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ABSTRACT 

Chronic kidney disease (CKD) has a complex genetic underpinning. Genome-wide association 

studies (GWAS) of CKD-defining glomerular filtration rate (GFR) have identified hundreds of 

loci, but prioritization of variants and genes is challenging. To expand and refine GWAS 

discovery, we meta-analyzed GWAS data for creatinine-based estimated GFR (eGFRcrea) 

from the Chronic Kidney Disease Genetics Consortium (CKDGen, n=765,348, trans-ethnic) 

and UK Biobank (UKB, n=436,581, Europeans). The results (i) extend the number of 

eGFRcrea loci (424 loci; 201 novel; 8.9% eGFRcrea variance explained by 634 independent 

signals); (ii) improve fine-mapping resolution (138 99% credible sets with ≤5 variants, 44 

single-variant sets); (iii) ascertain likely kidney function relevance for 343 loci (consistent 

association with alternative biomarkers); and (iv) highlight 34 genes with strong evidence by a 

systematic Gene PrioritiSation (GPS). We provide a sortable, searchable and customizable 

GPS tool to navigate through the in silico functional evidence and select relevant targets for 

functional investigations.  

 

Word count: 150 
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INTRODUCTION 

Chronic kidney disease (CKD) is a leading cause of morbidity and mortality worldwide, and a 

major public health problem with prevalence of >10% in the adult population in developed 

countries 1,2. Although many underlying causes of CKD such as diabetes, vascular disease, or 

glomerulonephritis are known, CKD etiology remains in most cases unclear. Moreover, 

knowledge about the underlying molecular mechanisms causing progressive loss of renal 

function is so far insufficient, resulting in a lack of therapeutic targets for drug development 3.  

A hallmark of CKD is decreased glomerular filtration rate, which can be estimated from 

the serum creatinine level 4. Estimated creatinine-based GFR (eGFRcrea) has a strong 

heritable component 5. Twin studies estimated a broad-sense heritability for eGFRcrea of 54%  

5.  Recently, a GWAS meta-analysis of eGFRcrea conducted by the CKD Genetics (CKDGen) 

Consortium identified 264 associated genetic loci 6,7. The index SNPs at the identified loci 

explained nearly 20% of eGFRcrea’s genetic heritability 7. While eGFRcrea is a useful marker 

of kidney function in clinical practice, the underlying serum creatinine is a metabolite from 

muscle metabolism 8,9 and thus may not only reflect kidney function. Alternative kidney function 

biomarkers such as GFR estimated by serum cystatin C (eGFRcys) and blood urea nitrogen 

(BUN) have had, so far, a more limited role in large population-based studies and GWAS 7,10. 

On the genetic side, a major challenge is that genetic association loci highlight the region with 

the best statistical evidence for association but they provide only limited insights into the causal 

genes, variants or biological mechanisms. Numerous approaches for bioinformatic functional 

characterization of identified loci yield an abundance of potentially relevant information, but the 

more the identified loci, the larger the jungle of evidence 11–13.  

We thus conducted a meta-analysis of GWAS to increase our knowledge of genetic loci 

associated with kidney function using data from >1.2 million individuals from the CKDGen 

Consortium 7 and UK Biobank (UKB) 14, integrated genetic data for eGFRcys and BUN in 

>400,000 individuals, and submitted the identified loci to a systematic functional bioinformatic 

follow-up analysis. A major aim of our effort was to provide a customizable and searchable 

overview for the abundance of results to enable the prioritization of genes and variants, which 
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should help select relevant targets for functional follow-up. The workflow is illustrated in 

Supplementary Figure 1. 

 

RESULTS 

GWAS meta-analysis identified 201 novel non-overlapping loci for eGFRcrea  

To identify genetic variants associated with eGFRcrea, we conducted a linear mixed model-

based GWAS 15 of eGFRcrea in UKB (European ancestry, n = 436,581, mean +/- SD age = 

56.8 +/- 8.0 years, mean +/- SD eGFRcrea = 90.5 +/- 13.3 ml/min/1.73m2, imputed to 

Haplotype Reference Consortium 16 and UK10K panels 17) and meta-analyzed results with the 

CKDGen Consortium data (trans-ethnic, n = 765,348, imputed to Haplotype Reference 

Consortium 16 or 1000 Genomes 18) 7, for a total sample size of 1,201,909 individuals 

(Supplementary Figure 1, Methods). From the 13,633,840 variants with a minor allele 

frequency (MAF) of >=0.1%, we selected genome-wide significant variants (GWS, P < 5 x 10-

8) and derived non-overlapping loci using a stepwise approach (locus region defined by the 

first and last GWS variant of a locus +/-250kb, Methods).  

We identified 424 non-overlapping loci: 201 were novel and 223 were known (Figure 

1, Supplementary Table 1, Supplementary Figure 2). We considered known a locus with at 

least one GWS variant included within one of the 264 loci previously identified by Wuttke et al 

7 (Methods). Only three of the 264 loci from Wuttke et al. 7 barely missed genome-wide 

significance in our meta-analysis, which can be attributed to chance (P < 7.5 x 10-7, 

Supplementary Table 2). We observed more low-frequency variants among novel compared 

to known loci (7.0% versus 2.2% variants had MAF <5% among novelversus known, Figure 

1B).  

To evaluate the impact of the 197,888 individuals of non-European ancestry (CKDGen) 

on our primary meta-analysis results, we conducted a sensitivity meta-analysis limited to 

individuals of European ancestry (CKDGen, n = 567,460; UKB as before; total n = 1,004,040, 

Methods). The genetic effect sizes for the 424 lead variants showed highly consistent results 

between the primary and the European-only analysis (Supplementary Table 3, 
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Supplementary Figure 3), suggesting lack of between-ancestry heterogeneity for the 

identified variants.  

Taken together, the meta-analysis of CKDGen and UKB identified 424 independent, 

non-overlapping loci for eGFRcrea, including 201 novel and 223 known loci. In the following, 

these loci are evaluated with regard to alternative kidney function biomarker, secondary 

signals, fine-mapping and gene prioritization.  
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Figure 1. Primary meta-analysis results for eGFRcrea.  

Shown are results from our primary meta-analysis for eGFRcrea (n = 1,201,929). A: Manhattan-Plot showing –log10 association P value for the 

genetic effect on eGFRcrea by chromosomal base position (GRCh37, 223 known loci are marked in blue, 201 novel loci in red). The red dashed line 

marks genome-wide significance (5 x 10-8). B: Scatter plot comparing eGFRcrea effect sizes versus allele frequencies for the 424 identified locus 

lead variants. Effect sizes and allele frequencies were aligned to the eGFRcrea decreasing alleles. Coloring is analogous to A. Orange lines mark 

allele frequencies of 5% and 95%.  
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Association of identified variants with alternative kidney function biomarkers 

A genetic association with eGFRcrea can be related to kidney function or to creatinine 

metabolism. We thus evaluated the 424 lead variants for their association with two other 

kidney-related traits. We conducted GWAS of eGFRcys and BUN in UKB and meta-analysed 

results with data from the CKDGen Consortium 7,10 (combined n = 460,826 for eGFRcys, n = 

852,678 for BUN, Methods). We defined an eGFRcrea association as validated by eGFRcys 

or BUN when we observed a directionally consistent nominally significant association with 

eGFRcys and/or BUN (i.e. same effect direction for eGFRcys or opposite effect direction for 

BUN). Of the 424 lead variants, 132 were consistent only for eGFRcys, 23 only for BUN and 

188 for both (Figure 2, Supplementary Table 4). Despite a doubling of sample size for BUN 

vs. Wuttke et al 7, we found a similar proportion of BUN-validated eGFRcrea loci (211 of 424 

loci, 50%; compared to 146 of 264 Wuttke et al. loci, 55%). Even with much lower sample size, 

we found 320 eGFRcys validated loci (of 424 loci, 75%).  

In summary, ~81% (343 loci) of the identified eGFRcrea loci were validated by at least 

one alternative biomarker and thus classified as likely relevant for kidney function.  
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Figure 2. Relevance for kidney function based on alternative biomarker analyses.  

Shown are results from our evaluation of kidney function relevance for the 424 locus lead variants identified by our primary meta-analysis for eGFRcrea (n = 

1,201,929). We classified the 424 variants by their nominal significantsignificant (P<0.05) and consistent effect direction for BUN (n = 679,531, i.e. opposite effect 

to eGFRcrea) or eGFRcys (n = 460,826, i.e. same effect direction as eGFRcrea). A: Venn diagram showing the distribution of 424 lead variants by alternative 

biomarker relevance. B: Scatterplot comparing effect sizes for eGFRcrea and eGFRcys (green: eGFRcys and BUN validated, brown: only eGFRcys validated, 

magenta: only BUN validated, grey: not validated). C: Scatterplot comparing effect sizes for eGFRcrea and BUN (coloring analogous to B). 
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Secondary signals and fine-mapping in European ancestry 

To identify multiple independent variant associations, i.e. signals, at the 424 non-overlapping 

loci, we conducted conditional analyses using GCTA 19 (Methods). Due to the lack of an 

appropriate trans-ethnic linkage disequilibrium (LD) reference panel, we here focused on the 

European-only results and used a random subset of 20,000 unrelated individuals of European-

ancestry from UKB as LD reference panel (Methods). We identified 634 independent signals 

(P-value conditioned on other signal lead variants < 5 x 10-8) across the 424 loci (Figure 3A, 

Supplementary Table 5). At least two independent signals were observed at 21 novel 

(Supplementary Figure 4) and 101 known loci. In the known UMOD/PDILT locus, we 

observed four independent signals, two novel and two previously described 7 (Supplementary 

Figure 5, Supplementary Table 5).  

For statistical fine-mapping, we calculated the posterior probability of association (PPA) 

20 for each variant and 99% credible sets of variants at each of the 634 signals 

(Supplementary Table 6, Methods). We observed 138 signals with small 99% credible sets 

(≤ 5 variants; 30 at novel and 108 at known loci) including 44 single-variant sets (8 at novel 

and 36 at known loci; Figure 3B, Supplementary Table 7). Overall, these include 30 single-

variant sets that were not reported as single-variant sets previously by Wuttke et al. (8 at novel 

and 22 at known loci), either because the respective locus or signal was unidentified or 

because the credible set was larger. For signals in known loci, the increased GWAS sample 

size substantially reduced 99% credible set sizes compared to previous work 7 (median 99% 

credible set size = 17 variants versus 26 previously, Supplementary Table 7).   

To understand the overlap of primary GWAS lead variants with credible sets of variants 

derived in the European-only analyses, we compared the PPA of the primary GWAS lead 

variant with the highest observed PPA within the respective (European-ancestry) credible set 

(Supplementary Figure 6). Most of the 424 primary lead variants were precisely the variant 

with the highest PPA (215 variants) or were contained (158 variants) in the respective 

European-ancestry credible set.  
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In summary, we identified 634 independent signals of which 138 (~22%) showed high 

fine-mapping resolution down to five or less 99% credible set variants, including 44 signals 

with only one variant. The signals with small credible sets might be the most practical and 

effective to follow in a search for the causal variants, as these contain most likely the causal 

variant – under the assumption that there was exactly one causal variant and that this variant 

was among those analyzed. We thus utilized the credible set variants to aid prioritizing likely 

causal variants and genes in the next step.  
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Figure 3. Distribution of independent signals and credible set sizes.  

For the 424 identified eGFRcrea loci, based on the European-only meta-analysis results (n = 

1,004,040), we derived 634 independent signals by approximate conditional analyses with 

GCTA 19 and 99% credible sets of causal variants by fine-mapping using the method by 

Wakefield 20. A: Distribution of number of signals per 424 loci. B: Distribution of credible set 

sizes separately for the 408 signals at known and the 226 signals at novel loci (color denotes 

the order in which the signal appeared in the stepwise conditional analysis).  
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Gene prioritization  

In order to guide future functional follow-up of identified loci, we aimed to prioritize genes using 

bioinformatic analyses and so provide a searchable and sortable Gene PrioritiSation (GPS) 

table.  To explore genes residing in or near the GWAS signals, we selected the 5,907 candidate 

genes overlapping the 424 locus regions (i.e. first and last GWS variant of a locus +/-250kb; 

2,088 or 3,819 genes at novel or known loci, respectively Supplementary Table 7): the 

average number of genes per locus was 8. A maximum of 363 genes mapped to the ‘k73’ locus 

(MHC). We then screened the credible set variants and genes for the following GPS features: 

(i) variant with relevant predicted function based on Combined Annotation-Dependent 

Depletion (CADD) PHRED-like score 21 (focusing on variants within candidate genes, CADD-

Score ≥15), (ii) variant with relevant regulatory function based on significant expression in 

tubulo-interstitial or glomerular tissue from NEPTUNE 22 (FDR < 5%) or expression/splicing 

effects in kidney or other tissues from GTEx 23 (FDR < 5%), or (iii) genes with kidney-related 

phenotypes in mice (Mouse Genome Informatics 24, MGI) or human (Online Mendelian 

Inheritance in Man 25, OMIM® , or Mendelian kidney disease in Groopman and colleagues 26, 

Methods). Among the 5,907 candidate genes, we found 2,722 genes that showed at least one 

relevant GPS feature (Table 1, Supplementary Tables 8-16). This illustrates that considering 

one feature at a time provides limited information and that gene prioritization requires an 

aggregation of multiple features.  

While the quality of the bioinformatic follow-up approaches has improved markedly 

during the last decade due to larger GWAS data narrowing down credible sets of variants, 

larger more differentiated tissue data for eQTL analyses, and better prediction of genetic 

function 12, it is still unclear how to weigh the different sources of evidence to prioritize genes 

and variants for functional follow-up. Also, such a prioritization may depend on specific 

research question and on the available functional model. Therefore, we generated a 

searchable, sortable, and customizable GPS table, where the weights for each piece of 

evidence can be adapted to the specific needs of the researcher (Supplementary Table 17).  
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Here, we illustrate the usage of the GPS table by three examples and how this can 

derive interesting ideas. In the first example, we queried the GPS table for new biological 

hypotheses obtained from a list of prioritized genes located at novel kidney function loci by 

genes with at least three relevant GPS features. We thus filtered the GPS table for loci that 

were novel and eGFRcys/BUN-validated, set equal weights for (i) genes containing credible 

set variants that were protein-altering (CADD ≥ 15, ‘stop-gained’, ‘stop-lost’ or ‘non-

synonymous’) , (ii) genes mapping to credible set variants that were regulatory in kidney tissue 

(eQTL or sQTL, FDR<5%), and (iii) genes with a reported kidney phenotype in mice or human, 

and down weight other GPS features. This resulted in 12 genes at novel loci with strong 

evidence (gene score ≥ 3, Figure 4A, Supplementary Note 1). Among those, 10 genes 

scored in the category of human kidney-related phenotype including 9 linked to Mendelian 

kidney diseases according to Groopman et al. 26 (ACTN4, BCS1L, BMP4, COL18A1, EVC, 

HNF1A,  LAMC2, NPHP3, and NPHS1, Supplementary Table 16). For two of these nine 

genes, we had a good idea about the potentially causal variant (HNF1A and NPHS1; mapping 

to small credible sets with 4 and 2 variants, including non-synonymous variants, rs1800574 

and rs3814995, respectively, Supplementary Table 6-8). This supports the idea of phenotype 

associations in the general population that map to genes known for rare mutations related to 

severe phenotypes.  

In the second example, we were interested in genes that mapped to small credible sets 

with protein-altering or kidney-tissue regulatory variants. We thus filtered the GPS table for 

small 99% credible sets (≤5 variants), set equal weights for genes containing credible set 

variants that were protein-altering (CADD ≥ 15, ‘stop-gained’, ‘stop-lost’ or ‘non-synonymous’) 

or eQTLs in kidney tissue (FDR<5%) and zero weights for other GPS features. This resulted 

in 24 genes with a relatively clear idea of what variant to follow as potentially causal variant 

(16 and 8 genes at known and novel loci, respectively, Figure 4B). Among the 16 genes in 

known loci, 10 contained a protein-altering variant (5 not indicated before 7: EFNA3, PKHD1, 

SOS2, SPG and ZC3HC1; 5 indicated before 7: CACNA1S, CERS2, EDEM3, PPM1J and 

SLC25A45, Supplementary Table 8) and 6 mapped to kidney-tissue eQTLs (CYP2D6, 
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GALNTL5, PPDPF, SLC6A13, TFDP2 and YY1AP1, Supplementary Table 9-11).  Among 

the 8 genes in novel loci, 6 contained a protein-altering variant (AMPD1, ANO9, HNF1A, 

NPHS1, PDE7A and SIGIRR, Supplementary Table 8), the CPXM1 mapped to an eQTL-

variant in glomerulus (Supplementary Table 9) and the ABO to an eQTL-variant in tubulo-

interstitium (Supplementary Table 10). All of the 8 genes except ABO were located in 

eGFRcys and/or BUN-validated loci. The 24 genes mapping to small credible sets included 6 

genes mapping to a single protein-altering 99% credible variant (1 at a novel locus: PDE7A; 2 

at known loci not indicated as single-set before 7: CERS2 and PKHD1; and 3 indicated as 

single-set before 7: CACNA1S, EDEM3, and SLC25A45).  

In the third example, when restricting to the 625 genes known for Mendelian kidney 

disease26, we found 212 among our candidate genes (33.9% of the 625) including four 

mapping to small ≤5 credible sets that contained protein-altering variants (novel loci: NPHS1, 

rs3814995; HNF1A, rs1800574; known loci: PKHD1, rs76572975; CACNA1S, rs3850625). All 

of these four genes were located in eGFRcys- and/or BUN-validated loci, except CACNA1S, 

which is known to be active in skeletal muscle cells 27 and thus unimportant for kidney disease.   

Overall, the searchable and sortable GPS table and the three examples for GPS table 

reduction highlighted several interesting sets of genes: (i) 12 genes with interesting GPS 

features and located in novel loci that were eGFR- and/or BUN-validated, thus providing new 

hypotheses on potential kidney function genes, (ii) 24 genes with small credible sets containing 

a protein-altering or regulatory variant that provide an immediate idea for a potentially causal 

variant, and (iii) 212 genes among the known Mendelian kidney disease genes including four 

genes with small credible sets. 
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Table 1: Summary of Gene PrioritiSation (GPS) results. 

We applied bioinformatic follow-up analyses to the 5,960 candidate genes mapping to the 424 loci derived by our primary meta-analysis for eGFRcrea 

(n = 1,201,929). The table shows an overview of bioinformatic analyses and number of genes with evidence for the particular analysis by 201 novel 

and 223 known loci. Detailed results for the individual GPS features can be found in Supplementary Tables 8-16.  

 

Category 
N° of genes with evidence 
Novel loci Known loci 

Stop-gained/ stop-lost/ non-synonymous (CADD ≥ 15) 53 88 
canonical-splice/ noncoding-change/ synonymous/ splice-site (CADD ≥ 15) 4 7 
Other consequence (CADD ≥ 15) 103 140 
eQTL in glomerulus (NEPTUNE) 6 11 
eQTL in tubulo-interstitium (NEPTUNE) 22 76 
eQTL in kidney tissue (GTEx) 7 32 
eQTL in other tissue (GTEx) 733 1,552 
sQTL in kidney tissue (GTEx) 6 24 
sQTL in other tissue (GTEx) 346 711 
Kidney phenotype in mouse (MGI) 115 226 
Kidney phenotype in human (OMIM, Groopman et al. N Engl J Med. 2019) 77 152 
N° tested genes = 5,907 
N° genes with any entry: 2,722 
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Figure 4. Gene prioritization results for 34 highlighted genes.  

The figure shows two example snippets of the GPS table (Supplementary Table 17). A: 12 
highly-ranked genes (gene score >= 3) at novel loci that were found to be likely relevant for 
kidney function (i.e., validated by BUN or eGFRcys). B: 24 genes mapping to eGFRcrea 
signals with particularly small 99% credible sets (<= 5 likely causal variants) that contain 
protein-altering (‘stop-gained’, ‘stop-lost’ or ‘non-synonymous’) variants or eQTLs in kidney 
tissue. The snippets show whether the genes map to BUN (‘b) or eGFRcys (‘c’) validated loci, 
the number of 99% credible set variants per signal in the locus, the functional annotation of 
credible set variants within the gene (blue), regulatory evidence by credible set variants in the 
signal (orange) and whether the gene is known for kidney-related phenotypes in mouse or 
human (green). In panel B, genes mapping to novel loci are marked in bold and single-set 
variants are marked in red.  
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17 

 

Cell-type specific gene expression  

Next, we were interested in the target cell types of the 5,907 candidate genes. We evaluated 

whether the genes were specifically expressed in relevant kidney cell-types using LDSC-SEG 

28 (i.e., whether the gene was among the upper 10% of specifically expressed genes in the 

respective cell type, Methods). For LDSC-SEG analyses we used two independent single-cell 

RNA-seq data sets of human mature kidney 29,30. We found cell-type specific expression for 

multiple candidate genes (Supplementary Table 18-19). Of particular interest were two 

subsets of genes: (i) Among the 12 highly ranked genes located at novel kidney function loci 

(from Figure 4A), all except QRSL1 were specifically expressed in at least one kidney cell type 

(Table 2). These include BMP4 in loop of Henle, ascending vasa recta endothelium, glomerular 

endothelium, connecting tubule and principal cells, NPHS1 in loop of Henle and podocytes. 

The ACOT1 gene, for which we observed significant eQTLs in tubulo-interstitial tissue, 

displayed specific expression in proximal tubule in both data sets 29,30 (Table 2). (ii) Among the 

eight genes mapping to small credible sets (≤5 variants) with kidney-tissue eQTLs (from Figure 

4B), all except CYP2D6 were specifically expressed in at least one kidney cell type (Table 2). 

These included two genes at novel loci: ABO specifically expressed in connecting tubule, 

interstitial cells, loop of Henle, principal cells, proximal tubule, pelvic epithelium and transitional 

epithelium of ureter, and CPXM1 in fibroblasts and podocytes.  

In summary, cell-type specific expression analyses provided further insights into 

potential target kidney cells highlighting numerous interesting biological candidates.   
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Table 2: Cell-type-specific expression results for selected genes.  

The table summarizes cell-type specific expression results for the 12 highly ranked genes at novel kidney function loci (those from Figure 4A, 
Supplementary Note 1) and for the eight genes mapping to eGFRcrea signals with small 99% credible sets (<= 5 variants) that included significant 
eQTLs (FDR<5%) for the respective gene in kidney tissue (those from Figure 4B). The table lists cell types in which the respective gene is specifically 
expressed: Results for all genes are shown in Supplementary Table 18 (expression data by Wu et al. 30) and Supplementary Table 19 (expression 
data by Stewart et al. 29).  

Gene Cell type (Wu et al) Cell type (Stewart et al) Novel locus 

12 highly ranked genes at novel kidney function loci: yes 
ACOT1 PT(S3) PT yes 
ACTN4 CNT, IC-A, Podo AVRE, DVRE, EPC, GE, Mfib, NK, PC, PCE, Podo, TE yes 
EVC LOH(DTL), PT(S1), PT(S2) EPC, Mast,  yes 
BCS1L Macrophage Fib, LOH, Mast,  yes 
BMP4 LOH(DTL) AVRE, CNT, Fib, GE, PC yes 
COL18A1 CNT, Mesangium, PC CNT, EPC, Fib, IC, LOH, Mfib, PC, Podo yes 
INTU LOH(DTL), Podo EPC, PC, Podo yes 
NPHP3 - AVRE, CD4-T, CNT, DVRE, EPC, GE, Mfib, MNP-d, PCE, Podo yes 
NPHS1 LOH(DTL), Podo Podo yes 
QRSL1 - B yes 
HNF1A PT(S1), PT(S2) PT yes 
LAMC2 - AVRE, DVRE, EPC, Fib, MFib, PC, PCE, Podo yes 

Eight genes with small credible set eQTLs in kidney tissue:  
ABO CNT, IC-A, LOH(DTL), PC, PT(S1) CNT, PC, PE, PT, TE yes 
CPXM1 - Fib, Podo yes 
CYP2D6 - - no 
GALNTL5 Mesangium - no 
PPDPF IC-A CNT, EPC, IC, LOH, PC, PE, PT, TE no 
SLC6A13 PT(S1), PT(S2), PT(S3) PT no 
TFDP2 DCT, PT(S2) CNT, LOH, NK no 
YY1AP1 - CD4-T, Neutro, Podo, TE no 

 
Ascending vasa recta endothelium (AVRE), B cell (B), CD4 T cell (CD4-T), connecting tubule (CNT), descending vasa recta endothelium (DVRE), distal convoluted tubule (DCT), 
endothelial cells (EC), epithelial progenitor cell (EPC), fibroblast (Fib), glomerular endothelium (GE), intercalated cells (IC), Loop of Henle (LOH, ATL: Ascending thin limbs, DTL: 
descending thin limbs), mast cell (Mast), mononuclear phagocyte (MNP), myofibroblast (MFib), natural killer cell (NK), neutrophil (Neutro), peritubular capillary endothelium (PCE), 
podocytes (Podo), principal cells (PC), proximal tubule (PT), transitional epithelium of ureter (TE).  
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Locus-based colocalization and a comparison with variant-based eQTL analysis 

In the GPS, we analyzed the credible set variants, which were derived based on their 

association with eGFRcrea, for association with gene expression using a false discovery rate 

(FDR) approach. An alternative approach is the colocalization analysis comparing the 

eGFRcrea signal with the expression signal 31. We conducted colocalization analyses of 

eGFRcrea association and gene expression in tubulo-interstitial and glomerular tissue from 

NEPTUNE using ‘gtx’ (Methods). We found 55 and 18 colocalizations of eGFRcrea 

association signals with gene expression in tubule-interstitium or glomerulus, respectively 

(posterior probability of ‘positive’ colocalization, PPH4 ≥80%, Supplementary Table 20-21). 

The variant-based FDR approach and the signal-based colocalization usually provided similar 

results, particularly for small credible sets (≤5 variants, Supplementary Figure 7). For 

example, among the 8 genes that mapped to small credible sets with kidney-tissue eQTLs 

(from Figure 4B), four also showed a positive colocalization (PPH4≥80%) in the respective 

NEPTUNE kidney tissue (GALNTL5, PPDPF, SLC6A13, YY1AP1 in tubulo-interstitium; 

PPDPF in glomerulus, Table 3). However, we also found examples for discordant results: for 

example, for ABO, we found an eQTL-variant in the small credible set, but no colocalization 

(PPH4<0.01 in tubule-interstitium), which may be attributed to unidentified independent signals 

in the variant-expression analysis (Supplementary Figure 8).  

In summary, colocalization analyses show supportive results for many eQTL-findings 

among credible set variants in precisely the same kidney tissue, but not for all. The non-support 

can be due to chance, the possibly more limited power in the 2-stage approach inquiring eQTLs 

among credible set of variants, or possibly a colocalization signal that was more driven by the 

genetic eGFRcrea association than the expression evidence, which is based on a much 

smaller sample size. 
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Table 3: Colocalization analysis results for selected genes.  

For the eight genes with small 99% credible sets (<= 5 variants) that contain significant eQTLs in kidney tissue, the table shows results from 

colocalization analysis between eGFRcrea association and gene expression signals for two kidney tissues from NEPTUNE (tubule-interstitial and 

glomerular tissue, PP_H4 is the posterior probability of positive colocalization). The table also shows expression and eGFRcrea summary statistics 

for the credible variant with the smallest P-value for association on gene expression in the respective tissue (EA: Effect allele, OA: Other allele, 

BETA: genetic effect per EA, P: Association P-Value, FDR: False-discovery-rate, PPA: Posterior probability of association from variant-based fine-

mapping). Locus/Signal ID: Identifier of identified locus/signal (‘n’ novel, ‘k’ known; first integer indicating the locus, second integer the signal within 

the locus). Marked in bold are positive colocalizations (PP_H4≥80%) and significant eQTLs (FDR<5%).  

      Expression lead variant:  

      Gene expression eGFRcrea association 
Locus/Signal 
ID Gene PP_H4 rsid EA OA BETA P FDR BETA P PPA 

Expression in tubule-interstitial tissue:          
n4.1 ABO 4.5E-07 rs550057 T C 0.966 1.2E-13 9.2E-10 0.003 3.1E-16 0.333 

n95.1 CPXM1 0.158 rs6084184 A G -0.428 5.1E-04 0.193 -0.002 2.0E-08 0.068 

k62.2 CYP2D6* 0.063 rs133319 T C -0.270 0.077 0.877 -0.003 3.4E-14 0.006 

k4.1 GALNTL5 0.987 rs10224210 T C -0.665 1.0E-05 0.011 0.008 2.9E-139 0.500 

k99.1 PPDPF 0.995 rs2314639 T C -0.468 1.0E-10 4.6E-07 -0.004 5.0E-17 0.071 

k27.1 SLC6A13 0.995 rs11062102 T C 0.290 3.4E-07 6.6E-04 0.004 2.3E-47 0.475 

k21.2 TFDP2 0.001 rs58436159 T C -0.579 1.1E-05 0.012 -0.005 1.6E-23 0.132 

k191.2 YY1AP1 0.993 rs4971092 T C -0.725 2.9E-05 0.025 -0.003 1.0E-10 0.832 

Expression in glomerular tissue:           
n4.1 ABO 0.566 rs9411378 A C 0.512 7.2E-04 0.425 0.003 5.0E-14 0.333 

n95.1 CPXM1 0.731 rs6084180 T C -0.869 1.9E-09 1.8E-05 -0.002 1.3E-08 0.824 

k62.2 CYP2D6* 0.026 rs133319 T C -0.092 0.632 0.993 -0.003 3.4E-14 0.006 

k4.1 GALNTL5 0.033 rs10224210 T C -0.146 0.441 0.986 0.008 2.9E-139 0.500 

k99.1 PPDPF 0.998 rs72629024 C G 0.460 4.9E-07 0.002 0.004 3.5E-18 0.851 

k27.1 SLC6A13 0.039 rs11062102 T C 0.112 0.115 0.947 0.004 2.3E-47 0.475 

k21.2 TFDP2 0.035 rs2203002 T C 0.223 0.098 0.941 -0.005 1.2E-23 0.142 

k191.2 YY1AP1 0.164 rs4971092 T C 0.299 0.037 0.896 -0.003 1.0E-10 0.832 

 
* This gene showed an eQTL in GTEx kidney tissue but not in the here analysed tubule-interstitial or glomerular tissues from NEPTUNE.  
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Aggregated genetic impact on eGFRcrea  

To quantify the overall genetic impact on eGFRcrea, we estimated the genetic heritability and 

phenotypic variance explained, and derived a genetic risk score (GRS) effect based on 

eGFRcrea summary statistics (Methods). (1) Using LD-score regression ((LDSC))32, we 

estimated the additive contribution of all analyzed variants, i.e., narrow-sense heritability, 

h2=13.4% (based on unrelated individuals of European-ancestry from UKB, N = 364,674, 

Table 4). (2) LD-score regression analysis applied to specifically expressed genes (LDSC-

SEG) 28 showed that eGFRcrea genetic heritability was significantly enriched (FDR<5%) in 

three proximal tubule clusters, principal cells and connecting tubule in expression data by Wu 

et al 30 and Stewart et al 29 (up to 2-fold enrichment, all novel findings except for two proximal 

tubule clusters 33, Table 4, Supplementary Table 22). The data from Stewart et al 29 were 

independent of the data from Wu et al 30 and were additionally analyzed here compared to the 

previous publication 33. (3) We estimated that 8.9% of the eGFRcrea variance was explained 

by the 634 independent signal lead variants (2.0% by the 226 novel signals’ lead variants and 

6.9% by the 408 known ones, 7.6% by signals in eGFRcys/BUN-validated loci; based on 

European-only analysis; conditioned results in the case of multiple signals per locus; Table 4, 

Supplementary Table 5). (4) Finally, we observed significant and very similar GRS effects 

across two studies, in UKB as the largest source of our GWAS and in AugUR 34 as an 

independent population-based study (UKB, bGRS=-0.24 ml/min/1.73m2 per allele, PGRS = 6.7 x 

10-5847; AugUR, bGRS=-0.21 ml/min/1.73m2 per allele, PGRS = 1.6 x 10-9; Table 4). In AugUR, 

individuals with a high versus low genetic risk (95% percentile of GRS versus 5%, i.e. 417 

adverse risk alleles compared to 376) had on average -8.8 ml/min/1.73m2 lower eGFRcrea 

values.  

In summary, we found increased genetically explained eGFRcrea variability and 

enriched heritability in specific kidney cell-types and provided GRS estimates in an 

independent population-based study. 
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Table 4: Aggregated genetic impact.  

The tables provide an overview of our analysis regarding the general genetic impact on eGFRcrea. A: Shown are results for explained variance, 

genetic risk score and heritability analyses for eGFRcrea. For each analysis, the table provides the method and data used as well as the main result. 

B: Shown are the significant heritability enrichments (FDR<5%) observed in various kidney cell-types (detailed results shown in Supplementary 

Table 22).  

 

A 
eGFRcrea analysis Method Data Variants Result 

Explained variance Σ bi
2*Var(Gi)/Var(Y) UKB+CKDGen  

(N = 1,004,040) 
634 signal variants R2 = 8.9% 

(226 novel, 408 known)  (2.0%, 6.9%) 
     

Genetic risk score 424*Σ(bi*Gi)/ Σbi AugUR (N = 1,105) 424 locus variants bGRS= -0.21 ml/min/1.73m2 per allele 
PGRS = 1.6 x 10-9, R2 = 3.2% 

  

UKB (N = 364,674) bGRS= -0.24 ml/min/1.73m2 per allele 
PGRS = 6.7 x 10-5847, R2 = 7.1% 

Heritability, narrow-sense LDSC 28 UKB (N = 364,674) 1,167,355 variants  
with ref. LD scores  

h2 = 13.6% 

 

B  

eGFRcrea analysis Method Data Cell-type h2 enrichment 

Heritability, cell-type 
enrichment 

LDSC-SEG 28 Wu et al. 30 PT(S1) 1.9-fold (P = 2.7 x 10-4) 

PT(S2) 1.9-fold (P = 1.6 x 10-4) 

PT(S3) 1.7-fold (P = 1.7 x 10-3) 

Stewart et al. 29 CNT 2.0-fold (P = 3.1 x 10-4) 

PC 1.9-fold (P = 1.1 x 10-3) 

PT 2.1-fold (P = 4.0 x 10-4) 
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DISCUSSION 

In a meta-analysis of >1.2 million individuals from two of the largest GWAS data sets for 

eGFRcrea currently available, UKB and CKDGen, we identified 424 genomic loci for 

eGFRcrea, including 201 novel loci. Integration of eGFRcys and BUN in > 400.000 individuals 

supported 81% of the loci to be related to kidney function rather than creatinine metabolism. 

Across the 424 loci, we observed 634 independent variants that explained 8.9% of the 

eGFRcrea variance with the novel loci contributing a substantial fraction of ~2.0%. We 

documented a substantial impact of an adverse versus a beneficial genetic risk profile of almost 

-10 ml/min/1.73m2 in an independent population-based study. We aggregated comprehensive 

and systematic in silico follow-up results into a GPS tool to navigate through the abundance of 

evidence that provided several new hypotheses from novel loci and improved the fine-mapping 

resolution in known loci.  

One challenge is the dissection of eGFRcrea loci for those being likely related to kidney 

function rather than creatinine metabolism. For this, we used genetic data on eGFRcys or BUN 

to assess consistency of effects. Kidney function assessment by eGFRcys is superior in 

predicting morbidity and mortality 35, but cystatin C measurement is expensive and less 

available in large epidemiological studies. BUN had been used previously to validate 

eGFRcrea GWAS results 7, but has known limitations 36. Furthermore, 75% of the eGFRcrea 

identified lead variants showed consistent association with eGFRcys compared to only 50% 

with BUN. Thus, eGFRcys might be more suitable to validate eGFRcrea association. Future 

work may improve the classification of kidney relevance by larger eGFRcys meta-analyses or 

by more complex clustering algorithms.  

Selecting relevant genes for functional follow-up is also a challenging task in the 

interpretation of GWAS results. We here systematically aggregated in silico follow-up results 

into a GPS tool to help navigate through the abundance of evidence (Supplementary Table 

17).  The GPS is designed as a searchable and customizable tool to reflect different research 

questions and personal preferences, which should help guidance for functional follow-up 
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studies. By various weighing and sorting examples, we illustrated the usage of this GPS and 

highlighted 34 interesting genes with novel insights.  

We provide novel insights into known loci for eGFRcrea in various regards. Due to the 

increased sample size, we were able to substantially narrow down the association signal in 

known loci (Figure 5A): we found a median credible set size of 17 variants compared to 26 

previously, 108 small credible sets compared to 58 and 36 single variant sets compared to 20. 

The small and particularly single variant sets are highly relevant when they include a variant 

with an interesting predicted function like protein-altering or kidney tissue regulatory. Our 

narrowing down of the signal will thus give more confidence into what variant and gene to 

follow for functional studies. For example, the SOS2 gene maps to a credible set with 3 

variants, including one protein-altering, compared to 9 variants in the credible set of this signal, 

previously 7. Furthermore, we successfully identified new independent signals within known 

loci: 185 secondary signals compared to 64 previously. When a locus is dissected into multiple 

signals, the credible sets per signal are usually more focused, which supports the narrowing 

down to the likely causal variants. For example, the dissecting of the locus containing the 

PKHD1 gene into four independent signals compared to one signal previously enabled the new 

identification of a single variant credible set; this variant, rs76572975, is protein-altering with a 

MAF of 2% and located in the PKHD1 gene. This gene is a known Mendelian disease gene 26 

and the variant thus an immediately compelling target to explore further. Also, we identified 

four independent signals in the UMOD/PDILT locus compared to two signals previously, which 

indicates four independent functional entities that may be biologically interesting. This also led 

to a smaller credible set size for the second signal: 4 variants compared to 16 previously; of 

note the first signal was already a single variant set previously that we confirmed here.  

The novel loci and our GPS allowed us to highlight numerous genes with immediate 

ideas for a potentially causal variant and potentially novel biological hypotheses. We found 

nine Mendelian kidney disease genes 26 underneath nine novel loci with additional supporting 

features (Figure 5B). Each of these nine locus associations were validated by eGFRcys/BUN. 

The nine genes include HNF1A and NPHS1, which mapped to less-frequent or common 
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protein-altering variants in small credible sets. One may speculate that these are variants with 

a kidney phenotype in the general population that is linked to the rare Mendelian disorder, 

diabetes MODY type 3 37 or Nephrotic syndrome type 1 38, respectively. Another gene with 

compelling evidence is PDE7A, which maps to 99% credible set variant that consists of a single 

protein altering variant, rs11557049. This variant is also the locus lead variant and showed 

consistent eGFRcys/BUN association. This makes this gene - that has not been reported 

before for kidney function – a likely kidney function gene with an immediate idea of a potentially 

causal variant to follow in functional studies. Further genes at novel loci with small credible 

sets containing protein-altering or kidney tissue regulatory variants are ANO9, AMPD1, 

CPXM1, SIGIRR all in eGFRcys/BUN-confirmed loci. These genes might be interesting to 

evaluate in whole exome sequencing data from patients with kidney disease of unknown origin.  

The absence of independent replication for the 424 identified lead variants might be 

considered a limitation. However, the necessity of replication of GWAS findings has recently 

been revisited in the light of the general lack of suitable and appropriately powered replication 

samples 39. Still, all 424 lead variants showed directionally consistent nominal significant 

associations in UKB and CKDGen when analyzed separately (Supplementary Table 1). This 

supports our confidence into these associations being genuine. Another limitation is the lack 

of reference data for linkage disequilibrium in non-European ancestry individuals, which had 

us limit our fine-mapping on European-ancestry. Future studies augmenting on non-European 

ancestry individuals are warranted to provide equally powered analysis and fine-mapping for 

non-European ethnicities 40,41. Finally, our analyses were limited to Single Nucleotide 

Polymorphisms (SNPs) and disregarded structural variations, insertions or deletions. The 

reason for this was that the CKDGen summary statistics included only SNPs 7 and we thus 

restricted our meta-analysis accordingly.  

In summary, our results help guide future functional follow-up studies on various ends: 

(i) the novel identified loci may generate new biological hypotheses, (ii) the improved fine-

mapping resolution in the known loci will help select promising targets, and (iii) our searchable 
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and customizable GPS table provides a powerful tool to support the cross-talk between GWAS 

researchers and molecular biology scientists.  
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Figure 5. Overlap of gene prioritization evidence for 34 highlighted genes.  

The Venn diagrams show an overview on the interesting features of the 34 highlighted genes. A: 16 genes at known loci from Figure 4B (i.e., 

genes that mapped to small credible sets, ≤5 variants, containing protein-altering variants or kidney-tissue eQTLs). B: 18 genes at novel loci from 

Figure 4A (i.e., genes located at BUN/eGFRcys validated loci and showing a high gene score ≥3) or from Figure 4B (i.e., genes that mapped to 

small credible sets, ≤5 variants, containing protein-altering variants or kidney-tissue eQTLs). Genes mapping to protein-altering variants among the 

credible set are underlined, those mapping to kidney-tissue eQTLs are bold.  
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METHODS 

Study overview 

We included two sources of GWAS data for eGFRcrea in our primary meta-analysis (n = 

1,201,909): (i) GWAS summary statistics from the CKDGen consortium (n = 765,348, trans-

ethnic) 7 that were downloaded from https://CKDGen.imbi.uni-freiburg.de and (ii) GWAS 

results generated in this work for eGFRcrea in UKB (application number 20272, n = 436,561, 

European ancestry) 14. We focused on European ancestry in UKB because this was the by-far 

largest ethnicity subset of UKB with other non-European ethnicities being clearly 

underrepresented and diverse 14. Secondary analyses included eGFRcrea meta-analyses of 

CKDGen and UKB based on individuals of Europeans ancestry only as well as meta-analyses 

of UKB and CKDGen for eGFRcys and BUN. Details on the phenotypes, downloaded data, 

association analyses, quality control, meta-analyses and further follow-up analyses are 

described in detail in the following.  

Phenotypes 

The primary outcome of our meta-analysis is log-transformed eGFRcrea. This was used by 

the studies contributing to the CKDGen meta-analyses and for the UKB association analysis. 

In UKB, creatinine was measured in serum by enzymatic analysis on a Beckman Coulter 

AU5800 (UKB data field 30700, http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=30700) and 

GFR was estimated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) 

formula 42,43. For all studies involved in the CKDGen analysis, creatinine concentrations were 

measured in serum and GFR was estimated based on the CKD-EPI (for individuals > 18 years 

of age) 42,43 or the Schwartz (for individuals <= 18 years of age) 44 formula. Details on the study-

specific measurements for the CKDGen studies were described previously 7. For all studies, 

eGFRcrea was winsorized at 15 or 200 ml/min/1.73m2 and winsorized eGFRcrea values were 

log-transformed using a natural logarithm. Secondary outcomes used for downstream 

analyses include log-transformed eGFRcys and log-transformed BUN. In UKB, cystatin C was 

measured based on latex enhanced immunoturbidimetric analysis on a Siemens ADVIA 1800 
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(UKB data field 30720, http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=30720) and blood urea 

was measured by GLDH, kinetic analysis on a Beckman Coulter AU5800 (UKB data field 

30670, http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=30670). Details on the cystatin C and 

blood urea measurements in CKDGen studies can be found in previous work 7,10. In CKDGen 

and UKB, respectively, eGFRcys was obtained from cystatin C measurements using the 

formula by Stevens et al. 45 or the CKD-EPI formula 42,43. In all studies, eGFRcys was 

winsorized at 15 or 200 ml/min/1.73m2 and winsorized eGFRcys values were log-transformed 

using a natural logarithm. Blood urea measurements in mmol/L were multiplied by 2.8 to obtain 

BUN values in mg/dL, which were then log transformed using a natural logarithm.  

GWAS data from CKDGen  

Each study in CKDGen had conducted GWAS for eGFRcrea while adjkusting for age, sex and 

other study-specific covariates. Summary statistics of each study were GC corrected. Details 

on study-specific analysis are described elsewhere 7. For our primary meta-analysis, we 

downloaded GWAS summary statistics for eGFRcrea from a trans-ethnic meta-analysis from 

the CKDGen consortium (https://CKDGen.imbi.uni-

freiburg.de/files/Wuttke2019/20171016_MW_eGFR_overall_ALL_nstud61.dbgap.txt.gz, n = 

765,348) 7. In this study, the authors had conducted trans-ethnic meta-analysis based on 121 

GWAS results comprising 567,460 Europeans, 165,726 East Asians, 13,842 African-

Americans, 13,359 South-Asians and 4,961 Hispanics. For our secondary downstream 

analyses, we also downloaded GWAS summary statistics for eGFRcrea from a European-only 

meta-analysis (https://CKDGen.imbi.uni-

freiburg.de/files/Wuttke2019/20171017_MW_eGFR_overall_EA_nstud42.dbgap.txt.gz, n = 

567,460) 7, for eGFRcys from a European-only meta-analysis (https://CKDGen.imbi.uni-

freiburg.de/files/Gorski2017/CKDGen_1000Genomes_DiscoveryMeta_eGFRcys_overall.csv.

gz, n = 24,061) 10 and for BUN from a trans-ethnic meta-analysis (https://CKDGen.imbi.uni-

freiburg.de/files/Wuttke2019/BUN_overall_ALL_YL_20171017_METAL1_nstud_33.dbgap.txt

.gz, n = 416,178) 7. Most studies included in the CKDGen meta-analyses were population-
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based. All studies used an additive genotype model and imputed the genotyped variant panel 

to the Haplotype Reference Consortium (HRC, v1.1) 16 or the 1000 Genomes Project (ALL 

panel) 18 reference panels. Details on the meta-analysis methods were described previously 

7,10.  

GWAS data from UK Biobank 

We conducted linear mixed model GWAS for log(eGFRcrea), log(eGFRcys) and log(BUN) in 

UKB using the fastGWA tool 15. We included age, age2, sex, age x sex, age2 x sex, and 20 

principal components as covariates in the association analyses as recommended by the 

developers 15. The UKB GWAS were based on additively modeled genotypes that were 

imputed to HRC 16 and the UK10K haplotype reference panels 17. Details on the UKB genotypic 

resource are described elsewhere 14. We included individuals of European ancestry, i.e. self-

reported their ethnic background as ‘White’, ‘British’, ‘Irish’ or ‘Any other white background’ 

(UKB data field 21000, http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21000). The sample 

sizes of the UKB GWAS were n = 436,581 for eGFRcrea, n = 436,765 for eGFRcys and n = 

436,500 for BUN.  

Quality control  

Prior to the meta-analysis, we applied a quality control (QC) procedure to the UKB and 

CKDGen GWAS results using EasyQC 46. We utilized the ‘CREATECPAID’ function to create 

unique variant identifiers that consisted of chromosomal, base position (hg19) and allele codes 

(i.e. ‘cpaid’, e.g. “3:12345:A_C”, allele codes in ASCII ascending order). For UKB, we excluded 

variants with a low imputation quality (Info<0.6) as done in the previous CKDGen analyses 7. 

For both data sets, UKB and CKDGen, we further excluded low frequency variants 

(MAF<0.1%) and any variants that were exclusively available in only one of the two data sets 

in order to limit analyses to variants that are available in UKB and CKDGen. This led to the 

exclusion of insertions, deletions and structural variants from the UKB GWAS results, since 

CKDGen focused on SNPs 7. We corrected our UKB association statistics for population 

stratification using the genomic control inflation factor (λ = 1.41) 47. We also calculated the 
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genomic control inflation factor for the CKDGen results (λ = 1.32) but did not apply the 

correction because the individual studies contributing to the CKDGen meta-analyses were 

already GC corrected (see 7 for details on the study specific methods).  

Meta-analyses 

We conducted fixed-effect inverse-variance weighted meta-analyses of CKDGen and UKB 

association results using metal 48. As primary meta-analysis, we combined log(eGFRcrea) 

association results from CKDGen (trans-ethnic) and UKB (n = 1,201,909). After meta-analsyis, 

we excluded variants with a low minor allele count (MAC < 400) yielding 13,633,840 variants 

in our final meta-analysis GWAS result for eGFRcrea. The GC lambda inflation factor of the 

eGFRcrea meta-analysis results was λ = 1.28 and the LD score regression intercept 32 was 

0.90, which reflects conservative study-specific GC correction and indicates absence of 

confounding by population stratification. For downstream follow-up analyses, we also 

combined CKDGen European-only and UKB for log(eGFRcrea), as well as CKDGen and UKB 

for log(eGFRcys) and log(BUN).  

Locus definition and variant selection 

We defined locus borders by adding +/- 250kb to the first and last GWS variant of a specific 

region. To achieve independent loci, we selected the variant with the smallest association P-

value genome-wide as a starting point and defined this variant as the lead variant for its locus. 

Starting at the outermost two GWS variants (P < 5x10-8) in a 1Mb region centered on the lead 

variant, areas of another 500kb were checked for GWS variants. If GWS variants were found 

in this extended region, the region extension step was repeated on the novel outermost GWS 

variants until no further GWS variants were found. The positions of the two, last found GWS 

variant in both directions minus/plus 250kb were defined as the locus limits. The locus variants 

were omitted from the data and the whole process was repeated until no GWS variants 

remained genome-wide. We defined a locus as novel when none of the 264 known loci 

discovered by Wuttke et. al. 7 overlapped with our GWS variants. We used the so-defined locus 
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regions (GWS variants +/-250kb cis window) for the in silico follow-up analyses and defined 

the genes that overlapped this locus regions as candidate genes. 

Validation for kidney function based on eGFRcys and BUN  

To evaluate the eGFRcrea-associated lead variants for their potential relevance for kidney 

function, we analyzed their genetic association with log(eGFRcys) and log(BUN). Consistency 

of the eGFRcrea association for a given effect allele with eGFRcys- or BUN-association was 

defined as nominal significant association (P<0.05) and concordant effect direction for 

eGFRcys or opposite effect direction for BUN, respectively.  

Approximate conditional analyses using GCTA 

To identify independent secondary signals at the identified loci, we conducted approximate 

conditional analyses based on European-only meta-analysis summary statistics using GCTA 

19. The analysis was limited to European-only results due to the lack of an appropriate LD 

reference panel that mirrors the ethnicities in our primary meta-analysis of CKDGen (trans-

ethnic) and UKB. We thus created a LD reference panel based on 20K randomly selected 

unrelated Europeans from UKB. For each identified locus, we applied a stepwise approach to 

derive the further signals: (i) we first conditioned on the locus lead variant and then selected 

the most significant variant across all locus variants in this conditional analysis. (ii) If this 

selected variant showed a genome-wide significant conditional P value (PCond < 5.0x10-8), this 

variant was deemed as independent signal lead variant and added to the list of variants to 

condition on. (iii) The procedure was repeated until no more genome-wide significant variant 

was identified.  

Credible sets of variants 

For each variant in each of the identified signals, we calculated approximate Bayes factor 

(ABF) and PPA using the Wakefield method 20. We obtained 99% credible variant sets for each 

independent association signal. We used W = 0.0052 as prior variance as done previously 7. 

PPAs were calculated based on the meta-analysis summary statistics for loci with only one 

signal and based on conditioned summary statistics for loci with multiple independent signals 
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(each signal conditioning on the other signal lead variants in the locus). One set of 99% 

credible variants was obtained for each independent signal. 

Gene PrioritiSation 

To prioritize genes among the list of candidate genes at the discovered eGFRcrea loci, we 

performed a series of statistical and bio-informatic follow-up analyses based on the secondary 

signal analysis from the EUR-only meta-analysis. (1) For each credible set variant within a 

candidate gene we derived the CADD PHRED-Score 21 to prioritize credible variants 

concerning their potential protein altering outcome (CADD >= 15). We chose the threshold of 

15, since this is representing the 3.2% most deleterious variants of the 8.6 billion variants 

available in CADD. CADD uses the Ensembl Variant Effect Predictor (VEP) 49 to obtain gene 

model annotation and combines this information to 17 possible consequence levels. Based on 

the CADD internal consequence score (ConsScore), we classified each prioritized variant into 

three groups: (i) ‘stop-gained’, ‘stop-lost’, ‘non-synonymous’ (ConsScore 8 or 7), (ii) ‘canonical-

splice’, ‘noncoding-change’, ‘synonymous’, ‘splice-site’ (ConsScore 6 or 5), and (iii) other 

(ConsScore 4-0). We restricted to variants located within candidate genes to increase the 

percentage of  variants with predicted protein altering outcome and to avoid major overlap with 

variants that influence gene expression levels, that are analyzed in the next steps.(2) We 

highlighted credible set variants within each locus that are significant expression quantitative 

trait loci (eQTLs) in kidney (and other) tissue for the related candidate genes. Therefore, we 

analyzed eQTLs quantified from glomerular and tubule-intestitial tissue in the NEPTUNE study 

22 and from 44 tissues including kidney cortex in the GTEx project 23 with regard tosignificant 

association (FDR <0.05) on candidate gene expression levels. We used the FDR provided by 

GTEx and applied a Benjamini-Hochberg FDR correction 50 to the  NEPTUNE association P-

values for glomerular and tubule-intestitial tissue separately (to obtain a FDR for each variant 

x gene combination). We cut back on credible variants to link the information of the statistical 

association with eGFRcrea to the influence on the candidate gene expression.(3) To identify 

credible variants with significant effect (FDR <0.05) on expression levels of exon junctions or 
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variation in the relative abundances of gene transcript isoforms (sQTLs) we used sQTL 

summary statistic from the GTEx database 23. (4) Kidney-relevant phenotypes in mice were 

selected from the Mouse Genome Informatics (MGI) 24 hierarchical ontology. All phenotypes 

subordinate to "abnormal kidney morphology" (MP:0002135) and "abnormal kidney 

physiology" (MP:0002136) were gradually extracted. A table with all genes occurring in MGI-

database and the associated phenotypes was restricted to the kidney-relevant phenotypes and 

compared to the list of candidate genes. (6) We selected genes which are known to cause 

monogenic kidney phenotypes or disease in human based on two resources: the Online 

Mendelian Inheritance in Man (OMIM) ® database 25 and a recent publication by Groopman et 

al 26. We generated a table of kidney phenotypes and causal genes in the context of human 

disorders by querying the OMIM database for phenotype entries subordinate to the clinical 

synopsis class “kidney”. This table was manually reviewed and diseases with “kidney”-

phenotype entries being: "Normal kidneys", "Normal renal ultrasound at ages 4 and 7 (in 2 

family)", "No kidney disease", "No renal disease; Normal renal function", "Normal renal 

function; No kidney disease", "No renal findings" were excluded. We further used a summary 

table by Groopman et al., which included 625 genes associated with Mendelian forms of kidney 

and genitourinary disease 

(http://www.columbiamedicine.org/divisions/gharavi/files/Kidney_Gene_List_625.xlsx). Both 

tables were combined and checked for concordance with candidate genes. 

Cell-type specific expression and LDSC-based heritability enrichment  

We were interested in whether the candidate genes were specifically expressed in certain cell 

types. We used 17 human cell-types from Wu et al 30 and 27 human cell types from Stewart et 

al 29  and applied LDSC-SEG 28 analyses to obtain the top 10% specifically expressed 

candidate genes in each cell type. We queried our candidate genes and our highly prioritized 

genes (i.e., results from our gene prioritization) against the cell-type specific lists of genes. We 

were further interested in whether the genetic contribution to eGFRcrea differs between 

specific cell-types. We investigated whether heritability of eGFRcrea was enriched in one of 
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the 17 or 27 kidney cell types from Wu et al 30 or Stewart et al 29. For each cell-type, we 

conducted LDSC 32 heritability analyses that were restricted to regions surrounding (+/-100kb 

to transcribed regions) the 10% most specifically expressed genes for the specific cell type. 

Details on the cell-type specific expression and heritability enrichment analyses and for the Wu 

et al data 30 can be found elsewhere 33. The Stewart et al data set including the expression 

matrix and cell-type annotation was downloaded from http://www.kidneycellatlas.org/ ref 29. 

Colocalization analyses 

We were interested whether our identified eGFRcrea signals co-localized with gens expression 

signals in tubule-interstitial or glomerular tissue from NEPTUNE 22. We conducted 

colocalization analyses using the method described by Giambartolomei et al 31. For each 

signal, colocalization analyses were performed for the respective locus’ genes separately for 

tubule-interstitial or glomerular tissue. We used the eGFRcrea EUR meta-analysis summary 

statistics for loci with only one signal and the conditioned summary statistics for loci with 

multiple independent signals. We used the R package ‘gtx’ and its coloc.compute function with 

0.0052 as prior variance for the eGFRcrea association (similar to what was used for the 

statistical fine-mapping of credible variants) and 0.552 as prior variance for the expression in 

tubule-interstitial or 0.532 as prior variance for the expression in glomerular tissue. The prior 

variances for the expression data were obtained from the Wakefield formula (8) 20, assuming 

that 95% of significant eQTLs (FDR<0.05) in NEPTUNE fall within the effect size range -1.07 

to 1.07 in tubule-interstitial or -1.04 to 1.04 in glomerular tissue.  

Heritability and explained variance  

We were interested in the general impact of genetics on eGFRcrea. For this, we conducted 

various analyses including analyses of narrow-sense heritability (estimates the additive genetic 

contribution to eGFRcrea) and explained variance. We conducted LD score regression 

analyses using LDSC 32 to estimate narrow-sense heritability based on the UKB summary 

statistics for eGFRcrea (not GC-corrected, limiting to variants available in the LDSC reference 

data ‘w_hm3.snplist’). Explained variance was calculated for each of the independent signal 
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lead variants and then summed up to obtain variance explained by all identified signal lead 

variants. For each variant, we calculated R2 = β2*Var(G)/Var(Y). Here, β is the genetic 

eGFRcrea effect (based on EUR meta-analysis summary statistics for loci with only one signal 

and conditioned EUR summary statistics for loci with multiple signals), Var(G) is the genetic 

variance calculated from Var(G)= 2*MAF*(1-MAF) and Var(Y) is the phenotypic variance (set 

to 0.016 as variance of age- and sex-adjusted log(eGFRcrea) residuals in 11,827 Europeans 

of the ARIC study as utilized previously 7).  

Genetic risk score analyses 

To estimate an average and cumulative effect of genetic variants on eGFRcrea, we conducted 

GRS analyses in two studies: The German AugUR study (prospective study in the mobile 

elderly general population around Regensburg, Germany, age range 70-95y, mean +/- SD 

eGFRcrea = 70.0 +/- 15.5 ml/min/1.73m2, n = 1,105) 34, and UKB (prospective cohort study 

from UK, age range 40-69y, mean +/- SD eGFRcrea = 90.6 +/- 13.2 ml/min/1.73m2, n ~ 

500,000) 14. While UKB was part of our variant identifying discovery meta-analysis, AugUR 

was an independent study. To obtain GRS effects that are interpretable as eGFRcrea units 

per allele, we did not apply a log-transformation to eGFRcrea for the GRS analyses. In both 

studies, we focused on unrelated individuals of European ancestry and calculated residuals of 

eGFRcrea from a linear model that adjusted eGFRcrea for age, sex and principal components 

(4 PCs for the AugUR and 10 PCs for UKB). We calculated a weighted and scaled GRS by 

adding up the eGFRcrea-decreasing alleles of the identified variants, weighing by the absolute 

genetic effect observed in the primary meta-analysis and then scaled the GRS to the interval 

[0, 2*m], with m being the number of identified lead variants, to make the GRS effect 

approximatively interpretable as average eGFRcrea decrease per allele.  

Data availability 

Summary genetic association results for UKB and the meta-analysis of UKB and CKDGen for 

log(eGFRcrea), log(eGFRcys) and BUN can be downloaded from www.genepi-
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regensburg.de/ckd or from https://ckdgen.imbi.uni-freiburg.de/.  The  GPS table is also 

available from  www.genepi-regensburg.de/ckd. 
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