point and visual-
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ize the early and late (phospho)protein-transcript regula-
tions in BR response. By combining these TF-centered
networks with a correlation-based kinase signaling (i.e.
kinase-centered) network, we illustrated the temporal cas-
cade of BR response starting with kinase signaling and
ending with differential transcript abundance. We were
able to use this network to predict and experimentally
validate previously uncharacterized BIN2 phosphorylation
sites on BES1. Additionally, through network motif anal-
ysis, we identified a number of TFs putatively involved in
BR response. In particular, we identified a C2H2-like TF
whose mutants displayed hypersensitivity to BR, longer
roots, and more cell divisions. The combination of this
mutant’s developmental phenotype as well as its puta-
tive role in BR response led us to name this TF BRON-
TOSAURUS (BRON). Together our results provide a com-
prehensive guide to molecular signaling changes that oc-
cur in response to BR.

Results
Generating an integrative omics dataset of temporal
BR response. To investigate the temporal response
to BRs, we established a treatment system in which
seedlings were sensitized to BRs by pre-treatment with 1
µM of the BR biosynthesis inhibitor brassinazole (BRZ)
(3) for 7 days to reduce background BR signaling. The
7-day-old seedlings were then treated with a mock solvent
or 1 µM BL for six different lengths of time (15 min, 30 min,
1 hr, 2 hr, 4 hr, 8 hr) (Fig 1A) . To confirm efficacy of the
BL treatment, we assayed BES1 by western blot (Fig. S1).
In BRZ treated seedlings, we found that BES1 predomi-
nantly exists in its phosphorylated form, while BL-treated
seedlings showed an accumulation of dephosphorylated
BES1 over time. Specifically, we observed an increase
in the amount of dephosphorylated BES1 as early as 15
minutes after treatment, and the phosphorylated form of
BES1 was undetectable by 1 hour after treatment (Fig.
S1). This demonstrates the expected BES1 response and
thus the efficacy of BL treatment.

Based on the dynamic nature of BL response, we ex-
pected many transcripts, proteins, and phosphosites
would have differential responses depending on the
length of BL treatment. Thus, we performed multi-omics
profiling of BL-treated and mock-treated seedlings at each
of the six timepoints (Fig 1A). We used 3’ QuantSeq
(35) to measure transcript levels and quantified protein
abundance and phosphorylation level by performing
two-dimensional liquid chromatography-tandem mass
spectrometry (2D-LC-MS/MS) on Tandem Mass Tag
(TMT) labeled peptides (18, 32, 46–48).

To facilitate analysis of complex multi-run proteomics
datasets, we constructed an analysis pipeline for quan-
titative proteomics data called TMT Normalization,
Expression Analysis, and statistical Testing (TMT-NEAT).
Our pipeline, which works on data generated from any

organism, takes the TMT reporter ion intensity values (i.e.
MaxQuant proteinGroups or PTM_Sites) and a metadata
file containing sample information and TMT-labeling
scheme as input. It first cleans the data by removing con-
taminants and appropriately labels the intensity data using
the metadata file. Second, TMT-NEAT performs sample
loading (within-run) and internal reference (between-run)
normalization to eliminate batch effects (42). Third, it
provides multiple qualitative plots such as hierarchical
clustering and principal component analysis to visualize
differences between biological groups. Finally, it performs
differential expression analysis on the normalized values
using a user-supplied p- or q-value threshold (Fig 1B).
TMT-NEAT is publicly available and can be run through an
RShiny Graphical User Interface (GUI) (see Methods).

Using these methods, we identified 32,549 transcripts,
9,035 protein groups, and 26,950 phosphosites (arising
from 5,648 phosphoproteins) across the six timepoints
(Fig 1C, Datasets S1-S3). We found that the number of
differentially expressed (DE) transcripts, proteins, and
phosphosites varied depending on the time point. When
we examined the transcript data, we found that only 208
transcripts (17 up, 191 down) were DE in response to BL
within the first 15 minutes, whereas 454 protein groups
(214 up, 250 down) and 590 phosphosites (237 up, 353
down) were DE at this same time point. In addition,
many more transcripts (2,653 total: 1,247 up, 1,406
down) were DE beginning at 30 minutes, which led us to
speculate that the early BR response is predominantly
post-transcriptional. This is supported by the role of
BES1/BZR1, which must be dephosphorylated in order
to enter the nucleus and transcriptionally regulate down-
stream genes in response to BR (16, 62, 63).

We next performed Gene Ontology (GO) analysis on the
DE transcripts, proteins, and phosphosites at early (1
hour or earlier) and late (after 1 hour) timepoints (Fig
S1, Dataset S4). We found that multiple BR response
terms are enriched at different time points and for differ-
ent DE gene-products. For example, BR mediated signal-
ing pathway and cellular response to BR stimulus terms
are enriched in the DE phosphosites at both early and late
time points. Additionally, BR biosynthetic process and BR
homeostasis are enriched in the DE transcripts at early
timepoints, and the term for response to brassinosteroid
is enriched in both DE transcripts and phosphosites. We
also see enriched terms that have been linked to BR re-
sponse such as cellular response to stress, response to
auxin mediated signaling pathway, and defense response
(38). Taken together, our omics profiling captures how dif-
ferent gene products temporally respond to BR treatment
in Arabidopsis.

Predictive networks illustrate the temporal cascade of
BR response. We have previously shown that integrating
mRNA, protein, and phosphorylation data sets greatly
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Fig. 1. An integrated omics time course of BR response. (A) Samples were collected at six time points (15min, 30min, 1hr, 2hr,
4hr, 8hr) from Mock and BL treated seedlings. (B) TMT-NEAT analysis pipeline for quantitative proteomics. (C) (left) Total number of
transcripts, proteins, and phosphosites/phosphoproteins quantified at each time point. (right) Number of DE transcript, proteins, and
phosphosites/phosphoproteins at each time point. Colored bars represent the relative number of DE gene-products within each data
type.

improves the predictive power of reconstructed gene
regulatory networks (GRNs) (54). However, integrating
these multi-omics data types remains challenging. Thus,
we next developed a network inference pipeline, which
we named Spatiotemporal Clustering and Inference of
Omics Networks (SC-ION), to integrate any number of
different types of expression profiles into one cohesive,
predictive GRN (Fig. 2A, see Methods). SC-ION builds
on our MATLAB-based pipeline Regression Tree Pipeline
for Spatial, Temporal, and Replicate data (RTP-STAR)

(7, 65), which is an adaptation of the GENIE3 (20) network
inference method and functions only on transcriptomic
datasets. In SC-ION, we further improve on RTP-STAR
by: 1) incorporating Dynamic Time Warping (DTW) clus-
tering for temporal data (13) and Independent Component
Analysis (ICA) clustering for non-temporal data (37);
2) allowing the user to provide separate regulator and
target matrices for integration of DE gene-products; 3)
integrating any number of different types of expression
profiles into one GRN; and 4) providing our pipeline as an
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Fig. 2. Time-point-specific, integrative omics networks of BR response. (A) SC-ION pipeline. (B) Time-point-specific networks using
TF abundance (left) or TF phosphosite intensity (right). Edge color represents the time point that regulation is predicted to occur.

RShiny GUI (Fig. 2A).

Here, we used SC-ION to infer two separate transcription
factor (TF)-centered networks of BR response. In these
TF-centered GRNs, TFs serve as “regulators” used to
infer their “target” genes. In the first network, which we
call the abundance network (blue, solid edges, Fig 3),
TF protein abundance (when quantified) or TF transcript
abundance (when cognate protein was not quantified)
was used as the “regulator” value to infer their “target”
transcript abundance. In the second phosphosite network
(green, dashed edges, Fig 3), we inferred the “target”
transcript abundance using TF phosphosite intensities
as the “regulator” value. For each of these networks, we
took advantage of our temporal data by 1) clustering the
gene-products using DTW to create temporally-informed
regulatory modules and 2) inferring one network per
time point to visualize the regulations unique to each
time point (Fig 2B). When connecting the time-point-
specific networks, we found that there were distinct
clusters of early and late predictions. In addition, there
is cross-communication between the time points, where
early regulators feed-forward into late regulators, and
conversely where late regulators feed-back onto early
regulators (Fig 2B).

In addition to our SC-ION-generated TF-centered GRNs,

we used our correlation-based approach to infer a kinase
signaling network (purple, dotted edges, Fig 3) (55). In this
network, we considered kinases with DE phosphosites in
their p-loop (also termed activation loop) domain as poten-
tial regulators, as these phosphorylated kinases should be
active (1) and thus useful for predicting kinase-signaling
(4, 44, 55). In agreement with our previous work in maize
(55), we observed that the correlation between kinase
protein abundance and kinase p-loop phosphorylation
intensity (i.e. activation state) greatly varies depending
on the time point (Fig S3), motivating our use of p-loop
site intensities rather than simply kinase abundance in our
network. This "kinase-centered" network complements
our TF-centered GRNs by predicting kinase-dependent
signaling events.

When we merged our kinase signaling network with our
TF-centered networks, we found that genes with known
roles in the BR response pathway (39) were significantly
enriched in the list of network regulators (Hypergeometric
test, p<0.001). Additionally, we noticed that this merged
network illustrates the temporal cascade of BR response
across these different omics levels (Fig. 3, Dataset S4).
Our inferred network places the kinase signaling interac-
tions (purple) towards the top of the network (early in time).
Next are the TF phosphosite-level regulations (green), fol-
lowed by the TF abundance-level regulations (blue). Thus,

4 | bioRχiv Clark et al. | Integrated networks of brassinosteroid response

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2020. ; https://doi.org/10.1101/2020.09.04.283788doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.283788
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

TF-centered + kinase signaling 

networks

BES1 first-neighbor subnetwork

Abundance

Phosphosite

Kinase signaling

ChIP target

T
im

e

Fig. 3. Integration of TF-centered and kinase signaling networks. (Top) Merged networks. TF-abundance, blue solid; TF-phosphosite,
green dashed; kinase signaling, purple dotted. The network is arranged temporally, with early regulations at the top and later regulations
towards the bottom. (Bottom) First-neighbor subnetwork of BES1. Genes are gray circles, and size of genes corresponds to Normalized
Motif Score. Orange genes are BES1/BZR1 ChIP-Seq targets.
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our network predicts that BR response begins with kinase
signaling, followed by transcriptional regulation via modu-
lation of TF phosphorylation and/or abundance. This net-
work prediction is in agreement with what we currently
know about BR signaling, which begins with the kinases
BRI1 and BAK1 initiating a series of (de)phosphorylation
events leading to the regulation of downstream target
genes by TFs including BES1 and BZR1. Our timepoint-
specific networks further illustrate which regulations are
predicted to occur in early or late BR response (Fig 2B).

Integration of kinase-signaling and TF-centered net-
works reveals the BIN2-BES1 signaling cascade in
response to BR. We extracted the first-neighbor network
of BES1 to illustrate how our multi-omics profiling and
integrative network inference can elucidate the signaling
events that occur in response to BR (Fig. 3). This network
contains kinases that are predicted to be upstream of
BES1 phosphorylation, TFs that are predicted to tran-
scriptionally regulate BES1, and downstream targets
of BES1. Our kinase-signaling network predicted that
Serine 179 and Serine 180 (S179, S180) on BES1 are
downstream of known BR-responsive kinases such as
BIN2, BAK1, and BSK1 (16, 26, 50) (Fig S3). In addition,
while not present in our kinase signaling network, S171
differentially accumulates in our BR timecourse (Dataset
S3), and all three sites are largely conserved in BES1
and its homologs (Fig S3). Thus, we mutated these
three sites from serine to alanine (phosphorylation null)
and tested BES1 phosphorylation status in Nicotiana
Benthamiana. While more than half of the wild-type
BES1-FLAG is phosphorylated one day after transfection,
BES13SA-FLAG exists mainly in dephosphorylated form
(Fig S3). When co-expressed with BIN2, the phosphory-
lated form of wild-type BES1-FLAG was increased, while
phosphorylated form of BES13SA-FLAG was increased to
a lesser extent, which supports the conclusion that S179,
S180 and S171 are BIN2 phosphorylation sites (Fig S3).

In order to elucidate the functional consequences of the
phosphorylation on S179, S180 and S171, we trans-
formed BES1-FLAG and BES13SA-FLAG to bri1-301, a
weak allele of BR receptor BRI1 loss-of-function mutant,
and assayed phosphorylation status in response to 100
nM BL. We found that BES13SA-FLAG has lower levels of
dephosphorylated BES1, and the amount of dephospho-
rylated BES1 increased more in response to BL treatment
in BES13SA-FLAG than in BES1-FLAG plants. Consistent
with these observations, 18 out of 24 (75%) 3-week-old T1
plants overexpressing BES13SA-FLAG showed stronger
gain-of-function BR mutant phenotype, with elongated leaf
petioles and curly leaves, compared to the 18 bri1-301
plants overexpressing wild-type BES1-FLAG which did
not show this phenotype (Fig S3). Further, it has been
shown that the mutation of S173 in BZR1 (equivalent to
S171 in BES1) alone did not change the phosphorylation
status of BZR1 (12). Thus, these results support that BIN2

phosphorylates BES1 at S179, S180 and S171 to inhibit
its function in BR-regulated signaling.

Downstream of kinase signaling, BES1 is predicted to reg-
ulate different downstream targets depending on whether
its phosphosite levels (green, dashed) or transcript abun-
dance (blue, solid) is used in the SC-ION pipeline. We
mined Chromatin ImmunoPrecipitation (ChIP)-chip and
ChIP-Seq datasets on BES1 and its homolog, BZR1
(40, 49, 64), and found that 88 out of 144 (61%) pre-
dicted first-neighbor targets of BES1, in our network,
are directly bound by BES1 or its homolog BZR1 (Fig
3, orange circles; Table S1). Some of these vali-
dated genes with known roles in BR response include
IAA3/SHORT HYPOCOTYL 2 (SHY2) (29), XYLOGLU-
CAN:XYLOGLUCOSYL TRANSFERASE 33 (XTH33) (49,
67) and SMALL AUXIN UP RNA 26 (SAUR26) (40). Thus,
we were able to use our integrative omics network to
identify previously unknown BIN2 phosphorylation sites on
BES1 as well as validate its putative direct downstream
targets identified by ChIP.

Network motif analysis predicts TFs involved in BR
response. We next leveraged the network prediction
to identify candidate genes involved in mediating the
response to BR. We used the Network Motif Score (NMS)
(7, 65) to classify genes in the TF-centered networks
based on their presence in certain biological motifs, such
as feedback and feed-forward loops. Genes with higher
NMS scores have been shown to have a more important
role in the biological process of interest (2, 7, 21, 34, 65).
Accordingly, BES1 had the 25th highest NMS score (top
5%), illustrating that we could use the NMS to identify BR
response regulators. We chose three TFs, ANTHOCYAN-
LESS 2 (ANL2), TCX2, and BRON (AT1G75710), that
had high (all in the top 35%) NMS scores in either the TF
abundance or phosphosite GRNs (Dataset S5). We then
examined subnetworks for each of these TFs, starting with
kinase signaling and ending with transcriptional regulation.

SC-ION predicts that our first TF of interest, TCX2, and
BES1/BZR1 HOMOLOG 2 (BEH2) regulate each other in
a feedback loop (Fig S4A). Thus, we reasoned that TCX2
may regulate cell division in response to BR and treated
the tcx2-2 and tcx2-3 mutants with 100 nM BL. In WT
plants, the addition of BL causes a dramatic reduction
in the root length. However, we did not find a significant
difference in BL response in either of the tcx2 mutant
alleles compared to WT (Fig S4, Table S2).

We then focused on the subnetwork for ANL2, which pre-
dicts that ANL2 and BES1 regulate each other in a feed-
back loop (Fig S4). To test if ANL2 may be involved in BR
response, we treated WT, anl2-2, and anl2-3 plants with
100 nM BL. We found that anl2 mutant roots shorten more
than WT when treated with BL, demonstrating that the anl2
mutants are hypersensitive to BL (Fig S4, Table S2). It has
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Fig. 4. bron mutant roots are hypersensitive to BL treatment and display excessive cell divisions. (A) BRON subnetwork. Edge labels
represent the phosphosite used to predict that regulation. (B) bron mutants are hypersensitive to 100 nM BL treatment (n > 27). (C)
Representative images of Col-0 wild type, bron-1, and bron-2 root stem cell niches. * denote QC cells. (D) Number of meristematic
cells in five-day old roots (n=18). (E) Average number of columella cell layers, QC divisions, undivided CEI, and endodermis division in
five-day old roots (n=18). * denotes p<0.05, ** p<0.01, *** p<0.001 using a generalized linear model (B) or Wilcoxon test (D&E).

also been shown that BL can induce excessive QC divi-
sions in the root (14, 30, 53). Thus, we checked the anl2
mutant roots for QC divisions as a secondary BR response
phenotype: however, we found that anl2 mutant roots do
not display excessive QC divisions (Fig S4).

The TF BRONTOSAURUS (BRON) regulates cell divi-
sion in response to BR. Our last TF of interest, BRON, is
predicted to be regulated by TFs whose phosphorylation
is dependent on multiple BR-signaling kinases such as
BAK1, BSKs, and SERKs in our network (Fig 4A). We
obtained a weak (bron-1) and a strong (bron-2) allele
for BRON (Fig S5) and examined their BR response

as well as their root development (Fig 4B-E). We found
that roots from both alleles shorten more in response
to BL than wild type, demonstrating that bron mutant
roots are hypersensitive to BL treatment (Fig 4B, Table
S3). Additionally, we observed that bron mutants have
longer roots with more meristematic cells (Fig S5), as
well as significantly more divisions in the QC (Fig 4C-E).
bron-2 also displays excessive columella divisions and a
higher number of undivided (i.e. actively dividing) CEI,
while bron-1 only shows excessive endodermis divisions,
potentially due to its weaker effect on BRON expression
(Fig 4E). This led us to hypothesize that BRON could
regulate cell division in response to BR.
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To determine the transcripts modulated by BRON, we
performed RNA-seq on root tissue from the bron-2 mutant
(Dataset S7). We found that a range of BR-responsive
genes were enriched in this mutant, particularly those
genes repressed by BL after 15 minutes and induced by
BL after 1 or 2 hours (p < 0.001) (Dataset S8). Further,
we found that most of the genes have lower expression in
the bron-2 mutant, suggesting that BRON transcriptionally
activates these genes (Fig S6).

Given the role of cyclins in regulating cell division (56),
we specifically examined the expression of cyclins in the
bron-2 mutant. We found that four cyclins are differen-
tially expressed in the bron-2 mutant: three are repressed
by BRON (CYCD3;1, CYCP4;1, CYCP4;2). Further, two
of these cyclins, CYCD3;1, and CYCP4;1, are signifi-
cantly induced by BL at 4 and 8 hours after treatment
(Fig 5A). Importantly, it has been shown that CYCD3;1
is induced by BL and contributes to BL-regulated cell di-
vision (14, 19). We also examined the cell-type-specific
expression of CYCD3;1, CYCP4;1, and BRON in the
root stem cells and mature root cells (7, 28), and we
found key differences in where CYCD3;1 and CYCP4;1 are
co-expressed with BRON. For example, CYCP4;1 is co-
expressed with BRON only in the QC. In contrast, BRON
and CYCD3;1 are co-expressed in the Epidermis/Lateral
Root Cap (Epi/LRC) initials and the mature columella (Fig
5B). Taken together, these results suggest that BR incudes
the expression of CYCD3;1 and CYCP4;1, and therefore
cell division, through the repression of BRON (Fig 5C).

Discussion
Here, we used a systems biology approach to unravel
the temporal response to BR in Arabidopsis. By gen-
erating and integrating omics datasets, we were able
to quantify how transcript, protein, and phosphorylation
levels change in response to BR over time. We found
that most of the (phospho)protein response occurs in
the earlier timepoints (before 1 hour), whereas there
are sets of early- and late-responsive transcripts (Fig 1).
This suggested that BR first triggers the phosphorylation
of TFs which then go on to regulate transcripts at later
timepoints. Our predictive network reconstructed using
SC-ION corroborated this hypothesis, illustrating how
BR-responsive kinase signaling leads to phosphorylation
of TFs and downstream transcriptional regulation (Fig
3). Further, our time-point specific networks allow us
to predict which regulations occur early and late in BR
response (Fig 2).

One well-known example of BR response involves the TFs
BES1/BZR1, which are de-phosphorylated in response to
BR, allowing them to move to the nucleus and transcrip-
tionally regulate downstream genes. It is well-established
that the GSK3 kinase BIN2 phosphorylates BES1/BZR1 to
negatively regulate their functions through the promotion

of the cytoplasmic retention, inhibition of DNA binding
and protein degradation of BES1/BZR1 (39). Although
there are more than 20 predicted sites, the exact BIN2
phosphorylation sites on BES1 are not functionally charac-
terized. Through our omics profiling and network analysis,
we predicted that S171, S179 and S180 in BES1 are
potentially phosphorylated by BIN2. Further mutational
analysis indicated that the phosphorylation of the three
sites contributed to BES1 phosphorylation by BIN2 and
are important for BES1 activity. In contrast, the mutation
of S173 in BZR1 (equivalent to S171 in BES1) affected
BZR1 interaction with 14-3-3 and nuclear localization
but did not change its phosphorylation status (12). Our
study therefore identified three key BIN2 phosphorylation
sites that negatively regulate BES1 activity and hence BR
signaling (Fig S3).

We further used our network to predict novel roles for the
TFs ANL2 and BRON in BR response (Figs 4 and 5, Fig
S4). We found that mutants of both TFs are hypersensitive
to BL treatment, but only bron mutants display excessive
cell divisions. Given anl2’s hypersensitivity to BL, it would
be interesting to investigate its role in BR response in the
future, given that it likely has a different role than BRON.
We additionally found a significant overlap between genes
differentially expressed in the bron-2 mutant and genes
induced or repressed by BR. Specifically, we observed
a significant overlap in disease resistance, drought re-
sponse, and stress response genes which were repressed
by BL 15 minutes after treatment and repressed in the
bron-2 mutant (Fig S6). Crosstalk between BR and
drought response is well known and involves other TFs
such as WRKY46/54/70, RD26 and TINY (6, 38, 59, 61),
but the temporal aspects of this signaling have not been
previously examined. Our observation that BRON is
regulated by BLs as early as 15 minutes after treatment
suggests that inhibition of stress responses quickly follows
activation of the BR pathway.

We found that cyclin genes, specifically CYCD3;1 and
CYCP4;1, are induced by BL and repressed by BRON,
suggesting that BR induces these cyclins through its re-
pression of BRON (Fig 5C). These results are supported
by multiple studies which elucidate the role of CYCD3;1
in BR-induced cell division (14, 19) and describe how BR
specifically induces QC division in the root (14, 30, 53).
While CYCP4;1 has not been directly implicated in BR
response, its co-expression with CYCD3;1 in both the
bron mutant and BL time course suggests that it may
have a similar function as CYCD3;1 in the Arabidopsis
root. Further, by mining cell-type-specific transcriptomic
datasets (7, 28), we gained insight into the cell types in
which these cyclins are active. We found that CYCP4;1
and BRON are specifically co-expressed in the QC,
suggesting that BRON may repress QC division through
CYCP4;1. In contrast, CYCD3;1 and BRON are co-
expressed in the Epi/LRC stem cell initials as well as the
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Fig. 5. BRON regulates cell division in response to BR through inhibiting cyclins. (A) (left) Cyclins differentially expressed in the
bron-2 mutant. (right) BL/Mock transcript fold change of CYCD3;1 (orange) and CYCP4;1 (green) in the BL time course. * denotes
the gene is differentially expressed in response to BL at that time point. (B) Transcript expression of BRON (blue), CYCD3;1 (orange),
and CYCP4;1 (green) in root stem cell populations (left) and mature root tissues (right). CEI – Cortex Endodermis Initials; Epi/LRC –
Epidermis/Lateral Root Cap initials; CSCs – Columella Stem Cells; Xyl – Xylem initials; QC- Quiescent Center. (C) Proposed model for
the role of BRON in BR response. BR represses BRON, which represses the cyclins CYCD3;1 and CYCP4;1. This leads to BR-induced
cell division.
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mature columella. We found that bron-2 mutants have
excessive columella divisions (Fig 4E), suggesting that
perhaps BRON represses cell division in the columella
and lateral root cap through CYCD3;1. It would be of
interest in the future to unravel BRON’s cell-type-specific
repression of cell division in response to BR.

Taken together, our temporal, integrated omics dataset,
kinase-signaling and TF-centered networks can be used
as a resource to identify additional genes like BRON which
are implicated in BR response in Arabidopsis.

Methods

Plant Materials and Growth Conditions. The Arabidop-
sis accession Columbia-0 was used as the wild type
control in all experiments. The T-DNA insertion mutants
tcx2-2 (SAIL_808_H08), tcx2-3 (SALK_021952), anl2-2
(SALK_000196C), and anl2-3 (SAIL_418_C10) were de-
scribed previously (7). The bes1-D and bri1-301 mutants
were also described previously (11, 53, 60, 63). The T-
DNA insertion mutants at1g75710/bron-1 (SALK_048268)
and at1g75710/bron-2 (SALK_046220C) were obtained
from the Arabidopsis Biological Resource Center (ABRC:
https://abrc.osu.edu/).

For the BL time series profiling experiments, WT seeds
were sterilized with 70% EtOH + 0.1% Triton for 15 min-
utes, washed with 100% EtOH 3 times and plated on 1/2
LS plates with 1% sucrose and 1000 nM BRZ with nylon
mesh overlaid on top of the agar. After 3 days of strati-
fication at 4°C, the plates were placed under continuous
light at 22°C for 7 days. BL treatments were performed
by transferring the seedlings on the nylon mesh to 1/2 LS
liquid medium with either 1 µM BL or DMSO for 15 min, 30
min, 1 hr, 2 hr, 4 hr, or 8 hr. Four biological replicates were
collected for BL- and mock-treated samples at each time
point (48 samples total). Samples were blotted dry with
Kimwipes, flash frozen in liquid nitrogen, and ground for
15 minutes under liquid nitrogen using a mortar and pestle.

For the bron-2 RNA-seq experiment, seeds were wet ster-
ilized using 50% bleach, 10% Tween and water and strat-
ified at 4°C for 2 days. Seeds were plated on 1x MS, 1%
sucrose plates with Nitex mesh and grown under long day
conditions (16 hr light/8 hr dark) at 22°C for 5 days. Three
biological replicates of 10 plates each were collected.

BES1 Western Blot. To monitor BES1 protein levels and
phosphorylation status, BL treatment was performed as
described above. Approximately 100 mg of ground tissue
powder was resuspended directly in 300 µL 2xSDS sample
buffer (100 mM Tris-Cl, pH 6.8, 4% (w/v) sodium dodecyl
sulfate, 0.2% (w/v) bromophenol blue, 20% (v/v) glycerol
and 200 mM dithiothreitol) before SDS-PAGE and western
blotting using anti-BES1 antibody (64).

RNA Sequencing and Data Analysis. For the BR time-
course, total RNA was extracted using Zymo Direct-zol
kit (Zymo Research). RNA concentration was measured
with Qubit RNA HS assays (ThermoFisher #Q10213)
and integrity checked with AATI Fragment Analyzer with
Standard Sensitivity RNA Analysis Kit (DNF-489-0500).
Approximately 500 ng of RNA was used for library
construction via the QuantSeq 3’ mRNA-Seq Library
Prep FWD Kit for Illumina. Sequencing was performed
on a HiSeq 3000 with 50 bp single end reads. Raw
sequencing data are deposited at the Gene Expres-
sion Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE147589, accession token ibmjqk-
wczvwdvwn). Reads were mapped to the TAIR10 genome
using the STAR aligner (10). Differential expression was
performed using PoissonSeq (27) using a q-value cutoff
of 0.05 and a fold-change cutoff of 1.25.

For bron-2 transcriptional profiling, total RNA was isolated
from approximately 2 mm of five-day-old Col-0 and bron-2
root tips using the RNeasy Micro Kit. cDNA synthesis
and amplification were performed using the NEBNext
Ultra II RNA Library Prep Kit for Illumina. Libraries
were sequenced on an Illumina HiSeq 2500 with 100 bp
single-end reads. Reads were mapped to the TAIR10
genome using Cufflinks (51). Differential expression was
performed using PoissonSeq with a p-value cutoff of 0.05.
Raw sequencing data are deposited at the Gene Expres-
sion Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE157000, accession token ivabyi-
uypzwxvil).

Protein Extraction and Digestion. The proteomics ex-
periments were carried out based on established methods
(46–48). Protein was extracted from aliquots of the tissue
used for transcriptome profiling and digested into peptides
with trypsin and Lys-C using the phenol-FASP method de-
tailed in (46, 48). Resulting peptides were desalted us-
ing 50 mg Sep-Pak C18 cartridges (Waters), dried us-
ing a vacuum centrifuge (Thermo), and resuspended in
0.1% formic acid. Peptide amount was quantified using
the Pierce BCA Protein assay kit.

Tandem Mass Tag (TMT) Labeling. The TMT labeling
strategy used in this experiment is provided in Table
S3. 45 µg of peptides were taken from each individ-
ual sample, pooled, and then split into two pooled refer-
ences. TMT10plexTM label reagents (ThermoFisher, Lot
UD280154) were used to label 200 µg of peptides, from
each sample or pooled reference, at a TMT:peptide ra-
tio of 0.2:1 as described in (48). After 2 hours incubation
at room temperature the labeling reaction was quenched
with hydroxylamine. Next, the ten samples were mixed
together, an aliquot of 75µg of peptides was reserved for
protein abundance profiling, and the remaining peptides
were used for phosphopeptide enrichment and stored at
-80ºC.
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Phosphopeptide Enrichment. The TMT-labeled phos-
phopeptides were first enriched using the High-Select
TiO2 Phosphopeptide Enrichment Kit (Thermo) using the
manufacturers protocol. The High-Select Fe-NTA Phos-
phopeptide Enrichment Kit (Thermo) was then used on the
flowthrough from the TiO2 enrichment to enrich additional
phosphopeptides. The manufacturers protocol for the Fe-
NTA kit was used except the final eluate was re-suspended
with 50 µL 0.1% formic acid. The eluates from the TiO2
and Fe-NTA enrichments were combined and stored at -
80ºC until analysis by LC/MS-MS.

LC/MS-MS. An Agilent 1260 quaternary HPLC was used
to deliver a flow rate of 600 nL min-1 via a splitter. All
columns were packed in house using a Next Advance
pressure cell, and the nanospray tips were fabricated
using a fused silica capillary that was pulled to a sharp tip
using a laser puller (Sutter P-2000). 25 µg of TMT-labeled
peptides (non-modified proteome), or 10 µg TiO2 en-
riched peptides (phosphoproteome), were loaded onto 20
cm capillary columns packed with 5 µM Zorbax SB-C18
(Agilent), which was connected using a zero dead volume
1 µm filter (Upchurch, M548) to a 5 cm long strong cation
exchange (SCX) column packed with 5 µm PolySulfoethyl
(PolyLC). The SCX column was then connected to a 20
cm nanospray tip packed with 2.5 µM C18 (Waters). The
3 sections were joined and mounted on a Nanospray Flex
ion source (Thermo) for on-line nested peptide elution. A
new set of columns was used for every sample. Peptides
were eluted from the loading column onto the SCX column
using a 0 to 80% acetonitrile gradient over 60 minutes.
Peptides were then fractionated from the SCX column
using a series of 18 and 6 salt steps (ammonium acetate)
for the non-modified proteome and phosphoproteome
analysis, respectively. For these analyses, buffers A
(99.9% H2O, 0.% formic acid), B (99.9% ACN, 0.1%
formic acid), C (100 mM ammonium acetate, 2% formic
acid), and D (2 M ammonium acetate, 2% formic acid)
were utilized. For each salt step, a 150-minute gradient
program comprised of a 0–5 minute increase to the
specified ammonium acetate concentration, 5–10 minutes
hold, 10–14 minutes at 100% buffer A, 15–120 minutes
10–35% buffer B, 120–140 minutes 35–80% buffer B,
140–145 minutes 80% buffer B, and 145–150 minutes
buffer A was employed.

Eluted peptides were analyzed using a Thermo Scientific
Q-Exactive Plus high-resolution quadrupole Orbitrap mass
spectrometer, which was directly coupled to the HPLC.
Data dependent acquisition was obtained using Xcalibur
4.0 software in positive ion mode with a spray voltage of
2.10 kV and a capillary temperature of 275 °C and an RF of
60. MS1 spectra were measured at a resolution of 70,000,
an automatic gain control (AGC) of 3e6 with a maximum
ion time of 100 ms and a mass range of 400-2000 m/z. Up
to 15 MS2 were triggered at a resolution of 35,000 with a
fixed first mass of 120 m/z for phosphoproteome and 115

m/z for proteome. An AGC of 1e5 with a maximum ion time
of 50 ms, an isolation window of 1.3 m/z, and a normalized
collision energy of 33. Charge exclusion was set to unas-
signed, 1, 5–8, and >8. MS1 that triggered MS2 scans
were dynamically excluded for 45 or 25 s for phospho- and
non-modified proteomes, respectively.

Proteomics Data Analysis. The raw data were
analyzed using MaxQuant version 1.6.3.3 (52).
Spectra were searched, using the Andromeda
search engine in MaxQuant (9) against the Tair10
proteome file entitled “TAIR10_pep_20101214”
that was downloaded from the TAIR website
(https://www.arabidopsis.org/download_files/Proteins/
TAIR10_protein_lists/TAIR10_pep_20101214) and was
complemented with reverse decoy sequences and com-
mon contaminants by MaxQuant. Carbamidomethyl
cysteine was set as a fixed modification while me-
thionine oxidation and protein N-terminal acetylation
were set as variable modifications. For the phospho-
proteome “Phospho STY” was also set as a variable
modification. The sample type was set to “Reporter
Ion MS2” with “10plex TMT selected for both lysine and
N-termini”. TMT batch-specific correction factors were
configured in the MaxQuant modifications tab (TMT Lot
UD280154). Digestion parameters were set to “specific”
and “Trypsin/P;LysC”. Up to two missed cleavages were
allowed. A false discovery rate, calculated in MaxQuant
using a target-decoy strategy (Elias and Gygi, 2007),
less than 0.01 at both the peptide spectral match and
protein identification level was required. The ‘second
peptide’ option identify co-fragmented peptides was not
used. The match between runs feature of MaxQuant
was not utilized. Raw proteomics data have been de-
posited on MassIVE and can be accessed at the link
ftp://MSV000085606@massive.ucsd.edu with reviewer
username “MSV000085606_reviewer” and password
“Clark_BL”.

Statistical analysis was performed using TMT-NEAT Analy-
sis Pipeline version 1.3 (https://github.com/nmclark2/TMT-
Analysis-Pipeline). This pipeline takes the “proteinGroups”
(protein abundance) or “Phospho(STY)Sites” (phospho-
proteome) tables output from MaxQuant as well as a meta-
data file detailing the TMT labeling scheme and sample
information as input. Example input files are provided in
the GitHub repository. First, the MaxQuant output table
is trimmed to only include the needed information for sta-
tistical analysis, and the columns are re-labeled using the
provided sample information. Contaminants are removed
at this stage. Next, data are normalized using the sample
loading normalization and internal reference normalization
methods such that samples can be compared across runs
(42). Quantitative plots such as boxplots, hierarchical clus-
tering, and principal components analysis are provided for
quality control. Finally, statistical analysis is performed us-
ing PoissonSeq (27) and histograms of p- or q-value dis-
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tributions are generated. Proteins and phosphosites were
categorized as differentially accumulating if they had a p-
value < 0.05 and fold-change > 1.1.

GO Analyses. GO analysis on the DE transcripts, pro-
tein, and phosphoproteins was performed using PAN-
THER (33). Genes were separated depending on whether
they were induced or repressed by BL in early (1 hr or
prior) or late (after 1 hr) time points. Biological process GO
terms were considered significantly enriched if they had a
corrected p-value 0.05 (Dataset S4).

Gene Regulatory Network Inference. TF-centered gene
regulatory networks were inferred using SC-ION version
2.0 (https://github.com/nmclark2/SCION). SC-ION builds
on the RTP-STAR pipeline (7, 65) by incorporating DTW
and ICA clustering (13, 37) and integration of different
data types. SC-ION uses an adapted version of GENIE3
(20) which allows for separate regulator and target data
matrices (54). This allows the user, for example, to use
protein abundance data for regulators (TFs) and transcript
data for targets (all genes). SC-ION takes regulator and
target lists and regulator and target data matrices as
input. In addition, SC-ION takes a clustering data matrix
which can be different from the regulator and target data
matrices. This allows the user to cluster genes based
on different datatypes. A version of SC-ION without this
clustering step is also available. SC-ION outputs a table
of the predicted regulations as well as a weight for each
edge, where a higher weight indicates higher confidence
in that inferred edge (20). This table can be imported
into software such as Cytoscape (45) for network visual-
ization. Test input files for SC-ION are provided on GitHub.

Two TF-centered networks were inferred. In the first
network, TF protein abundance (when quantified) or TF
transcript abundance (when cognate protein was not
quantified) was used as the “regulator” value to infer
their “target” genes’ transcript abundance. In the second
phosphosite network, we inferred the transcript levels
of “target” genes using TF phosphosite intensities as
“regulators.” In both networks, the clustering matrix was
constructed by combining the “regulator” (TF abundance)
and “target” (transcript levels) data so that genes were
clustered based on the protein/phosphosite levels of the
regulators and transcript levels of the targets. Clustering
was then performed using the DTW method given the tem-
poral nature of our data. Six sub-networks were inferred
for each TF-centered network, where each sub-network
represents the regulations predicted to happen using only
one time point (15 min, 30 min, 1 hr, 2 hr, 4 hr, 8 hr). To
achieve this, only the genes DE at each time point were
used in these individual subnetworks. This allows us to
denote which regulations are predicted to happen early or
late in BR response. The six subnetworks were merged in
Cytoscape to form the final abundance and phosphosite
networks. Cytoscape was also used to create the merged
abundance, phosphosite, and kinase signaling networks

(Dataset S5).

We have previously used the Normalized Motif Score
(NMS) to predict biologically important genes in GRNs
from Arabidopsis (7, 65). Four different motifs were used
to calculate the NMS for the merged abundance and
phosphosite networks separately: feed-forward loops,
feedback loops, diamond motifs, and bi-fan motifs. First,
the number of times a gene appeared in each motif was
counted using the NetMatchStar app (43) in Cytoscape.
Then, the counts were normalized to a scale from 0 to 1
and summed to calculate the NMS for each gene.

Activation loop domains, also called p-loop domains, in
protein kinases were identified using a modified version
of the pipeline described in (55). Briefly, all 35,386
protein sequences available in the TAIR10 annotation
were searched for kinase domains using The National
Center for Biotechnology Information batch conserved
domain search tool (31). From this list of 1,522 proteins
with identified kinase domains, 878 were also annotated
with activation loop (p-loop) coordinates by the search
tool. The kinase domains of proteins lacking the p-loop
coordinates were aligned using MAFFT (22). The resulting
alignment was manually searched for the well conserved
p-loop beginning (DFG) and end (APE) motifs. An extra
482 p-loop coordinates were obtained, for a total of 1,360
protein kinases with p-loop coordinates.

The kinase signaling regulatory network was inferred using
a previously described correlation-based approach (55).
Kinases with phosphosites in the p-loop domain that were
DE in response to BL were used as the potential regu-
lators. All genes with phosphosites that were DE in re-
sponse to BL were used as the potential targets. We used
phosphosite intensity rather than abundance for the reg-
ulators as it has been shown that phosphosite intensity
has greater predictive power (55) (Fig S2). Pearson and
Spearman correlations were calculated for each regulator-
target pair, and edges were kept for those pairs with Pear-
son correlation 0.5 or Spearman correlation 0.6.

Mutant BES1 Cloning and Protein Level Detection.
The three Serine to Alanine mutations were introduced
by two-step PCR using the primers provided in Table
S4. Two BES1 fragments were generated and combined
to form the full-length mutant BES1. The full-length
mutant BES1 was then cloned to Pro35S:FLAG vector to
generate Pro35S:BES1S3A-FLAG. Pro35S:BES1-FLAG
was subcloned from Pro35S:BES1-GFP (63).

For transient expression in Nicotiana benthamiana,
agrobacterium containing Pro35S:BES1-FLAG or
Pro35S:BES1S3A-FLAG was infiltrated to mature
N. benthamiana leaves. Agrobacterium containing
Pro35S:YFP-BIN2 was used for co-expression. Leaf discs
were collected 24 hours after infiltration and flash frozen in
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liquid nitrogen. The samples were ground in 2xSDS buffer
and resolved on SDS-PAGE. Anti-Flag antibody was used
for western blotting.

To test BES1 phosphorylation status in response to
BR, T1 seeds from transgenic plants overexpressing
Pro35S:BES1-FLAG or Pro35S:BES1S3A-FLAG were ger-
minated on 1/2MS plates containing 1uM BRZ and
50mg/ml Kanamycin. Ten-day-old seedlings were col-
lected and subjected to 100nM BL treatment. DMSO was
used as control. Twelve seedlings were used for each
treatment. The samples were ground in 2xSDS buffer and
resolved on SDS-PAGE. Anti-Flag antibody was used for
western blotting.

BR Phenotyping Methods. BL phenotyping were carried
out as previously described (58). Seeds were sterilized for
4 hours in a Nalgene Acrylic Desiccator Cabinet (Fisher
Scientific, 08-642-22) by mixing 200mL bleach (8.25%
sodium hypochlorite) with 8mL concentrated hydrochloric
acid to generate chlorine gas. Seeds were then resus-
pended using 0.1% agarose solution for plating. Con-
trol (BL0; DMSO solvent only) or BL100 treated (100nM
Brassinolide; BL, Wako chemicals) were plated on ½ LS
plates supplemented with 1% (w/v) sucrose. After seeds
were plated, the plates were sealed with breathable tape
(3M Micropore) and placed in the dark at 4°C for 5 days
for stratification. Plants were grown for 7 days at 22°C un-
der continuous light. Plates were imaged with an Epson
Perfection V600 Flatbed Photo scanner at a resolution of
1200 DPI and root length was then measured in ImageJ.

bron Mutant Genotyping and Root Phenotyping.
RT-qPCR was performed on bron-1 and bron-2 mutant
alleles as described in (7) to measure BRON expression.
Total RNA was isolated from approximately 2mm of
five-day-old Col-0, bron-1 and bron-2 root tips using the
RNeasy Micro Kit (Qiagen). qPCR was performed with
SYBR green (Invitrogen) using a 7500 Fast Real-Time
PCR system (Applied Biosystems) with 40 cycles. Data
were analyzed using the Ct (cycle threshold) method and
normalized to the expression of the reference gene UBIQ-
UITIN10 (UBQ10). qPCR was performed on two technical
replicates of three independent RNA samples (biological
replicates). Primers used for qPCR are provided in Table
S4.

Confocal imaging was performed on a Zeiss LSM 710. Cell
walls were counterstained using propidium iodide (PI). The
number of meristematic cells and cell divisions were man-
ually counted.

Statistics. A generalized mixed linear model with pe-
nalized quasi-likelihood (glmmPQL in R) was used to
determine the genotype x treatment interaction p-values
for the BL phenotyping experiment. In this model, the
genotype and treatment effects were considered fixed,

and the experiment date and plate number were consid-
ered random effects with a Gaussian error distribution.
Hypergeometric and/or Chi-squared tests were used for
test for enrichment in the RNAseq DE gene lists. For bron
mutant root phenotyping, a two-tailed Wilcoxon test was
used for statistical significance as some of the data did
not follow a normal distribution. To select p- and q- value
cutoffs for the large-scale omics experiments, we used
the distribution of p- and q- values generated from the
statistical tests as described in (5, 8).
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