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ABSTRACT

Segregation and integration are two fundamental principles of brain structural and functional organization. Neuroimaging
studies have shown that the brain transits between different functionally segregated and integrated states, and neuromodulatory
systems have been proposed as key to facilitate these transitions. Although computational models have reproduced the effect
of neuromodulation at the whole-brain level, the role of local inhibitory circuits and their cholinergic modulation has not been
studied. In this article, we consider a Jansen & Rit whole-brain model in a network interconnected using a human connectome,
and study the influence of the cholinergic and noradrenergic neuromodulatory systems on the segregation/integration balance.
In our model, a newly introduced local inhibitory feedback enables the integration of whole-brain activity, and its modulation
interacts with the other neuromodulatory influences to facilitate the transit between different functional states. Our work
proposes a new possible mechanism behind segregation and integration in the brain.

Introduction
Integration and Segregation of brain activity are nowadays two well-established brain organization principles (1; 2; 3; 4).
Functional segregation refers to the existence of specialized brain regions, allowing the local processing of information.
Integration coordinates these local activities in order to produce a coherent response to complex tasks or environmental contexts
(1; 2). Both segregation and integration are required for the coherent global functioning of the brain; the balance between them
constitutes a key element for cognitive flexibility, as highlighted by the theory of coordination dynamics (5; 6).

From a structural point of view, the complex functional organization of the brain is possible thanks to an anatomical
connectivity that combines both integrated and segregated network characteristics, having small-world and modular properties
(7). In spite of this structural connectivity (SC) remaining fixed over short time scales, different patterns of functional
connectivity (FC) can be observed during the execution of particular behavioral tasks (2). Moreover, functional Magnetic
Resonance Imaging (fMRI) neuroimaging studies show that during a resting state the FC is not static, but rather evolves over
the recording time. The non-stationarity of functional connectivity, referred as Functional Connectivity Dynamics (FCD),
captures the variable nature of the brain dynamics (8; 9). In this context, an interesting question emerges: How does the brain
manage to produce dynamical transitions between different functional states from a rigid anatomical backbone?.

Neuromodulatory systems provide a biophysical mechanism that enhances the dynamical flexibility. It is thought that
functional integration arises by the increase of excitability and selectivity of neuronal populations, and a recent hypothesis
proposed by Shine (10) argues that neuromodulation allows the transition between integrated and segregated states, manipulating
the neural gain function (11). Indeed, the cholinergic system increments the overall excitability (12; 13), and consequently rises
population activity above noise, a mechanism referred as response gain (11). The increase in signal-to-noise ratio, especially
in brain areas that are close to each other, promotes segregation when considering the response gain by itself (10). On the
other hand, the noradrenergic system increases the reponsivity (or selectivity) of neuronal populations to input-driven activity
respect to spontaneous activity (14; 15; 16) and filters out noise (17), a mechanism called filter gain (11). This effect is more
pronounced between distant brain regions, in which structural connectivity is relatively low, promoting functional integration
(10). In reality, a complex interaction between the cholinergic and noradrenergic system seems to manage the balance between
integration and segregation. Using a whole-brain model, Shine et al. (18) showed that the inverted-U relationship between
neuromodulation and integration, which has been reported in the literature (19), can be reproduced manipulating the effects
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of cholinergic and noradrenergic systems on neural gain. In this model, integration is not promoted by any neuromodulatory
system by itself, but emerges by the combined action of both systems: the cholinergic and noradrenergic systems do not operate
in an antagonistic fashion.

There are still unanswered questions about the specific effects of neuromodulation on integration and segregation. The
overall increase of excitability, mediated by the cholinergic system, affects both the excitatory and inhibitory neuronal
populations, effect well known at the meso-scale level (11; 20; 21; 22; 23). Experimental research points out that the cholinergic
system, through both nicotinic and muscarinic receptors, boosts the signal-to-noise ratio in two principal ways (11; 22):
first, increasing the excitability of pyramidal neurons (23; 24; 25), and second, enhancing the activity and firing rates of
dendritic-targeting GABAergic interneurons, an effect that ultimately suppresses the local excitatory feedback to pyramidal
neurons (23; 26; 27). Consequently, pyramidal neurons become more responsive to stimulus from other distant regions respect
to the stimulus of its own cortical column (21; 22; 24). The particular effect of the cholinergic system in excitatory neurons was
one of the focus of the whole-brain simulation work by Shine et al. (18). However, the cholinergic modulation of inhibitory
interneurons and its effect on the segregation/integration balance has not been analyzed at the whole-brain level, and comprises
the main focus of the present work.

Here, we use an in silico approach to analyze the effect of neuromodulatory systems on functional integration in the brain,
focusing on the cholinergic action in inhibitory interneurons. Whole-brain computational models can reproduce statistical
features of neuroimaging signals from human brains (28; 29), providing a tool to explore the computational and biophysical
mechanisms that underlie the organization principles of integration and segregation in the healthy human brain (18; 30; 31). We
combined a real human structural connectivity with the Jansen & Rit neural mass model of cortical columns (32), widely used to
reproduce electroencephalography (EEG) signals in the healthy and pathological brain (33; 34; 35). fMRI-blood-oxygen-level
dependent (BOLD) signals were generated from the firing rates of pyramidal neurons to quantify integration and segregation in
the functional connectivity matrices derived from the BOLD-like signals using a graph theoretical approach.

The neuromodulation was discerned in three components. First, we included an "excitatory gain", which increases the
inter-columnar coupling. This gain mechanism is mediated by the action of the cholinergic system in pyramidal neurons,
principally but not exclusively, and increments pyramidal excitability (10; 11; 22). Second, we added an "inhibitory gain",
also mediated by the cholinergic system, that controls the inputs from inhibitory to excitatory interneurons and reduces the
local feedback excitation. This additional connection, well described in cortical columns (36; 37), represents a modification of
the original neural mass model proposed by Jansen & Rit (32). Finally, we incorporated a "filter gain", that increments the
pyramidal neurons sigmoid function slope (11). This last gain mechanism is mediated by the noradrenergic system; it acts as a
filter, decreasing (increasing) the responsivity to weak (strong) stimuli (15; 17), boosting signal-to-noise ratio and promoting
integration (10).

Our results show, in the context of a whole-brain model, that the control of local feedback excitation, mediated by the action
of the cholinergic system on inhibitory interneurons, is necessary for the modulation of the segregation/integration balance by
the other systems. This constitutes a step forward from the neuromodulatory framework proposed by Shine (10), including the
role of a second cholinergic target and also highlighting the role of a homeostatic inhibitory feedback. We also describe that
integration is accompanied by an increment in the signal-to-noise ratio, and a reduction of dynamical variability captured by the
FCD analysis. Our work sheds light in how meso-scale properties, such as local inhibition, shape statistical network features at
the macro-scale level.

Results
We assessed the effect of the neuromodulatory systems using a whole-brain neural mass model of brain activity. In the model,
each node corresponds to a brain area and is represented by a neural mass consisting of three populations (32): pyramidal
neurons, excitatory interneurons, and inhibitory interneurons (Figure 1A). Based on Silberberg & Markram (36) and Fino et
al. (37), we have added a connection from inhibitory interneurons from excitatory interneurons (dotted line in Figure 1A),
allowing us to study the effect of its modulation by cholinergic influences (see below). The nodes are connected through a
weighted and undirected structural connectivity matrix derived from human data (38), parcellated in 90 cortical and sub-cortical
regions with the automated anatomical labeling (AAL) atlas (39). Further, we included heterogeneous time delays based in
the spatial location of brain regions defined by AAL parcellation (39) (Figure 1B). Connections between nodes are made by
pyramidal neurons, considering that long-range projections are mainly excitatory (40; 41). Using the firing rates of each node
as inputs to a generalized hemodynamic model (42), we obtained fMRI-BOLD signals from which we calculated integration
and segregation of the resulting functional connectivity matrices.

Following Shine et al. (18), we modeled the influence of the cholinergic and noradrenergic systems through the manipulation
of the response and filter gain, respectively (Figure 1C). The principal difference in our approach is that we split the response
gain in excitatory gain (long-range pyramidal to pyramidal coupling), α , and inhibitory gain (local inhibitory to excitatory
interneurons coupling), β . While the excitatory gain boosts pyramidal neurons output, the inhibitory gain reduces the local
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Figure 1. Whole-brain neural mass model. A) The Jansen & Rit model is constituted by a population of pyramidal neurons
with excitatory and inhibitory feedback mediated by interneurons (INs). Each population is connected by a series of constants
Ci. The outputs are transformed from average pulse density to average postsynaptic membrane potential by an excitatory
(inhibitory) impulse response function hE(t) (hI(t)). Then, a sigmoid function S performs the inverse operation. Pyramidal
neurons project to distant cortical columns, and receive both uncorrelated Gaussian-distributed inputs p(t) and inputs from
other cortical columns z(t). Neuromodulation is constituted by the excitatory gain α , which scales z(t), inhibitory gain β ,
which increases the inhibitory input to excitatory INs, and filter gain, r0, which modifies the slope of the sigmoid function in
pyramidal neurons. B) In the whole-brain model, each node represents a cortical column, whose dynamics is ruled by the
Jansen & Rit equations. Nodes are connected through a structural connectivity matrix, M, and a speed constants matrix, D. C)
Neuromodulation modifies the input (average postsynaptic membrane potential) to output (average pulse density) sigmoid
function. The cholinergic system has a multiplicative effect on the sigmoid function. α amplifies the response of pyramidal
neurons to other columns’ input, while β amplifies the effect of inhibitory INs to excitatory INs. On the other hand, the
noradrenergic system increments the responsivity of pyramidal neurons to relevant stimuli respect to noise, as a filter, by
increasing the slope r0 of their sigmoid function.

excitatory feedback from interneurons. Finally, the filter gain r0 modifies the sigmoid function slope of pyramidal neurons,
increasing its responsivity to relevant stimuli and boosting signal-to-noise ratio. Here, we studied the combined effect of the
three gain mechanisms to understand how neuromodulatory systems shape the global neuronal dynamics in two different
timescales: EEG-like and BOLD-like signals. Our hypothesis is that the inhibitory gain will play a significant role in increasing
the likelihood of integration.

Inhibitory gain facilitates neuronal coordination
We first studied the combined influence of the excitatory and inhibitory response gains, by fixing r0 = 0.56 mV−1 and then
simulating neuronal activity at different combinations of α ∈ [0,1] and β ∈ [0,0.5]. Then, we measured the degree of synchrony
of the EEG-like signals using the averaged Kuramoto order parameter R̄ (43). In addition, we analyzed the graph properties
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of the static (time-averaged) functional connectivity (sFC) matrices, obtained from the pairwise Pearson’s correlations of
BOLD-like signals. Namely, we calculated the global efficiency Ew, a measure of integration defined as the inverse of the
characteristic path length (44), and modularity Qw, a measure of segregation based on the detection of network communities or
modules (44). High values of Ew represent an efficient coordination between all pairs of nodes in the network, a signature of
integration. In contrast, a high modularity Qw is associated to segregation and viceversa (44). Finally, we measured the mean
participation coefficient PCw, an integration metric that quantifies the between-modules connectivity, and the transitivity T w,
which accounts for segregation counting triangular motifs (44).

Figure 2A shows that functional integration (Ew) and neuronal synchronization (R̄) are maximized in an intermediate region
of the (α,β ) parameter space. Also, coordination is accompanied by a decrease in the mean oscillatory frequency, ω , which
falls within the EEG-Theta range (4-8 Hz), and a decrease in the segregation (Qw). The system undergoes a sharp transition
crossing a critical boundary both in EEG and BOLD timescales. This clear delimitation of states is a feature of criticality (45).
The transitions between different regimes are better appreciated in Figure 2B, where we show a 1-D sweep of α at β = 0.25.
Dashed lines at α = 0.23 and α = 0.8 correspond to points in the parameter space where drastic changes in dynamic properties
of the network occur. Both Ew and R̄ follow an inverted-U relationship with excitatory neuromodulation, recovering a known
result in this field (19). Also, Qw peaks higher at the right critical boundary (dashed lines), supporting the hypothesis that further
increases of the excitatory gain, mediated by the cholinergic system, promote segregation (10). A 1-D sweep of β at α = 0.5
(Figure 2C), shows an increase in synchronization and integration crossing the critical point at β = 0.1. The aforementioned
results are similar for the mean PCw and T w, as shown in Supplementary Figure 1.

The modulation of the inhibitory gain (β ) shows a compelling effect on the integration and segregation of the whole network.
This could be due to the reduction of excitatory feedback only, or a more specific effect of the connection from inhibitory to
excitatory interneurons. In the first case, we expect a similar effect by reducing the C1 parameter (see Figure 1A) because this
also reduces the excitatory feedback loop of the cortical columns. As shown in Supplementary Figure 2, this is only partially
the case. The reduction of the C1 connection weight –in the absence of the inhibitory-to-excitatory interneuron connection–
enables the network to reach integration but in a smaller region of the parameter space and to a lower extent than the inhibitory
modulation that we introduced in our model. This highlights the role of specific intra-columnar inhibitory feedback connections
in shaping the network behavior, and justifies our modification of the model as an homeostatic mechanism (see Discussion).

The reduction of the average oscillatory frequency could be an effect of the time delays incorporated in the model, as
suggested by Nordenfelt et al. (46) and Lea-Carnall et al. (47). We found the mean ω to be a function of the average speed
constant 〈D〉 (not shown), suggesting that whole-brain integration goes together with a reduction in oscillatory frequency, as a
consequence of the time delays between cortical columns.

At the functional level, integration is characterized by the increase of inter-modular connectivity. To observe in detail how
each gain mechanism produces integrated or segregated states, we show some BOLD-like signals and their respective sFCs
matrices in Figure 3. We chose five tuples of values of (α,β ), marked with the red circles in the Figure 3A. We observe that
functional integration is maximal in the middle (α = 0.5,β = 0.25), and segregation is promoted far away from this point
(α = 0.25,β = 0.125, and α = 0.75,β = 0.375). In the extreme cases (α = 0,β = 0, and α = 1,β = 0.5) there is neither
integration nor segregation.

Inhibitory gain allows the noradrenaline-mediated integration
The inclusion of the inhibitory gain in the model has the capability of producing novel predictions on the basis of a biophysically
plausible mechanism. To validate this model and its results, it should also reproduce the results of the current neuromodulatory
paradigm proposed by Shine (10; 18). We characterized the relationship between neuromodulation and integration in the (α,r0)
parameter space, with α ∈ [0,1] and r0 ∈ [0,1] while leaving β fixed at 0 or 0.4 (without and with inhibitory gain, respectively).
The results for β = 0 (Figure 4A) show neither integration nor synchronization in the entire parameter space. On the other hand,
the observations of Shine et al. (18) are fully reproduced with β = 0.4 (Figure 4B), supporting the fact that inhibitory gain is
essential to produce neuronal coordination. Similar results hold for the mean PCw and T w, as shown in Supplementary Figure 3.

As observed previously in Figure 2, a critical boundary delimits asynchronous and synchronous states in the (α,r0)
parameter space, a signature of criticality (45). This behavior was reported before in the original neuromodulatory framework
of Shine et al. (18). A 1-D sweep of α at r0 = 1 mV−1 shows a sharp transition (Figure 4C). Mean phase synchrony R̄
increments alongside global efficiency Ew, changes that go along with a decrease of the average frequency ω , and a reduction
of modularity Qw. However, further increments of α produce network desynchronization. On the other hand, a 1-D sweep of r0
at α = 0.6 (Figure 4D) produces similar observations, but just one boundary is visible. These results support the hypothesis
that noradrenergic and cholinergic systems, combined, promote integration following an inverted-U relationship (4; 11; 18), but
only if the inhibitory gain is included.
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Figure 2. Signal and network features in the (α,β ) parameter space. A) Average phase synchrony R̄, mean oscillatory
frequency ω of EEG-like signals, global efficiency Ew (integration) and modularity Qw (segregation) of the graphs derived
from the sFCs of the BOLD-like signals. B) Transitions through critical boundaries in the direction of α axis, for a fixed
β = 0.25. Transition points are represented by black dashed lines at α = 0.23 and α = 0.8. C) Transitions in the direction of β

axis, for a fixed α = 0.5, with a critical point at β = 0.1.

Signal-to-noise ratio and regularity matches with neuronal coordination

Previous experimental and theoretical works (10; 11; 22) suggest that neuromodulatory systems increase the signal-to-noise
ratio, allowing neuronal populations to be sensitive to local or distant populations to a greater extent than noise. To test that, we
measured the signal-to noise-ratio (SNR) using the power spectral density (PSD) function of each signal (see Methods) and
report the average value over all nodes. Additionally, we computed the regularity index (48), as a measure of signal periodicity.
This metric is defined as the second absolute peak of the autocorrelation function and is bounded between 0 and 1, with 0 for
purely chaotic or noisy signals, and 1 for perfectly periodic signals. We report the average overall nodes.

Both SNR and regularity match the region of neuronal synchronization and integration (Figure 5), supporting the idea
that neuromodulatory systems promote integration by increasing SNR. These results are not possible without the action of
inhibitory gain (β = 0, Figure 5A). As mentioned before, in conditions of reduced excitatory feedback, the excitatory response
gain increases the output of pyramidal neurons above noise and, consequently, boosts SNR. Then, the increase of filter gain
raises the sensitivity of neuronal populations to inter-columnar stimulation.

The increment in regularity suggests that a partial reduction of signal stochasticity is necessary for the whole-brain
functional integration, a result supported by the idea that ordered in-phase synchronization is an essential and cost-efficient way
to coordinate the brain activity (49). Interestingly, regularity is near 0.5 at the critical boundary (Figure 5D), placing the signals
between order and disorder, in which high amplitude synchronized oscillations alternate with noisy unsynchronized signals.
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Figure 3. fMRI-like sFCs at different values of α and β . A) The red circles represent pairs of (α,β ) values in which different
integration/segregation profiles can be observed. B-F) BOLD-like signals, and their respective sFCs matrices, for the (α,β )
shown in A. We shown the first 120 s of BOLD-like signals, while sFCs matrices were built with the full-length time series
(600 s).

Dynamical richness peaks near the critical boundary
We tested the hypothesis that network stability is higher in integrated states, and neuronal variability peaks near the critical
boundaries. In the faster timescale (EEG), we computed the metastability χR of bandpass filtered EEG-like signals, using
a metric defined as the variance of the Kuramoto order parameter (50). Values closer to 0 are expected for completely
asynchronous or completely synchronous activity, and greater than 0 when the neuronal activity exhibits periods of high and
low synchronization. In the slowest timescale, we performed a Functional Connectivity Dynamics (FCD) analysis (8; 9) over
the BOLD-like signals, using the sliding windows approach depicted in the Figure 6A-C (51). The resulting time vs time
FCD matrix captures the concurrence of FC patterns, visualized as square blocks. We computed the variance of the FCD,
var(FCD), as a multistability index (51), where values greater than 0 indicate the switching between different FC patterns.
Both metastability and multistability are measures of dynamical richness. Additionally, we calculated the FCD speed dtyp as
described by Battaglia et al. (52), which captures how fast the FC patterns fluctuate over time. Values closer to 1 indicate a
recurrent change of diverse FC patterns, and closer to 0 the concurrence of stable and similar states over time.

In Figure 6D we show a set of FCD matrices obtained at different values of α and r0, together with histograms of their
off-diagonal values. Red FCD matrices (with high values) correspond to incoherent states, as the FC continuously evolve in
time. On the other hand, a blue FCD matrix (with low values) indicates a fixed FC throughout the simulation. Multistability is
higher for green/yellow patchy matrices, because this indicates FC patterns that change and also repeat over time. As can be
inferred observing the FCD distributions, the variance of the values in the histograms (var(FCD)) can be used as a measure of
multistability (51).

Figure 7 shows how metastability, multistability (FCD variance) and FCD speed change in the whole (α,r0) space. At low
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Figure 4. Signal and network features in the (α,r0) parameter space. A-B) Average phase synchrony R̄ and mean oscillatory
frequency ω , and global efficiency Ew (integration) and modularity Qw (segregation) of the graphs derived from the sFCs of the
BOLD-like signals, for A) β = 0 (no action of the inhibitory gain) and B) β = 0.4. C) Transitions through the critical
boundary in the direction of α axis, with a fixed r0 = 1 mV−1 and β = 0.4. Critical transition points represented by black
dashed lines at α = 0.23 and α = 0.8. D) Transitions in the direction of r0 axis, for a fixed α = 0.6, with a critical point at
r0 = 0.33 mV−1 and β = 0.4.

levels of both α and r0, the neuronal activity is constituted mainly by noisy asynchronous signals, conditions associated to low
(near 0) values of χR and var(FCD), and with a high dtyp (all FC patterns differ from each other, as expected for noise-driven
signals) (Figure 7A). In the other extreme, for r0 > 0.5 mV−1 and α ∈ [0.4,0.6], values that correspond to the integrated states,
var(FCD) is also small and dtyp falls close to 0. In consequence, integrated states are more stable and less susceptible to
network reconfiguration over time. In contrast, both χR and var(FCD) peak near the critical boundary, through the direction of
α and r0 axes (Figures 7B-C). Moreover, crossing the boundary is associated with a continuous decrease of dtyp: the emerging
integration mediated by gain mechanisms is associated with more stable FCs patterns over time. These observations are in
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Figure 5. Signal-to-noise ratio (SNR) and regularity (Reg), for the EEG-like signals, in the (α,r0) parameter space. A) No
action of inhibitory gain (β = 0). B) SNR and regularity matches with functional integration for β = 0.4. C) Transitions
through the critical boundary in the direction of α axis, with a fixed r0 = 1 mV−1. Critical points represented by black dashed
lines at α = 0.23 and α = 0.8. D) Transitions in the direction of r0 axis, for a fixed α = 0.6, with a critical point at r0 = 0.33
mV−1.

agreement with experimental results using fMRI, in which the network variability increases in resting-state, and decreases with
network integration during cognitive tasks (3).

Discussion
Based on previous experimental findings (20; 23; 26; 27), we hypothesized that the cholinergic neuromodulation of the
inhibitory interneurons (that suppresses the local excitatory feedback to pyramidal neurons) facilitates functional integration.
Our results confirm this hypothesis in the context of a whole-brain neural mass model, and hold simultaneously for EEG-like
and fMRI-like signals obtained considering different time scales. The main novelty of our work is the inclusion of the inhibitory
gain (the parameter β ) in the model and the characterization of its influence in the functional integration.

Several clues suggest that the model we proposed is in the right track. First, our results reproduce the inverted-U relationship
between cholinergic neuromodulation and integration, reported experimentally (11; 19) and reproduced in a similar whole-brain
model (10; 18). Further, functional integration matches with an increase of SNR, a common effect attributed to neuromodulatory
systems (11; 22). The reduction of the variability of the signals (higher regularity) found in our model has also been reported
experimentally in resting-state fMRI, related to an increase in functional connectivity (53); moreover the SNR, signal variability,
and functional connectivity have been shown to be influenced by neuromodulatory systems (54). Then, the reduction in
oscillatory frequency observed in the model –which falls within the Theta range of EEG spectrum– has also been perceived in
several cognitive tasks (55; 56), and is a consequence of the time delays as suggested by other computational studies (46; 47).
Finally, the model is capable to reproduce the previous results of Shine et al. (18): the increase in phase synchronization and
functional integration with neuromodulation, the reduction of the time-resolved topological variability with integration (in our
case captured by the variance of the FCD), and the inverted-U relationship of the excitatory gain α with Ew and mean PCw.

Our main result is that the action of the cholinergic system on both, the excitation of pyramidal neurons and the intra-
columnar inhibitory feedback, is needed to shift from a regime of unsynchronized activity, towards a regime of coherent activity
(integrated). The inclusion of the additional inhibitory-to-excitatory interneuron connection, and its modulation through the
parameter β , facilitates the emergence of coordinated regimens of activity (compare the cases for β = 0 and β = 0.4 of Figure
4). In our model, the inhibitory gain β has a double effect on the dynamic of the network. On one hand, it increases the relative
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Figure 6. Analysis of Functional Connectivity Dynamics. A) Sample fMRI-BOLD time series showing the fixed length and
overlapping time windows at the begginging. In color, the time windows corresponding to the FCs shown in B. B) FCs
matrices obtained in the colored time windows. C) Functional Connectivity Dynamics (FCD) matrix, where all the FCs
obtained were vectorized and then compared against each other using a vector-based distance (Clarkson distance). D) FCDs
matrices through the critical boundary, in both α and r0 direction. Below each FCD, a histogram of its upper triangular values
is shown. The variance of these values constitutes a measure of multistability.

magnitude of the inter-columnar afferences (compared to the internal excitatory loop), and on the other hand, it provides a
simple dynamical mechanism to homeostatically preserve the excitation/inhibition (E/I) balance at the node level. In fact, this
balance may be considered a determinant element in the interplay between integration and segregation (31). Interestingly, this
mechanism maximizes the functional integration in a better way than a direct decrease of the internal excitatory feedback, as
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Figure 7. Dynamical features of the system in the (α,r0) parameter space. A) Metastability χR calculated as the variance of
the Kuramoto order parameter (EEG-like signals), multistability var(FCD) and typical FCD speed dtyp measured from the
Functional Connectivity Dynamics analysis (BOLD-like signals). While χR and var(FCD) peak on the critical boundary, dtyp
decreases crossing the dashed lines (critical points) and reaches its minimum values in integrated states. B) Transitions through
the critical boundary in the direction of α axis, with a fixed r0 = 1 mV−1. Critical points represented by black dashed lines at
α = 0.23 and α = 0.8. C) Transitions in the direction of r0 axis, for a fixed α = 0.6, with a critical point at r0 = 0.33 mV−1.

we evidenced with the reduction of C1 (see Figure 2 and Supplementary Figure 2 for a comparison). Our model suggests that
the additional inhibitory loop, modulated by the inhibitory gain β , constitutes an optimal solution to the dynamical control of
cortical column activity.

The inhibition-mediated control of the E/I balance has been implemented in others networks models of brain activity
(57). At the whole-brain level, Deco et al. (58) employed a feedback inhibitory control (FIC) to preserve the E/I balance in a
mean-field network connected with a human connectome, producing the best fit between the simulated and empirical sFCs
matrices. Also, FIC improved the information capacity of the global network and enhanced its dynamical repertoire constituting
a biophysical plausible mechanism to reproduce the macro-scale features of human brain dynamics (58). In our model, we
implemented instead a disynaptic inhibitory control (36; 37) that, in spite of leading to similar results, can present additional
advantages. The inhibition included in the model (modulated by the inhibitory gain β ) influences the output of pyramidal
neurons when excitability is high (36). Because the two populations of interneurons receive excitatory inputs from pyramidal
cells, an increase in pyramidal excitability triggers both the feedback excitation loop and its dampening by the inhibitory
interneurons. Conversely, when the pyramidal excitability decreases, the effect of the inhibitory loop between interneurons is
low, and the excitatory loop can rise the excitability of pyramidal cells. This constitutes and effective mechanism to maintain an
optimal E/I balance. In contrast, a direct reduction of the excitatory feedback (e.g., decreasing C1, Supplementary Figure 2),
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produces no compensation when pyramidal excitability is low.
Another contribution of our work is that we propose an explicit mechanism of interaction between meso-scale properties

of brain activity, such as the local inhibition, with the global increase in functional integration. While the cholinergic system
increases the response of pyramidal neurons to external afferences (e.g., inputs from other brain areas) through nicotinic and
muscarinic receptors (21), the increase in intra-cortical inhibition could be mediated mainly by nicotinic receptors (20; 23).
At the meso-scale level, nicotinic receptors can increment interneurons activity in a similar way than the inhibitory gain β

(20; 22; 23). However, there is little knowledge about the specific effects of the cholinergic system at the whole-brain level.
In that line, an increase in the local and global efficiency in resting-state fMRI has been reported after the administration of
nicotine Wylie et al. (59), and some nicotinic agonists have pro-cognitive effects as well in health and disease (60). Considering
the relationship between function integration and cognition (2; 3; 10), our model suggests that the possible pro-cognitive effects
associated with the cholinergic system are related to a selective increase in the excitability of excitatory and inhibitory neural
populations within brain areas. Thus, our computational approach –in the same spirit as Wylie et al. (59)– links the meso-scale
consequences of inhibitory interneurons neuromodulation with the functional network topology features, at the whole-brain
level.

The inverted-U relationship between neuromodulation and integration that we found in our model is a consequence of the
dynamics of individual cortical columns. At the node level, the parameters we used in the Jansen & Rit model put the model
near a Hopf supercritical bifurcation (61). When α and r0 are low, the node dynamics is defined by a stable focus (a fixed
point with non-monotonic convergence), and thus pyramidal outputs consist of low amplitude noisy signals. Increasing both
parameters causes the bifurcation into an unstable focus within a limit cycle, with high amplitude oscillations. Increasing α

further produces a new bifurcation (a stable focus) and the limit cycle disappear. The inhibitory gain β constitutes a mechanism
to keep the model working between the two bifurcations points; it preserves the E/I balance as an inhibitory control loop.
Likewise Shine et al. (18), we did not find an inverted-U relationship between the filter gain –modulated by the noradrenergic
system– and integration. In the biological brain the analogous of our parameters α and β are modulated –in parallel– by
the cholinergic system, and noradrenaline has an additional effect in increasing excitability (54), thus it is possible that the
inverted-U relationship observed between neuromodulation and integration is a consequence of a complex interaction between
neuromodulatory systems (18).

Near the critical boundary, in the (α,r0) parameter space, we observe an increase in the metastability and multistability, a
decrease in the FCD speed, and the FCD analysis suggests an increment in dynamical richness, a consequence of the fact that
each node is poised close to a Hopf supercritical bifurcation (5). It has been proposed that at rest brain activity operates near a
bifurcation point, where segregated (uncoordinated) and integrated (coordinated) regimes alternate in time (5; 8; 9). In our
model, the neuromodulation facilitates the transitions from "resting-state" conditions, near the critical points, to more integrated
regimes. Furthermore, integrated regimes become more stable in time, as can be noted with the decrease in dtyp. Analogously,
time-resolved functional connectivity analysis, in task-related fMRI recordings, indicates a decrease in the topological variability
in subjects performing an N-back task; the extent of integration acts as a predictor of individual performance and response
times (3). Our model reproduces the variability observed in "resting-state" conditions, near the critical points in the parameter
space, and the switching to integrated regimes with neuromodulation. Moreover, the effect of the inhibitory gain in preserving
the E/I balance can play an important role in sustaining the metastability and multistability at rest. Indeed, the E/I balance is a
key element to support criticality (62) and to modulate the integration and segregation features of the brain (45).

There is a lot of room for further progress starting from this work. Future research may consider the addition of
neuromodulatory maps (38; 63) in order to take into account the heterogeneous expression of the receptors, or explore
models that can reproduce the effect of other neuromodulatory systems (64) and their dynamics (65). Other interneurons
subtypes and their modulation could be included –such as fast-spiking inhibitory interneurons– to account for the faster EEG
features of brain activity (66). Additionally, the graph theoretical analysis used here only consider pairwise interactions,
neglecting high-order effects that may contain important information about high dimensional functional brain interactions.
Information-theoretical (67; 68) and algebraic topological approaches (57; 69; 70) may provide complementary insights of
high-order interdependencies in the brain.

In summary, our results extend the neuromodulatory framework proposed by Shine (10), with the inclusion of the cholinergic
neuromodulation of inhibitory interneurons. Importantly, we describe the homeostatic effect of this local inhibitory feedback
loop, a meso-scale mechanism that interacts with macro-scale behavior and enables functional integration. Our findings shed
light on a better understanding of neurophysiological mechanisms involved in the functional integration and segregation of the
human brain activity. This line of research may have plentiful of scientific and clinical implications, as a vast body of evidence
suggest that functional integration and segregation may be altered in neuropsychiatric disorders (31; 71; 72; 73). Therefore,
understanding the neuromodulatory mechanisms that underlie the imbalances of integration and segregation may lead to future
progress in pharmacological treatments.
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Methods

Whole-Brain Neural Mass Model
To simulate neuronal activity we used a reparameterized version of the Jansen & Rit neural mass model (32). In this model,
a cortical column consists of a population of pyramidal neurons with projections to other two populations: excitatory and
inhibitory interneurons, which project back to the pyramidal population. Additionally, the pyramidal neurons receive an external
stimulus p(t), whose values are taken from a Gaussian distribution with mean µ = 2 Hz and standard deviation σ = 2.25.
Different values of σ were explored and our results are mostly consistent for 1.5 < σ < 5.

The dynamical evolution of the three populations within the cortical column is modeled by two blocks each. The first
transforms the average pulse density in average postsynaptic membrane potential (which can be either excitatory or inhibitory)
(Figure 1A). This block, denominated post synaptic potential (PSP) block, is represented by an impulse response function

hE(t) =

{
Aate−at , t ≥ 0
0, t < 0

for the excitatory outputs, and

hI(t) =

{
Bbte−bt , t ≥ 0
0, t < 0,

for the inhibitory ones. The constants A and B define the maximum amplitude of the PSPs for the excitatory (EPSPs) and
inhibitory (IPSPs) cases respectively, while a and b represent the inverse time constants for the excitatory and inhibitory
postsynaptic action potentials, respectively. The second block transforms the postsynaptic membrane potential in average pulse
density, and is given by a sigmoid function of the form

S(ν ,r) =
ζmax

1+ er(θ−ν)
,

with ζmax as the maximum firing rate of the neuronal population, r the slope of the sigmoid function, and θ the half maximal
response of the population.

To study the effect of the neuromodulatory systems at the macro-scale level, we included long-range pyramidal-to-pyramidal
neurons and short-range inhibitory to excitatory interneurons couplings, to mimic the effects of neuromodulation through the
excitatory and inhibitory gain parameters, respectively. This short-range coupling between interneurons, well described at the
meso-scale level (36; 37), constitutes a modification of the original equations. In the model presented in the Figure 1A, each
node i ∈ N, with N = [1 . . .n] as the set of all nodes of the network, represents a single brain area. The nodes are connected by
a structural connectivity matrix M (Figure 1B). This matrix is derived from a human connectome (38) parcellated in n = 90
cortical and subcortical regions with the automated anatomical labelling (AAL) atlas (39); the matrix is undirected and takes
values between 0 and 1. Because long-range connections are mainly excitatory (40; 41), only links between the pyramidal
neurons of a node i with pyramidal neurons of a node j are considered. The model includes a speed constants matrix D for the
inter-columnar coupling (Figure 1B). For building the matrix D, the distance between regions’ centroids defined by the AAL
atlas was used. The entries of D decrease exponentially with the distance.

The overall set of equations, for a node i, includes the within and between nodes activity

˙x0,i(t) =y0,i(t)

˙y0,i(t) =Aa [S(C2x1,i(t)−C4x2,i(t)+Cαzi(t),r0)]−2ay0,i(t)−a2x0,i(t)

˙x1,i(t) =y1,i(t)

˙y1,i(t) =Aa [p(t)+S(C1x0,i(t)−Cβx2,i,r1)]−2ay1,i(t)−a2x1,i(t)

˙x2,i(t) =y2,i(t)

˙y2,i(t) =Bb [S(C3x0,i(t),r2)]−2by2,i(t)−b2x2,i(t)

˙x3,i j(t) =y3,i j(t)

˙y3,i j(t) =ADi j [S(C2x1,i(t)−C4x2,i(t)+Cαzi(t),r0)]−2Di jy3,i j(t)−D2
i jx3,i j(t)

(1)

where x0, x1, x2 correspond to the outputs of the PSP blocks of the pyramidal neurons, and excitatory and inhibitory interneurons,
respectively, and x3,i j the output from the pyramidal neuron j to the column i. Constants C1, C2, C3 and C4 scale the connectivity
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between the neural populations (see Figure 1A). We used the original values of Jansen & Rit (32): ζmax = 5 Hz, θ = 6 mV,
r = 0.56 mV−1, a = 100 s−1, b = 50 s−1, A = 3.25 mV, B = 22 mV, C1 =C, C2 = 0.8C, C3 = 0.25C, C4 = 0.25C, and C = 135.

The overall input to the column i from other cortical columns is given by

zi(t) =
∑

n
j=1, j 6=i Mi jx3,i j(t)

∑
n
j=1, j 6=i Mi j

The neuronal activity of the column i is the average PSP of pyramidal neurons and characterizes the EEG-like signal in the
source space; it is computed as (32)

ν(t)i =C2x1,i(t)−C4x2,i(t)+Cαzi(t)

The firing rates of pyramidal neurons ζi(t) = S(ν(t)i,r0) were used to simulate the fMRI-BOLD recordings. The parameters α ,
β and r0 account for the influence of the neuromodulatory systems (Figure 1C), as described in next subsection.

Neuromodulation
The effects of the cholinergic system were modeled by the parameters α and β . The parameter α increases the long-rage
pyramidal to pyramidal neuron coupling through the M matrix and amplifies the firing rates of the target populations (10; 11).
The parameter β scales the short-range inhibitory to excitatory interneurons coupling, decreasing the recurrent excitation to
pyramidal neurons (22). We refer to α as the excitatory gain, and β as the inhibitory gain. In comparison with the current
framework proposed by Shine (10), the novelty of our neuromodulatory approach is the inclusion of the inhibitory gain to
the model. The effect of the noradrenergic system, designated as filter gain, was simulated controlling the parameter r0,
which represents the sigmoid function slope of the pyramidal population. This last neuromodulatory system increases the
signal-to-noise ratio and inter-columnar connectivity, promoting integration (11; 17).

Simulation
Following Birn et al. (74), we ran simulations to generate the equivalent of 11 min real-time recordings, discarding the first 60
s. The system of differential equations (1) was solved with the Euler–Maruyama method, using an integration step of 1 ms. We
used six random seeds which controlled the initial conditions and the stochasticity of the simulations. We simulated neuronal
activity sweeping the parameters α ∈ [0,1], β ∈ [0,0.5] and r0 ∈ [0,1]. All the simulations were implemented in Python and
the codes are freely available at https://github.com/vandal-uv/Neuromod2020.

Simulated fMRI-BOLD Signals
We used the firing rates ζi(t) to simulate BOLD-like signals from a generalized hemodynamic model (42). An increment
in the firing rate ζi(t) triggers a vasodilatory response si, producing blood inflow fi, changes in the blood volume vi and
deoxyhemoglobin content qi. The corresponding system of differential equations is

ṡi(t) =ζi(t)−
si(t)
τs
− fi(t)−1

τ f

ḟi(t) =si(t)

v̇i(t) =
fi(t)− vi(t)1/κ

τv

q̇i(t) =
fi(t)(1−(1−E0)

1/ fi(t))
E0

− qi(t)vi(t)1/κ

vi(t)

τq
,

(2)

where τs, τ f , τv y τq represent the time constants for the signal decay, blood inflow, blood volume and deoxyhemoglobin
content, respectively. The stiffness constant (resistance of the veins to blood flow) is given by κ , and the resting-state oxygen
extraction rate by E0. Finally, the BOLD-like signal of node i, denoted Bi(t), is a non-linear function of qi(t) and vi(t)

Bi(t) =V0

[
k1(1−qi(t))+ k2

(
1− qi(t)

vi(t)

)
+ k3(1− vi(t))

]
where V0 represent the fraction of venous blood (deoxygenated) in resting-state, and k1, k2, k3 are kinetic constants. We used the
same parameters as in Stephan et al. (42): τs = 0.65, τ f = 0.41, τv = 0.98, τq = 0.98, κ = 0.32, E0 = 0.4, k1 = 2.77, k2 = 0.2,
k3 = 0.5.

The system of differential equations (2) was solved with the Euler method, using an integration step of 1 ms. The signals
were band-pass filtered between 0.01 and 0.1 Hz with a 3rd order Bessel filter. These BOLD-like signals were used to build the
functional connectivity (FC) matrices from which the subsequent analysis of functional network properties is performed using
tools from graph theory.
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Global Phase Synchronization
As a measure of global synchronization we calculated the Kuramoto order parameter R(t) (43) of the EEG-like signals ν(t)
derived from the Jansen & Rit model. The raw signals were filtered with a 3rd order Bessel band-pass filter using their frequency
of maximum power (usually between 4 and 10 Hz) ±3 Hz. Then, the instantaneous phase φ(t) was obtained with the Hilbert
transform.

The global phase synchrony is computed as:

R̄ =
〈∣∣∣〈e jφi(t)〉N

∣∣∣〉
t

where φi(t) is the phase of the oscillator i over time, j =
√
−1 the imaginary unit, |•| denotes the module, 〈〉N denotes the

average over all nodes, and 〈〉t the average over time. A value of R̄ equal to 1 indicates perfect in-phase synchronization of all
the set N of oscillators, while a value equal to 0 indicates total asynchrony.

Metastability χR, a measure of dynamical richness, is the variance of R(t) (50)

χR =Var
(∣∣∣〈e jφi(t)〉N

∣∣∣)
Signal-to-noise ratio
The oscillation frequency ωi of each node i was computed as the peak frequency of its power spectral density function denoted
PSD(ω). This function was calculated using the Welch’s method (75), with 20 s time windows overlapped by 50%.

We calculated the average signal-to-noise ratio (SNR) overall raw signals, using the PSD(ω) function of each node and
excluding the 2nd to 5th harmonics (76). For a node i, the signal power, Psignal , was measured as the area under the curve of
PSD(ω) within ωi±1Hz. Noise power, Pnoise, corresponds to the area under the curve of PSD(ω) outside the ±1Hz window.
Then the SNR was calculated as

SNR = 20log10
Psignal

Pnoise
,

The SNR was computed for each node i and we reported the average overall nodes.

Regularity
We computed the regularity index in 20 s epochs of the raw EEG-like signals ν(t) as described by Malagarriga et al. (48):

Reg =
〈

h2nd
i (τ)

〉
N
,

with h2nd
i (τ) being the second peak of the autocorrelation function for the node i and 〈•〉N the average over nodes. If the time

series is purely periodic and has no noise , h2nd(τ) is equal to 1 (the signal is periodic and regular). Chaotic and noisy time
series shift h2nd(τ) to lower values.

Functional Connectivity and Graph Thresholding
The static Functional Connectivity (sFC) matrices were built from pairwise Pearson’s correlations of the entire BOLD-like
time series. Instead of employing an absolute or proportional thresholding, we thresholded the sFCs matrices using Fourier
transform (FT) surrogate data (77) to avoid the problem of introducing spurious correlations (78). The FT algorithm uses a
phase randomization process to destroy pairwise correlations, preserving the spectral properties of the signals (the surrogates
have the same power spectrum as the original data). We generated 500 surrogates time series of the original set of BOLD-like
signals, and then built the surrogates sFCs matrices. For each one of the (n2−n)/2 possible connectivity pairs (with n = 90) we
fitted a normal distribution of the surrogate values. Using these distributions we tested the hypothesis that a pairwise correlation
is higher than chance (that is, the value is at the right of the surrogate distribution). To reject the null hypothesis, we selected a
p-value equal to 0.05, and corrected for multiple comparisons with the FDR Benjamini-Hochberg procedure (79) to decrease
the probability of make type I errors (false positives). The entries of the sFC matrix associated with a p-value less than 0.05
were set to 0. The result is a thresholded, undirected, and weighted (with only positive values) sFC matrix.

Integration and Segregation
Integration and segregation were evaluated over the thresholded sFC matrices. We employed the weighted versions of transitivity
(80) and global efficiency (81) to measure integration and segregation, respectively. A detailed description of the metrics used
can be found in Rubinov & Sporns (44). The transitivity (similar to the average clustering coefficient) counts the fraction of
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triangular motifs surrounding the nodes (the equivalent of counting how many neighbors are also neighbors of each other), with
the difference that it is normalized collectively. It is defined as

T w =
∑i∈N 2tw

i

∑i∈N kw
i (k

w
i −1)

,

being N the set of all nodes of the network with n number of nodes, tw
i the geometric average of the triangles around the node

i, and kw
i the node weighted degree. The supra-index w is used to refer to the weighted versions of the topological network

measures. On the other hand, the global efficiency is a measure of integration based on paths over the graph: it is defined as the
inverse of the average shortest path length. This metric is computed as

Ew =
1
n ∑

i∈N

∑ j∈N, j 6=i(dw
i j)
−1

n−1
,

where dw
i j is the shortest path between the nodes i and j.

We also calculated other two measures of integration and segregation: the participation coefficient PCw and modularity Qw,
respectively, both based on the detection of the network’s communities (44). The detection of so-called communities or network
modules in the thresholded sFC matrix, was based on the Louvain’s algorithm (82; 83). The algorithm assigns a module to each
node in a way that maximizes the modularity (3). We used the weighted version of the modularity (84) defined as

Qw =
1
lw ∑

i, j∈N

[
wi j−

kw
i kw

j

lw

]
δmi,m j (3)

where wi j is the weight of the link between i and j, lw is the total number of weighted links of the network, mi (m j) the module
of the node i ( j). The Kronecker delta δmi,m j is equal to 1 when mi = m j (that is, when two nodes belongs to the same module),
and 0 otherwise. Because the Louvain’s algorithm is stochastic, we employed the consensus clustering algorithm (85). We ran
the Louvain’s algorithm 200 times with the resolution parameter set to 1.0 (this parameter controls the size of the detected
modules; larger values of this parameter allows the detection of smaller modules). Then, we built an agreement matrix G, in
which an entry Gi j indicates the proportion of partitions in which the pairs of nodes (i, j) share the same module (so, the entries
of G are bounded between 0 and 1). Then, we applied an absolute threshold of 0.5 to the matrix G, and ran again the Louvain’s
algorithm 200 times using G as input, producing a new consensus matrix G′. This last step was repeated until convergence to
an unique partition.

Finally, we computed the weighted version of the participation coefficient (86). This metric quantifies, for each individual
node, the strength of between-module connections respect to the within-module connections, and is defined as

〈PCw〉N =
1
n ∑

i∈N
PCw

i =
1
n ∑

i∈N

(
1− ∑

m∈M

(
kw

i (m)

kw
i

)2
)

where PCw
i is the weighted participation coefficient for the node i, and 〈PCw〉N is the average overall nodes. The functional

network analysis was done in Python using the Brain Connectivity Toolbox (44).

Functional Connectivity Dynamics
To test the hypothesis that dynamical variability peaks on the critical boundary, we performed a Functional Connectivity
Dynamics (FCD) analysis over the filtered BOLD-like signals. The FCD matrix captures the evolution of FCs patterns and,
consequently, the dynamical richness of the network (8; 9). We used the sliding window approach (8; 51) depicted in the Figure
6. Window length was set to 100 s with a displacement of 2 s between consecutive windows (Figure 6A). The length was
chosen on the basis of the lower limit of the band-pass filter (0.01 Hz), in order to minimize spurious correlations (87). For
each window, a FC matrix was calculated from the pairwise Pearson’s correlations of BOLD-like signals (neglecting negative
values), thus we obtained 251 weighted and undirected FCs matrices from the 600 s simulated BOLD-like signals (Figure 6B).

The upper triangle of each FC matrix is unfolded to make a vector, and the FCD is built by calculating the Clarkson angular
distance λ (x,y) = 1√

2

∣∣∣∣∣∣ x
||x|| −

y
||y||

∣∣∣∣∣∣ (88) between each pair of FCs (Figure 6C)

FCDi j = λ (FC(ti),FC(t j))

The variance of the values in the upper triangle of the FCD, with an offset of τ = 100 s from the diagonal (e.g., the variance of
the histograms of Figure 6D), is taken as a measure of dynamical richness (51).

The speed of the FCD was measured as described by Battaglia et al. (52). We computed the histogram of FCD values
through a straight line from FCD(τ,0) to FCD(tmax, tmax− τ), with tmax = 600 s as the total time-length of the signals and
τ = 100 s. The median of the histogram distribution corresponded to the typical FCD speed dtyp. Values closer to 1 indicate a
constant switching of states, and values closer to 0 correspond to stable FCs patterns.
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Figure S1. Alternative measures of network segregation and integration in the (α,β ) parameter space. A) Mean participation
coefficient PCw (integration) and transitivity T w (segregation). B-C) Transitions in the direction of α and β axes. Dashed lines
represent critical points.
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Figure S2. Signal and network features in the (α,C1) parameter space. A) Average phase synchrony R̄, mean oscillatory
frequency ω of EEG-like signals, global efficiency Ew (integration) and modularity Qw (segregation) of the graphs derived
from the sFCs of the BOLD-like signals. B) Transitions in the direction of α axis, for a fixed C1 = 0. C) Transitions in the
direction of C1 axis, for a fixed α = 0.5. Dashed lines represent critical points.
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Figure S3. Alternative measures of network segregation and integration in the (α,r0) parameter space. A-B) Mean
participation coefficient PCw (integration) and transitivity T w (segregation) with A) β = 0 and B) β = 0.4. C-D) Transitions in
the direction of α and r0 axes. Dashed lines represent critical points.
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