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Abstract1

A species’ traits influence the way in which it interacts with the environment. Thus,2

we expect traits to play a role in determining whether a given set of species coexists.3

Traits are, in turn, the outcome of an eco-evolutionary process summarized by a phyloge-4

netic tree. Therefore, the phylogenetic tree associated with a set of species should encode5

information about the assembly properties of the community. Many studies have high-6

lighted the potentially complex ways in which phylogenetic information is translated into7

species’ ecological properties. However, much less emphasis has been placed on developing8

expectations for community properties under a particular hypothesis.9

In this work, we couple a simple model of trait evolution on a phylogenetic tree with10

local community dynamics governed by Lotka-Volterra equations. This allows us to derive11

properties of the community of coexisting species as a function of the number of traits,12

tree topology and the size of the species pool. Our results highlight how phylogenies and13

traits, in concert, affect the coexistence of a set of species.14

In this way, our work provides new baseline expectations for the ways in which phyloge-15

netic information is reflected in the structure of and coexistence within local communities.16

Introduction17

Gause’s pioneering work [15] provided the first clear empirical evidence for the principle of18

competitive exclusion, which states that two species competing for a unique resource cannot19

coexist. In the context of niche theory, this principle resonates in the concept of limiting20
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similarity: In a community shaped only by biotic interactions, species with similar niches21

are less likely to coexist [26]. Making stronger assumptions, one can draw a direct link22

between evolutionary relatedness among the members of an ecological community and their23

co-occurrence patterns. In particular, if one is willing to assume that species’ traits are24

well-described by phylogeny, and that similarity in traits maps into strength of competition25

between species, one can connect the phylogenetic structure of an ecological community with26

coexistence [37]. While this hypothesis has found mixed support [11], it has served as one of27

the cornerstones of the budding field of community phylogenetics [35, 38]. In recent years,28

several tools have been developed to test whether a given mechanism of community assembly29

(e.g., competitive exclusion or environmental filtering) has acted on a community, by analyzing30

the signal it is expected to leave in the community’s phylogenetic structure [14]. However,31

some authors have noted that phylogenetic relatedness might affect community patterns in a32

variety of ways, obscuring a link between phylogenetic and co-occurrence patterns [11, 28].33

Here we take a step back and analyze a model in which we incorporate an explicit link34

between phylogenetic relatedness and ecological interactions. In particular, we connect phy-35

logeny to species’ traits, and then similarity in traits to the strength of interaction between36

any two species [4, 29]. Given a phylogenetic tree representing the evolutionary history of a37

regional pool of n species, we assume that species interactions are determined by a set of ` ≥ n38

traits, which have evolved independently on the tree via Brownian motion [18]. Species are39

assumed to have a baseline competitive effect on each other, which is then modified according40

their trait covariance. In this way, species that are more closely related tend to interact, on41

average, more strongly with each other than with distantly-related species. As we will show,42

the variance of the distribution of interaction strengths is controlled by the number of traits43

`.44

Clearly, species’ intrinsic growth rates could also reflect their evolutionary history (e.g.,45

closely related species with similar traits might find similar environments to be harsh or hos-46

pitable). To clearly separate the effect of phylogeny on interspecific interactions from its effect47

on growth rates, we therefore assume that all species have the same intrinsic growth rate. [5].48

This assumption severs any connection between phylogeny and environmental filtering.49

Having established our model for trait evolution and the link between trait values and50

species interactions, we analyze the case in which all species in the pool are present at arbitrary51
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initial conditions, and dynamics follow the Generalized Lotka-Volterra model. Contrary to52

previous simulation-based studies [14, 23] we develop an analytical framework to characterize53

the resulting community of coexisting species, as a function of both the number of traits,54

`, and the tree structure. In particular, we show that when the number of traits is large55

enough relative to the number of species in the pool, coexistence of all species is guaranteed56

by the tree-induced interaction structure. Furthermore, the abundance distribution of the57

community reflects the structure of the tree. On the other hand, while ` = n is a well-known58

necessary condition for coexistence [24, 41], we find that full coexistence is almost never59

achieved in this case (see also [13]). Yet, even when coexistence of all n species is precluded,60

one typically observes coexisting communities of moderate size, as expected if interactions61

were purely random [10, 33]. Differently from the purely random case, here we find that the62

probability that a particular species survives is determined by its position in the tree.63

Our model shows that phylogenetic relatedness, modulated by the number of traits con-64

trolling species interactions, affects multiple aspects of the local community. The explicit65

incorporation of community dynamics allows us to move from pairwise comparisons to global66

aspects of community structure. Furthermore, we advance the growing body of literature on67

random interaction models [3, 6, 10, 33] by analyzing a case in which the correlations between68

interaction strengths are controlled by phylogenetic relatedness.69

Model70

Consider a regional pool R = {si} of n species indexed by 1 ≤ i ≤ n, and assume that a71

species’ identity is defined by its ` ≥ n trait values. For a given trait 1 ≤ j ≤ `, collect72

the values of j for all members of the pool in the trait vector τj ∈ Rn. We sample each73

τj independently from a multivariate normal distribution N (0,Σ). This choice implies that:74

(a) the values for distinct traits of a given species are independent, and thus we are not75

considering trade-offs between traits; (b) the processes leading to the correlation structure76

Σ are statistically equivalent for distinct traits; (c) lastly, if Σii = σ for all i, then the77

distribution of trait values within a species is independent of species identity. For an example78

of an evolutionary process consistent with the assumptions above, consider the case in which79

TR is the phylogenetic tree for the species in the regional pool, and each trait j starts at an80
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ancestral mean value of 0, and evolves independently on the tree via Brownian motion. Then81

the value of trait j at the n tips, τj , follows the normal distribution N (0,Σ) with Σ induced by82

the tree structure, and called the variance-covariance matrix of TR [18]. In Σ, the covariance83

between two species is given by the shared branch length on TR [9]. As such, whenever TR84

is ultrametric, then Σii = 1 for all i. Unless otherwise specified, here Σ is always assumed to85

originate from an ultrametric, rooted phylogenetic tree (see Figures 1 and 2).86

In this setting, each realization of the ` traits defines a species pool R. For a given87

pool, we imagine that the following experiment is performed [33]: all the species from the88

pool are introduced in the local habitat at the same time and at arbitrary initial densities.89

Population dynamics, as determined by the species’ interactions and growth rates, will lead90

the community to an asymptotic state in which some of the species are extinct, while others91

coexist. Our aim is to characterize the resulting community of coexisting species in terms of92

the parameters `, n and Σ.93

To this end, we consider dynamics governed by the Generalized Lotka-Volterra (GLV)94

model. Species are assumed to differ only in their interactions, so that the growth of each95

species in isolation is the same:96

dxi
dt

= xi(r −
∑
j

(µ+Aij)xj). (1)

Here, xi is the density of species i and r is the common intrinsic growth rate. The97

interaction coefficients are modeled as deviations from a “mean-field” competition value µ >98

0. These deviations are controlled by trait similarity between species. More precisely, the99

deviations are modeled as the sample covariance matrix resulting from the trait sampling100

process, so that competition between two species is strengthened if their trait vectors are101

positively correlated and weakened otherwise:102

Aij =
1

`

∑
l

τ il τ
j
l ,

G = (τ ij),

A =
1

`
GGT .

(2)

In the supplementary information (section S1), we show how this model arises by assuming103
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a separation of time scales for consumer-resource models in which consumers share the same104

attack and death rates, but differ in their preferences for resources.105

Under these assumptions, A is a symmetric and stable matrix, and a member of the106

Wishart ensemble [30, 40]:107

A ∼ Wn(
1

`
Σ, `) (3)

The Wishart distribution describes the probability with which a given sample covariance108

matrix is observed when sampling from a multivariate normal distribution. Given its many109

applications in statistics and other fields, the Wishart distribution has been studied exten-110

sively, allowing us to draw upon a large body of results [7, 8, 22, 30].111

Since A is stable, the community reaches a unique, globally-stable equilibrium, and the112

sub-community of coexisting species is characterized by a feasibility and non-invasibility con-113

dition [20]. Importantly, in this case one can prove that the effect of the mean interaction114

strength µ on the resulting community is relatively straightforward: µ does not affect the115

identity of the coexisting species, and rescales their biomasses by a constant (see supplemen-116

tary information, section S6, for details). Similarly, any choice of r > 0 only rescales the117

equilibrium biomasses. Thus, without loss of generality, we can assume µ = 0, and r = 1, so118

that the regional pool is completely characterized by A.119

To describe the statistical properties of the community of coexisting species, we need120

to condition the distribution of the variables of interest on the unique feasible and non-121

invasible sub-community for a given species pool R. We focus on the following properties:122

the distribution of the number of coexisting species, the total biomass of the community, and123

the relative abundance distribution of the coexisting species.124

To illustrate our results with an empirical tree structure, we take the phylogeny of the125

clade Senna (Fabales) as an example [39]. The tree contains a total of 94 species and we use126

the outlier group comprising the species Senna silvestris var guarantica, Senna siamea, Senna127

polyantha and Senna galeottiana to root the subtree containing the remaining 90 species.128

Notice that, as shown by [32] the final community composition reached in each of our the-129

oretical experiments is the same as would be reached under sequential, one-at-a-time species130

invasions. Thus, our results map directly to the process of bottom-up assembly of ecological131
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G =

` traits

si

{s1, . . . , s5}

τ` ∼ N (0,Σ)

s1 s2 s3 s4 s5

Sample covariance

A = 1
`
GGT =

Figure 1: Construction of the regional pool R and interaction matrix A. Each species
in the pool R is assigned ` trait values. The vector containing the values for trait j (τj ∈ Rn)
of all members of the pool is sampled independently from N (0,Σ). This is equivalent to a
neutral model of trait evolution for each j on a phylogenetic tree TR. The model relates the
structure of TR to the interactions between the species in the pool: the matrix Σ measures
the shared evolutionary history between any two species si and sj on TR (in our example
Σ12 > Σ13 > . . . > Σ15). In turn, the number of traits ` and Σ determine the interactions
between species, stored in the matrix A.

communities. In particular, our results can be used to infer properties of the assembly graph132

G associated with each regional pool [12].133

Results134

Deterministic Limit. First, consider the case where the number of traits, `, is very large135

relative to the number of species, n. Let γ = `
n be their ratio. In the limit γ → ∞ we find136

that A → Σ (i.e., the sample covariance matrix converges to the population covariance ma-137

trix). Thus, the properties of the community are determined solely by Σ. The simplest case138

to study is if Σ = In (the identity matrix), which represents the covariance matrix induced139

by the degenerate n-star tree with 0 shared branch length among all species (see Figure 2).140

This covariance structure corresponds to an evolutionary scenario where all species diverge141
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s1 s2 s3 s4 . . . sn s1 s2 . . . sn

ρ

s1 s2 s3 s4 . . . sn−1 sn

Figure 2: Examples of ultrametric rooted phylogenies and its induced covariance
matrices. The perfectly unbalanced tree (left) has n−1 branching times 0 < t1 < . . . < tn−1

for a pool of n species, where each new branching happens to the “left” and creates a new
pair of species. We call the times between branching events, ti − ti−1, inter-branching times.
The star tree (middle) displays a unique branching event which generates all the n species.
For the perfectly balanced tree (right) we have n branching times at each of which all the
tips present up to that point generate two new species. Proceeding recursively, n branching
times generate 2n species and we have n + 1 distinct inter-branching times. The covariance
matrix associated with each tree is constructed as follows: For any si take γi to be the path
“backwards” in time to the ancestral species at the root of the tree, then for any two si, sj , let
t(i, j) be the time at with γi and γj merge, i.e., the coalescence time between si and sj [36].
Then, Σij = 1−t(i, j). In particular, Σij is the total time for which the evolutionary processes
for si and sj are completely linked. For example, in the star tree Σij = ρ for any i 6= j and
Σii = 1, given that each tree is ultrametric.
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immediately at time 0. In this case, complete coexistence of R and any of its sub-communities142

S ⊆ R follows trivially, since species do not interact with each other. Remarkably, the same143

behavior (full coexistence) is shared by any Σ induced by a tree T . This can be proved induc-144

tively using the following observation: If t1 is the time at which the first split happens in the145

phylogenetic tree, then “cutting” the tree at this branching point generates non-interacting146

sub-trees Ti, which we assume to have fully coexisting equilibria under the induction hypoth-147

esis. Pasting these sub-trees together at their roots gives us a degenerate tree for which the148

induced covariance matrix is a block diagonal matrix Σ̃. This operation preserves coexistence,149

since the sub-trees are still non-interacting. We recover T by attaching a branch length t1 to150

the root. In terms of the variance-covariance matrix, Σ is obtained by adding a constant to Σ̃.151

Assuming equal growth rates, this transformation does not affect the feasibility of the system;152

hence Σ has a feasible equilibrium (see fig S1 and supplementary information S2 for a more153

detailed argument). Thus, for γ � 1 (i.e., if A ≈ Σ), we have full coexistence regardless of the154

tree topology. Moreover, the assembly graph G for the species pool R contains all possible155

assembly histories (c.f. [32] and [42]); in other words, any sub-community can be built by156

starting with a single species and adding the remaining members sequentially in any order.157

Total biomass and abundance distribution. Under our model, phylogeny strongly158

influences the biomass and relative abundance distribution of a community. As illustrative159

examples, consider the two extreme tree topologies given by the “perfectly unbalanced” tree160

and the “perfectly balanced” tree (Figure 2). Assuming equal inter-branching times, the total161

biomass of the system, W (n), for a pool of n species is given by W (n) ≈
√
n − 1/4 in the162

perfectly unbalanced case, and W (n) = log2(n)+1
2−1/n in the perfectly balanced case (see section163

S2 for details). Similarly, we are able to derive expressions for the individual biomass of164

each species si, where the index corresponds to the position in the ordered tips of the tree165

(see Figure 2). For the perfectly balanced case, the abundance distribution is trivial, since166

each species necessarily has the same abundance. On the other hand, the hierarchical nature167

of the perfectly unbalanced tree is reflected in the individual biomasses, with species that168

split from the rest early on having much higher abundances. Fig 3 and S2 show that the169

results are qualitatively unchanged if we sample the inter-branching times from appropriately170

normalized exponential or uniform distributions. The uneven distribution of abundances for171

the unbalanced tree helps explain the difference in total biomass: in the perfectly unbalanced172
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case, as n grows there is a fraction of species (outliers) that interact less and less strongly173

with the rest of the community, so that their abundance approaches the limit 1 (obtained174

for non-interacting species). In contrast, in the perfectly balanced case the abundance of all175

species is the same, and approximately log2(n)
n .176

To compare these results with predicted abundances using a more complicated tree struc-177

ture, we repeated the calculation using the phylogenetic tree of the Senna clade (Fabales) [39].178

We considered two cases: either we include the branch length information, or we set all branch179

lengths to be equal, so that only the effects due to the shape of the tree are considered. The180

average total biomass W (n) for sub-communities of different sizes (Figure 3) shows that for181

both cases at small enough sizes, W (n) behaves as predicted by the perfectly unbalanced182

model—which reflects the hierarchical low-level structure of the tree (Figure 6). But as183

the size of the sub-community increases, W (n) either reaches values even smaller than the184

perfectly unbalanced tree, or settles in the middle of the two—showing that, under equal185

inter-branching times, the perfectly balanced and perfectly unbalanced tree represent the two186

extreme topologies. The species’ abundance distribution, as for the perfectly unbalanced tree,187

reflects the tree structure: the abundance profile shows peaks at each of the outliers within188

clades, and an overall decreasing trend toward more deeply nested parts of the tree (see also189

Figure 6).190

Star phylogenies. Classical results in theoretical ecology have extended the principle191

of competitive exclusion to the case of multiple resources/regulating factors, showing that192

a necessary condition to observe a non-degenerate coexisting community of n species in our193

model is ` ≥ n [24, 41]. We have shown above that, for a fixed size of the pool, n, coexistence194

is guaranteed in the ` → ∞. To characterize the cases in between ` = n and ` → ∞, we195

exploit the fact that A follows the Wishart distribution; as such we can make use of tools196

developed in statistics and economics to explore how the limit of full coexistence is approached197

(see section S3). To start, let Σ be induced by a star-tree with shared root of length ρ (see198

Figure 1). In this setting, there is a constant correlation ρ among the species in the pool. We199

find that for γ ≈ 1, full coexistence is never achieved for large enough communities (Fig S3).200

Nevertheless, the community does not collapse completely, and a non-vanishing fraction of201

species is observed to coexist (Figure 4). The effect of increasing correlation among species202

is, as expected, to reduce the proportion of coexisting species, ℘. In particular, to observe at203
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Figure 3: Individual and total abundance for the deterministic limit. Log individual
abundance (left) and total abundance (right) for the communities in the deterministic limit of
a perfectly unbalanced tree. Dots mark the average values when sampling the branch lengths
from an exponential distribution with rate 1, a uniform [0, 1] distribution, and the case of
equal branch lengths. The total branch length is renormalized to 1 in all cases. Solid lines are
the analytic predictions under equal branch length 1/n. In the right panel, the two solid lines
are given by

√
n and

√
n− 1/4, the black dots represent the analytic formula for a perfectly

balanced tree which shows logarithmic growth ∼ log2(n)+1
2 . The dashed lines on the right

panel are the scaling with size of sub-trees of the Senna phylogenetic tree, and the dashed
lines on the left plot are the abundance distribution for the full tree (compare with Figure 6).
In both cases the purple line is for the case of equal inter-branching times and the orange
includes the branch length information.
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least half of the species to coexist (in expectation), we need:204

2γ ≥ 1 +
nρ

π(1− ρ)
(4)

The quantity ζ = ρ
1−ρ could be interpreted in the framework of population genetics as the205

ratio of shared to private mutations for each species. It is a key quantity, in the sense that206

two distinct pools R and R′, of sizes n and n′ will yield the same mean fraction of coexisting207

species, for a given γ, whenever nζ = n′ζ ′.208

2

4

6

8

0.0 0.1 0.2 0.3 0.4 0.5
ρ

γ

0.4 0.6 0.8
℘

0.3

0.5

1.0

1 3 10
γ

℘

ρ 0 0.1 0.2 0.3

Figure 4: Proportion of coexisting species ℘ as a function of ρ and γ. In the right
panel, we compare our analytical approximations (solid lines) with simulations (dots) for a
regional pool of 50 species (log-log scale). The left panel explores in more detail the parameter
space (γ, ρ). The dashed line marks parameters for which we expect half of the species to
coexist. As suggested by eq. (4), the value of γ giving a fixed ℘ increases sharply with ρ.

The distribution of total biomass, W , for the community of coexisting species is influenced209

by γ and ρ in two different ways: the parameters affect both the distribution of the number of210

coexisting species, and the conditional distribution ofW for a given community size. Assuming211

that the distribution of the number of coexisting species is highly peaked at the mode, we212
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derive an approximation for the mean of W that closely matches results from simulations213

(see section S4 and figure S5 for exact results and full distribution). For small enough γ the214

variance of the interactions allows the possibility of positive interactions that enhance W , as215

γ increases the interaction matrix converge to the purely competitive interaction matrix given216

by Σ. This convergence explains the decrease of W with γ depicted in Figure 5.217

Using the same strategy, we are able to derive approximations (see section S5 for exact218

formula) for the survival function of the relative abundance distribution under distinct values219

of ρ and γ. In particular, the distribution becomes very peaked as γ increases, while increasing220

ρ tends to make the distribution flatter (Figure 5).221

Beyond constant correlation. Imposing a more general covariance structure Σ is222

challenging from a mathematical standpoint, due to the breaking of the statistical equivalence223

among species—species in distinct parts of the tree have now different statistical properties.224

In the general case, the identities of the species matter, and instead of looking at the total225

number of coexisting species, we focus on how the probability that a particular species survives226

(ps) changes with its position in the tree. Simulations for the phylogenetic tree of the Senna227

clade show that the model recreates the phenomenon of phylogenetic over-dispersion: for a228

group of closely related species, ps peaks at the outliers of the clade. Furthermore ps reflects229

the tree structure in the same manner as the total abundance distribution (compare Figures 1230

and 6).231

To further explore this relationship, we are able to analytically compute the probability of232

observing each sub-community in a three-species community (Figure 7). For n = 3, there is233

only one possible tree topology, and we consider the case where all branch lengths are equal.234

We find that sub-communities containing the outlier species, s3, are always more likely to be235

observed than sub-communities of the same size in which s3 is absent. More generally, the236

formulas in section S3 can be evaluated numerically to find the probability of observing a237

particular sub-community under an arbitrary, not necessarily ultrametric, tree structure.238
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Figure 5: Mean total biomass and relative abundance distribution. The panel on
the right shows (note the log-transformation for the y-axis) the mean total biomass for the
community of coexisting species; the points represent simulations, and solid lines the corre-
sponding analytical approximations for a pool of 50 species (see section S6 for the effect of
changing µ). The total biomass decreases as γ grows, because the overall strength of inter-
action between species decreases. The survival function for the relative abundance values of
the community is plotted on the left panel (note the log x-axis), where again points stand for
simulations and lines for analytical predictions for distinct γ and ρ values, and a pool of 100
species. For clarity, we just show simulations for the parameters (ρ, γ) ∈ {(0, 3), (0.3, 1)}. In
particular we have that as γ increases the distribution becomes more and more peaked (as
expected) while increasing ρ flattens the distribution.
.
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Figure 6: Probability of individual species survival for an empirical tree. The
probability that a species is observed in the community of coexisting species, ps, out of 5000
simulations, is shown alongside the phylogenetic tree (Senna clade) where the outermost
group is used to set the root. The values ps reflects the tree structure and the abundance
distribution showed in Figure 1: The peaks in ps correspond to outliers within a group of
closely related species and ps has a decreasing trend towards the most nested parts of the tree
(upward direction). In particular, the model produces phylogenetic over-dispersion.

Discussion239

By considering local community dynamics in a trait-based interaction model, our results240

provide a clear link between the phylogeny of the regional species pool and many aspects of241

species coexistence. Importantly, while the tree structure is reflected in the local community242

patterns, the number of traits controlling interspecific interactions modulates the outcomes.243

We found that, when phylogenetic relatedness completely controls interactions, i.e., when244

the number of traits is sufficiently high compared to the number of species, full coexistence of245

any sub-community is guaranteed. This result requires both the tree structure (which induces246

a particular interaction matrix) and the assumption that all species have equal growth rates.247

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.09.04.283507doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.283507
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 2 3 1−2 1−3 2−3 1−2−3 1 2 3 1−2 1−3 2−3 1−2−3 1 2 3 1−2 1−3 2−3 1−2−3

0.0

0.2

0.4

0.6

subcommunity

p a

γ

1
3
6

si

si sj

s1 s2 s3

Figure 7: Sub-communities of perfectly unbalanced tree Probability of observing a
given sub-community of the three-species tree with equal branch lengths. The inset shows the
tree sub-structures for each of the sub-communities. Bars represent frequencies over 50000
simulations, and dots the analytical predictions.

While we expect this result to hold qualitatively for small deviations from the assumption of248

identical growth rates (see section S7), it is false in general when these requirements are not249

satisfied. Under the same assumptions, the abundance distribution of the community reflects250

the tree structure at distinct levels: high biomass is observed for the outliers within each clade251

(local tree structure), and one expects an overall decreasing trend towards more nested parts252

of the tree (coarser structure).253

When the number of traits is comparable to the number of species, our model is an instance254

of a Lotka-Volterra model with random interactions. The analysis of models considering255

random interactions between species has a long tradition in ecology [1, 17, 27], and in recent256

years the field has moved beyond questions concerning the stability and feasibility of the whole257

system, focusing more closely on the properties of sub-communities that coexist through the258

dynamics [3, 6, 10, 33]. In these models, one must usually assume that species interactions are259

independent of species identity (but see [2, 16]). The star-tree case studied above satisfies this260

assumption, but with a stronger correlation structure than has been previously considered.261
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This case behaves much like other random interaction models: full coexistence of many species262

is extremely unlikely, but we expect a moderate number of species to coexist. We have derived263

an approximation for the mean number of coexisting species, which depends on the ratio of264

traits to species, γ, and on the expected ratio of shared to private mutations for each species265

nζ. As long as these two quantities are the same, pools of distinct sizes will yield the same266

distribution for the number of coexisting species. Contrary to previous studies [33], the267

analytic tractability of the model allows us to derive exact expressions for the total biomass268

and relative abundance distribution of the system.269

The general case of an arbitrary, tree-induced correlation structure provides a biologically-270

meaningful way to relax the statistical equivalence between species. Taking advantage of the271

vast literature on the Wishart ensemble in fields ranging from economics to statistics [8, 22, 30],272

we are able to derive exact integral formulas to compute the probability of survival for any273

sub-community under arbitrary tree structure. In this way, one can measure properties of274

the system (conditioning on a final sub-community) by numerically evaluating the integral275

expression. For small enough communities and simple enough phylogenies, this approach can276

be replicated on each sub-system to compute the marginal distribution of the properties of277

interest. However, as the number of species grows, these calculations become burdensome. As278

such, devising new analytical techniques to tackle the general case would be an important step279

toward studying more general random interaction models, and also advance our understanding280

of the effects of phylogenies on communities.281

Our approach can be extended in a variety of ways, and we briefly discuss some of the282

most promising avenues.283

First, instead of assuming that the same tree structure controls the evolution of all `284

traits, we can partition the traits into m classes and assume that the evolution of each class is285

determined by a distinct phylogenetic tree. These type of processes are studied in population286

genetics when either admixture or incomplete lineage sorting lead to traits that cannot be287

explained by a single tree [31]. In such cases, A would no longer follow the Wishart distribution288

but would rather be a sum of (possibly degenerate) Wishart matrices.289

Second, our assumption of equal growth rates among species allowed us to examine how290

phylogenetic relatedness influences coexistence in a purely interaction-driven model. When291

we include variation in growth rates, we expect our results to hold only for sufficiently small292
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variance. In this case, the restriction on l ≥ n can be lifted, provided that there is a back-293

ground competitive effect µ strong enough to prevent divergence of the dynamics (see section294

S7). It would be interesting to consider models where growth rates vary under the influence295

of phylogeny; by modulating how strongly evolutionary relatedness affects both growth rates296

and interactions, one could investigate the duality between “competition” and “filtering” that297

is frequently discussed in the literature [14, 28, 38].298

Lastly, our approach assumes an explicit separation between evolutionary processes at299

the regional level (which give rise to the phylogenetic structure) and ecological interactions300

( at the local level). To remove this separation, one could model the tree generation process301

and ecological dynamics concurrently. For example, as done by Maynard et al. [29], one302

could “run” the dynamics after each new speciation event, thereby pruning the community303

to a coexisting sub-community. One would then take the sub-tree of that community as the304

starting point for the new speciation event. In this setting, in a similar manner to studies of305

community assembly [32] and the framework of adaptive dynamics [21], we have a separation of306

time-scales between the speciation events and the local community dynamics. Traits evolve on307

the tree between each pruning event. In this regard, our results provide baseline comparisons,308

and even suggests patterns that would emerge from the process: assuming that the number309

of traits is a constant `, the community cannot reach more than ` species, yet at the early310

steps of the process the ratio of traits to species could be extremely high—hence we expect311

that most speciation events occurring early on would not cause extinctions; in this case, the312

bulk of the phylogenetic structure would be built at the beginning of the process. Perturbing313

the growth rates slightly, one could compare the structure of this tree with the structure of314

the tree found by simply letting the tree generation process run, and after having the same315

number of speciation events let the species interact and get a coexisting sub-community.316

While there has been extensive discussion of the potential ways in which phylogeny could317

affect ecological differences, and thus interactions, among species [11], much less has been said318

about the patterns one would observe under a particular hypothesis. In this work, by linking319

phylogenies to a simple model of trait evolution and local community dynamics, we were able320

to fully characterize many global aspects of the community. We showed that the phylogenetic321

structure of the species pool and the the number of traits determining competition affect the322

results in concert. Our results provide a useful baseline prediction for the effect of phylogeny323
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on community dynamics and coexistence.324
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Supplementary information329

1 Motivation330

From consumer-resource dynamics to covariances331

We start with a model of consumer-resource dynamics in which the consumers differ only in332

the relative preference of each resource and the resources have an homogenous growth rate.333

Let x ∈ Rn, y ∈ R` be vectors denoting the density of predators and resources. We model334

the dynamics as the MacArthur’s consumer-resource model [25]:335

dx

dt
= x ◦ (−d1n + αG̃y),

dy

dt
= y ◦ (r1` − y − βG̃Tx),

(5)

where ◦ stands for the Hadamard (component-wise) matrix product, and 1k = (1, . . . , 1)T ∈336

Rk is a notation for a column vector whose entries are exactly k ones.337

By our assumptions, matrix G̃ ∈ Rn×`+ encodes the preference distribution (alternatively,338

the time allocation distribution) of the predators over the resources, so that G̃1` = 1n. Then339

by a separation of time scales, which implies that resource densities remain at equilibrium, we340

can model the competition between the consumers as following competitive Lotka-Volterra341

dynamics [25]:342

dx

dt
= x ◦ (αrG̃1` − d1n − αβG̃G̃Tx) = x ◦ ((αr − d)1n − αβG̃G̃Tx). (6)

As long as n ≤ ` (besides measure zero sets) we have that matrix Ã := G̃G̃T is positive343

definite. This property of Ã allows one to further transform the system (6) without affecting344
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the set of coexisting species. In particular we can perform the following operations (see345

section 6 for a more detailed discussion):346

(a) Rescale the growth rate, v = (αr − d)1n, by any positive constant.347

(b) Multiply Ã by a positive, constant diagonal matrix.348

(c) Multiply both Ã and v by a positive diagonal matrix.349

Following this operations we reduce the system to350

dx

dt
= x ◦ (1n − G̃G̃Tx). (7)

To distinguish the effect of the mean of G̃, write G̃ = G + 1
n1n1

T
` . Notice that this351

decomposition, together with the restriction G̃1` = 1n, implies that G1` = 0n, which means352

that the entries of G have zero mean —here 0k = (0, . . . , 0)T stands for a column vector353

formed by k zeros. Then matrix Ã can be decomposed as Ã = GGT + 1n1
T
n . Because the354

system in (7) has constant growth rates then one can show (section 6) that, as long as ` > n355

(the strict inequality arising due to G having rank `− 1), the set of coexisting species for (7)356

is invariant to the shift 1n1
T
n . Therefore the system reduces to:357

dx

dt
= x ◦ (1n −GGTx) = x ◦ (1n −Ax), (8)

where we have defined A := GGT . This is the competitive, deterministic dynamics that we358

have assumed for consumers throughout this contribution. Observe that the set of coexisting359

species remains unchanged if we define interaction matrix A = 1
`GG

T , as in the main text,360

because of the aforementioned invariant operations.361

Modelling the covariance matrix362

From (8) we see that the interactions between species Aij are fully determined by the row363

vectors Gi. Because each row G̃i of matrix G̃ is a preference vector, then it lies on the364

standard `− 1 dimensional simplex ∆`−1 = {G̃i ∈ R`|
∑`

j=1 G̃ij = 1, for i = 1, . . . , n}, which365

implies that Gi lies on a bounded subset of a linear subspace of R` defined by the restrictions366 ∑`
j=1Gij = 0 for i = 1, . . . , n. By choosing a suitable (linear) coordinate system {wj}`j=1 we367
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can express368

Gi =
∑̀
j=1

cjiwj ,

Aij = GiG
T
j =

∑̀
k=1

cki c
k
j .

(9)

Therefore, the entries of A are fully determined by the coordinates of row vectors Gi on the369

basis {wj}`j=1.370

To model coordinates cji we assume that each (rescaled) preference vector Gi is the result371

of a diffusion process starting at the origin of this space (this maps back to our G̃ matrix as372

saying that every consumer has an homogeneous preference for any resource). Assuming that373

each coordinate is independent and letting the diffusion time be small enough, then coeffi-374

cients cji are normally distributed, cji ∼ N (0, σ). The invariant properties of the model allow375

us to forget about the deviation σ and simply model cji ∼ N (0, 1). This shows that A satisfies376

the assumptions of model (8) up to a change of number of traits from ` to `− 1.377

378

2 Deterministic limit379

Full coexistence380

We provide more details for the proof that, in the deterministic limit, every subcommunity of381

the pool is feasible. Since every subcommunity has an interaction matrix induced by a tree,382

it is enough to show that feasibility is guaranteed whenever this is the case.383

We proceed by induction on the number of species. For n = 1 the claim holds trivially.384

Let T be a phylogenetic tree (not necessarily ultrametric) for n species, and Σ its respective385

covariance matrix. Let t1 be the time at which the first split happens, so that at t1 the386

ancestral branch splits into m ≥ 2 lineages (Li, with i = 1, . . . ,m) where each Li contains at387

most n − 1 species. Lineages are defined by the condition that species j, k ∈ Li if and only388

if the shared branch length between both species t(j, k) satisfies t(j, k) > t1. That is, each389

lineage contains the subset of species whose shared evolutionary time is strictly greater than390

t1. For each Li, take Ti to be the subtree induced by Li. Consider T̃ , the tree obtained by391

shrinking the segment between the root and t1 to a point (see Fig. 8), then T̃ is a phylogenetic392
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Lm

L1

...

t10 →

Lm

L1

...

Σ =


Σ̃1

. . .

Σ̃m

 + t11n1T
n

Figure 8: Schematic representation of the inductive step on the proof of full coexis-
tence. Starting with the tree T (left), we shrink the ancestral branch up to the first splitting
time t1 to have a degenerate tree T̃ (on the right). T̃ splits at time 0 into m distinct subtrees
induced by the lineages Li for i = 1, . . . ,m. The covariance matrix for T , Σ, is obtained
from the covariance matrix Σ̃ of T̃ by “adding back” the ancestral branch. This amounts to
a constant rank-one update of Σ̃ which preserves feasibility.

tree, for which the covariance matrix Σ̃ is block diagonal and given by diagonal blocks Σ̃i.393

Each Σ̃i is the covariance matrix of the tree T̃i which is obtained from Ti by shrinking the root394

branch by t1. By induction it follows that each block Σ̃i is feasible, hence Σ̃ is also feasible.395

Observe that, going backwards, T is obtained from T̃ by adding a root segment of length396

t1. In particular this says that the shared evolutionary times of all species increases by t1,397

i.e. Σ = Σ̃ + t11n1
T
n , so that Σ is a constant rank-one update of Σ̃. Then by section 6, the398

equilibrium associated to Σ is feasible.399

Perfectly hierarchical trees400

Consider a perfectly hierarchical tree Tn with n tips and branching times t0 = 0 < t1 < . . . <401

tn < 1 (see figures 1-2 of the main text), and let Σn be its covariance matrix. Then it follows402

trivially that403

Σn =

Σ̃n−1 0n−1

0Tn−1 s1

+ t11n1
T
n , (10)
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where si :=
∑n

j=i+1 ∆tj , for ∆tj = tj − tj−1 the time between two branching events— the404

inter-branching time. In this subsections we find accurate bounds for the total biomass and405

analyze the expected abundance distribution.406

Define the vector of abundances xn = (xin) for a hierarchical tree Tn with n tips. In the407

deterministic limit, this vector satisfies the linear system408

Σnxn = 1n. (11)

As in the proof of feasibility, xn is given recursively by the updated equilibrium abundances409

x̃n−1and s−1
1 of the non-interacting subtrees T̃n−1 and the one formed by the first species,410

respectively. Indeed, if we look for solutions of the form xn =

ax̃n−1

xnn

, where the vector of411

abundances x̃n−1 satisfies Σ̃n−1x̃n−1 = 1n−1, Σ̃n−1 being the covariance matrix of the subtree412

T̃n−1, the equilibrium condition (11) for xn reduces to a linear system for a and xnn:413


a+ at11

T
n−1x̃n−1 + t1x

n
n = 1,

at11
T
n−1x̃n−1 + (s1 + t1)xnn = 1.

(12)

The solution is a = s1x
n
n, with xnn = (s1 + t1 + s1t11

T
n−1x̃n−1)−1. Let W̃n−1 :=

∑n−1
i=1 x̃

i
n−1 =414

1Tn−1x̃n−1. Then xn can be written in terms of W̃n−1, x̃n−1, s0 = s1 + t1, and s1 as415

xnn =
1

s0 + t1W̃n−1s1

,

xin =
s1x̃

i
n−1

s0 + t1W̃n−1s1

, 1 ≤ i < n.

(13)

In particular, this implies the following recurrence for the total biomass, Wn:416

Wn =
1 + W̃n−1s1

s0 + t1W̃n−1s1

. (14)

In the case of equal inter-branching times, ∆ti = 1
n for all i = 1, 2, . . . , n, observe that417

s0 = 1, s1 = n−1
n and Σ̃n−1 = n−1

n Σn−1. Hence xn−1 = s1x̃n−1 and Wn−1 = s1W̃n−1, so418
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Eqs. (13) and (14) above reduce to:419

xnn =
n

n+Wn−1
,

xin =
nxin−1

n+Wn−1
, 1 ≤ i < n,

Wn =
n(1 +Wn−1)

n+Wn−1
.

(15)

The following proposition provides accurate upper and lower bounds for total biomass in the420

limit of large number of species.421

Proposition 1. Let422

ϕ(n) :=
4n− 1−

√
16n2 + 1− 8n

√
n− 1

4
√
n− 1

. (16)

Then, for equal branching times, it holds that
√
n − ϕ(n) > Wn >

√
n − 1/4 for n ≥ 2 and423

ϕ(n)→ 1/4 in the limit n→∞.424

Proof. Direct computation shows that the inequality holds at n = 2 so we proceed by induction425

on n.426

Consider first the lower bound. Suppose it holds at n− 1, then:427

Wn =
n(1 +Wn−1)

n+Wn−1
= n

(
1− n− 1

n+Wn−1

)
>

n(
√
n− 1 + 3/4)

n+
√
n− 1− 1/4

.

If the claim were not satisfied at n we would have428

√
n− 1/4 ≥ n(

√
n− 1 + 3/4)

n+
√
n− 1− 1/4

.

Rearranging terms, this gives the following chain of equivalent inequalities:429

n
√
n+
√
n− 1

√
n+

1

16
≥ n
√
n− 1 + n+

1

4
(
√
n− 1 +

√
n),

n(
√
n− 1) +

√
n− 1

√
n(1−

√
n) +

1

16
≥ 1

4
(
√
n− 1 +

√
n),

√
n(
√
n− 1)(

√
n−
√
n− 1) +

1

16
≥ 1

4
(
√
n− 1 +

√
n).

(17)

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.09.04.283507doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.283507
http://creativecommons.org/licenses/by-nc-nd/4.0/


Multiplying both sides by
√
n− 1 +

√
n we get430

√
n(
√
n− 1) +

1

16
(
√
n− 1 +

√
n) ≥ 1

4
(
√
n− 1 +

√
n)2 =

1

4
(2n− 1 + 2

√
n− 1

√
n). (18)

The last inequality implies431

3

4
≥ 7

8

√
n,

which says n ≤ 1. This is a contradiction and we are done.432

We proceed in the similar way for the upper bound. By induction hypothesis at n− 1 we433

have434

Wn <
n(
√
n− 1 + 1− ϕ(n))

n+
√
n− 1− ϕ(n)

.

If the inequality is not satisfied at n then, a similar chain of inequalities yields435

n−
√
n+ ϕ(n)2(

√
n+
√
n− 1) ≤ ϕ(n)(2n− 1 + 2

√
n− 1

√
n). (19)

Note that the above restriction is exactly the same as (18) with the inequality reversed and436

changing ϕ(n) instead of 1/4. Using that
√
n >
√
n− 1, the last inequality implies437

n−
√
n+ 2

√
n− 1ϕ(n)2 − (4n− 1)ϕ(n) ≤ 0.

In particular, this means that ϕ(n) ≤ u for u the smaller root of the above quadratic equation,

u :=
4n− 1−

√
16n2 − 8n+ 1− 8n

√
n− 1 + 8

√
n− 1

√
n

4
√
n− 1

,

but with this definition and (16) it is easy to see that

u >
4n− 1−

√
16n2 + 1− 8n

√
n− 1

4
√
n− 1

= ϕ(n),

which is again a contradiction and this completes the proof for the upper bound.438

We have just proved that
√
n − ϕ(n) > Wn >

√
n − 1/4. In particular, this implies that

ϕ(n) < 1/4. Taking the limit in the numerator of expression (16) it is easy to see that the

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.09.04.283507doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.283507
http://creativecommons.org/licenses/by-nc-nd/4.0/


leading order is

lim
n→∞

4n−1−
√

16n2 + 1− 8n
√
n− 1 = lim

n→∞

(4n− 1)2 − (16n2 + 1− 8n
√
n− 1)

4n− 1 +
√

16n2 + 1− 8n
√
n− 1

= lim
n→∞

√
n− 1,

which shows that439

lim
n→∞

ϕ(n) =
1

4
(20)

and the proof is complete.440

Note that, for large communities, a very good approximation for the total biomass in a441

perfectly hierarchical tree is given by the formula Wn =
√
n− 1

4 .442

The recursions in (15) for individual abundances can be easily solved in terms of total443

biomass Wn as444

xin =
n∏
j=i

j

j +Wj−1
. (21)

This formula gives the abundance of the i-th species (in increasing order of the tips) for i ≥ 2445

(observe that the first two species have the same abundance). Alternatively,446

log(xin) =
n∑
j=i

log

(
j

j +Wj−1

)
= −

n∑
j=i

log

(
1 +

Wj−1

j

)
.

Approximating Wj−1 by its lower bound, Wj−1 ≈
√
j − 1− 1/4, we find447

log(xin) ≈ −
n∑
j=i

log

(
1 +

√
j − 1− 1/4

j

)
. (22)

Cutting the series for log(1 + x) at second order and considering only the leading term, with448

respect to j for the quadratic term, we get:449

log(xkn) ≈ −
n∑
j=k

√
j − 1

j
− 1

4j
− 1

2

j − 1

j2
≈ −

n∑
j=k

1√
j
− 3

4j
. (23)

By the Euler-Maclaurin formula we obtain:450

log(xkn) ≈ 2(
√
n−

√
j − 1) +

3

4
(log(n)− log(j − 1)). (24)
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and we can further refine the first terms xkn for k small by replacing the actual value Wj .451

Perfectly balanced tree452

The total biomass for perfectly balanced trees is easier to derive because the covariance matrix453

has constant row sums in that case. To show this statement, order tree splits by the time they454

happen (t1 < . . . < tq). At each time ti, the number of lineages doubles, so we get a total of455

n = 2q species. As species interact by their shared evolutionary time, in this case each species456

shares the time with 2q−k other species. Now let sk =
∑k

i=1 ∆ti, ∆ti being the inter-branching457

time —compare the different notation for sk here and in the previous subsection. Summing458

over all possible split times we get the sum over any row of A (observe that Aii = 1),459

rq =

n∑
j=1

Aij = 1 +

q∑
k=1

2q−ksk, (25)

which is independent of i. Because row sums are constant, the vector or equilibrium abun-460

dances can be written as xn = x1n, and substitution into Σnxn = 1n yields rqx = 1. There-461

fore, individual abundances at equilibrium are constant and given by x = r−1
q . Consequently,462

the total biomass at equilibrium, Wq, is simply given by463

Wq =
2q

1 +
∑q

k=1 2q−ksk
. (26)

By our assumption of ultrametric trees, we have sk < 1 (we need to add the tip lengths464

to sum up to one). In the particular case of equal inter-branching times, ∆ti = 1
q+1 , then465

sk = k
q+1 and466

rq = 1 +
2q−1

q + 1

q∑
k=1

k

2k−1
. (27)

Observe that467

q∑
k=1

k

2k−1
=

∂

∂x

(
1− xq+1

1− x

)∣∣∣∣
x= 1

2

= 4

(
1− 1

2q

(
q + 1− q

2

))
. (28)

Thus,468

rq = 1 +
2q+1 − q − 2

q + 1
=

2q+1 − 1

q + 1
, (29)
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Figure 9: Total biomass for the perfectly balanced tree. Dots mark the average values
over simulations when sampling branch lengths from an exponential distribution with rate 1,
a uniform [0, 1] distribution, and the case of equal branch lengths, for which the analytical
prediction (31) is shown with a solid line.

and the total biomass reads469

Wq =
q + 1

2− 2−q
. (30)

Let n = 2q be the number of species, then the number of tree splits is q = log2(n). In terms470

of the number of species, the formula is given by471

Wn =
log2(n) + 1

2− 1/n
, (31)

which grows logarithmically with n. Fig. 9 compares the case of perfectly balanced tress for472

equal branching times with two cases, in which sampling times are drawn from exponential473

and uniform distributions.474
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3 Number of coexisting species475

We have shown above that, in the `→∞ limit, full coexistence is guaranteed. To study species476

coexistence for finite ` ≥ n we use the fact that A follows the Wishart distribution. As in [33],477

first we will compute the probability of the equilibrium point being feasible, i.e., where all478

species survive. Second, since the attractor is unique (it is the only saturated equilibrium point479

that appears), we can calculate the probability that the equilibrium point cannot be invaded480

by the remaining species in the pool. Then we will show that the probability of feasibility481

and non-invasibility factors into the corresponding product, which yields the distribution of482

the number of species that coexist, as well as the expected number of species that survive.483

Because matrix A = GGT is symmetric and positive definite, it is diagonally-stable [19],484

which implies that generalized Lotka-Volterra dynamics exhibits a single, globally stable fixed485

point [19], so there is a unique endpoint for the dynamics. Let us write the equilibrium486

abundances of the attractor, formed by m survivors, as487

xn =

 xm

0n−m

 , (32)

where, without loss of generality, we have located the survivors as the first m species. Let488

{S}m denote the set of species that survive (i.e., the support of the endpoint). Therefore, the489

attractor can be fully characterized by two conditions [33]:490

• Define the vector zn = 1n − Axn = (xin) with components zin. Then it holds: first,491

zin = 0 for all species i ∈ {S}m, which simply states that equilibrium abundances of492

survivors satisfy the linear system Amxm = 1m, for Am the submatrix of A restricted493

to the support {S}m. Second, it also holds that zin < 0 for all species i /∈ {S}m, i.e., the494

fixed point cannot be invaded by the remaining species outside the endpoint. We have,495

therefore, a fixed point that cannot be invaded.496

• The equilibrium point hast to be feasible, i.e., xm > 0m —here we use the notation that497

vectors a > b if all inequalities are satisfied component-wise.498

Since matrix A belongs to the Wishart ensemble, these two conditions are to be understood in499

statistical terms. In the following subsections we are going to compute exact formulae for the500
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probability that all the species in the pool form a feasible attractor, and the probability that501

an endpoint formed by m species remains non-invasible. Using the properties of the Wishart502

ensemble [30], we will calculate separately the probabilities of feasibility and non-invasibility,503

and with them we will obtain the distribution of the number of species that survive.504

Probability of feasibility505

Let n be the number of species in the community and ` the number of traits, and define506

γ := `/n as the ratio between the number of traits and the size of the pool. An equilibrium507

point for the system such that all species coexist satisfies:508

Axn = 1n, with xin > 0 for all i = 1, . . . , n. (33)

The probability of feasibility is then the probability that A−11n has all entries greater than509

0. Observe that interaction matrix is defined as A = 1
`GG

T in the main text. Since rescaling510

by a positive constant in A does not affect the condition for feasibility, we can forget about511

the rescaling by the number of traits `.512

Let A ∼ Wn(Σ, `) and Ln−1 = (In−1,0n−1) be a rectangular (n− 1)× n matrix with 0 in513

its last column, Ik being the k×k identity matrix. Then equation (2) of [22] (similarly stated514

in the proof of Theorem 1 in [8]) implies that515

x̃ :=
Ln−1A

−11n
1TnA

−11n
∼ tn−1

(
`− n+ 2,

L`Σ
−11n

1TnΣ−11n
,

Ln−1R1L
T
n−1

(`− n+ 2)1TnΣ−11n

)
, (34)

where tp(ν,µ,Λ) is a multivariate, p-dimensional t distribution with ν degrees of freedom,516

localization vector µ and dispersion matrix Λ [34]. Matrix R1 is given by517

R1 = Σ−1 − Σ−11n1
T
nΣ−1

1TnΣ−11n
. (35)

Up to a normalization by a positive constant (which is precisely the total biomass, 1TnA
−11n,518

given that A is positive definite), vector x̃ = (x̃i) precisely gives the abundances of the first519

n − 1 species. Moreover, the last (normalized) abundance is expressed as 1 − 1Tn−1x̃, so the520
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probability of feasibility turns out to be521

Pf(n) =

∫
dn−1x̃f(x̃)Θ(1− 1T x̃)

n−1∏
i=1

Θ(x̃i), (36)

for f(x̃) the probability density function of the multivariate t distribution defined in (34).522

Because a multivariate t distribution is the ratio between a multivariate Gaussian and523

the square root of a chi-square distribution, it holds that if x̃ ∼ tp(ν,µ,Λ), then we have524

that x̃ = y/
√
u/ν + µ, where y ∼ N (0,Λ) is a multivariate Gaussian and u ∼ χ2

ν , which is525

independent of y. Therefore, conditioning on u, we find that yu := x̃|u ∼ N (µ, νΛ/u) and526

we can transform the integral above to get527

Pf(n) =

∫ ∞
0

du g(ν, u)Pr(yu > 0n−1,1
T
n−1yu < 1), (37)

where u ∼ χ2
ν , g(ν, u) is the corresponding pdf with ν = ` − n + 2, and the random variable528

yu is distributed as a multivariate normal,529

yu ∼ N

(
Ln−1Σ−11n
1TnΣ−11n

,
Ln−1R1L

T
n−1

u1TnΣ−11n

)
. (38)

In this way, all the dependence in the number of traits ` remains included in the chi-square530

distribution. Eqs. (37) and (38) yield the probability of feasibility for an arbitrary covariance531

matrix Σ. An explicit calculation of the probability of feasibility amount to evaluating the532

probability Pr(yu > 0n−1,1
T
n−1yu < 1). This can be done explicitly for the case of constant,533

non-negative correlation.534

Constant, non-negative correlation535

Consider the covariance matrix Σ = (1− ρ)In + ρ1n1
T
n with ρ ≥ 0. Then (38) simplifies to:536

yu ∼ N
(

1

n
1n−1,

1− ρ+ nρ

un(1− ρ)

(
In−1 −

1

n
1n−11

T
n−1

))
. (39)

Let us define537

αu :=
1− ρ+ nρ

un(1− ρ)
and βu :=

αu
n
. (40)
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In this way, the covariance matrix Σu in (39) can be expressed as Σu = αuIn−1−βu1n−11
T
n−1.538

Σu has two eigenvalues, αu and αu + (n − 1)βu. The first has multiplicity n − 1, and the539

second 1. Hence the determinant follows immediately,540

|Σu| = αn−2
u (αu − (n− 1)βu). (41)

The inverse can be easily calculated:541

Σ−1
u =

1

αu

(
I +

βu
αu − (n− 1)βu

1n−11
T
n−1

)
. (42)

Therefore we can write the pdf for the random variable yu as542

fu(y) = Ke−
1
2(y− 1

n
1n−1)

T
Σ−1
u (y− 1

n
1n−1) = Ke

− 1
2αu

(
‖y− 1

n
1n−1‖2

+ βu
αu−(n−1)βu

(1Tn−1(y− 1
n
1n−1))2

)
(43)

for K = (2π)−(n−1)/2|Σu|−1/2. First we have to compute the probability543

p(u) := Pr(yu > 0n−1,1
T
n−1yu < 1) =

∫
Rn−1

dn−1yfu(y)Θ(1− 1Tn−1y)

n−1∏
i=1

Θ(yi), (44)

with Θ(x) the Heaviside step function, defined as Θ(x) = 1 if x ≥ 0 and Θ(x) = 0 if x < 0.544

Thus after a change of variables y′ = y − 1
n1n−1, we have545

p(u) = K

∫
Rn−1

dn−1ye−
1

2αu
(‖y‖2+(1Tn−1y)2)Θ

(
1

n
− 1Tn−1y

) n−1∏
i=1

Θ

(
yi +

1

n

)
, (45)

where we have omitted primes to ease notation and we have used (40) to see that546

βu
αu − (n− 1)βu

= 1. (46)

To simplify the term (1Tn−1y)2 in the exponential, we introduce a Dirac’s delta function,547

p(u) = K

∫
Rn−1

dn−1y

∫
R
dωe−

1
2αu

(‖y‖2+ω2)δ(ω − 1Tn−1y)Θ

(
1

n
− ω

) n−1∏
i=1

Θ

(
yi +

1

n

)
, (47)
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and use its integral representation,548

δ(ω − 1Tn−1y) =
1

2π

∫
R
dξe−iξ(ω−1

T
n−1y). (48)

This transformation, together with an interchange in the order of integration, yields the549

following expression for p(u):550

p(u) =
K

2π

∫
R
dω

∫
R
dξ

∫
Rn−1

dn−1ye−
1

2αu
(‖y‖2+ω2)+i(1Tn−1y−ω)ξΘ

(
1

n
− ω

) n−1∏
i=1

Θ

(
yi +

1

n

)
.

(49)

Apparently we are increasing the complexity of the integral, but rearranging terms we observe551

that552

p(u) =
K

2π

∫
R
dξ

∫
R
dωe−

ω2

2αu
−iωξΘ

(
1

n
− ω

)∫
Rn−1

dn−1ye−
‖y‖2
2αu

+iξ1Tn−1y
n−1∏
i=1

Θ

(
yi +

1

n

)
,

(50)

and the integral over y factorizes,553

p(u) =
K

2π

∫
R
dξ

∫ 1/n

−∞
dωe−

ω2

2αu
−iωξ

(∫ ∞
−1/n

dye−
y2

2αu
+iyξ

)n−1

. (51)

Now, in the integral over ω, change to the variable ω′ = −ω to get554

p(u) =
K

2π

∫
R
dξ

∫ ∞
−1/n

dωe−
ω2

2αu
+iωξ

(∫ ∞
−1/n

dye−
y2

2αu
+iyξ

)n−1

=
K

2π

∫
R
dξ

(∫ ∞
−1/n

dye−
y2

2αu
+iyξ

)n
.

(52)

Let555

Φ(x) :=
1

2

(
1 + erf(x/

√
2)
)

(53)

be the cdf of the standard Gaussian distribution, which can be extended to the complex plane.556

Then it holds that557

∫ ∞
−1/n

dye−
y2

2αu
+iyξ =

√
2παu e

−αuξ
2

2 Φ

(
1/n+ iαuξ√

αu

)
. (54)
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Therefore, the sought probability can be written as558

p(u) =
K(2παu)n/2

2π

∫
R
dξe−

nαuξ
2

2 Φ

(
1/n+ iαuξ√

αu

)n
. (55)

An alternative way to express the integral over ξ it is to consider a path Γ in the complex559

plane such that Γ = {z ∈ C|z = x0 + iξ} and then reducing the result to the limit x0 → 0, so560

that the integral over the imaginary axis is well defined. In practice, this amounts to change561

to the variable ζ = iξ. Consequently, an equivalent form of writing this equation is562

p(u) = −i
√
nαu
2π

∫
Γ
dζe

nαuζ
2

2 Φ

(
1/n+ αuζ√

αu

)n
, (56)

where we have used that K =
√
n(2παu)−(n−1)/2 in this case. Finally, according to (37),563

in the case of constant, positive correlation the probability of feasibility is given by a two564

dimensional integral,565

Pf(n) = −i
√

n

2π

∫ ∞
0

du g(ν, u)
√
αu

∫
Γ
dζe

nαuζ
2

2 Φ

(
1/n+ αuζ√

αu

)n
, (57)

where g(ν, u) is the pdf of the chi-square distribution with ν = ` − n + 2 degrees of free-566

dom. Fig. 3 compares this exact formula with numerical simulation for different values of the567

correlation.568

Probability of non-invasibility569

In this subsection we compute the probability that an attractor formed by m ≤ n species570

cannot be invaded by the remaining n − m species. Let A ∼ Wn(Σ, `). Observe that for571

invasibility the rescaling of interaction matrix as A = 1
`GG

T does not matter. Partition572

matrices A and Σ in four blocks as follows:573

A =

A11 A12

A21 A22

 , Σ =

Σ11 Σ12

Σ21 Σ22

 , (58)

where Σ11 refers to the species that belong to the support {S}m of the attractor, Σ22 is574

related to those species outside the attractor, and off-diagonal matrices are formed by the575
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Figure 10: Probability of feasibility as a function of the ratio γ of number of traits
to number of species for different constant correlation matrices. The simulations
were done with n = 10 species. Dots are simulations, solid lines are numerical evaluations of
the exact formula (57). The larger the correlation, the slower curves approach to one in the
deterministic limit γ →∞.

corresponding rows and columns in {S}m and {S}n \ {S}m, and vice versa. The exact same576

notation applies to blocks in A.577

Then by theorem 3.2.10 of [30] we have that578

A21|A11 ∼ N (Σ21Σ−1
11 A11,Σ22.1 ⊗A11), (59)
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where Σ22.1 = Σ22 − Σ21Σ−1
11 Σ12 is the Schur complement of Σ22, ⊗ is the tensor product of579

matrices, and the normal distribution appearing is meant to be understood as the distribution580

of the flatten matrix A21. By the properties of the normal distribution it follows that581

A21A
−1
11 |A11 ∼ N (Σ21Σ−1

11 ,Σ22.1 ⊗A−1
11 ),

A21A
−1
11 1m|A11 ∼ N (Σ21Σ−1

11 1m,1
T
mA
−1
11 1mΣ22.1).

(60)

In order to get the last line, we first transpose the matrix, then notice that the 1Tm operator acts582

on the vector of elements of the matrix as Im⊗1T . Hence by the property (A⊗B)(C⊗D) =583

AC ⊗BD of the tensor product the second statement above follows.584

As mentioned at the begining of Sec. 3, the probability that the attractor cannot be invaded

by any species in {S}n \ {S}m coincides with the probability that z = 1n−m − A21A
−1
11 1m <

0n−m. Define W := 1TmA
−1
11 1m and fW (w) as the pdf of the random variable W , which is

non-negative. Then

Pni(m,n) =

∫ ∞
0

dwfW (w) Pr(z < 0|W = w)

=

∫ ∞
0

dwfW (w)

∫
V+
w

dA11Pr(A11|W = w)Pr(z < 0|A11,W = w), (61)

where V+ is the set of positive definite symmetric matrices and V+
w the set conditional to585

W = 1TmA
−1
11 1m = w. Using that z = 1n−m − A21A

−1
11 1m and (60), the conditional variable586

z|A11,W = w is distributed as587

z|A11,W = w ∼ N
(
1n−m − Σ21Σ−1

11 1m, wΣ22.1

)
, (62)

which does not depend explicitly on A11. Neither does Pr(z < 0|A11,W = w), so we can588

factor this probability out of the integration over A11. In this way, we can write589

Pni(m,n) =

∫ ∞
0

dwfW (w)Q−n−m
(
1n−m − Σ21Σ−1

11 1m, wΣ22.1

)
, (63)

because
∫
V+
w
dA11Pr(A11|W = w) = 1. In (63) we have defined Q−p as the probability that a590

multivariate Gaussian variable with the specified parameters is contained in the fully negative591
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orthant,592

Q−p
(
µ,Λ

)
:= (2π)−p/2|Λ|−1/2

∫
Rn−

dye−
1
2

(y−µ)TΛ−1(y−µ). (64)

Corollary 3.2.6 in [30] implies that A11 ∼ Wm(Σ, `). Therefore, theorem 3.2.12 in the593

same reference holds, which ensures that594

W−11TmΣ−1
11 1m =

1TmΣ−1
11 1m

1TmA
−1
11 1m

∼ χ2
`−m+1. (65)

This means that595

g(ν ′, w) = −w−21TmΣ−1
11 1mfW

(
w−11TmΣ−1

11 1m
)
, (66)

for g(ν, w) the pdf of a χ2
ν′ distribution with ν ′ = `−m+ 1 degrees of freedom. Now, making596

the change of variable w′ = w−11TmΣ−1
11 1m in (63) we finally get597

Pni(m,n) =

∫ ∞
0

dwg(ν ′, w)Q−n−m
(
1n−m − Σ21Σ−1

11 1m, w
−11TmΣ−1

11 1mΣ22.1

)
. (67)

As for the case of feasibility, (67) is an exact formula for the probability that an endpoint598

composed by m species cannot be invaded by the remaining n − m species. Similarly, the599

multidimensional integral associated to Q−n−m can be reduced to a single integral in the case600

of constant, non-negative correlation, as we show in the following subsection. Thus, in that601

particular case, the probability of non-invasibility is expressed as a double integral.602

Constant, non-negative correlation603

In the case of constant, non-egative correlation, (67) simplifies to:604

Pni(m) =

∫ ∞
0

dwg(ν ′, w)Q−n−m(µ,Σw) (68)

with605

µ =
1− ρ

1− ρ+mρ
1n−m,

Σw =
m(1− ρ)

w(1− ρ+mρ)

(
In−m +

ρ

1− ρ+mρ
1n−m1Tn−m

)
.

(69)
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Now focus on the probability Q−n−m. Making the substitution y′ = ky in (64) it is easy to606

show that607

Q−p (µ,Λ) = Q−p (µ/k,Λ/k2). (70)

Therefore, for k = m(1−ρ)
1−ρ+mρ we recover Eq. (84) with µ and Λ given by608

µ =
1

m
1n−m, Σw =

1− ρ+mρ

mw(1− ρ)

(
In−m +

ρ

1− ρ+mρ
1n−m1Tn−m

)
. (71)

Now let us write Σw := αwIn−m + βw1n−m1Tn−m, with αw := 1−ρ+mρ
mw(1−ρ) , βw := ραw

1−ρ+mρ .609

As we did for the probability of feasibility, the probability Q−n−m can be written as a one-610

dimensional integral. For that is crucial that, contrary to what happened in the case of611

feasibility, correlations given by Σw are positive —notice the plus sign in (71). This is due to612

the special structure of Σw, which implies that the correlation between any two distinct yi,613

yj in (64) is constant and given by λ = ρ
1+mρ ≥ 0. Hence, the following result of Tong [34]614

(section 8.2.5) applies:615

Proposition 2. Let x be distributed according to N (µ,Σ) such that covariance matrix entries616

satisfy Σii = σ2
i and Σij = σiσjλ. Then, the joint probability that x ∈ C := {x ∈ Rn|bi ≤617

xi ≤ ai, i = 1, . . . , n}, where −∞ ≤ bi < ai ≤ ∞ for i=1,. . . , n, is expressed as618

Pr(x ∈ C) =

∫ ∞
−∞

dyφ(y)

n∏
i=1

[
Φ

(
(ai − µi)/σi +

√
λy√

1− λ

)
− Φ

(
(bi − µi)/σi +

√
λy√

1− λ

)]
(72)

for φ(z) and Φ(z) the pdf and cdf, respectively, of a univariate standard normal distribution.619

In our particular case σ2
i = 1+mρ

wm(1−ρ) , λ = ρ
1+mρ , bi = −∞, ai = 0 and, according to (71),620

µi = 1
m for i = 1, . . . , n−m. Therefore, putting all the pieces together, we can write621

Pni(m,n) =

∫ ∞
0

dwg(ν ′, w)

∫ ∞
−∞

dyφ(y)Φ

(
−1/m+ y

√
βw√

αw

)n−m
. (73)

As for the probability of feasibility, in the case of constant, non-negative correlation we can622

reduce it to a two-dimensional integral.623

Notice the resemblance between the expressions for feasibility and non-invasibility —624

Eqs. (57) and (73). In the case of ρ > 0, by changing y → y′ αw√
βw

, we can make the resemblance625
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stronger:626

Pni(m,n) =

√
1− ρ+mρ

2πρ

∫ ∞
0

dwg(ν ′, w)
√
αw

∫ ∞
−∞

dye
− (1−ρ+mρ)αwy2

2ρ Φ

(
−1/m+ yαw√

αw

)n−m
.

(74)

Observe that the number of degrees of freedom of the χ2
ν′ distribution here is ν ′ = `−m+ 1.627

Notice also that the change of variables leading to (74) does not apply for ρ = 0. This case is628

trivial, however, and will not be discussed explicitly.629

Sign independence of feasibility and invasibility630

In this section we show that the joint probability of feasibility and non-invasibility factors into631

the product of the two probabilities calculated above. For that purpose, it suffices to show632

that633

Pr
(
z < 0n−m|A−1

11 1m > 0m
)

= Pr(z < 0n−m). (75)

For that purpose we can calculate

Pr
(
z < 0n−m|A−1

11 1m > 0m
)

=

∫ ∞
0

dw gW (w) Pr
(
z < 0n−m|A−1

11 1m > 0m,W = w
)

=

∫ ∞
0

dw gW (w)

∫
G+
w

dA11Pr
(
z < 0n−m|A11,W = w

)
Pr
(
A11|A−1

11 1m > 0m,W = w
)
, (76)

where W = 1TmA
−1
11 1m as for the calculation of Pni, and gW is the pdf of the random variable634

W |A−1
11 1m > 0m. In the second line we have introduced an integral over the set G+

w of635

symmetric matrices and positive definite that verify the conditions A−1
11 1m > 0m and W =636

1TmA
−1
11 1m = w. As before, by (62) we can factor the probability Pr

(
z < 0n−m|A11,W = w

)
637

out, so we get638

Pr
(
z < 0n−m|A−1

11 1m > 0m
)

=

∫ ∞
0

dwgW (w)Q−n−m
(
1n−m − Σ21Σ−1

11 1m, wΣ22.1

)
, (77)

which coincides with (67) except for the probability density gW . In the last step we have used639

the normalization condition
∫
G+
w
dA11Pr(A11|A−1

11 1m > 0m,W = w) = 1.640

Observe that the condition A−1
11 1m > 0m is equivalent to the conditions 1Tm−1x̃ < 1 and

x̃ > 0m−1, for x̃ the vector of the first m − 1 relative abundances defined in (34). Let
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R := {v ∈ Rm−1|1Tm−1v < 1,v > 0m−1} the set of vectors satisfying the two last conditions.

Then it is easy to see that

gW (w) =
d

dw
Pr
(
W < w|A−1

11 1m > 0m
)

=
d

dw
Pr
(
W < w|x̃ ∈ R

)
=

d

dw
Pr(W < z) = fW (w). (78)

The last equality in the chain above follows because W and x̃ are independent random vari-641

ables —see the proof of theorem 1 in [8].642

This shows that the probability of observing and endpoint withm survivors can be factored643

as the probability of feasibility (37) times the probability (67) that the attractor cannot be644

invaded by the remaining n−m species in the pool.645

Distribution of the number of coexisting species646

Due to the independence shown in the previous section, the probability that the system settles647

in a subset {S}m ⊂ {1, . . . , n} formed by m species is simply648

Pr({S}m|n, `,Σ) =

(
n

m

)
Pa(m,n) =

(
n

m

)
Pf(m)Pni(m,n), (79)

because all subsets with cardinality m are statistically equivalent.649

Assuming constant and non-negative correlation, in Fig. S5 we compare numerical inte-650

gration of Eqs. (57) and (73) appearing in (79) with simulations.651

Average number of species652

In this section we will focus on the case of constant correlation. Our aim is to approximate653

the integrals for feasibility and invasibility in the large number of species limit by a saddle654

point technique. With these approximations, we provide an analytical way to compute the655

probability of coexistence Pr({S}m|n, `, ρ) —cf. Eq. (79)— as well as an approximation for656

the average fraction of species657

℘(n, `, ρ) :=
1

n

n∑
m=0

(
n

m

)
mPa(m,n). (80)
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Figure 11: Distribution of the set of coexisting species as a function of the ratio γ of
number of traits to number of species for different constant correlation matrices.
The simulations were done with n = 10 and 20 species. Bar are simulations, crosses are
numerical evaluations of formula (79).

We distinguish the cases ρ > 0 and ρ = 0 for invasibility. For ρ > 0 we use expression658

(74). Let us define q := m/n as the fraction of survivors, and recall that ` = nγ. Also let659

λq := mwαw = 1 +
mρ

1− ρ
= 1 +

nqρ

1− ρ
. (81)

In terms of λq, the probability of non-invasibility reads660

Pni(m,n) =
λq√

2π(λq − 1)

∫ ∞
0

dwg(ν, w)w−1/2

∫ ∞
−∞

dye
−

y2λ2
q

2w(λq−1) Φ

(
−
√

w

mλq
+ y

√
λq
mw

)n−m
.

(82)

40

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.09.04.283507doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.283507
http://creativecommons.org/licenses/by-nc-nd/4.0/


Now we make a change of variables,661

w′ =

√
w

m
,

y′

w′
=

y√
wm

.

(83)

Then the integral becomes662

Pni(m,n) =
2λq√

2π(λq − 1)

∫ ∞
0

dwm3/2g(ν ′,mw2)

∫ ∞
−∞

dye
−

my2λ2
q

2w2(λq−1) Φ

(
− w√

λq
+
y

w

√
λq

)n−m
.

(84)

Recall that the probability density function g(ν ′, x), for ν ′ = `−m+ 1, is:663

g(ν, x) =
x(`−m−1)/2e−x/2

2(`−m+1)/2Γ((`−m+ 1)/2)
(85)

Hence the integral (84) is664

Pni(m,n) =
λqm√
π(λq − 1)

(m/2)(`−m)/2

Γ((`−m+ 1)/2)

∫ ∞
0

dww`−m−1e−mw
2/2

×
∫ ∞
−∞

dye
−

my2λ2
q

2w2(λq−1) Φ

(
− w√

λq
+
y

w

√
λq

)n−m
=

λqm√
π(λq − 1)

(m/2)(`−m)/2

Γ((`−m+ 1)/2)

∫ ∞
0

dww−1

∫ ∞
−∞

dyenFni(w,y),

(86)

where the exponent Fni(w, y) has been defined as665

Fni(w, y) := (γ − q) log(w)− qw2

2
−

qy2λ2
q

2w2(λq − 1)
+ (1− q) log Φ

(
− w√

λq
+
y

w

√
λq

)
. (87)

Now we evaluate the double integral in the limit n→∞ via a saddle-point technique. For666

that purpose, since the exponential becomes peaked around the maximum of the exponent, we667

calculate the equations to be satisfied by the critical point. Taking derivatives of the exponent668
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we get669

∂Fni

∂y
= −

qyλ2
q

w2(λq − 1)
+

(1− q)
√
λq

w

φ
(
− w√

λq
+ y

w

√
λq

)
Φ
(
− w√

λq
+ y

w

√
λq

) ,
∂Fni

∂w
=
γ − q
w
− qw +

qy2λ2
q

w3(λq − 1)
− (1− q)

(
1√
λq

+
y
√
λq

w2

) φ
(
− w√

λq
+ y

w

√
λq

)
Φ
(
− w√

λq
+ y

w

√
λq

) .
(88)

Therefore at a critical point (w?, y?) we have the following conditions:670

− qyλ
3/2
q

w(λq − 1)
+ (1− q)

φ
(
− w√

λq
+ y

w

√
λq

)
Φ
(
− w√

λq
+ y

w

√
λq

) = 0,

γ − q − qw2 − qyλq
λq − 1

= 0.

(89)

Similarly we can rewrite the integral for the probability that an endpoint formed by m671

species is feasible, see Eq. (57), as672

Pf(m) = −i
√
λq
2π

∫ ∞
0

dug(ν, u)u−1/2

∫
Γ
dζe

λqζ
2

2u Φ

(√
u

mλq
+ ζ

√
λq
mu

)m
, (90)

where now the number of degrees of freedom is ν = `−m+ 2.673

Following essentially the same procedure as before, i.e. making a change of variables and674

replacing the density function for the χ2
ν distribution we get675

Pf(m) = −im3/2

√
λq
2π

(m/2)(`−m)/2

Γ((`−m)/2 + 1)

∫ ∞
−∞

du

∫
Γ
dζenFf(u,ζ), (91)

with the exponent676

Ff(u, ζ) := (γ − q) log(u)− qu2

2
+
qλqζ

2

2u2
+ q log Φ

(
u√
λq

+
ζ

u

√
λq

)
. (92)
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Similarly, the conditions satisfied by the critical point (u?, ζ?) are677

ζ
√
λq

u
+
φ
(

u√
λq

+ ζ
u

√
λq

)
Φ
(

u√
λq

+ ζ
u

√
λq

) = 0,

γ − q − qu2 − qζ = 0.

(93)

Notice that the product of the densities of the χ2 distributions in each integral —Eqs. (86)678

and (91)— introduce an extra term which scales exponentially with m = nq, namely679

m`−m

2`−mΓ((`−m)/2 + 1)Γ((`−m)/2 + 1/2)
=

m`−m

Γ(`−m+ 1)
. (94)

Using the Stirling’s asymptotic form of the gamma function we get680

m`−m

Γ(`−m+ 1)
∼ en(γ−q)(1+log q−log(γ−q))√

2πn(γ − q)
. (95)

Let681

Fe(q) := (γ − q)(1 + log q − log(γ − q)) (96)

and682

Fc(q) := −q log q − (1− q) log(1− q), (97)

Fc(q) being the exponent appearing in Stirling’s asymptotic formula for the binomial coeffi-683

cient
(
n
nq

)
. Consequentely the probability that the system settles in an endpoint with m = nq684

species is given, up to a normalization factor, by:685

Pr({S}m|n, `, ρ) =

(
n

m

)
Pa(m,n) ∼ exp{n(Ff(u

?, ζ?, q)+Fni(w
?, y?, q)+Fe(q)+Fc(q))}. (98)

Observe that critical point coordinates u?, ζ?, w? and y? depend implicitly on q through (89)686

and (93). Observe that one can use the asymptotic expansion (98) to obtain numerically the687

distribution of the number of survivors, Pr({S}m|n, `, ρ), up to a normalization factor. The688

calculation amounts to solve numerically the non-linear systems (89) and (93).689

We are now ready to provide an analytical approximation for the mean fraction of survivors690

℘, cf. Eq. (80). In the limit of large pool size n, we can approximate the mean of the691
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distribution Pr({S}m|m, `, ρ) by its mode, which is easier to compute. In fact, to calculate692

the mode of the distribution q in the large n limit we need to find the q? value that maximizes693

the exponent in (98). Due to the critical point conditions for (u?, ζ?) and (w?, y?), q? satisfies694

∂Ff

∂q
+
∂Fni

∂q
+
∂Fe

∂q
+
∂Fc

∂q
= 0. (99)

Evaluated at the critical points (u?, ζ?) and (w?, y?), the derivatives read695

∂Fni

∂q
= − log(w)− w2

2
− y2λq

2w2
+
y

2
− log Φ

(
− w√

λq
+
y

w

√
λq

)
,

∂Ff

∂q
= − log(u)− u2

2
+ λq

ζ2

2u2
+
ζ(λq − 1)

2λq
+ log Φ

(
u√
λq

+
ζ

u

√
λq

)
,

∂Fe

∂q
= log

(
γ − q
q

)
+
γ − q
q

= log

(
γ − q
q

)
+
u2

2
+
w2

2
+
qζ

2
+

qyλq
2(λq − 1)

,

∂Fc

∂q
= log(1− q)− log q.

(100)

Therefore the condition for q? reduces to696

−log

(
qwu

γ − q

)
+
λq
2

(
ζ2

u2
− y2

w2

)
+

2λq − 1

2

(
y

λq − 1
+

ζ

λq

)
+log

(1− q)Φ
(

u√
λq

+ ζ
u

√
λq

)
qΦ
(
− w√

λq
+ y

w

√
λq

) = 0.

(101)

A direct calculation shows that, at wu = γ−q
q , the terms up to the last logarithm vanish. We697

now show that the last one can be written as
(
wu− γ−q

q

)
h for some function h.698

Indeed, using conditions (93) and (89) we have699

(1− q)φ(−w,−y, q)
qΦ(−w,−y, q)

− φ(u, ζ, q)

Φ(u, ζ, q)
=

(u+ w)
√
λq

uw

(
γ − q
q
− uw

)
, (102)

where we have used the abbreviations Φ(u, ζ, q) := Φ
(

u√
λq

+ ζ
u

√
λq

)
and φ(u, ζ, q) := φ

(
u√
λq

+700

ζ
u

√
λq

)
to simplify notation. Therefore,701

(1− q)Φ(u, ζ, q)

qΦ(−w,−y, q)
=

φ(u, ζ, q)

φ(−w,−y, q)
+

(u+ w)Φ(u, ζ, q)
√
λq

uwφ(−w,−y, q)

(
γ − q
q
− uw

)
. (103)
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Letting µq := (γ − q)/q, it holds that702

φ(u, ζ, q)

φ(−w,−y, q)
= e(µ2

q−(uw)2)((λq−1)2u2−λ2
qw

2)/(2λqu2w2). (104)

Now, due to the series representation of the exponential function we have703

φ(u, ζ, q)

φ(−w,−y, q)
= 1 + (µq − uw)h(u,w), (105)

where

h(u,w) :=
q(u+ w)Φ(u, ζ, q)

√
λq

uwφ(−w,−y, q)

+
∞∑
j=1

1

j!
(µq − uw)j−1

(
(µq + uw)

(λq − 1)2u2 − λ2
qw

2

2λqu2w2

)j
. (106)

Thus, the claim follows by using the series expansion of log(1 + x). Therefore, all the terms704

in (101) vanish at uw = µq.705

We have just shown that the last logarithm in (101) is equal to zero. Consequently q?706

satisfies707

(1− q)Φ
(

u√
λq

+ ζ
u

√
λq

)
qΦ
(
− w√

λq
+ y

w

√
λq

) = 1. (107)

At the point uw = µq we can write708

u√
λq

+
ζ

u

√
λq =

λqw − (λq − 1)u√
λq

=
w√
λq
− y

w

√
λq, (108)

which in turn implies that709

Φ

(
λqw − (λq − 1)u√

λq

)
= q?. (109)

Let q̂ := Φ−1(q?) =
√

2erf−1(2q? − 1), for erf−1 the inverse error function. Then it holds that710
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(λqw − (λq − 1)u)/
√
λq = q̂ and using eq. (93) we can solve for u?, w? in terms of q̂, yielding711

u? =
√
λq

(
φ(q̂)

q?
+ q̂

)
,

w? =
1√
λq

(
(λq − 1)

φ(q̂)

q?
+ λq q̂

)
.

(110)

The final condition for q? at the saddle point reduces to substitute the expressions above into712

the condition uw = µq, which finally reads713

γ

q?
= 1 +

(
φ(Φ−1(q?))

q?
+ Φ−1(q?)

)(
φ(Φ−1(q?))

q?
(λq? − 1) + Φ−1(q?)λq?

)
. (111)

The case ρ = 0 for invasibility is similar, and simpler.714

Level Curves715

Eq. (111) gives a very good approximation to the level curves on the (ρ, γ) plane mapping716

to constant mean fraction of survivors q = m/n. This implicit condition can be rewritten717

equivalently as718

γ = q + Φ−1(q)H(q) +
nρH(q)2

1− ρ
, (112)

where H(q) := φ(Φ−1(q)) + qΦ−1(q). This condition is compared with simulation results in719

Fig. 3 of the main text (right panel).720

4 Total biomass distribution at endpoints721

The proof of independence of invasibility and feasibility (section 3) also shows that, for any722

fixed size m of a subset of species and total biomass w, we have that Pr(zn−m < 0n−m|xm >723

0m,W = w) = Pr(zn−m < 0n−m|W = w). This remark, together with the independence of724

W and xm > 0m (feasibility), helps us derive the distribution of total biomass. To simplify725

notation we do not rescale the interaction matrix by ` (as shown in section 6 this would726

amount to a rescaling of total biomass w → `w). The cdf for the random variable W is727

precisely728

Pr(W < w) =

n∑
m=0

(
n

m

)
Pa(m,n)Pr(W < w|m), (113)
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where Pr(W < w|m) is the probability that W < w conditional on the m-species endpoint is729

feasible and non-invasible. Thus,730

Pr(W < w|m) =
Pr(W < w,xm > 0m, zn−m < 0n−m)

Pa(m,n)

=
Pr(W < w, zn−m < 0n−m|xm > 0m)Pf(m)

Pa(m,n)

=
Pr(W < w, zn−m < 0n−m)Pf(m)

Pa(m,n)
,

(114)

the last equality following from the statement in the paragraph above. Now, using the nota-

tions introduced in the last section, it holds that

Pr(W < w, zn−m < 0n−m) =

∫ ∞
0

dug(ν ′, u)Θ(u− w−11TmΣ−1
11 1m)

×Q−n−m(1n−m − Σ21Σ−1
11 1m, u

−11TmΣ−1
11 1mΣ22.1). (115)

Hence, using (114) and Pa(m,n) = Pf(m)Pni(m,n), the probability density function of the

biomass distribution can be expressed as

ga(w) =

n∑
m=0

(
n

m

)
Pf(m)

∂Pr(W < w, zn−m < 0n−m)

∂w

=
n∑

m=0

(
n

m

)
w̃

w
Pf(m)g(ν ′, w̃)Q−n−m(1n−m − Σ21Σ−1

11 1m, w̃
−11TmΣ−1

11 1mΣ22.1), (116)

where w̃ := w−11TmΣ−1
11 1m. Fig. 12 shows the comparison of (116) with simulations for the731

constant correlation case in the case in which the interaction matrix is rescaled by the number732

of traits.733

Going back to re-scaling the interaction matrix by `, total biomass transforms as w → `w.

By the above calculation and a change of variables w → w̃, the moments of the distribution

of `W conditional to m coexisting species are given by

E[(`W )k|m] =

∫ ∞
0

dw(`w)kga(w|m) =
1

Pni(m,n)

∫ ∞
0

dwg(ν ′, w)

× (`w−11TmΣ−1
11 1m)kQ−n−m(1n−m − Σ21Σ−1

11 1m, w
−11TmΣ−1

11 1mΣ22.1). (117)
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Figure 12: Distribution of the total biomass w of the survival community as a
function of the ratio γ of number of traits k to number of species n for differ-
ent constant correlation matrices. The simulations were done with n = 10, 20 species.
Histograms are simulations and black lines are the numerical integration of (116).

By the saddle point calculation done while computing the expected number of survivors we can734

approximate the mean of `W |m for ρ ≥ 0, m = nq and ` = γn as follows: the above integral735

satisfies (86) up to a multiplication by γ
w2q

1TmΣ−1
11 1m —observe the reescaling in (83). Hence736

the exponent in the integral does not change so, at the solution (y0, w0) of (89), neglecting737

all but the leading order terms we can approximate738

E[`W |m] ≈ `

(1− ρ+ ρm)w2
0

. (118)

Assuming that the distribution of survivors is highly peaked at the mode, we can approximate739

the mean of W by the mean conditional at the mode, which we get from Eq. (111):740

E[`W ] ≈ `

(1− ρ+ ρq?n)w0(q?)2
. (119)
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5 Relative abundances741

For an equilibrium attractor xm with m species, let v := xm/
∑m

i=1 x
i
m be the relative abun-

dance vector. In particular, vm = 1 −
∑m−1

i=1 vi =: 1 − ṽ. By section 3, Eq. (34), we know

that ṽ follows a multivariate t distribution, so we can write the distribution function for vm

conditional on x being feasible as

Pr(vm < c|xm > 0m) = 1− Pr(vm > c|x > 0m)

= 1− 1

Pf(m)

∫ ∞
0

dug(ν, u)Pr(yu > 0m−1,1
T
m−1yu < 1− c) (120)

with ν = ` − m + 2. The independence of ṽ and invasibility gives us the distribution of v

conditional to xm being an attractor of the system with m out of n survivors. Let zn−m be

defined as in section 3. Then

Pr(vm < c|m) =
Pr(vm < c,x > 0m, zn−m < 0n−m)

Pa(m,n)

=
Pr(zn−m < 0n−m|x > 0m, vm < c)Pr(vm < c|x > 0m)

Pni(m,n)
= Pr(vm < c|x > 0m), (121)

where we have used the independence of feasibility and invasibility, Pa(m,n) = Pf(m)Pni(m,n).742

In case of a constant correlation ρ ≥ 0, all species are equivalent so any surviving species

i has the same distribution as xm. Applying the same derivation as for the feasibility case,

and using the notation of the saddle point calculation with m = qn (see Eq. (90)), we get

Pr(vm < c|m) = 1−
i
√
λq√

2πPf(m)

∫ ∞
0

dug(ν, u)u−1/2

∫
Γ
dζe

λqζ
2

2u

× Φ

(√
u

nλq
+ ζ

√
λq
nu

)m−1

Φ

(√
u

nλq
− c
√
nu

λq
+ ζ

√
λq
nu

)
. (122)

Letting c̃ = cn, the integral above can be approximated by the same saddle point calculation743

we did for feasibility (section 3) up to a multiplication factor given by744

Φ
(

u√
λq

(1− c̃q) + ζ
u

√
λq

)
Φ
(

u√
λq

+ ζ
u

√
λq

) . (123)
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Thus, for (u, ζ) satisfying the system of equations (93) with ζ real, we get an approximation745

for the distribution function by neglecting all but the leading terms:746

Pr(vm < c|m) = 1−
Φ
(

u√
λq

(1− c̃q) + ζ
u

√
λq

)
Φ
(

u√
λq

+ ζ
u

√
λq

) . (124)

This distribution was compared to simulations in the main text (Fig 4, left panel).747

6 Invariant Lotka-Volterra operations748

In this section we detail the operations that can be performed in a symmetric stable GLV749

system without changing the subset of coexisting species.750

Let r ∈ Rn be the vector of growth rates, and A ∈ Rn a symmetric and positive definite751

interaction matrix. Let {S}m ⊂ {1, . . . , n} be the unique subset of m species that form the752

attractor, with vector of densities x = (xi). Then x satisfies:753


xi > 0, i ∈ {S}m,

xi(Ax+ r)i = 0, for all i,

(Ax+ r)i < 0, i /∈ {S}m.

(125)

Then we can easily see the effect of the following operations on A and r on the attractor x.754

Let κ > 0 and D a positive diagonal matrix. The operations that maintain the identity of the755

species in the endpoint are:756

(a) A→ κA: then x→ κ−1x.757

(b) r → κr: Then x→ κx .758

(c) A→ DAD, r → Dr: Then x→ D−1x.759

After any of these operations, the set of coexisting species remains unchanged.760

Additionally, in the case of r = κ1n, for κ > 0, we can perform an additional operation:761

A→ B = A+ µ1n1
T
n . (126)
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Then shifting762

x→ y =
κx

1 + µ1Tnx
, (127)

by direct computation of conditions (125) we see that y is a non-invasible equilibrium. If we763

additionally restrict µ > 0, y satisfies the feasibility property and B is positive definite so764

again the support {S}m of the attractor is unchanged.765

7 Varying growth rates766

In this section we analyze the effect that growth rates are not equal for all species. By767

continuity, we expect our results to hold when r = 1n + εn and ‖εn‖ � 1 if ` ≥ n. In case768

` < n, the matrix A is singular and the solutions of the system can be unbounded. To correct769

for that, assume that A = A + µ1n1
T
n where µ is a sufficiently large enough perturbation so770

that Aij+µ > 0. In this case −(A+µ1n1
T
n ) is negative semidefinite and dissipative [19], so the771

solutions are always bounded. Still, the solutions can be degenerate in the sense that there is772

a hyperplane of non-invasible equilibria towards which the system converges. By perturbing773

the growth rates we can correct for that. Assume now that r = 1n +N (0, σ2), where σ � 1774

and that x̂ is a saturated rest point of the system (which exists because Aij+µ > 0). Without775

lost of generality, we can assume that the first m species survive. Then, we have776

Ax̂+ r =

0m

z

 . (128)

For z ∈ Rn−m− , if any zi = 0, then for the system considering only the species {1, . . . ,m}∪{i}777

we have that the restriction of r to this subsystem is contained on a plane of dimension778

m < m+ 1. Since the distribution of r is continuous, the probability of this event is 0 almost779

surely. Hence zi < 0 for any i so that invasibility is strict. Furthermore, the same argument780

shows that the rank of A restricted to the survivor subset must be m, i.e. the restriction of781

matrix A to the set of coexisting species is full rank.782

Apply the usual Lyapunov function for the system [19],783

V (x) = −
n∑
i=1

(x̂i log xi − xi). (129)
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Defined for any x ∈ Rn+, with a global minimum at x = x̂ and radially unbounded, then we784

have785

V̇ (x) = −
∑
ij

Aij(xi − x̂i)(xj − x̂j) +
∑
i

(xi − x̂i)
(
ri +

∑
j

aij x̂j

)
. (130)

The first sum is non-negative since the matrix is negative semidefinite, and the second is786

non-positive and is negative unless xi = 0 for any i > m. Given that the restriction of A to787

the survivors subset is full rank then V̇ = 0 only at x̂, which implies that x̂ is globally stable788

and, in particular, is unique [19].789

In these cases, while our previous analyses are not exact because of the perturbations790

introduced in the vector of rates r and in interaction coefficients (A → A + µ1n1
T
n ), we can791

apply the same machinery that we have developed to provide approximations. This works792

because we know that the shift of A→ A+ µ1n1
T
n does not change properties like feasibility793

or invasibility (see section 6). What changes is that the rank of A goes up by one (see the794

observation below). Forgetting about this, we can use the same machinery as in the non-795

degenerate case: for feasibility this follows because only full rank subsets are considered,796

and the restriction of a singular Wishart to a block of m ≤ ` subsets is a Wishart matrix.797

Further, the conditional distribution of blocks used for the derivation of the probability of798

non-invasibility holds in the non-degenerate case too [7].799

Observation. The rank of B = A + µ1n1
T
n is equal to the rank of A plus one. Indeed,800

let w ∈ kerB, then wTBw = wTAw + µ(1Tnw)2 = 0, hence w ∈ kerA ∩ 1⊥n , and similarly801

any w ∈ kerA ∩ 1⊥n is in the kernel of B, hence kerB = ker(A ∩ 1⊥). Unless kerA ⊂ 1⊥n ,802

dim(kerB) = dim(kerA)− 1, so the rank increases by one.803

Consider then A = CCT for C ∈ Rn×`, and let {Ci} be the set of columns of matrix804

C. Then kerA is simply U⊥ = {Ci}⊥. As each column Ci is sampled independently from805

a continuous distribution then W = {C1, . . . ,C`,1n} is a linearly independent set almost806

surely, then dimW⊥ = n− `− 1. Since W⊥ = U⊥ ∩1⊥n , and dimU⊥ = n− ` then U⊥ cannot807

be contained in 1⊥n .808

Observe that the restriction on the size of the subsystems set γ + 1/n as an upper bound809

for the mode q∗. In the singular case it may happen that q∗ satisfying eq. (111) is bigger than810

γ + 1/n. Given that we expect the function to be unimodal and increasing with q, then our811

approximation for the mode in those cases is simply γ + 1/n.812
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Figure 13: Fraction of survivors under distinct levels of growth rate variability.
Dots mark the average values over simulations with r ∼ N (1, σ2) and A ∼ W`(In, n). In the
singular case, the matrix A was perturbed by A → A + (b + 0.01)1n1

T
n for b = −min(A).

Dotted lines represent our analytical predictions assuming σ = 0. By Section 6 the shift in
A does not affect ℘ when σ = 0. The initial decrease of ℘ in the singular case is due to this
property not holding when σ 6= 0. The solid line is our analytical prediction for σ = 0, when
A ∼ W`(Σ, n). Σ is a constant correlation matrix with ρ = 2σ`+0.01

1+2σ`+0.01 and σ` =
√

V(Aij) for

i 6= j which in this case is simply 1√
`
.
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