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Abstract 

Exceptionally long-lived species, including many bats, rarely show overt signs of aging, 

making it difficult to determine why species differ in lifespan. Here, we use DNA methylation 

(DNAm) profiles from 712 known-age bats, representing 26 species, to identify epigenetic 

changes associated with age and longevity. We demonstrate that DNAm accurately predicts 

chronological age. Across species, longevity is negatively associated with the rate of DNAm 

change at age-associated sites. Furthermore, analysis of several bat genomes reveals that 

hypermethylated age- and longevity-associated sites are disproportionately located in 

promoter regions of key transcription factors (TF) and enriched for histone and chromatin 

features associated with transcriptional regulation. Predicted TF binding site motifs and 

enrichment analyses indicate that age-related methylation change is influenced by 

developmental processes, while longevity-related DNAm change is associated with innate 

immunity or tumorigenesis genes, suggesting that bat longevity results from augmented 

immune response and cancer suppression. 

 

Introduction 

DNA methylation (DNAm) influences many processes including development1, gene 

regulation2, genomic imprinting3, X chromosome inactivation4, transposable element 

defense5, and cancer6. Over 75% of cytosine-phosphate-guanine (i.e. CpG) sites are typically 

methylated in mammalian cells, but global DNAm declines with age, which can lead to loss 

of transcriptional control and either cause, or contribute to, deleterious aging effects7.  

Conversely, DNAm often increases (i.e., shows hypermethylation) at CpG islands, which are 
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CpG-dense regions often found in gene promoter regions near transcription start sites 

(tss)8,9,10. Age-related changes in DNAm can be used to predict biological age in humans11,12 

and are beginning to be used to predict age in other species13,14,15,16,17. Given that aging of 

wild animals typically requires long-term mark-recapture data or lethal tissue sampling, an 

accurate, noninvasive aging method would enable study of age-associated changes in traits 

critical for survival, such as sensory perception, metabolic regulation, and immunity in a 

variety of long-lived species.  

 DNAm has also been used to predict lifespan in humans18,19,20. Intriguingly, 

interventions known to increase lifespan in mammals, such as caloric restriction, reduce the 

rate at which methylation changes21,22. Moreover, comparison of age-related changes in 

DNAm across species22,23 suggests that DNAm rate also varies with lifespan. However, 

interspecific studies have so far used different methods on a few primate, rodent, or canid 

species22,23 making it difficult to determine reasons for methylation differences.  

 The distribution and function of genomic regions that exhibit age or longevity-related 

changes in DNAm are not fully understood20,24. In humans, hypermethylated age-associated 

CpG sites tend to be near genes predicted to be regulated by transcription factors involved in 

growth and development, whereas hypomethylated sites are near genes from more disparate 

pathways25.  A recent study in dogs also found that age-related hypermethylated sites are near 

genes that influence developmental processes17. Human aging has been associated with 

modification of histone marks and relocalization of chromatin modifying factors in a tissue- 

dependent manner26. Comparative analysis of CpG density in conserved gene promoter 

regions has revealed that CpG density is positively related to lifespan in mammals27, as well 
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as other vertebrates28, but the genes involved were not enriched for any pathway or biological 

process. 

 Bats have great potential for providing insight into mechanisms that reduce deleterious 

aging effects because species from multiple independent lineages have maximum lifespans 

more than four times greater than similar-sized mammals29 despite tolerating high viral 

loads30,31 and showing few signs of aging. Here, we use a custom microarray that assays 

37,492 conserved CpG sites to measure DNAm from known-aged individuals of 26 species of 

bats and address three questions.  1) How accurately can chronological age be estimated from 

DNAm for a long-lived species within a mammalian order? 2) Does age-related change in 

DNAm predict maximum lifespan? 3) What genes are nearest the sites where DNAm changes 

as a function of age or differences in longevity between species?  We find that DNAm can 

predict age of individuals with high accuracy.  At the species level, the rate of change in 

DNAm at age-associated sites also predicts maximum lifespan. CpG sites that are informative 

for age or longevity are more likely to gain methylation and be near promoter regions of 

transcription factors involved in developmental processes.  Longevity-associated sites are, in 

addition, enriched for genes involved in cancer suppression or immunity. 

 

Results 

Predicting individual age using DNA methylation. DNAm profiles were analyzed from 712 

wing tissue biopsies taken either from captive or free-ranging individuals of known age 

representing 26 species and six families of bats. Probe sequences were mapped in the 

genomes of nine of these species (Supplementary Table 1) and a total of 35,148 probes were 

located in at least one bat genome. For the 2340 probes not mapped in any bat, the median 
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DNAm mean (0.496) and coefficient of variation (CV = 0.051%), were nearly identical to the 

62 human SNP probes on each array (median mean = 0.500, median CV = 0.032%). In 

contrast, probes that mapped to at least one bat had DNAm means ranging from 0.006 to 

0.995 with a median of 0.634. To predict age, we used sites mapped in one or more species 

from the taxonomic group of interest, i.e. order, genera or species. 

Similar to human epigenetic clocks12,20, elastic-net regression accurately predicted 

chronological age from a linear combination of DNAm beta values (henceforth DNAmAge) 

using 162 CpG sites. Leave-one-out (LOO) cross-validation shows that DNAm can predict 

age with a median absolute error (MAE) of 0.74 years (Fig.1a). Limiting the analysis to 

smaller taxonomic groups (species or genera) can improve accuracy if sufficient data are 

available.  For example, the correlation between chronological and DNAmAge in a LOO 

cross-validation analysis for 40-50 samples from a single species can be 0.96 or higher (Fig. 

1b,c; Supplementary Fig. 1); a similar analysis on 176 samples from six Pteropus species 

gave a correlation of 0.97 (MAE = 0.77, Supplementary Fig. 2b). Thus, DNAm from a wing 

tissue sample for any of these species can reveal the animal's age at the time of sampling to 

within a year. 

 To assess how well DNAm might predict age in a species not represented by our 

samples, we conducted a second cross-validation analysis in which data for one species was 

left out (leave-one-species out; LOSO) and ages were predicted for that species using a clock 

estimated from the remaining 25 species. This analysis (Fig. 1d) resulted in a correlation 

between observed and predicted age of 0.84 (MAE = 1.41 years). The LOSO analysis also 

showed that DNAm consistently underestimates age in some species, while overestimating 

age in others. For example, Desmodus rotundus (sp. 5, Fig. 1d) samples exhibit lower values 
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of DNAmAge (suggesting lower aging rates) than Phyllostomus hastatus (sp. 15, Fig. 1d) 

samples, consistent with the longer lifespan of D. rotundus29.  

 

Predicting species longevity from DNA methylation. To determine if the rate of DNAm 

change predicts variation in maximum lifespan among species, we incorporated a recent bat 

phylogeny32 into a generalized least squares regression (PGLS) to predict the longevity 

quotient (LQ) - the ratio of observed to expected maximum lifespan for a mammal of the 

same body size29. We first identified a common set of age-associated CpG sites for this 

analysis by conducting a meta-analysis of all age-DNAm correlations by probe for 19 bat 

species with 15 or more samples (Methods). The top 2000 age-associated sites (henceforth, 

age differentially methylated positions or age DMPs) consist of 1165 sites that show age-

associated hypermethylation and 835 sites exhibiting age-associated hypomethylation. Both 

mean rates of hypermethylation and hypomethylation predict LQ, such that long-lived species 

have lower rates of DNAm change (Fig. 2a,b). A PGLS analysis on maximum lifespan with 

body mass as a covariate gave very similar results (Supplementary Table 2). Assuming that 

the rate of change in DNAm reflects epigenetic stability, these results suggest that better 

epigenetic maintenance is associated with longer maximum lifespan, independent of body 

size, across bats. 

 

Identifying age and longevity-associated genes. To identify DMPs associated with 

differences in LQ (henceforth longevity DMPs), we compared relationships between DNAm 

and age for three long-lived species and two short-lived species (cf. Fig. 2) from four bat 

families. Longevity DMPs have a significant (BY FDR = 0.05) interaction term between age 
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and longevity type in a linear mixed model with species as a random effect (see Methods, 

Supplementary Fig. 3). We identified 1491 longevity DMPs, including 694 in which short-

lived species gain DNAm faster with age and 797 in which short-lived species lose DNAm 

faster. 

Age and longevity DMPs are widely distributed in the genome, but differ in relative 

abundance across chromosomes (Fig. 3a,b). For example, of the 1077 probes that map to 

chromosome 1 (syntenic with the human X chromosome) in R. ferrumequinum (a long-lived 

bat with the most mapped probes, 30,724, Supplementary Table 1) only 12 are age-associated 

while 46 are longevity-associated. Not surprisingly, 596 of 753 sites (79.2%) that differ in 

DNAm values between the sexes across species are on the R. ferrumequinum X chromosome. 

Sex DMPs are independent of age DMPs (6.1% overlap, P = 0.32, Fisher’s Exact Test, FET) 

and longevity DMPs (5.2% overlap, P = 0.10, FET). When limited to promoter regions, 

almost all age and longevity DMPs exhibit hypermethylation (Fig. 3c).  Change in DNAm 

with respect to age correlates with change in DNAm with respect to longevity (r = 0.454, P < 

0.0001), which results in significant overlap among longevity and age DMPs (P < 0.0001, 

FET, Fig. 3d and Supplementary Fig. 5a) and among unique genes near those DMPs (Fig. 3e 

and Supplementary Fig. 5b). 

Even though about 7,000 unique CpG probe sequences on the mammalian methylation 

array are unmapped in a bat genome (Supplementary Table 2), the mapped CpG sites are 

typically (median = 93%) nearest the same gene in any pair of bats (Supplementary Fig. 4c). 

Furthermore, genomic regions occupied by age and longevity DMPs are similar among bat 

species (Supplementary Fig. 4).  For example, 68% of 2874 probes that map to a promoter 

region in the short lifespan species, M. molossus, also map to a promoter region in the 
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distantly related long lifespan species, R. ferrumequinum (Fig. 4b). Promoter regions are 

enriched for hypermethylating, but not hypomethylating, age and longevity DMPs in M. 

molossus (Fig. 4c,d) and other bats (Supplementary Fig. 5c,d). In bat genomes where CpG 

islands have been identified (e.g. R. ferrumequinum) hypermethylating age DMPs are much 

more likely than hypomethylating age DMPs to be located in CpG islands (P < 0.0001, FET); 

the same is true for longevity DMPs (P < 0.0001, FET).  

Given that regions near promoters contain more age and longevity DMPs than 

expected, we evaluated the genes nearest those DMPs for possible functions. In view of the 

overlap in age and longevity DMPs, not surprisingly, genes with age or longevity DMPs in 

promoter regions show similar patterns of enrichment among biological process categories, 

i.e. developmental process, transcription, and regulation of transcription are enriched in M. 

molossus (Fig. 4e). Genes with age DMPs in promoter regions are further enriched for 

multicellular organism development. With regard to protein class, gene lists for both age and 

longevity DMPs are enriched for homeodomain transcription factors containing helix-turn-

helix motifs (Fig. 4f). These patterns are characteristic of other bat species, too 

(Supplementary Fig. 6), although the gene list composition varies. For example, 142 

hypermethylated age genes were identified across the four bat genomes used for identifying 

longevity DMPs. Of these genes, 89 exhibited the same DMP-gene association in at least 3 of 

the 4 genomes.  

Comparisons between the age and longevity-related genes and several relevant gene 

lists provide additional evidence for gene function. For example, hypermethylated age genes 

in bats strongly overlap hypermethylated age genes recently reported for dogs17 (e.g. 83 of 

143 hypermethylated dog genes are also related to age in the short lifespan M. molossus, P = 
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4.57e-54, FET). In contrast, only 5 of 60 hypomethylated dog genes are related to age in M. 

molossus (P = 0.21, FET). Molossus molossus age genes are not enriched for immunity genes 

(P = 0.241, FET) or genes that frequently mutate in cancer (P = 0.205, FET).  However,  M. 

molossus longevity genes exhibit significant overlap with genes involved in immunity (P = 

0.002, FET) and genes frequently mutated in human tumors (P = 0.016, FET, Fig. 4g). Similar 

overlap patterns among immunity, longevity and tumor-mutated genes also exist for long-

lived bats (Supplementary Fig. 6). 

While methylation in a promoter region can influence transcription, transcription 

regulation can also result from interactions among DNA-bound proteins that are in proximity 

due to chromatin folding33.  To evaluate the possibility of either short or long-range 

transcriptional regulation, we used eFORGEv.2.034 to predict how DMPs likely influence 

regulatory regions.  This program first identifies probe sequences as being associated with 

five core histone marks or 15 predicted chromatin states in prior epigenomic studies using 

over 100 cell lines from multiple tissue sources, then uses permutation tests against the 

species genomic background to determine which histone marks or chromatin states occur 

nonrandomly. Using probes mapped in the long lifespan species Desmodus rotundus as 

background, we find that age and longevity DMPs exhibiting hypermethylation are enriched 

for repressive histone H3 trimethylated at lysine27 (H3K27me3) and active H3K4me1 marks 

in relevant cell lines (Fig. 5a, b). Hypomethylated age DMPs are enriched in all tissues for 

H3K9me3, while hypomethylated longevity DMPs show no enrichment (Fig. 5a, b). Analysis 

of predicted chromatin states reveals that hypermethylated age DMPs are enriched in all 

tissues for repressed polycomb complexes, while hypomethylated age DMPs are enriched for 

quiescent chromatin states (Fig. 5c). Longevity DMPs, both hypermethylating and 
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hypomethylating, also show enrichment for quiescent states, as well as enrichment for 

repressive polycomb complexes or enhanced bivalent states in some tissues (Fig. 5d). 

Transcription factor (TF) motifs identified in DMP probe sequences that are involved 

in cell cycle regulation and genome stability are enriched among hypermethylating age sites 

(Fig. 5e). Several of those transcription factors, including cut-like homeobox 1 (CUX1), AT-

rich interaction domain 3A (ARID3), and E2F transcription factor 1 (E2F) are involved in cell 

cycle regulation35,36,37, while others, such as zinc finger protein 161 (ZFP161), are involved in 

genome stability38. In contrast, hypomethylating age sites only overlap three TF clusters, one 

of which, IRF7, is a master regulator of the interferon-dependent innate immune response in 

bats39.  

Longevity TF motifs are largely independent of age TF motifs (Fig. 5e), with one 

exception, c203-transcription factor AP-2 gamma (TFAP2C), which is involved in epidermal 

cell lineage commitment40 and regulation of tumor progression41. The other longevity TF 

motifs also have known associations with tumorigenesis. GCM1/3 binds to pleiomorphic 

adenoma gene-like 1 (Plagl1), which codes for a protein that suppresses cell growth. This 

gene is often methylated and silenced in cancer cells42. CNOT3 acts as a tumor suppressor in 

T-cell acute lymphoblastic leukemia (T-ALL)43 but can also facilitate development of non-

small cell lung cancer44. Finally, HIC1, hypermethylated in cancer 1 protein, acts as a tumor 

suppressor and is involved in regulation of p53 DNA damage responses45. Only a single TF 

motif, HD/5 in the BARHL2 group46, was associated with hypomethylated longevity DMPs.  

Enrichment analyses47 using the age and longevity gene lists for M. molossus identify 

several key regulators that are significantly associated with hypermethylated sites, but none 

with hypomethylated sites (Fig. 5f and Supplementary Fig. 6c). Orthodenticle homeobox 2 
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(OTX2) and RE1 silencing transcription factor (REST) are associated with both age and 

longevity, whereas other predicted TFs largely differ between age and longevity. REST is 

induced during human aging and represses neuronal genes that promote cell death48. Note that 

four of nine transcription regulators predicted to be associated with longevity frequently 

undergo mutations in human tumors and three are involved in innate immunity (Fig. 5f). 

 

Discussion 

As with other species13,14,17,49, age-related changes in DNAm occur throughout bat genomes. 

While 162 CpG sites are sufficient to predict chronological age, these represent only a small 

fraction of the sites that correlate with age, because penalized regression excludes highly 

correlated variables to avoid multi-collinearity. Consequently, we carried out a meta analysis 

that correlated methylation at individual CpG sites with age across species to identify age 

DMPs. At these sites, long-lived species exhibit a lower rate of change in DNAm, while 

short-lived species exhibit faster increases in DNAm. How those changes contribute to 

longevity is not entirely clear, but our results suggest several key transcriptional regulators are 

involved and modulate the rate at which DNAm changes between short and long-lived 

species. 

 Our results are consistent with an epigenetic clock theory of aging that connects 

beneficial developmental and cell maintenance processes to detrimental processes causing 

tissue dysfunction20. A large body of evidence links age-related hypermethylated sites to 

genes and genomic regions that influence developmental processes9,10,17. We find that the sites 

that gain DNAm with age also tend to be in CpG islands, consistent with studies in humans50. 

But, in contrast, we find little enrichment for genes associated with hypomethylated sites, and 
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these genes are less likely to be shared across species. We interpret these results to indicate 

that DNAm loss with age is widespread and not concentrated in particular pathways. DNAm 

gain with age, on the other hand, occurs predictably near genes involved in many of the same 

developmental processes in humans, mice, dogs and bats, consistent with a shared mammalian 

origin. 

 Our analyses are based entirely upon wing biopsy samples and the reported DNAm 

patterns could differ by tissue, as has been frequently observed8. However, bat wing tissue is 

capable of unusually rapid regeneration51 and consists of multiple tissue types52, making it 

particularly useful for measuring age-related changes in DNAm. Additionally, these non-

lethal biopsies are relatively easy to obtain from wild-caught bats, thus allowing for future 

longitudinal and cross-sectional studies of epigenetic aging.  

 DNAm of genes suppressed in stem cells is a hallmark of cancer10. Several lines of 

evidence suggest that bat genes with longevity DMPs are important for cancer suppression 

and provide enhanced immunity. First, these genes disproportionately include many known to 

mutate frequently in human cancers or involved in innate immunity. Second, several 

transcription factors identified by motif analysis act as tumor suppressors, such that if they are 

silenced by methylation in older individuals, tumor formation should be more likely. Third, 

among the transcription factors identified from the list of genes with hypermethylated sites in 

promoter regions, several of them mutate in human cancers. While bats are not immune from 

cancer53, genetic adaptations for tumor suppression have been described for Myotis brandtii54 

and M. myotis55 to help explain the extreme longevity of those species. Bats also have genetic 

mechanisms that enable strong antiviral immune responses without inducing damaging 

inflammatory reactions that may enable them to tolerate high levels of viral exposure30,31,56. 
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The results of this study are consistent with the hypothesis that enhanced epigenetic stability, 

especially associated with innate immunity and cancer suppression genes, facilitates the 

exceptional longevity in bats.  

 

Methods 

Wing tissue samples. Wing punches were taken from 778 individually marked animals that 

were either kept in captivity (15 species) or recaptured as part of long-term field studies (11 

species). We excluded 42 samples because we did not have independent evidence to confirm 

minimum age estimates. For 630 samples the individual was marked shortly after birth, so age 

estimates were exact. For the remainder, age represented a minimum estimate because the 

individual was not initially banded as a juvenile. We used minimum age estimates when other 

evidence, such as tooth wear or time since initial capture, indicated that the minimum age 

estimate was likely to be close to the real age. In the Supplementary Methods, we provide 

additional information on when and where samples were taken from either captive or free-

ranging animals.  

After extraction DNA concentration was estimated with a QuBit and samples were 

concentrated, if necessary, to reach a minimum of 10 ng/µl in 20 µl. To estimate rates of 

methylation we limit analyses to the 23 species for which we had more than 10 samples from 

known-aged individuals. Maximum lifespan for each species was obtained from29 or from 

captivity records and is listed along with the range of ages of individuals sampled in Table 1. 

 

DNA methylation profiling. All methylation data were generated using a custom Illumina 

methylation array (HorvathMammalMethylChip40) based on 37492 CpG sites57. Out of these 
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37492 sites, 1951 were selected based on their utility for human biomarker studies; these 

CpGs, which were previously implemented in human Illumina Infinium arrays, were selected 

due to their relevance for estimating human age. The remaining 35541 probes were chosen 

due to their location in highly conserved 50 bp sequences with a terminal CpG site.  The 

particular subset of species for each probe is provided in the chip manifest file at the NCBI 

Gene Expression Omnibus (GEO) platform (GPL28271). Five bat genomes, Pteropus 

vampyrus, P. alecto, Eptesicus fuscus, Myotis davidii and M. lucifugus, were used in the 

design of the array.  

Bisulfite conversion of DNA samples using the Zymo EZ DNA Methylation Kit 

(ZymoResearch, Orange, CA, USA), as well as subsequent hybridization and scanning (iScan, 

Illumina), were performed according to the manufacturers’ protocols by applying standard 

settings. DNA methylation levels (β values) were determined by calculating the ratio of 

intensities between methylated (signal A) and unmethylated (signal B) sites. Specifically, the 

β value was calculated from the intensity of the methylated (M corresponding to signal A) and 

unmethylated (U corresponding to signal B) sites, as the ratio of fluorescent signals β = 

Max(M,0)/[Max(M,0) + Max(U,0) + 100]. Thus, β values range from 0 (completely 

unmethylated) to 1 (completely methylated). The SeSaMe method58 was used to normalize β 

values for each probe. A cluster analysis by species identified 24 samples as outliers, likely 

due to their low DNA concentrations.  After excluding these, along with the 42 excluded due 

to insufficient age information, we retained 712 of the 778 samples for further analysis. 

 

Probe mapping and annotation. We used sequences and annotations for ten bat genomes 

(Supplementary Table 1), which include six recently published reference assemblies [19], to 
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locate each 50 bp probe on the array. The alignment was done using the QUASR package59 

with the assumption for bisulfite conversion treatment of the genomic DNA. For each species’ 

genome sequence, QUASR creates an in-silico-bisulfite-treated version of the genome. The 

set of nucleotide sequences of the designed probes, which includes degenerate base positions 

due to the bisulfite conversion, was expanded into a larger set of nucleotide sequences 

representing every possible combination of degenerate bases.  We then ran QUASR (a 

wrapper for Bowtie2) with parameters -k 2 --strata --best -v 3 and bisulfite = "undir” to align 

the enlarged set of probe sequences to each prepared genome.  From these files, we collected 

only alignments where the entire length of the probe perfectly matched to the genome 

sequence (i.e. the CIGAR string 50M and flag XM=0).   

 Following the alignment, the CpGs were annotated based on the distance to the closest 

transcriptional start site using the Chipseeker package60. A gff file with these was created 

using these positions, sorted by scaffold and position, and compared to the location of each 

probe in BAM format. We report probes whose variants only mapped to one unique locus in a 

particular genome. Gene annotations for the ten bat genomes are available at 

http://hdl.handle.net/1903/26373. 

Genomic location of each CpG was categorized as intergenic, 3’ UTR, 5’ UTR, 

promoter region (minus 10 kb to plus 1000 bp from the nearest TSS), exon, or intron. We 

identified X-linked probes in bat genomes by comparison to probes mapped to the X for the 

human genome, HG19. Tests for enrichment among genomic categories were performed with 

contingency or Fisher's Exact tests (FET) in JMP Pro v14.1 for the four species used to 

identify longevity-associated sites, i.e. one short-lived bat, Molossus molossus, and three 

long-lived bats, Myotis myotis, Desmodus rotundus and Rhinolophus ferrumequinum, 
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representing four different bat families.  We did not include Leptonycteris yerbabuenae in 

these analyses because no genome is available for that species. While most sites map to the 

same nearest gene, some differences exist. In the text, we present enrichment results for the 

short-lived species, M. molossus, but provide parallel results in Supplementary Figures for 

one or more of the long-lived species, R. ferrumequinum, D. rotundus and M. myotis. 

 

Creation of epigenetic clocks using penalized regression. We developed epigenetic clocks 

for bat wing tissue by regressing chronological age on all CpGs that map to at least one of the 

ten bat genomes. To improve linear fit we transformed chronological age to sqrt(age+1). 

Penalized regression models were created in the R package “glmnet”61. We investigated 

models produced by “elastic net” regression (alpha=0.5). The optimal penalty parameters in 

all cases were determined automatically by using a 10-fold internal cross-validation 

(cv.glmnet) on the training set. By definition, the alpha value for the elastic net regression was 

set to 0.5 (midpoint between Ridge and Lasso-type regression) and was not optimized for 

model performance. We performed two cross-validation schemes for arriving at unbiased 

estimates of the accuracy of the different DNAm based age estimators. One type consisted of 

leaving out a single sample (LOO) from the regression, predicting an age for that sample by 

regressing an elastic net on the methylation profiles of all other samples, and iterating over all 

samples. We conducted LOO analyses using all samples from all species, using all samples 

from each species, and using all samples from several species in the same genus. The second 

type consisted of leaving out a single species (LOSO) from the regression, thereby predicting 

the age of each sample using the data for all other species. 
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Identification of differentially methylated positions for age and longevity. To identify 

differentially methylated positions (DMPs) associated with age, we computed the Pearson 

correlation coefficient between methylation level (b) and chronological age for each of the 

37,492 sites for the 19 species with 15 or more samples (Table 1). The significance of each 

site across species was then evaluated using Stouffer's unweighted z-test62. CpG sites were 

ranked by significance and the top 2000 sites based on the correlation with untransformed age 

were selected for subsequent analyses and are referred to as age DMPs. For probes with 

contrasting patterns in different species, methylation direction was assigned based on the most 

frequent direction across species to ensure mean methylation rates are comprised of the same 

set of sites in each species. Because we used all sites on the array, some sites do not map to a 

unique position in one or more bat genomes.  Supplementary Table 1 indicates how many 

sites map to each species. 

 To identify DMPs associated with longevity we compared methylation rates between 

three long-lived species (R. ferrumequinum, D. rotundus, and M. myotis) and two short-lived 

species (M. molossus and L. yerbabuenae). We chose these five species because they 

represent three independent lineages of increased longevity29 and because high-quality 

genome assemblies are available for four of them63. We used a linear mixed-effects model 

(nlme) to fit methylation level (b) as a function of transformed chronological age (sqrt(age 

+1)), longevity category, and their interaction, with species included as a random effect. We 

defined probes as longevity-associated if the p-value of the interaction term was less than 0.05 

after Benjamini-Yekutieli (BY) false discovery rate (FDR) correction64. In this analysis, a 

positive interaction means a steeper positive slope for the short-lived species relative to the 

long-lived species. If the main effect of age is positive (hypermethylation) and the interaction 
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is positive, then short-lived species are gaining methylation faster. If the main effect is 

negative and the interaction is negative, then short-lived species are losing methylation faster. 

 

Phylogenetic analysis of bat longevity. Using phylogenetic generalized least squares 

regression (PGLS) we tested the effect of mean rate of methylation change on longevity using 

both the longevity quotient (LQ) and maximum longevity (log-transformed). LQ is the ratio 

of the observed species maximum lifespan to the maximum lifespan predicted for a nonflying 

placental mammal of the same body mass29. We present results for LQ in the text and for a 

model containing both log(maximum longevity) and log(mass) in Supplementary Table 2. For 

each species with at least 10 known-age samples, we calculated the mean rates of 

hypermethylation and hypomethylation using the top 2000 age-associated DMPs as described 

above. Hypermethylation and hypomethylation rates were tested separately. Phylogenetic 

relationships among bats are based on a recent maximum likelihood tree32. Models were fit 

via maximum likelihood using the “gls” function of the “nlme” package in R v.3.1-143 and 

assume a Brownian model of trait evolution.  

 

Probe and gene enrichment analyses. To determine how changes in methylation influence 

age and longevity, we conducted enrichment analyses on the CpG probes and on the genes 

nearest to them. We used eFORGE 2.034 to test for enrichment among age or longevity DMPs 

that either increase or decrease in methylation in comparison with five histone marks and 15 

chromatin states mapped in cell lines by the Epigenomics Roadmap Consortium 

(http://www.ncbi.nlm.nih.gov/epigenomics). Bat wing tissue is unusual in that it contains 

epithelial skin, muscle, blood and elastin52. Consequently, we limited enrichment analyses to 
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data from cell lines derived either from skin, blood or muscle. We also restricted the analysis 

to probes mapped in a bat genome at least 1 kb apart. We used Demodus rotundus to provide 

a background probe set but obtained very similar results by using other bat genomes, e.g. 

Eptesicus fuscus or Pteropus vampyrus, available in eFORGE as backgrounds for the 

mammalian methylation array. We present enrichment values for each DMP set as the -log10 

p binomial value and consider those outside the 95th percentile of the binomial distribution 

after correction for multiple testing64 as significant. 

 We identified putative transcription factors that could utilize open chromatin and bind 

to the DNA by testing for enrichment in each DMP set for predicted binding sites among the 

probes on the mammalian methylation array. Binding sites were included if their FIMO (Find 

Individual Motif Occurrence) p-value was less then 10e-5. FIMO scans were performed using 

the MEME suite (v.4.12.0, available at http://meme-suite.org/doc/download.html). Bedtools 

(v.2.25.0) was used to intersect the mammalian methylation array file and provide probe-to-

TF motif annotations. We then used a hypergeometric test (phyper) to evaluate overlap 

between probe sets and transcription factor motifs obtained from four transcription factor 

databases: TRANSFAC65, UniPROBE66, HT-Selex67, and JASPAR68. Redundant 

transcription factor motifs were then consolidated into clusterscf. 69 to identify distinct 

transcription factors. Function was inferred using information derived primarily from studies 

in mouse and humans46. 

 We used several approaches for determining the type and function of genes associated 

with age and longevity DMPs. First, we identified the gene (using human orthologs) with the 

nearest transcription start site to every mapped probe for each of the four species, R. 

ferrumequinum, Desmodus rotundus, Myotis myotis and Molossus molossus, used to identify 
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longevity DMPs. We then used the subsequent lists of unique genes for each species as 

background for enrichment tests. While the number of probes near the same gene varies 

considerably, on average, each unique gene is near five or six probes. Thus, the number of 

unique genes with an identifiable human ortholog near a probe was 4918 in R. 

ferrumequinum, 4693 in M. molossus, 4611 in M. myotis and 4534 in D. rotundus, reflecting 

the variation in the number of mapped probes (Supplementary Table 1).  Given that the 

probes were designed to align to regions conserved across all mammals, we suspect some of 

the differences among species in gene associations reflect variation in genome assembly or 

annotation. In addition, an important caveat to keep in mind is that the CpGs on the array do 

not randomly sample the genome57.  Thus, even when we use mapped probes or the genes 

near them as background for enrichment tests, there is potential for bias given that the probes 

are in conserved regions. We assumed a gene was associated with hypermethylated DMPs if it 

had more hypermethylated than hypomethylated sites nearest its transcription start site and 

vice versa. We present results in the text for DMP-gene associations for M. molossus because 

it was the only short-lived species with a genome, but we summarize the DMP-gene 

associations for the other three species in Supplementary Fig. 5. Because we anticipated the 

mechanisms responsible for causing increases in methylation over time likely differs from 

those causing decreases, we conducted separate enrichment tests for genes with 

hypermethylated and hypomethylated sites associated with age and longevity using Panther 

v.1670 in relation to biological process, molecular function, and protein class. We carried out 

enrichment tests using genes with DMPs in promoter regions because promoter regions 

showed enrichment for hypermethylated sites. To minimize redundancy due to the 

hierarchical organization of gene ontologies (GO), we present no more than three significant 
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(after FDR correction) GO terms from each parent-child group. All significant GO terms can 

be found in the Source Data files. We also used the significant age and longevity gene 

promoter lists to predict possible transcription factor regulators using BART, Binding 

Analysis for Regulation of Transcription47, which correlates the cis-regulatory profile derived 

from a gene set to the genomic binding profiles of 918 transcription regulators using over 

7000 human ChIP-seq datasets. We report the Irwin-Hall P value, which indicates 

significance of the rank integrated over three test statistics47. 

 In addition, we carried out additional analyses to assess gene function using three 

relevant gene lists. The first utilized a list of 394 genes associated with changes in 

methylation over the lifespan of dogs17. This study assayed over 50,000 CpG sites for 104 

known-aged labrador dogs, and included methylation data from mice and humans, to identify 

198 hypermethylated and 196 hypomethylated sites, with most of the hypermethylated sites 

near genes associated with anatomical development. By comparing gene lists, we identified 

the number of positive (and negative) methylated genes in the dog list that occur in the 

genome of each bat, and then used the number of genes in the bat, as well as the number of 

age-related genes in the bat and the number that overlap to calculate the probability associated 

with overlap in each methylation direction. We used the R program phyper to conduct a 

Fisher's Exact Test (FET) using the hypergeometric distribution. 

 The second test utilized a list of 576 genes that have been documented to mutate 

frequently in over 10,864 human tumor cases. We downloaded v1.25.1 from the Genome 

Data Center of the National Cancer Institute (https://portal.gdc.cancer.gov). As with the dog 

age genes above, we calculated the probability of overlap between the cancer genes found in 
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the genomes of each of four bat species and both the bat age and longevity gene lists using a 

FET. 

 The third test involved comparing a list of 4,723 innate immunity genes dowloaded 

from https://www.innatedb.com (Aug 14, 2020). As with the cancer gene list, we calculated 

the probability of overlap between the immunity genes found in the genome of the four bat 

genomes and both the bat age and longevity gene lists using a FET. 
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Table 1. Summary1 of samples used for DNAm profiling. 

Genus species (Family) Source #F #M 
Exact 

N Yg Old 
Max 
age 

Antrozous pallidus (V) F 21 2 1 0.2 7 14.8 
Artibeus jamaicensis (Ph) C 3 0 2 11 13 19.2 
Carollia perspicillata (Ph) C 17 15 32 0.2 10.5 17.0 
Cynopterus brachyotis (Pt) C 6 4 10 6.7 12.9 13.0 
Desmodus rotundus (Ph) C 27 17 41 0.3 17.3 29.9 
Eidolon helvum (Pt) C 17 7 24 3.4 16.5 21.8 
Eptesicus fuscus (V) C 18 41 59 0.3 18.3 23.0 
Leptonycteris yerbabuenae (Ph) F 5 6 7 0.2 5 10.1 
Molossus molossus (M) F 9 5 6 0.3 5.9 5.9 
Myotis lucifugus (V) F 11 0 1 0.1 5 34.0 
Myotis myotis (V) F 36 2 33 1 9 37.1 
Myotis vivesi (V) F 11 6 4 0.1 2 10.0 
Nyctalus noctula F 3 0 2 0.9 2 12.0 
Phyllostomus discolor (Ph) C 31 19 42 0.1 17.7 18.0 
Phyllostomus hastatus (Ph) F 61 10 52 0.1 16.5 22.0 
Pteropus giganteus (Pt) C 0 4 4 10.9 14.2 44.0 
Pteropus hypomelanus (Pt) C 28 12 40 0.4 19.3 26.5 
Pteropus poliocephalus (Pt) C 10 6 16 6.1 16.7 23.6 
Pteropus pumilus (Pt) C 24 22 45 0.8 17.3 17.3 
Pteropus rodricensis (Pt) C 12 7 19 4 20.9 28.0 
Pteropus vampyrus (Pt) C 27 24 51 0.6 22.4 24.0 
Rhinolophus ferrumequinum (R) F 40 0 39 0.1 21.1 30.5 
Rhynchonycteris naso (E) F 6 16 15 0.1 6 8.5 
Rousettus aegyptiacus (Pt) C 8 8 3 5 14 22.9 
Saccopteryx bilineata (E) F 20 9 24 0.2 8.3 11.0 
Tadarida brasiliensis (M) C 9 10 15 0.2 6.2 12.0 

 
1Family: E= Emballonuridae, M = Molossidae, Ph = Phyllostomidae, Pt = Pteropodidae, R = 
Rhinolophidae, V = Vespertilionidae; Source: F=field, C=captivity; #F, #M: number of 
samples for each sex; Exact N: number of individuals with exact age estimates; Yg, Old: 
youngest (Yg) and oldest (Old) individual sampled in years; Max age: maximum recorded age 
in years 
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Figure Legends 

Fig. 1. Epigenetic clocks accurately predict chronological age of bats. a) Leave-one-out 

(LOO) cross-validation based on penalized regression gave a correlation of 0.95 with a 

median absolute error (MAE) of 0.74 years between observed and predicted (DNAmAge) age 

(after square-root transform) for 26 bat species. To ensure an unbiased cross validation 

analysis, we allowed the number of CpGs to change with the respective training data.  b) LOO 

cross-validation based on penalized regression of 51 Pteropus vampyrus samples gave a 

correlation of 0.99 with MAE of 0.72 years between observed and predicted age. c) LOO 

cross-validation based on penalized regression of 40 Rhinolophus ferrumequinum samples 

gave a correlation of 0.96 with MAE of 1.11 years between observed and predicted age. d) 

Cross-validation analysis in which the DNAm data for one species was left out (LOSO) and 

ages are predicted for that species using a clock estimated with the remaining data. The 

resulting correlation between observed and predicted age is 0.84 (MAE = 1.41 years).  

Additional epigenetic clocks for individual species and genera are in Supplementary Fig. 1 

and 2. 

 

Fig. 2. Species longevity is predicted by mean rate of DNAm change. a) After controlling 

for phylogeny using phylogenetic generalized least squares regression, mean DNAm rate at 

1165 hypermethylating age DMPs correlate with longevity (r = -0.704, t = -4.95, P = 6.79e-5), 

b) as does mean DNAm rate at 835 hypomethylating age DMPs (r = -0.682, t = -4.27, P = 

3.42e-4). Species longevity is represented by the longevity quotient (LQ), which is the ratio of 

the observed species maximum lifespan to the maximum lifespan predicted for a nonflying 

placental mammal of the same body mass29. For example, the maximum longevity of Myotis 
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lucifugus (10) is over six times longer than expected, while the maximum longevity of 

Molossus molossus (9) is equal to an average placental mammal of the same body size. The 

five species used for identifying longevity DMPs by difference in methylation rate are 

indicated by red triangles (long-lived) and blue triangles (short-lived). Only species with more 

than 10 samples are included. 

 

Fig. 3. Differentially methylated positions (DMPs) for age and longevity are widely 

distributed and partially overlap. a) The top 2000 age-associated DMPs with positive (Pos) 

or negative (Neg) effects on DNAm are found on all Rhinolophus ferrumequinum 

chromosomes, although hypermethylated DMPs are underrepresented on chromosome 1 - 

syntenic with the human X chromosome. b) Longevity DMPs are also distributed across all R. 

ferrumequinum chromosomes. Darkened symbols indicate significance (BY 5% FDR). c) 

Effect of DNAm change on age plotted against effect of DNAm change on longevity (see 

Methods) illustrates association between age and longevity effects. Significant sites are 

colored blue for age, red for longevity, and purple for both age and longevity. Symbols for the 

orthologous gene with the nearest transcription start site (TSS) to the DMP are indicated for a 

sample of extreme age and longevity DMPs. Bottom panels indicate DMPs that map to 

different genes in the short-lived species, M. molossus, and the long-lived species, R. 

ferrumequinum, with the M. molossus gene indicated after /. Note that most extreme age and 

longevity DMPs in promoter regions (i.e. -10,000 to +1,000 bp from the tss) are in the upper 

right panel, i.e. nearest the same gene in both species. d) Age DMPs overlap 17% with 

hypermethylating (+) and hypomethylating (-) longevity DMPs in M. molossus. Long-lived 

bat species show similar patterns (Supplementary Fig. 5a). e) Number of unique genes nearest 
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age and longevity DMPs for M. molossus. Sign on numbers in overlap region indicate 

methylation direction for age then longevity. Long-lived bat species show similar patterns 

(Supplementary Fig. 5b). 

 

Fig. 4. Age and longevity DMPs are enriched in promoter regions of genes associated 

with immunity and cancer.  a) CpG annotation for the short-lived bat, M. molossus, in 

comparison to genome regions where probes map to the human genome (HG19) shows that 

only 49% of probes that map to a promoter region in the bat also map to a promoter region in 

human (see also Supplementary Fig. 4). b) In contrast, CpG annotation comparison between 

two phylogenetically distant bat species, M. molossus and R. ferrumequinum, indicates greater 

probe conservation with respect to gene proximity (see also Supplementary Fig. 4). c) Age 

DMPs are highly enriched near promoter regions with over 95% exhibiting hypermethylation 

in M. molossus and other bats (Supplementary Fig. 5). d) Longevity DMPs are also enriched 

in promoter regions with over 80% exhibiting hypermethylation in M. molossus and other bats 

(Supplementary Fig. 5). e) Enriched biological processes for unique M. molossus genes from 

promoter regions are only significant for hypermethylating age and longevity DMPs. Only 

three significant GO terms from each parent-child group are shown to minimize redundancy. 

f) Enrichment analysis of protein class for unique M. molossus genes from promoter regions 

reveals significant enrichment of helix-turn-helix transcription factors (TF) only for 

hypermethylated DMPs associated with age and longevity. Cell color indicates significance 

(negative log P for GO terms with adjP < 10e-4) of enrichment in e) and f). g) Overlap 

between genes genes associated with longevity, innate immunity or frequently mutated in 
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human tumors identified in M. molossus. Enrichment analyses using genome annotations from 

other bat species produce similar results (Supplementary Fig. 6). 

 

Fig. 5. Functional overlap analysis of DMPs reveals role for key transcriptional 

regulators. Histone marks for cell lines derived from skin, muscle or blood for DMPs 

mapped in Desmodus rotundus, a long lifespan species, for (a) age and (b) longevity with bold 

symbols indicating significance (BY 5% FDR) and +/- indicating positive/negative rates of 

DNAm change. Predicted chromatin states for cell lines derived from skin, muscle or blood 

for DMPs for (c) age and (d) longevity. e) Transcription factor clusters enriched for 

hypermethylated (+) and hypomethylated (-) age or longevity DMPs with cell color indicating 

significance (negative log P, adjP < 10e-4) of overlap with predicted transcription factor 

binding sites in probe sequences using a hypergeometric test. f) Top-ranked transcription 

factors associated with change in expression of genes containing age or longevity DMPs in 

promoter regions in M. molossus, with integrative rank significance (see Methods) indicated 

as negative log P. Genes frequently mutated in human tumors are indicated by c, and those 

involved in innate immunity by i. Only genes with hypermethylated sites in promoter regions 

showed evidence of enrichment. Analyses using genome annotations from other bat species 

produce similar results (Supplementary Fig. 6). 
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