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Abstract

There are two families of quantitative methods for inferring geographical homelands of language
families: Bayesian phylogeography and the ‘diversity method’. Bayesian methods model how
populations may have moved using the backbone of a phylogenetic tree, while the diversity
method, which does not need a tree as input, is based on the idea that the geographical area
where linguistic diversity is highest likely corresponds to the homeland. No systematic tests of
the performances of the different methods in a linguistic context are available, however. Here we
carry out performance testing by simulating language families, including branching structures
and word lists, along with speaker populations moving in areas drawn from real-world
geography. We test five different methods: two versions of BayesTraits; the random walk model
of BEAST; our own RevBayes implementations of a fixed rates and a variable rates random
walk model; and the diversity method. Each method is tested on the same synthetic family of 20
languages, evolving in 1000 different random geographical locations. The results indicate
superiority in the performance of BayesTraits and different levels of performance for the other
methods, but overall no radical differences in performance.

1. Introduction

Information on the location of proto-languages is important in many studies of linguistic
prehistory. Such origins may be of interest in and of itself, such as in the case of Indo-European,
whose origins have received much attention and also been subject to controversy [1]. Language
group origins may also, for instance, form the backbone for a study relating linguistic typology.
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When combined with information on dates for language groups [2], inferences about homelands
become particularly powerful as contributions to world prehistory.

In the past, researchers had to rely mainly on reconstructed lexical items for clues to the
origin of a language group. For instance, if a word for a particular biological species or material
item which is diagnostic of a certain geographical or archeologically defined area, can be
reconstructed for a proto-language, then the speakers of the proto-language can hypothetically be
assigned to the area in question. In addition to this approach, known as linguistic paleontology,
other types of evidence that can sometimes be drawn upon are old place names with known
linguistic affiliations or early loanwords showing different proto-languages to have been in
contact. These various approaches only promise to apply when a language group is already very
well researched, and even then there are strong limitations since securely reconstructed and
geographically diagnostic proto-words are hard to come by, and information on early loanwords
and place names is most often not available.

Instead of, or in addition to, applying linguistic paleontology, researchers have often
taken a bird’s eye view of a language family, inferring origins and directions of dispersion
through an application of what can be called the center of gravity or diversity method.
Apparently first introduced by Edward Sapir [3], the idea here is that the area of origin will
usually see more diversity building up than areas in which members of a given language group
were latecomers. For instance, Sapir himself argued [3] that the large Algonquian family of
North America is more likely to have originated in the west than in the east because the most
divergent languages are found in the west. The same type of argumentation has been applied to
several families in South America [4], to Austronesian [5], to Sino-Tibetan (apparently) [6], and
other families. A qualitative (impressionistic) application of this approach is admissible in
obvious cases, such as that of Austronesian, all but one of whose subgroups are confined to one
and the same area (Taiwan), but in less obvious cases it needs a quantitative implementation of
some kind.

Fortunately, homeland detection methods of a more quantitative nature have appeared
which only rely on a type of evidence which is available for any language group, namely basic
lexical items as attested in the extant languages. These approaches are either inspired by or
directly stem from approaches in biology. The early part of the 2010’s saw both the application
of biological (specifically Bayesian) phylogeographical approaches [7-8] and a quantitative
implementation of the diversity approach [14]. These methods, however, have come with no
warranty in terms of how well they perform. We rarely know the origin of a language group, so it
is not obvious how to test the methods on empirical data. Even if we did collect information on
cases of known origins and ran different methods to check their results we would not have
enough data points to get good statistics on variability in performance or for getting insights
about possible systematic causes for challenges to the methods.

The lack of performance tests of linguistic homeland detection methods motivates this
paper. We solve the problem of lack of empirical testing data by producing synthetic data on one
randomly chosen language phylogeny and its geographical dispersal under 1000 different origin
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scenarios and then look at the performance of a range of methods in terms of the distance
between the true and inferred homelands. The next section describes this simulated data.

2. Data

We simulate a single language family having 20 languages, and each of the languages is
associated with a 100-item word list containing words that have evolved over 120 time steps.
The simulations are described in Online Appendix 3 to [9].! Briefly, the ancestral language is
constructed from an inventory of phonological symbols identical to the symbols used in the
ASJP database [10]. Proto-words with semi-realistic shapes are constructed, and at each time
step these words undergo phonological and lexical changes according to preset probabilities
tuned to reality. Probabilities for speciation and extinction, also preset, allow lineages to grow
into families of sizes that are not predictable but still probabilistically related to the parameters of
the birth-death process and the number of time steps. The program was modified for the present
paper to accommodate an output of 100-item rather than 40-item word lists and to include
information about cognacy among the simulated words. It is found in the electronic
supplementary material (SI-01) along with accompanying files. The program outputs five files
whose names are identical except for the suffix. The names are composed of the letter ‘F’, an
underscore, a number representing the number of terminal taxa, another underscore, and then (for
distinctiveness of the name) the first word in the first word list in the data for the terminal taxa.
The file called “*.par’ specifies the parameter settings. The file called ‘*.top’ gives the topology,
the file called “*.dat’, contains word lists for the terminal taxa in a tab-delimited format, and the
file called “*.txt” contains the same word lists in the style of ASJP input files (see
http://asjp.clld.org/help). Finally, the file called ‘*.cog’ is similar to ‘*.dat” except that the words
are shown in the shape they would assume if they did not undergo phonological changes. This is

a handy way of encoding cognacy relations. For instance, in the F 20 wanej.cog file the first
lexical item assumes one of the three different shapes wim3y, kahCehd, and bmiu across the
twenty languages, corresponding to three different cognate classes. In the F 20 wanej.dat file
the phonological changes are included, and it is seen, for instance, that the word with the original
shape wim3y has changed into wanej, voSaj, vozej, etc. during the course of its evolution. Given
both the information on cognate relations and actual forms having undergone phonological
changes, the simulated data could be used, for instance, to test techniques for automated cognate
recognition, currently a rapidly developing field [11]. Here, however, the two alternative ways of
presenting the lexical data serve to satisfy the requirements of the different methods that we are
testing: the Bayesian methods rely on information about cognacy and are here supplied with the
full, accurate information about the relations among 100 words; the diversity method relies on
lexical distances and are here supplied with lists of 40 words in their actual shapes as input to the
string distance computations. This somewhat less generous input is similar to real data that the
method would use.

! Posted at https://datadryad.org/stash/dataset/doi: 10.5061/dryad.4gg07
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For the present study we selected one particular simulated family that seemed adequate in
terms of its size—it is large enough to contain plenty of data for the methods to work with but
not too large to be unwieldy. Its topology is shown in Figure 1. The number of time steps was set
to 120, but the initial lineage happens to not split until step 77. Thus the root of the lineage is
anchored at step 76, which, for all practical purposes, can be considered step 0. The justification
for pruning the initial branch is that the methods for detection homelands, even if successful, will
only recover the most immediate location of the ancestral language. As is apparent from Figure
1, the two initial lineages split at the same time, 4 steps after the root. At a total of 44 steps (44 +
76 = 120) we reach the tips of the terminal branches.

I L66

—
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Fig. 1. Simulated tree used in this study showing topology, branch lengths, and taxon names at
the tip of each branch.

For simulating the geographical diffusion of languages we again use published software
with a few modifications and make the updated software available here (electronic
supplementary material SI-02, output in SI-03). Thus, for a full description and justification of
the simulation procedure a paper [12] is already available. The simulation process can be
summarized as follows. Movements are constrained to any populated place on Earth, i.e. a place
included in the geonames.org database. A starting point is found by randomly choosing from this
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set of populated places. At each time step there is a preset probability of moving to a new place
within a square containing at least ch populated places. The ch parameter is here set to 800 since
it was found to produce results that are realistic in terms of language densities [12]. Apart from
the coordinates for the world’s populated places, the only input required is a tree structure such
as the one displayed in Fig. 1, encoded as in the output for the language family simulation
program. Using one and the same phylogeny, we produce 1000 diffusion scenarios. Since these
take place in real-life geography they will be sensitive to natural boundaries such as mountains,
deserts, and bodies of water. If the diffusion starts on a small island containing less than 800
populated places there is a high chance that a lineage will make a jump away from the island; if
it starts in a densely populated area the family may possibly never extend beyond this area.
Places that are currently populated work as a proxy for the carrying capacity of different areas of
the world. The kind of movement we simulate here may be called a semi-random walk: it would
obey the properties of a random walk if it was not constrained to populated places. Since this
constraint introduces the possibility of jumps, it is envisaged that a method for reconstructing a
linguistic homeland will encounter both cases where languages have a relatively even
distribution and cases where languages end up clustering in separate regions. Maps of all 1000
cases, showing the homeland, intermediate stations, locations of current languages, and inferred
homelands similarly to Figure 2 below, as well as the script that produced the maps are provided
in the electronic supplementary material (SI-12).

The reason why we choose to work with just a single simulated phylogeny unfolding in
many different geographical locations is that we hypothesize that the factor that will affect the
performance of a homeland detection method the most is the different geographical distributions
of extant languages. Other parameters, such as the size of families, the language change rate or
the extinction rate, could be varied, but each additional parameter would imply a multiplication
of computational efforts that are already large. Thus, we focus exclusively on the role of the most
interesting and complex parameter, namely geography, in the performance of homeland
detection methods. The methods thus tested are described in the next section.

3. Methods

For each of the methods tested here and described in subsections (a)-(g), we provide all files
needed for replication in the transparently named folders contained in the electronic
supplementary material (one folder per method).

(a) Baselines (rand, centr, md)

As baselines we apply three approaches. The first approach, abbreviated ‘rand’, picks a random
language in the family and assigns the homeland to the location of that language. Since this is
merely a baseline and not a method meriting deeper investigation we just did a single run across
the 1000 cases, even if the results would vary somewhat as different languages are selected. We
contend that across 1000 cases a good, real method should always have a better average
performance than this baseline, even if the latter might often ‘strike it lucky’. The second
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approach, abbreviated ‘centr’ for ‘centroid’ is built on the simple-minded assumption that the
homeland is located in the center of the polygon represented by the extension of current
languages. The centroid location is computed using the function ‘centroid’ of the R package
geosphere [13]. In the third approach, abbreviated ‘md’ for ‘minimal distance’, we compute the
average distance (as the crow flies) from each language to all the other languages. The location
of the language with the smallest average distance to the others is equated with the homeland.

(b) Fixed rates model of BayesTraits (BTF)

The fixed rates model implemented in BayesTraits [16] is a Brownian motion model where the
latitudes and longitudes are mapped to the three dimensional Cartesian coordinate system. The
three dimensional coordinates are treated independently in this model. In the BTF model, there is
a single parameter, the variance of the normal distribution, which is sampled using a Monte
Carlo Markov Chain (MCMC) procedure along with the three dimensional coordinates. The
fixed rates model takes a single tree with branch lengths and the geographical coordinates of the
20 languages as input and then reconstructs the internal nodes’ geographical locations using the
MCMC procedure.

In this paper, we infer the phylogenetic tree of the 20 languages using a Metropolis-
coupled MCMC (MC?) procedure. In the MCMC procedure, the cognate data of the 20
languages is supplied as an input to the MrBayes phylogenetic software [26]. We use the uniform
model [20] that infers rooted trees using a binary continuous time Markov chain model of lexical
evolution with sites weighted by a four-category discrete Gamma distribution. We perform two
independent runs starting from two different randomly initiated starting points. Each independent
run consists of three hot chains and one cold chain to navigate the multiple peaked tree landscape
efficiently without getting stuck in local optima. An MCMC chain is run for 10 million iterations
where every 1000™ sample is written to a file. The first 25% of the iterations are discarded as
burn-in. We constructed a majority consensus tree from the set of 7500 trees and used the
majority rule consensus tree as input to both the BTF and the BTV BayesTraits models
(subsection c), as well as to the RevBayes [17] model (described further below).

(c) Variable rates model of BayesTraits (BTV)

The variable rates model is a relaxation of the single parameter Brownian motion [21], which
assumes that the rate of change is fixed across all the branches. In this model, the branch lengths
are allowed to shrink or expand reflecting large movements in space. In contrast to the MCMC
models, where the number of parameters is fixed through the sampling process, the BTV model
has two parameter changes: whether to scale a branch and to sample the scaling parameter of a
particular branch. The decision to scale a branch increases the number of parameters by 1 and
requires the use of a Reverse Jump MCMC (RIMCMC) procedure. The RIMCMC procedure
does not easily converge, requiring long running times depending on the number of languages. In
this paper, we run the model for 1 million iterations (sampled at every 1000th iteration) preceded
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by a burnin of 100,000 iterations. In addition, we discard the first 500 samples and only use the
sample with the best likelihood for evaluation purpose.

(d) The random walk model of BEAST (BRW)

The random walk model as implemented in BEAST 2.6.3 [22] features a joint phylogenetic
inference and phylogeographic model. In the phylogenetic inference model, lexical evolution
follows a covarion model where some cognate sets are allowed to change faster than others. The
tree model of evolution is based on a birth-death model where the height of the tree is drawn
from a Gamma distribution with mean and standard deviation set to 1. The phylogenetic
inference model also has a relaxed branch rates model where the branch rates are drawn from a
uncorrelated lognormal distribution [24].2 The phylogeographic model is a relaxation of the
Brownian motion model where the likelihood of latitude and longitude drawn from independent
uniform distributions are estimated using a bivariate normal distribution. The parameters of the
variance matrix of the bivariate normal distribution are scaled by a lognormally distributed scaler
for each branch leading to a separate variance matrix for each branch. The model was run for 50
million iterations with every 1000th iteration written to a file. The first 50% of the samples were
discarded as part of burnin. Out of the remaining 25,000 samples, the geographical coordinates
from the sample with the best posterior probability is used to evaluate the model.

(e) RevBayes implementation of a fixed rates random walk model (RBF)

We implemented a simple model in RevBayes where the geographical coordinates are both
drawn from uniform distributions of real numbers in the [-90, 90] range for latitudes and the [-
180,180] range for longitudes. The phylogenetic tree is the majority consensus tree inferred from
MrBayes software described in section 3(b). The standard deviation parameter of the normal
distribution is assumed to be drawn from a uniform distribution on a log scale. The standard
deviation parameter along with latitudes and longitudes are sampled using an MCMC chain. As
part of burnin, the chain was run for 5000 iterations followed by a run for 50,000 iterations
sampled at every 100th iteration to reduce autocorrelation.

(f) RevBayes implementation of a variable rates random walk model (RBV)

The RBV model [23] allows for variable rates of evolution among branches using a relaxed
model where each branch’s rate is allowed to shift or not to shift. If there is no shift, the rate for
the branch is the same as the rate for its parent branch. If there is a rate shift, the parent branch’s
rate is scaled by a scalar that is sampled through an MCMC procedure. The rate parameter at the
root node is sampled through an MCMC move. The rate shift probability is drawn from a
Gamma distribution with mean 1 and variance set to 0.33. The probability that there is no rate
shift is given as the expected number of rate shifts (5) divided by the number of branches (2*20-

2 The XML file was crafted based on the tutorial provided here: https:/taming-the-
beast.org/tutorials/LanguagePhylogenies/
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2 = 38). The rate shift multiplier being 1 (no rate shift) or not 1 is sampled using a Reverse Jump
MCMC move since a value not equal to 1 would increase the number of parameters in the model
by 1. We ran the model for 100,000 iterations with every 200th iteration written to file. The run
was preceded by a burnin of 5000 iterations. RBV uses the same phylogenetic tree and nexus
files as the RBF (see Section 3b) model as input.

(g) The diversity method (Div)

This method represents a quantitative implementation of the old idea in linguistics and biology
[3,18] that the area of greatest diversity of a family/species is most likely the homeland. We
follow [14], where the method is presented and results for empirical data from across the world’s
language families are discussed. An actual program for doing the calculations has not been
published previously, but is provided in the electronic supplementary material (SI-10). Since the
method is already amply described [14], we only provide a summary here. A basic tenet of the
method is that it is a reasonable approximation to assume the location of one of the current
languages can be identified with that of the homeland. Given this assumption, the question
becomes how to assign diversity values to different languages. This question is answered by
assuming that larger linguistic distances coupled with greater proximity to the linguistically
distant relatives means more diversity. This solution is then implemented quantitatively by
computing all pairwise linguistic distances as well as all pairwise geographic distance (as the
crow flies) among the languages. The linguistic distances are average string distances across
word lists, the particular string distance used being defined as as LND or Levenshtein Distance
Normalized—the Levenshtein distance divided by the length of the longest of the two words
compared—divided by the mean LDN across word pairs not referring to the same concept. This
is called the LDND (Levenshtein Distance Normalized Divided) [19]. Now a diversity index Dy
for each language L is calculated as the mean of the proportion of linguistic to geographical
distance between a given language and each of the other languages. The location of the language
with the highest Dy value is assumed to be the homeland.

4. Results

Results for the different methods are given as distances in km (as the crow flies) from the true to
the inferred homelands. For the Bayesian methods we ignore the fact that they provide a set of
plausible homelands, i.e., inferred areas rather than single locations. This is of course an
advantage of these methods that should carry weight in a qualitative, comparative assessment.
But for the purposes of a quantitative performance comparison it is necessary to operate with a
single location whose validity can be assessed as a number. For BayesTraits (BTF, BTV) we
select the location associated with the highest likelihood (the software only outputs likelihoods,
not posterior probabilities) and for BEAST (BRW) and RevBayes (RBF, RBV) we select the
location with the highest posterior probability.

Table 1 provides mean and median absolute errors (distances). It is based on a larger
table for individual cases provided as a file summary_errors.txt in the electronic supplementary
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material (SI-11). Across the table, we observe large differences in means and medians,
suggesting that errors are not normally distributed, outliers having a large impact.

Table 1. Mean and median absolute errors (in km, rounded)

Error rand centr md BTF BTV BRW RBF RBV Div
Mean 214 353 153 148 172 179 167 172 183
Median 156 160 106 103 114 123 118 125 131

While the absolute errors in Table 1 are suggestive of some performance differences they
should be taken with a grain of salt since the absolute errors for baselines and methods are
generally highly correlated with the mobility of a family. The latter can be measured as the total
distance traversed at all time steps by the twenty lineages. For the centr (centroid) baseline the
correlation is small although still significant (» = .173), but this is also the ‘odd man out’ in terms
of performance. For the other baselines and methods the correlations, which are all significant at
the p <.00001 level, are in the range .657 <r <.721. Given correlations between absolute error
and mobility we prefer to assess performance using relative error, calculated as the absolute error
divided by total distance traversed. These numbers are displayed in Table 2, multiplied by
100,000 and rounded to integers for easier viewing (results for individual cases are in the file
summary_relative_errors.txt in the online electronic supplementary material, SI-11).

Table 2. Mean and median relative errors

Error rand centr md BTF TV BRW RBF RBV Div
Mean 1137 2051 794 781 884 931 878 915 955
Median 1008 997 682 679 749 805 773 791 833

The results in Table 2 allow us to establish a hierarchy of methods and baselines.
According to the results for means the ranking is as follows:

BTF, md < RBF, BTV, RBV, BRW, Div <rand, centr

To construct this hierarchy, we first ordered the methods and baselines, separating them
by the less-than symbol. Subsequently we applied a pairwise Wilcoxon rank sum significance
test to assess the differences between neighbors in the hierarchy and replaced the smaller-than
sign by a comma when neighbors were not significantly different at the .05 level. This caused


https://doi.org/10.1101/2020.09.03.280826
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.03.280826; this version posted September 3, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

BTF/md, RBV/BRW/Div, and rand/centr to merge. We then iterated this procedure, also
replacing the less-than sign with a comma when there were non-significant differences between
members of neighboring groups. The relevant, non-significant pairs here were BTV/BRW,
RBF/BRW, RBV/DIV, and RBF/RBV. The resulting picture is the one where there are just three
groups. BayesTraits (specifically BTF) works best, followed by RevBayes (RBF, RBV), BRW,
and Div, which are rather indistinguishable. All the methods beat the baselines rand and centr,
which provides a good sanity check on the results. A surprising result, however, is that the md
(minimal distance) baseline shares the winning position with BayesTraits. This baseline does not
draw on any linguistic information, only geographical coordinates. It is ‘one half’ of the diversity
method (Div) in the sense that Div uses average geographical distances in its denominator in the
calculation of diversity indices used to select the best homeland language. Apparently the
numerator does little to improve on the utility of this measure for determining which language
location is the best proxy for the homeland. Nevertheless, we still contend that md is best
regarded as a baseline, not a real method.

5. Discussion

As a first step towards comparing the methods we did a simple pairwise correlation of errors
across methods, also including the baselines (the full matrix of correlations is in the electronic
supplementary material folder SI-12). It turns out that these errors are highly correlated, except
for the baselines rand and centr. For all pairs of methods (also including md) correlations lie in
the range .809 < r <.935. Given the overall similar performances it does not seem productive to
look for factors that systematically incur differences. Instead, we will look for factors that affect
the performance in similar ways across methods. The large differences in mean and median
errors (Tables 1 & 2) indicate that the variability of performance is mainly due to large outliers.
Inspection of pictures showing inferred and true homelands for each method (included in the
electronic online supplementary material folder SI-12) suggest that outliers are mainly due to a
situation where all current languages are found in areas other than that of the homeland,
presumably due to early geographical movements pertaining to the two main lineages. Figure 2
shows such a situation where languages have ended up in two different areas, apparently as a
result of early jumps out of the homeland of both major lineages. All the six methods infer wrong
homelands, but differ a little in the magnitude of the errors.
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Fig. 2. A simulation scenario (file prefix F 20 wanej -10.9 36.15) where there were early
jumps out of the homeland, causing all six methods to err. Red dots: extant languages; white
dots: intermediate migratory stations; large green dot: true homeland; blue square: BTF; cyan
square: BTV, violet square: BRW; orange square: RBF; pink square: RBV; gray square: Div.

If it is correct that large outliers in errors are mainly due to early jumps out of the
homeland, then we can gather from the tree structure in Figure 1 that these jumps would have
occurred during the first 4 time steps of the simulations. In order to corroborate this hypothesis
we first compute ‘early jump indices’ as the percentage of the distances traversed during the first
4 time steps out of the sum of all distances traversed (results are in the file percent early.txt in
the online supporting material folder SI-12). We then gauge the impact of early jumps on errors
in two different ways, as follows: (a) early jump indices are correlated with relative errors across
the 1000 cases; (b) following the traditional way of defining outliers in a histogram, taking a
larger outlier to exceed a value of 1.5 times the interquartile range, we identify outliers in the
early jump indices as well as in the relative errors and then compute an agreement index as the
percentage of large error outliers that pertain to cases which are also large outliers in terms of
their early jump indices. If errors are in a large part due to early jumps, the correlations produced
in approach (a) should be high, but the correlations are based on all 1000 sets, so factors other
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than early jumps affect the results. Approach (b) is more focused just on the early jumps, but the
way of singling out outliers is somewhat arbitrary. In spite of these shortcomings, approaches (a)
and (b) should give us some insights into the effects of early jumps. Results for all baselines and
methods except for centr, for which the correlations (approach a) were non-significant, are
displayed in Table 3.

Table 3. The relationship between the presence of early jumps and absolute errors

Approach rand md BTF BTV BRW RBF RBV Div

correlation 418 .681 .655 .632 .604 569 568 545

agreement 444 714 694 645 556 564  60.6 46.7

Table 3 shows that the two approaches to measuring the error rates’ sensitivity to early
jumps agree (Spearman’s p = .905) and that they both indicate relatively high sensitivities. They
are both strongly negatively correlated with the average mean error (p =-.857 and p = -.905 for
correlation and agreement, respectively). This indicates that while early jumps is a problem for
all methods, the best methods are less affected by other factors causing large errors.

Besides quantitative assessment in terms of error measurements the methods also deserve
to be assessed qualitatively in terms of other performance aspects. Div and md require less than a
minute of running time on a laptop and BRW requires close to an hour for each case on a server,
with the other methods being intermediary. The Bayesian methods require cognate information
while Div only requires word lists, and md not even word lists. Div and md will avoid assigning
homelands to uninhabitable areas, including water bodies, since they are restricted to populated
locations. All the Bayesian methods give samples of coordinate sets associated with likelihoods
and/or posteriors measuring confidence as opposed to Div and md, which just output a single
location. Whether a fixed or variable rates method (BTF vs. BTV or RBF vs. RBV) is preferable
is an open question. Here we are using a simulation model where the rate of lexical change is
probabilistically fixed, perhaps explaining why BTF works better than BTV. But in a real-life
situation BTV might be better. Such qualitative factors can feed into the choice of a particular
method, sometimes even excluding some methods. In the case of BEAST, the computing time
may be prohibitive in a large study involving numerous language groups. Typically, cognate
information may not be accessible for all the language groups even though word lists are
available. This study suggests that BTF may be the preferred method when the cognate
information required to infer a phylogenetic tree is available (such information may be produced
manually or through an automated procedure [25]). When it is not, Div can be used, and its
performance is not going to be radically inferior in spite of the more limited information that it
draws upon. The surprisingly effective md baseline may serve as a quick way of generating a
hypothesis about the location of a homeland, and in cases where no linguistic information is
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available, only information about the location of languages, it is meaningful to apply this as an
actual method.

6. Conclusion
Our results of testing different methods and baselines for inferring the geographical origins of
language groups can be summarized in three points.

e When cognate information is available, BayesTraits, specifically the fixed rates version
(BTF) is the preferred method.

e When cognate information is not available, the diversity method (Div), which requires
neither a tree nor cognate information, may be applied, and its results will not be
radically different from those of BayesTraits and largely indistinguishable in quality from
those of RevBayes and BEAST.

e The minimal distance (md) baseline may have a real utility as a quick approximation to a
hypothetical homeland, and is of particular utility when only language locations are
known.
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