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ABSTRACT 24 

Human Milk Oligosaccharides (HMOs) are abundant carbohydrates fundamental to infant health and 25 
development. Although these oligosaccharides were discovered more than half a century ago, their 26 
biosynthesis in the mammary gland remains largely uncharacterized. Here, we used a systems 27 
biology framework that integrated glycan and RNA expression data to construct an HMO biosynthetic 28 
network and predict glycosyltransferases involved.  To accomplish this, we constructed models 29 
describing the most likely pathways for the synthesis of the oligosaccharides accounting for >95% of 30 
the HMO content in human milk. Through our models, we propose candidate genes for elongation, 31 
branching, fucosylation, and sialylation of HMOs. We further explored selected enzyme activities 32 
through kinetic assay and their co-regulation through transcription factor analysis. These results 33 
provide the molecular basis of HMO biosynthesis necessary to guide progress in HMO research and 34 
application with the ultimate goal of understanding and improving infant health and development.  35 

SIGNIFICANCE STATEMENT 36 
With the HMO biosynthesis network resolved, we can begin to connect genotypes with milk types 37 
and thereby connect clinical infant, child and even adult outcomes to specific HMOs and HMO 38 
modifications. Knowledge of these pathways can simplify the work of synthetic reproduction of these 39 
HMOs providing a roadmap for improving infant, child, and overall human health with the specific 40 
application of a newly limitless source of nutraceuticals for infants and people of all ages. 41 

  42 
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1 INTRODUCTION 43 

Human milk is the “gold standard” of nutrition during early life 1–3. Beyond lactose, lipids, and 44 
proteins, human milk contains 11-17% (dry weight) oligosaccharides (Human Milk Oligosaccharides, 45 
HMOs)4,5. HMOs are milk bioactives known to improve infant immediate and long-term health and 46 
development2,6. HMOs are metabolic substrates for specific beneficial bacteria (e.g., Lactobacillus spp. 47 
and Bifidobacter spp.), and shape the infant’s gut microbiome 2,7. HMOs also impact the infant’s 48 
immune system, protect the infant from intestinal and immunological disorders (e.g., necrotizing 49 
enterocolitis, HIV, etc.), and may aid in proper brain development and cognition 2,6,8,9. In addition, 50 
recent discoveries show that some HMOs can be beneficial to humans of all ages, e.g. the HMO 2’-51 
fucosyllactose (2’FL) protecting against alcohol-induced liver disease10. 52 

The biological functions of HMOs are determined by their structures 6. HMOs are unconjugated 53 
glycans consisting of 3–20 total monosaccharides draw from 3-5 unique monosaccharides: galactose 54 
(Gal, A), glucose (Glc, G), N-acetylglucosamine (GlcNAc, GN), fucose (Fuc, F) and the sialic acid N-55 
acetyl-neuraminic acid (NeuAc, NN) (Figure 1A). All HMOs extend from a common lactose (Galβ1-56 
4Glc) core. The core lactose can be extended at the nonreducing end, with a β-1,3-GlcNAc to form a 57 
trisaccharide.  That intermediate trisaccharide is quickly extended on its non-reducing terminus with 58 
a β-1,3-linked galactose to form a type-I tetrasaccharide (LNT) or a β-1,4-linked galactose to form a 59 
type-II tetrasaccharide (LNnT).  Additional branching of the trisaccharide or tetrasaccharide typically 60 
occurs at the lactose core by addition of a β-1,6-linked GlcNAc to the Gal residue. Lactose or the 61 
elongated oligosaccharides can be further fucosylated in an α-1,2-linkage to the terminal Gal residue, 62 
or α1,3/4-fucosylated on internal Glc or GlcNAc residues, and α-2,3-sialylated on the terminal Gal 63 
residue or α-2,6-sialylated on external Gal or internal GlcNAc residues6,8(Figure 1B).  64 
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Figure 1 - HMO blueprint and synthesis (A) HMOs are built from a combination of the five 65 
monosaccharides D-glucose (Glc, blue circle), D-galactose (Gal, yellow circle), N-acetyl-glucosamine 66 
(GlcNac, blue square), L-fucose (Fuc, red triangle), and sialic acid (N-acetyl-neuraminic acid (NeuAc), 67 
purple diamond). Lactose (Gal-β-1,4-Glc) forms the reducing end and can be elongated with several 68 
Lacto-N-biose or N-acetyllactosamine repeat units (Gal-β-1,3/4-GlcNAc). Lactose or the 69 
polylactosamine backbone can be fucosylated with α-1,2-, α-1,3-, or α-1,4- linkages or sialylated in α-70 
2,3- or α-2,6- linkages 2. (B) Small HMOs can be fucosylated to make 2’FL while larger HMOs can be 71 
synthesized by the extension of the core lactose with N-acetylactosamine (type-I) or lacto-N-biose 72 
(type-II) and subsequent decoration of the extended core with sialic acid to make more complex 73 
HMOs, such as DSLNT. (C) Three HMOs in this study: DSLNT, isomer 1 of DFLNT, isomer 6 of FDSLNH; 74 
isomer structures represent predictions from this study (see Methods, Figure S 12). Each 75 
monosaccharide-linking glycosidic bond is labeled (L1, L2,…L10) according to the linkage reactions 76 
listed in Table 1. 77 

Despite decades of study, many details of HMO biosynthesis remain unclear. While the many possible 78 
monosaccharide addition events above are known, the order of the biosynthetic steps and many of 79 
the enzymes involved are not known (Table 1). For example, the lactose core is extended by 80 
alternating actions of β-1,3-N-acetylglucosaminyltransferases (b3GnT) and β-1,4-81 
galactosaminyltransferases (b4GalT) while β-galactoside sialyltransferases (SGalT)  and α-1,2-82 
fucosyltransferases (including the FUT2 ‘secretor’ locus) are responsible for some sialylation and 83 
fucosylation of a terminal galactose, respectively 11. However, each enzymatic activity in HMO 84 
extension and branching can potentially be catalyzed by multiple isozymes in the respective gene 85 
family. Direct evidence of the specific isozymes performing each reaction in vivo is extremely limited. 86 
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 87 

Table 1 - Glycosylation reactions examined. We studied here several candidate glycosyltransferases 88 
expressed in our samples to identify candidates for 10 elementary reactions (see Methods, Table S 1). 89 
Acceptor, product and constraint are represented in LiCoRR12: monosaccharides include Gal (A), Fuc (F), 90 
Glc (G), GlcNAc (GN), Neu5Ac (NN). Additionally, “)” and “(“ indicate initiation and termination of a 91 
branch respectively, “[X/Y]” indicates either monosaccharide, and “~” indicates a negation. An asterisk 92 
“*” indicates an imperfect match between the EC number and reaction. Background colors correspond to 93 
the monosaccharide added: GlcNAc (blue), Fuc (red), Neu5Ac (purple), and Gal (yellow).  94 

Linkage Reaction EC Identifier Acceptor 
{Constraint} 

Product Candidates 

L1:b3GnT b-1,3 N-
acetylglucosamine 

2.4.1.149 (A (GNb3A B3GNT2-6,8-9 

L2:a2FucT a-1,2 
fucosyltransferase 

(2.4.1.69,344) (A (Fa2A FUT1-2 

L3:a3FucT a-1,3 
fucosyltransferase 

(2.4.1.152) G/GN 
{~Ab3GN} 

Fa3G/GN FUT3-7,9-11 

L4:ST3GalT (b-Gal) a-2,3 
sialytransferase 

(2.4.99.4) (A (NNa3A ST3GAL1-6 

L5:ST6GalT (b-Gal) a-2,6 
sialytransferase 

2.4.99.1 (A (NNa6A ST6GAL1-2 

L6:b3GalT b-1,3 
galactotransferase 

2.4.1.86 (GN (Ab3GN B3GALT1-2,4-5 

L7:b4GalT b-1,4 
galactotransferase 

2.4.1.90 (GN (Ab4GN B4GALT1-6 

L8:b6GnT b-1,6 N-
acetylglucosamine 

(2.4.1.150) GNb3Ab4G GNb3(GNb6)Ab4G GCNT1-4,7 

L9:a4FucT a-1,4 
fucosyltransferase 

2.4.1.65 Ab3GNb3A 
{~GNb4Ab3GNb3A} 

Ab3(Fa4)GNb3A FUT3,5 

L10:ST6GnT (b-1,3-GlcNac) a-2,6 
sialytransferase 

(2.4.99.3,7) Ab3GNb3A Ab3(NNa6)GNb3A ST6GALNAC1-6 

 95 

Here we leverage the heterogeneity in HMO composition and gene expression across human subjects 96 
to refine our knowledge of the HMO biosynthetic network. Milk samples were collected from 11 97 
lactating women across two independent cohorts between the 1st and 42nd day post-partum. (see 98 
methods). Gene expression profiling of mammary epithelial cells was obtained from mRNA present 99 
in the milk fat globule membrane interspace. Absolute and relative concentrations of the 16 most 100 
abundant HMOs was measured. Starting from a scaffold of all possible reactions13–18, we used 101 
constraint-based modeling19,20 to reduce the network to a set of relevant reactions and most plausible 102 
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HMO structures when not known21 to form the basis for a mechanistic model13,14,22. This resulted in a 103 
ranked ensemble of candidate biosynthetic pathway topologies. We then ranked 44 million candidate 104 
biosynthesis networks to identify the most likely network topologies and candidate enzymes for each 105 
reaction by integrating sample-matched transcriptomic and glycoprofiling data from the 11 subjects.  106 
For this we simulated all reaction fluxes and tested the consistency between changes in flux and gene 107 
expression to determine the most probable gene isoforms responsible for each linkage type. We 108 
followed with direct observations through fluorescence activity assays to confirm our predictions. 109 
Finally, we performed transcription factor analysis to delineate regulators of the system. The 110 
resulting knowledge of the biosynthetic network can guide efforts to unravel the genetic basis of 111 
variations in HMO composition across subjects, populations, and disorders using systems biology 112 
modeling techniques. 113 

2 RESULTS 114 

2.1 ABUNDANCES OF HMOS AND THEIR KNOWN ENZYMES DO NOT CORRELATE  115 
While α-1,2-fucosylation of glycans in humans can be accomplished by both FUT1 and FUT2, only 116 
FUT2 is expressed in mammary gland epithelial cells (Table S 1). FUT2, the “secretor” gene, is 117 
essential to ABH antigens23–25 as well as HMO 2,26,27 expression. We confirmed that non-functional 118 
FUT2 in “non-secretor” subjects guarantees the near-absence of α-1,2-fucosylated HMOs like 2’FL 119 
and LNFP1 (Fig2C). But, examining only subjects with functional FUT2 (Secretors), we found FUT2 120 
expression levels and the concentration (nmol/ml) of HMOs containing α-1,2-fucosylation do not 121 
correlate in sample-matched microarray and glycomic measurements by HPLC  (Figure 2). 122 
Generalized Estimating Equations (GEE) showed no significant positive association (2’FL Wald p = 123 
0.056; LNFPI Wald p = 0.34). FUT1 could catalyze this reaction but its expression was not detected 124 
in these samples. We hypothesized that to successfully connect gene expression to HMO synthesis, 125 
one must account for all biosynthetic steps and not solely rely on direct correlations. 126 

 127 
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 128 

Figure 2 - FUT2 expression should increase 2’FL and LNFPI which require the enzyme but there 129 
is no significant positive association. Direct comparison of FUT2 gene expression and 130 
concentrations (nmol/mL) of α-1,2-fucose containing HMOs, 2’FL (A) and LNFPI (B), in sample-131 
matched microarray and HPLC reveal no significant association in secretor women from cohort 1 132 
sampled between day 1 and 42 post-partum. Trendlines and points are colored by subject. Linear 133 
trends were used to illustrate the intuition of the GEE approach used to estimate these associations 134 
across subjects. Non-secretor mothers were excluded due to non-functional FUT2. (C) A heatmap of 135 
all HMO concentrations across cohort 1 and cohort 2 (top-bar black and grey respectively). Known 136 
HMO structures are shown to the left of each row while uncharacterized structures are indicated with 137 
a black box. For proposed isomers of uncharacterized structures, see Figure S 12. 138 

 139 
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 140 

Figure 3 - Overview of Computational Methods for Model Assembly (A-F) and Assessment (G-I). 141 
(A) To build the candidate models of HMO biosynthesis, reaction rules were defined to specify all possible 142 
monosaccharide additions. (B) The Complete Network includes all oligosaccharides and reactions 143 
resulting from the iterative addition of monosaccharides to a root lactose. (C) Using Flux Variability 144 
Analysis, the Complete Network was trimmed, removing reactions that cannot reach experimentally-145 
measured HMOs, to produce a (D) Reduced Network Figure S 9; red triangles are observed HMOs blue 146 
lines are “sink reactions” joining alternative isomers (Figure S 12). (E) From the Reduced Network, Mixed 147 
Integer Linear Programming (MILP) was used to extract Candidate Models, each representing a 148 
subnetwork capable of uniquely synthesizing the observed oligosaccharide profile using a minimal 149 
number of reactions; black clines are reactions retained in a candidate model. (F) Flux Balance Analysis 150 
was used to estimate flux through each reaction necessary to simulate the measured oligosaccharide 151 
concentrations. (G) Model scores were computed as the average maximum correlation between linkage-152 
specific candidate genes and normalized flux through that linkage (Figure S 11, S1.1.4). (H) Model scores 153 
were parameterized on cohort 1 (left) and cohort 2 (right) data (see Methods). High-performing models, 154 
95th percentile of scores, are highlighted in red. (I) Of the >40 million models considered (blue), 2.66 155 
and 2.32 million models were high-performing when parameterized on data from cohort 1 or cohort 2, 156 
respectively. Nearly 250,000 models consistently explained the relationship between predicted flux and 157 
expression data from both cohort 1 and cohort 2. These commonly selected models were analyzed for 158 
common structural features. 159 

2.2 HIGH-PERFORMING CANDIDATE BIOSYNTHETIC MODELS ARE SUPPORTED BY GENE EXPRESSION 160 

AND PREDICTED MODEL FLUX ACROSS SUBJECTS 161 
We built and examined models for HMO biosynthesis in human mammary gland epithelial cells. From 162 
the basic reaction set (Figure 3A), we generated the complete reaction network (Figure 3B) containing 163 
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all possible reactions and HMOs with up to nine monosaccharides. The Complete Network was 164 
trimmed to obtain a Reduced Network (Figure 3D; Figure S 9, Table S 2) by removing reactions 165 
unnecessary for producing the observed oligosaccharides. Candidate models (Figure 3E) were built, 166 
capable of uniquely recapitulating the glycoprofiling data from milk using two independent cohorts-167 
-cohort 1 with 8 samples from 6 mothers between 6 hours and 42 days postpartum 28,29 and cohort 2 168 
with 2 samples per mother on the 1st and second day after birth 30. Mixed integer linear programming 169 
was used to identify subnetworks with the minimal number of reactions from the Reduced Network. 170 
We identified 44,984,988 candidate models that can synthesize the measured oligosaccharides. Each 171 
candidate model contains 43-54 reactions (19.5-24.4% of the reactions in the Reduced Network 172 
(Table S 3)). These models covered all the feasible combinations of HMO synthesis by the 10 known 173 
glycosyltransferase families (Figure 1D) that could describe the synthesis of the HMOs in this study. 174 

To identify the most likely biosynthetic pathways for HMOs, we computed a model score for each 175 
candidate model using the glycoprofiling and transcriptomic data from the two independent cohorts, 176 
after excluding low-expression gene candidates. Genes were excluded when expression was 177 
undetected in over 75% of microarray samples and the independent RNA-seq31 measured low 178 
expression relative to the GTEx32: TPM<2 and 75th percentile Lemay < GTEx Median TPM. Specificity 179 
and expression filtration reduced the candidate genes from 54 to 24 (see supplemental results, Table 180 
S 1,  Figure S 7); three linkages (L2, L5 and L9) were resolved by filtration alone indicating that FUT2, 181 
ST6GAL1 and FUT3 respectively perform these reactions. 182 

Following low-expression filtering, we compared flux-expression correlation. Leveraging sample-183 
matched transcriptomics and glycomics datasets, we computed model scores indicating the capacity 184 
of each candidate gene to support corresponding reaction flux. The model score was computed by 185 
first identifying for each reaction, the candidate gene that shows the best Spearman correlation 186 
between gene expression and normalized flux; flux was normalized as a fraction of the input flux to 187 
limit the influence of upstream reactions (Figure S 11,  S1.1.4). The highest gene-linkage scores, for 188 
each reaction, for each model were averaged to obtain a model score (Figure 3G, see Methods). The 189 
model scores indicate consistency between gene expression and model-predicted flux. The high-190 
performing models (z(model score)>1.646) were selected for further examination (Figure 3H, see 191 
Methods). Though quantile-quantile plots indicated the model score distributions were pseudo-192 
gaussian, variation in skew resulted in slightly different numbers of high-performing models for the 193 
two different subject cohorts. Specifically, we found 2,658,052 high-performing models from cohort 194 
1 and 2,322,262 high-performing models using cohort 2 (Figure 3I, Table S 4). We found 241,589 high-195 
performing models common to cohort 1 and cohort 2. The model scores of commonly high-196 
performing models are significantly correlated (Spearman Rs=0.2, p<2.2e-16) and a hypergeometric 197 
enrichment of cohort 1 and cohort 2 selected models shows the overlap is significant relative to the 198 
background of 44 million models (p<2.2e-16). We analyzed these 241,589 commonly high-199 
performing models and determined which candidate genes were common in high-performing 200 
models. 201 

To determine the most important reactions (Figure 4) in the reduced network, we asked which 202 
reactions were most significantly and frequently represented among the top 241,589 high-203 
performing models. We then filtered to retain only the top 5% of most important paths from lactose 204 
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to each observed HMO (see Methods). The most important reactions form the Summary Network 205 
(Figure 4). Here, HMO biosynthesis naturally segregates into type-I backbone structures, with β -1,3-206 
galactose addition to the GlcNAc-extended core lactose, and type-II structures, with β -1,4-galactose 207 
addition to the GlcNAc-extended core lactose. As expected, LNFPI, LNFPII, LSTb and DSLNT segregate 208 
to the type-I pathway while LNFPIII and LSTc are found in the type-II pathway (see Methods for HMO 209 
definitions). The Summary Network suggests resolutions to large structurally ambiguous HMOs 210 
(FLNH5, DFLNT2, DFLNH7, and DSLNH2) by highlighting their popularity in high-performing 211 
models. The Summary Network also shows three reactions of high comparable strength projecting 212 
from GlcNAc-β1,3-lactose to LNT, LNnT and a bi-GlcNAc-ylated lactose (HMO8, Figure 4, Table S 2) 213 
suggesting LNT may be bypassed through an early β-1,3-GlcNAc branching event; a previously 214 
postulated alternative path33. We checked for consistency with previous work34 and found that (1) 215 
the single fucose on the reducing-end Glc residue is always α-1,3 linked, (2) for monofucosylated 216 
structures, the non-reducing terminal β-1,3-galactose is α-1,2-fucosylated, (3) all galactose on the β-217 
1,6-GlcNAc is always β-1,4 linked while all galactose on the β-1,3-GlcNAc are either β-1,3/4 linked. 218 
With the exception FDSLNH1, (4) no fucose is found at the reducing end of a branch and (5) all α-1,2-219 
fucose appear on a β-1,3-galactose and not β-1,4-galactose in monofucosylated structures with more 220 
than four monosaccharides; suggesting that FDSLNH1 is an unlikely isomer. The summary network 221 
also suggests that most HMOs have type-I LacNAc backbones. To address the potential over-222 
representation of type-I HMOs in our models, we examined the distribution of type-I and type-II in 223 
tetra- and pentasaccharides with known structures. Across samples, the median abundance of type-224 
II HMOs, LNnT, LNFPIII and LSTc were 3.33%, 0.041%, and 2.68% of total nmol/mL while type-I 225 
HMOs of the same size, LNT, LNFPI, LNFPII, and LSTc, was 15.3%, 9.39%, 7.45% and 0.45% 226 
respectively. This confirms the greater abundance of type-I HMOs compared with the type-II 227 
structures in the glycomic profiles (Figure 2C). This Summary Network thus provides orientation in 228 
this underspecified space.  229 
 230 
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Figure 4 Summary Network of the most important reactions in the reduced network. Observed, 231 
intermediate and candidate HMOs most important to commonly high-preforming networks were 232 
selected from the Reduced Network (Figure 3D; Supplemental Methods S1.1.2). (A) Several 233 
ambiguous isomers (Figure S 12) were preferred(Figure S 1) in the commonly high-performing 234 
models. (B) A summary network was constructed from reaction importance; an aggregation of the 235 
proportion of high-performing models that include a reaction, and the enrichment of a reaction in 236 
the high-performing model set (see Methods). Line weight indicates the relative importance of each 237 
reaction. Line color corresponds to the monosaccharide added at each step and line type corresponds 238 
to the linkage type. The Summary Network naturally segregates into type-I and type-II backbone 239 
structures. For measured HMO definitions (e.g. FDSLNH and DSLNT) see Methods, for intermediate 240 
HMO definitions (e.g. 8, 10, or 25) see Table S 2, for uncertain structures (e.g. DFLNH7, FLNH5) see 241 
Figure S 12 .  242 

 243 
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 244 

 245 

Figure 5 – Gene expression correlation with model flux predicts enzymes involved in HMO 246 
biosynthesis. (A) To determine the gene expression that best explains flux through each reaction in 247 
each glycomics-transcriptomics matched sample, we examined the proportion of high-performing 248 
models were each gene was most flux-correlated (PROP, Figure S 4), we also examined the gene-linkage 249 
score (GLS) and Model Score Contribution (MSC). For this visual, each measure was max-min normalized 250 
between 0 and 1. Genes were selected based on high performance on all three measures across cohorts 251 
(line type). (B) We summarize the three performance scores from panel A across cohorts into a single 252 
support score (see Methods). Briefly, “Support” is p-value for the sum of PROP, GLS and MSC z-scores 253 
(relative to a permuted background), Fisher-pooled across cohorts then False Discovery Rate (FDR) 254 
corrected across genes (see Methods). Unmeasured genes appear below the plot in the Not Determined 255 
(N.D.) box. Genes selected by default (purple, “*”) as the only measured gene candidate (Table 1) 256 

 257 
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2.3 GLYCOSYLTRANSFERASES ARE RESOLVED BY RANKING REACTION CONSISTENCY ACROSS SEVERAL 258 

METRICS 259 
We further analyzed the high-performing models to identify the glycosyltransferases responsible for 260 
each step in HMO biosynthesis (Table 1). As previously described, not all members of a gene family 261 
were examined in this analysis. Some genes were excluded due to their well characterized irrelevance 262 
(e.g. FUT8) and others, like FUT1, were excluded due to low expression in lactating breast epithelium 263 
(see Table S 1, methods and supplemental results for the detailed inclusion criteria). To determine 264 
the genes preferred for each reaction, we used three metrics to quantify the association between 265 
candidate gene expression and predicted flux. These were (1) proportion (PROP - the relative 266 
proportion of models best explained by a candidate gene, Figure S 4), (2) gene linkage score (GLS - the 267 
average Spearman correlation between gene expression and flux), and (3) model score contribution 268 
(MSC - an estimate of the gene-influence indicated by the Pearson correlation between model score 269 
and gene linkage score) (Figure 5A, Figure S 5). For each candidate gene, we generated a reaction 270 
support score (Figure 5B, see Methods); the pooled significance of the maxima of PROP, GLS and MSC 271 
across both cohorts.  272 

Three reactions, L2 (FUT2), L5 (ST3GAL1) and L9 (FUT3), were matched to genes by default as they 273 
were the only gene candidates remaining following gene expression filtering (Table S 1, 274 
Supplementary Results). At least one gene showed significant support (q<0.1) for each remaining 275 
reaction. GCNT3 shows highly significant support (q<0.001) and nearly 100% of models selected this 276 
isoform over GCNT2C or GCNT1 (Figure S 4). B4GALT4 is the most significantly supporting gene for 277 
the L7: b4GalT reaction (Figure 5B). In both cohort 1 and 2, B4GALT4 outperforms all other isoforms 278 
in all three metrics. B4GALT4 expression best explains flux in 62% and 80% (PROP) of high-279 
performing models using cohort 1 and 2 data respectively (Figure S 4). B4GALT4 also has the highest 280 
MSC and GLS (z>5.6) of any isoforms. Interestingly, while B4GALT1 is highly expressed and 281 
fundamental to lactose synthesis in the presence of α-lactalbumin and lactation in general35,36, it 282 
showed negligible support for the L7 reaction (Figure 5B). Considering the reaction support score, all 283 
linkages show at least one gene for each reaction that significantly explains behavior across cohorts 284 
(Figure 5B). 285 
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 286 

Figure 6 - Results of the CMP-Glo™ Glycosyltransferase Assay to test GT candidates on relevant 287 
HMO acceptors.  Average luminescence below 10,000 is considered weak activity, and activity above 288 
200,000 is considered very high activity. Reported luminescence values were background corrected and 289 
95% confidence intervals are shown. For complete details see Table S 6. Shapes correspond to ST3GALT 290 
isoforms 291 

 292 

2.4 KINETIC ASSAYS CONFIRM SELECTED GENES AND EXPAND OUR SCOPE  293 

Towards validating and expanding our gene-reaction predictions, glycosyltransferase enzyme 294 
activity assays were performed using the NTP-Glo™ Glycosyltransferase assay format from Promega. 295 
We used linkage L1:b3GnT and L10:ST6GnT to validate our selections and examined every plausible 296 
isoform of the ST3GAL for its ability to perform the linkage L4:ST3GalT reaction. Five acceptors were 297 
used: (1) lactose to examine activity on the initial HMO acceptor , (2) LNT and (3) LNnT to establish 298 
which enzymes would act on larger type-I and type-II tetrasaccharides, (4) Gal ꞵ1,3-GalNAc to 299 
determine specificity for non-HMO O-type glycans, and (5) a GlcNAc-ꞵ1,3-Gal-ꞵ1,4-GlcNAc-ꞵ1,3-Gal-300 
ꞵ1,4-Glc pentasaccharide structure to test the formation of a non-reducing terminal type-I (Gal-b1,3-301 
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) cap on a longer acceptor. We explored the activities of various gene products to perform specific 302 
glycosyltransferase reactions crucial to HMO biosynthesis (Figure 6, Table S 5). 303 

In the cross-cohort aggregate analysis (Figure 5B), B3GNT2 is selected as a reasonable candidate to 304 
catalyze flux through the L1:b3GnT reaction. The B3GNT2 support score is nearly 100 times more 305 
significant than B3GNT8, the next most associated gene. Consistent with the predictions that b3GnT 306 
should convert lactose into the precursor to LNT and LNnT, the UDP-Glo™ assay showed B3GNT2 had 307 
high activity toward lactose as an acceptor. We further found that B3GNT2 could add a β1,3-GlcNAc 308 
to LNnT as is necessary for poly-lacNAc HMOs. The cross-cohort aggregate analysis (Figure 5B) 309 
selected ST6GALNAC2 to perform L10, the α2,6 addition of sialic acid to the internal β1,3-GlcNAc; 310 
necessary for the biosynthesis of LSTb from LNT and possibly DSLNT from LSTa. However, the CMP-311 
GLO™ assay highlighted a negligible activity of ST6GALNAC2 toward LNT even at very high enzyme 312 
input indicating that this enzyme does not convert LNT to LSTb. We did not test if it can convert LSTa 313 
to DSLNT. In contrast, ST6GALNAC5 was effectively able to use LNT as an acceptor, although we did 314 
not confirm the formation of the LSTb structure. ST6GALNAC5 could not be considered in the support 315 
score calculation because it was only measured in cohort 2; expression was greater than zero in 1 of 316 
12 samples. 317 

Finally, we tested the affinities of plausible ST3GAL isoforms to sialylate LNT, LNnT or β1,3-GlcNAc 318 
(Table S 5). The multi-cohort analysis (Figure 5B) implicates ST3GAL1 as the best candidate for this 319 
reaction. The CMP-Glo™ assay indicated that ST3GAL1 has limited activity toward LNT but high 320 
activity toward Gal β1,3-GlcNAc suggesting ST3GAL1, in vitro, is more involved in non-HMO O-type 321 
glycan biosynthesis. ST3GAL2 showed a similar but less substantial pattern. ST3GAL3 showed the 322 
strongest activity for sialylation both LNT and LNnT suggesting it could synthesize LSTa from LNT. 323 
ST3GAL6 shares a similar but lesser activity for LNT and LNnT.  324 

We analyzed the original expression profiles to determine which genes were sufficiently expressed 325 
to actuate this activity. STGAL1, 3 and 5 were strongly expressed in nearly 100% of samples across 326 
both cohorts; ST3GAL2 and 4 show zero expression in 75% of samples in at least one cohort (Figure 327 
S 6). ST3GAL3 was highly expressed and effective at catalyzing the L4 reaction for LNT and LNnT 328 
while ST3GAL1 was highly expressed and weakly catalyzed sialylation of LNT making ST3GAL3 the 329 
most likely candidate for L4 reaction on LNT and LNnT. 330 

  331 
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 332 

Figure 7 - de novo promoter-enriched TF motifs and IPA predicted TFs using differential 333 
expression analyses with respect to 16 HMOs. (A) MEME identified TF motifs and 5 known TFs (ETV4, 334 
ETS1, EGR1, SP1, and ERG) associated with them (see Table S 6). MEME-discovered TFs were cross-335 
referenced with known TF binding sites using TOMTOM. Logos for the matched known and discovered 336 
motifs are shown in the top and bottom of each subpanel; the p-value is a logo matching significance 337 
calculated by TOMTOM. (B) Subset of a biclustering of activation z-score computed by IPA indicating 338 
the likelihood that a TF activates (z>0) or inhibits (z<0) an HMO concentration signature (gene 339 
expression associated with changes in HMO concentration). The full biclustering can be found in the 340 
supplement (Figure S 16)  341 
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Table 2 - TF motif (MEME) and IPA upstream regulator integrated results  342 

LINKAGE REACTION 
SUPPORT 

SCORE 
SELECTED 

CANDIDATE 

MEME 
TF MOTIF 

(P-VALUE)*1 

JASPAR TF 
(P-VALUE)*2 

IPA PREDICTED 
TF*3 

L1:B3GNT B3GNT2 TF Motif–II 
(1.39e-12) 

SP1 (4.96e-05) Y 
EGR1 (2.17e-05) Y 

L2:A2FUCT FUT2 TF Motif–III 
(3.63e-16) 

IKZF1 (7.62e-04) Y 

L3:A3FUCT FUT11 TF Motif–II 
(1.00e-7) 

SP1 (4.96e-05) Y 
EGR1 (2.17e-05) Y 

L4:ST3GAL
T 

ST3GAL1 TF Motif–I   
(2.76e-11) 

ETV4 (1.24e-03) Y 
ETS1 (3.01e-04) Y 
ERG (3.50e-04) Y 

L7:B4GALT B4GALT4 TF Motif–II 
(7.67e-11) 

SP1 (4.96e-05) Y 
EGR1 (2.17e-05) Y 

L10: 
ST6GNT 

ST6GALNAC2 TF Motif–II 
(1.08e-7) 

SP1 (4.96e-05) Y 
EGR1 (2.17e-05) Y 

*1. The P-value (see Figure S 15) is the significance of the selected GT to the MEME identified TF motif. 343 

*2. The P-value (see Table S 7) is the significance of known TF associated with the MEME identified TF 344 
motif. 345 

*3. The IPA upstream regulator analyses were conducted on the three different sets of DEGs: 16 HMOs, 346 
19 glycan motifs, and 4 differential motifs (see Methods for details). Based on the Z-score predicted by 347 
IPA using the gene expression data, we selected the significant TFs with IPA predicted activation score 348 
|Z value|>=3 in this study. Note, ‘Y’ denotes the known TF is presented in the indicated dataset (HMO 349 
(Figure 7, Figure S 16), Motif (Figure S 17), or differential motif (Figure S 18)) of the IPA predicted TF 350 
and ‘N’ means the TF doesn’t present in the dataset of IPA predicted TF. 351 

2.5 SELECTED GLYCOSYLTRANSFERASES SHARE TRANSCRIPTIONAL REGULATORS ACROSS 352 

INDEPENDENT PREDICTIONS 353 
To explore the transcriptional regulation during lactation, we used two orthogonal approaches for 354 
transcription factor (TF) discovery. We used Ingenuity Pathway Analysis (IPA) to predict upstream 355 
regulatory factors based on differential expression associated with each HMO. IPA analyzed all genes 356 
differentially expressed with HMO abundance, not only HMO glycogenes; these differential 357 
expression patterns formed HMO specific gene expression signatures. Additionally, we used MEME 358 
for de novo motif discovery in the promoter regions of HMO glycogenes and TOMTOM to map those 359 
discovered motifs to known TFs. We validated these predictions by examining transcriptional 360 
regulators selected by both MEME and IPA (Figure S 13, see Methods). 361 

IPA discovered 57 TFs significantly (|z|≥3; p < 0.001) associated with the 16 HMO-specific gene 362 
expression signatures. We performed differential expression on HMO substructure abundance and 363 
substructure abundance ratios17; IPA found 66 and 49 TFs significantly (|z|≥3; p < 0.001)) associated 364 
with HMO substructure and substructure ratio specific gene expression signatures. Using MEME, we 365 
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identified three putative TF regulatory sites (TF motifs I, II and III) for 6 selected glycosyltransferases 366 
responsible for the HMO biosynthesis (Table 2 and Figure S 15). TOMTOM calculated that these 367 
putative binding sites were significantly associated with six known TFs (IKZF1, SP1, EGR1, ETS1, 368 
ETV4 and ERG) that were also predicted by IPA as regulators of gene signatures associated with HMO 369 
concentration (Figure 7, Figure S 16) or HMO glycan substructures abundance (Figure S 17). SP1, 370 
EGR1, ETS1, ETV4 and ERG are all predicted to positively influence expression associated with the 371 
biosynthetically related HMOs: 3’SL, 3FL, LSTb and DSLNT; 3’SL and 3FL share a common substrate 372 
(lactose) while LSTb is a likely precursor to DSLNT. The motif-level analysis showed opposing 373 
regulation between IKZF1: upregulating gene expression signatures associated with the 3’SL and 374 
LSTb substructure abundance17 (X34 and X62 respectively, see Figure S 19) and downregulating 375 
gene expression associated with GlcNAC-lactose, LNT and LNFPI substructure abundance (X18, X40 376 
and X65 respectively, see Figure S 19), while EGR1, ERG and ETS1 have the opposite predicted 377 
impact (Figure S 17). The motif-level predictions are consistent with the HMO-level predictions of 378 
upregulation on 3’SL and LSTb while adding an additional point of contrast. While EGR1, ERG and 379 
ETS1 are predicted to increase production of sialylated HMOs, they may have the opposite impact on 380 
LNFPI. Thus, we detect signatures of multiple transcription factors that could coordinate the 381 
regulation of the genes we identified to contribute to HMO biosynthesis (see supplemental 382 
discussion). 383 

 384 

3 DISCUSSION 385 

By integrating sample-matched quantitative oligosaccharide measurements and gene expression 386 
data using computational models of HMO biosynthesis, we resolved genes responsible for 10 387 
elementary reactions in human mammary gland epithelial cells. The modeling-based strategy was 388 
essential since simple correlations failed to capture the simplest HMO-gene associations, given the 389 
complex interactions of glycosyltransferases in the HMO biosynthetic pathway. Because the pathway 390 
characterization is still incomplete, we built >44 million candidate models that uniquely recapitulate 391 
glycoprofiling data in two independent cohorts. Candidate model flux, i.e. activity of each reaction, 392 
was predicted for each model and compared to sample-matched gene expression data. We used the 393 
consistency between gene expression and predicted flux across cohorts in high-performing models 394 
to select genes for each fundamental reaction. Analysis of these models suggested glycosyltransferase 395 
genes, thus providing a clearer picture of the enzymes and regulators of HMO biosynthesis in 396 
mammary epithelial cells. The clarification of the pathways and enzymes involved in HMO 397 
biosynthesis will be an invaluable resource to help (1) discover the maternal genetic basis of health-398 
impacting1,2,5,6,37–46 HMO composition heterogeneity7,26,47,48 and (2) drive chemoenzymatic synthesis 399 
49–53 and metabolic engineering for manufacturing HMOs for food ingredients, supplements and 400 
potential therapeutics54–59 (see supplemental discussion).  401 

Of the three fucosylation reactions, two were determined using expression data alone while the third 402 
required additional insight from the flux-expression comparison or, support score. Consistent with 403 
studies in blood23–25 and milk26,47,60 types, we selected FUT2 as the gene supporting the α1,2-404 
fucosylation (L2:a2FucT) linkage reaction. FUT1 was ruled out due to non-expression (Table S 1, 405 
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supplemental results). In the second fucosylation reaction, FUT3, FUT4 and FUT11 all show 406 
significant support for α1,3-fucosylation (L3:a3FucT) linkage formation. FUT11 is more commonly 407 
considered an N-glycan-specific transferase61 and therefore a less likely candidate. Both FUT3 and 408 
FUT4 prefer to fucosylate the inner GlcNAc of a type-I polylactosamine62. FUT3 prefers neutral type-409 
I polylactosamine while FUT4 also fucosylates the sialylated form63,64; the charge preferences are 410 
inverted for type-II polylactosamine acceptors65. Prudden et. al.52 used FUT9 to perform this reaction, 411 
consistent with its ability to transfer α1,3 fucose to the distal GlcNAc of a neutral polylactosamine61–412 
63. The four HMO structures with α1,3-Fucose in the Summary Network (Figure 4) include 3FL 413 
(neutral inner fucosylation), LNFPIII (neutral distal fucosylation), DFLNT2 (neutral inner 414 
fucosylation), and FDSLNH2 (sialylated and neutral distal fucosylation). FUT9 showed negligible 415 
expression  in RNA-Seq (3rd Quartile TPM=0.37, Table S 1), yet it is highly expressed (TPM>10) brain 416 
and stomach32. Therefore, it is likely that the distal fucosylation is conducted by another enzyme in 417 
vivo while the inner fucosylation is likely performed by either FUT3 or FUT4.  FUT3 was also chosen 418 
for the α1,4-fucosylatoin (L9:a4FucT) by default due to the non-expression of FUT5, confirmed by 419 
RNA-Seq (Table S 1, supplemental results). FUT3 adds an α1,4-fucose to the GlcNAc of a neutral type-420 
I chain to form the Lewis-A or Lewis-B group and adds an α1,3-fucose to the GlcNAc of a type-II 421 
chain63,64. Usage of FUT3 would provide a parsimonious explanation for the fucosylation of both type-422 
I and type-II HMOs like LNFPII (Fuc- α1,4-LNT (type-I)) and LNFPIII (Fuc- α1,3-LNnT (type-II)).  423 

One of two sialyltrasferases was clearly resolved with expression data alone, the other required 424 
additional examination. ST6GAL1 was chosen by default to support the α2,6-sialylation (L5:ST6GalT) 425 
reaction due to the non-expression of ST6GAL2 (Table S 1). ST6GAL1 sialylates galactose in HMOs52. 426 
For the second sialylation reaction, our flux-expression comparison selected ST6GALNAC2 and 427 
ST6GALNAC6 as the significant supporters of α2,6 sialylation (L10:ST6GnT). Through a kinetic assay, 428 
we confirmed that ST6GALNAC2 (previously shown to accept core-1 O-glycans66,67) fails to sialylate 429 
LNT. Though our kinetic assay shows that ST6GALNAC5 (known to sialylate GM1b68) can sialylate 430 
LNT, it was not expressed in this context (Table S 1, supplemental results). ST6GALNAC3 expression 431 
was not observed in microarrays but could not be ruled out due to RNA-Seq expression (Table S 1, 432 
supplemental results); it sialylates the GalNAc of NeuAc-α2,3-Gal-β1,3-GalNAc-α1-O-Ser/Thr and 433 
NeuAc-α2,3-Gal-β1,3-GalNAc-β1,4-Gal-β1,4-Glc-β1-Cer when the inner galactose is not sialylated 434 
(e.g. GD1a or GT1b)69–72 but has not been shown to transfer to a GlcNAc. The last ganglioside-435 
accepting family gene, ST6GALNAC6, has broader activity accepting several gangliosides (GM1b, 436 
GD1a, and GT1b)69 and sialylating the GlcNAc of LNT-ceramide73. Considering the broader activity, 437 
clear expression and computational selection, ST6GALNAC6 is the most likely candidate, though 438 
ST6GALNAC3 should not be ruled out. In the third reaction, ST3GAL1 shows significant support for 439 
α2,3-sialylation (L4:ST3GalT) reactions while ST3GAL3 shows negligible consistency in the flux-440 
expression comparison. Yet, in vitro, ST3GAL3 was most effective at sialylating both LNT and LNnT 441 
in kinetic assays while ST3GAL1 weakly sialylated LNT. ST3GAL4, which prefers type-II acceptors74–442 
76, was used previously to perform this reaction in vitro52, but it was not expressed on the microarrays 443 
nor RNA-Seq. ST3GAL3 can accept type-I, type-II and type-III acceptors including LNT and prefer 444 
type-I acceptors74,75,77 while ST3GAL1 accepts type-I, type-III and core-1 acceptors but not type-445 
II74,75,78. The kinetic assays and previous literature show ST3GAL3 is more capable than ST3GAL1 at 446 
catalyzing this reaction, while ST3GAL1 expression was found to be the only plausible candidate 447 
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based on estimated flux through this reaction. If ST3GAL1 were responsible for this reaction, its 448 
inability to sialylate type-II HMO could partially explain the lack of sialylation and larger structures 449 
in the type-II HMO branch. Both ST3GAL1 and ST3GAL3 remain plausible candidate genes, and 450 
further in vivo studies are needed. Both galactosylation reactions required further examination of 451 
flux-expression relationships. We found B3GALT4 to significantly support the type-I β -1,3-galactose 452 
addition (L6:b3GalT). B3GALT4 can transfer a galactose to GalNAc in the synthesis of GM1 from 453 
GM279. Unlike B3GALT5, there is no evidence that B3GALT4 can transfer galactose to a GlcNAc80. 454 
B3GALT5, has been shown to transfer a β -1,3-galactose to GlcNAc to form LNT in vitro81. B3GALT5 455 
expression measured for cohort 1 microarray was much lower than expression in cohort 2 and the 456 
independent RNA-Seq31 suggesting that the probes in the first microarray may have failed (Table S 1, 457 
supplemental results). While both B3GALT4 and B3GALT5 seem plausible, given the historical 458 
failures of B3GALT4 to perform this reaction and our likely failure to measure and evaluate B3GALT5, 459 
B3GALT5 may be the stronger candidate for this reaction. In the second galactosylation reaction, the 460 
flux-expression comparison found B4GAL4 and B3GALT3 most significantly supports the type-II 461 
definitive β-1,4-galactose addition (L7:b4GalT). These gene-products can synthesize LNnT-462 
ceramide82. Additionally, in the presence of α-lactalbumin (highly expressed during lactation), 463 
B4GALT4 shows an increased affinity for GlcNAc acceptors suggesting during lactation it is more 464 
likely to perform the L7 reaction82,83. B4GALT1 and B4GALT2 synthesize lactose in the presence of α-465 
lactalbumin during lactation35,36, but B4GALT1 expression was not correlated with L7 flux and 466 
B4GALT2 was not expressed (Table S 1). We note that associations between B4GALT1 expression L7 467 
flux may be masked due to its consistent high. Therefore, flux-expression correlation should not be 468 
used to exclude B4GALT1 as a candidate for the L7 reaction. Doing so, B4GALT4, B4GALT3 and 469 
possibly B3GALT1 remain the most plausible candidates.  470 

Finally, both GlcNAc additions required flux-expression examinations. B3GNT2 showed significant 471 
support in the flux-expression comparison. In our kinetic assays, B3GNT2 demonstrated high activity 472 
towards lactose as an acceptor. Previously, B3GNT2 has performed the β-1,3-GlcNAc addition 473 
(L1:b3GnT) on multiple glycan types including several HMOs: lactose, LNnT, polylactosamine-474 
LNnT84. The agreement of literature, kinetic assays and flux-expression analysis indicate B3GNT2 is 475 
an appropriate choice for this reaction. In the second GlcNAc reaction, GCNT3 and GCNT1 most 476 
significantly support the branching β-1,6-GlcNAc addition (L8:b6GnT). While GCNT2B can effectively 477 
transfer the branching GlcNAc to the inner galactose of LNnT52,85, it was not expressed in the cohort 478 
microarrays or independent RNA-Seq. GCNT1 transfers a branching GlcNAc to the GalNAc of a core-479 
1 O-glycan86,87 while GCNT3 acts on core-1 and the galactose of the LNT-like core-3 structure88,89. 480 
GCNT3 is also specifically expressed in mucus-producing tissues88,89 like lactating mammary gland 481 
epithelium. Interestingly, GCNT3 acts on galactose of the GlcNAc-β1,3-Gal-β1,4-Glc trisaccharide 482 
(predistally) while GCNT2 acts on the central galactose of the LNnT or LNT tetrasaccahride 483 
(centrally)85. Therefore, reliance on GCNT3 for the branching reaction would explain the 484 
noncanonical branched tetrasaccharide (HMO8, Figure 4) suggesting a third major branch from 485 
GlcNAc- β1,6-lactose, distinct from LNT and LNnT. Predistal addition of the branched GlcNAc may 486 
also explain the lack of branched type-II structures since B4GALT4 cannot act on branched core-4 487 
structures90. HMO biosynthesis with GCNT3 and B4GALT4 could explanation the type-I bias seen in 488 
the Summary Network (Figure 4).  489 
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Our results show consistency with experimental validation here and the published literature. Further 490 
direct empirical studies will be invaluable to confirm each gene-reaction association and the 491 
complete biosynthesis network. Such studies would include further clinical cohort studies and the 492 
development of mammary organoid models capable of producing HMOs. Such experimental systems 493 
can clarify the impact of mammary-tissue specific genes, cofactors, and HMO chaperones like α-494 
lactalbumin 82,83 on glycosyltransferase activity. Therefore, further development of authentic in vitro 495 
cell and organoid models will be invaluable to finalizing our model of HMO biosynthesis. 496 

4 CONCLUSION 497 

By using systems biology approaches, different omics data can be integrated, as shown here to 498 
predict gene-reaction relations even in highly uncertain and underdetermined networks. Of the ten 499 
fundamental reactions we aimed to resolve and reduce (Table 1), we succeeded in narrowing the 500 
candidate substantially for each one. The newly reduced space of HMO biosynthetic pathways and 501 
knowledge of the enzymes and their regulation will enable mechanistic insights into the relationship 502 
of maternal genotype and infant development. Finally, once essential HMOs are identified, the 503 
knowledge presented here on the HMO biosynthetic network can provide insights for large-scale 504 
synthesis of HMOs as ingredients, supplements, or potential therapeutics to further help improve the 505 
health of infants, mothers, and people of all ages. 506 
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7 MATERIALS AND METHODS  526 

7.1 MILK SAMPLE COLLECTION 527 
Samples were collected following Institutional Review Board approval (Baylor College of Medicine, 528 
Houston, TX). Lactating women 18-35 years of age with uncomplicated singleton pregnancy, vaginal 529 
delivery at term (>37 weeks), Body Mass Index <26 kg/m2 without diabetes, impaired glucose 530 
tolerance, anemia, or renal or hepatic dysfunction were given informed consent before sample 531 
collection. Description of the protocols used to collect milk samples and the diversity of subjects 532 
present in both datasets. Cohort 1 consists of 8 samples for each of the 6 subjects (48 samples total) 533 
including milk from 4 secretor mothers and 2 non-secretor mothers spanning from 6 hrs to 42 days 534 
postpartum. Sample collection was previously described28,29. Cohort 2 consists of 2 samples over each 535 
of the 5 (10 samples total) including samples from 4 secretor mothers and 1 non-secretor mother 536 
spanning 1 to 2 days postpartum. Sample collection was previously described30.  537 

7.2 ILLUMINA MRNA MICROARRAYS & GLYCOPROFILING  538 
All expression and glycoprofiling measurements were sample-matched. Therefore, comparisons 539 
across data-types occurred within each individual sample described in the previous section. Not all 540 
samples in these studies have both microarray and glycoprofile measurements, only the samples 541 
described in the previous section have matched glycomics and transcriptomics data. 542 

mRNA was isolated from TRIzol-treated milk fat in each sample. Expression in cohort 1 was 543 
measured using HumanHT-12 v4 Expression Beadchip microarrays (Illumina, Inc.) with ~44k 544 
probes. Extraction of mRNA and measurement of  expression in milk samples was performed as 545 
previously described 28,29. Gene expression data for cohort 1 were retrieved from the Gene Expression 546 
Omnibus at accession: GSE36936. Cohort 2 gene expression data were measured using a Human Ref-547 
8 BeadChip array (Illumina, Inc) with ~22k probes. Extraction of mRNA and related methods were 548 
previously described 30. Expression data for cohort 1 can be accessed at accession: GSE12669. Both 549 
microarrays were background corrected. The cohort 1 microarray was normalized using cubic spline 550 
normalization and the cohort 2 microarray was normalized using the robust spline normalization. 551 

As previously described41,91, HMO composition and abundance data were collected using high-552 
performance liquid chromatography (HPLC) with 2-aminobenzamide (CID: 6942) derivatization and 553 
a raffinose (CID:439242) standard. 16 HMOs were measured using retention time and commercial 554 
standards including 2-fucosyllactose (2’FL), 3-fucosyllactose (3FL), 3-sialyllactose (3’SL), lacto-N-555 
tetraose (LNT), lacto-N-neotetraose (LNnT), lacto-N-fucopentaose (LNFP1, LNFP2 and LNFP3), 556 
sialyl-LNT (LSTb and LSTc), difucosyl-LNT (DFLNT), disialyllacto-N-tetraose (DSLNT), fucosyl-lacto-557 
N-hexaose (FLNH), difucosyl-lacto-N-hexaose (DFLNH), fucosyl-disialyl-lacto-N-hexaose (FDSLNH) 558 
and disialyl-lacto-N-hexaose (DSLNH). Technicians were blinded to sample metadata. HMO 559 
composition and abundance measurement for cohort 1 were fully described in 17. Measurements for 560 
cohort 2 are previously unpublished and used the same methodology. 561 
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7.3 SOFTWARE 562 
Modeling of HMO biosynthesis was performed in Matlab 2016b using the CobraToolbox 92. All 563 
analysis of biosynthetic models, interpretation and statistics were performed in R v3.5 and v3.6. In 564 
R, we used bigmemory, bigalgebra and biganalytics to handle the millions of models and associated 565 
statistics 93. We used metap for pooling p-values94. 566 

7.4 GENERATION AND SCORING OF GLYCOSYLATION NETWORK MODELS 567 
Here we attempt to determine the genes responsible for making HMOs through the construction and 568 
interrogation of models of their biosynthesis. Similar to the other biosynthetically constrained 569 
glycomic models like the milk metaglycome21, Cartoonist95 and several N-glycome simulations13,96–98, 570 
we began with a set of elementary reactions. Enumerating all feasible permutations of the elementary 571 
reaction (Figure 3A; S1.1.1), we delineated every possible reaction series from lactose to each of the 572 
16 most abundant HMOs. Of the measured HMOs, 11 have fully determined molecular structures, 573 
while the remaining five have multiple candidate structures (Figure 1C, Figure S 12)6,8,34,99–101. The set 574 
of all possible reactions leading to characterized and ambiguous structures formed the Complete 575 
Network (Figure 3B; Supplemental Methods S1.1.1). Though non-lysosomal glycosidase102–104 576 
reactions are not explicitly specified, they are implicitly encoded in the flux. To reduce the Complete 577 
Network to a more manageable size, we identified and removed all reactions that do not lead to 578 
observed oligosaccharides using Flux Variability Analysis (FVA; Supplemental Methods S1.2.4;105–107). 579 
This trimming (Figure 3C; Supplemental Methods S1.1.2) defines the Reduced Network (Figure 3D; 580 
Supplemental Methods S1.1.2). The Reduced Network describes many candidate models that can 581 
uniquely simulate the HMO abundance collected through High-Performance Liquid Chromatography 582 
(HPLC). A mixed integer linear programing (Supplemental Methods S1.2.5;108,109) approach was 583 
employed to extract candidate models from the Reduced Network capable of uniquely recapitulating 584 
the HPLC data with minimal reactions (Figure 3E; Supplemental Methods S1.1.3). The reactions of 585 
each candidate model were parameterized to determine the necessary flow of material (flux) through 586 
each reaction to reproduce the measured oligosaccharide profiles (Figure 3F; Supplemental Methods 587 
S1.1.3; S). The models were ranked by the consistency between the predicted flux and the expression 588 
of genes believed to be associated with each reaction (Figure 3G; Supplemental Methods S1.1.4). This 589 
consistency is evaluated by the Spearman correlation of changes in flux and gene expression across 590 
subjects (Figure 3H; Supplemental Methods S1.1.4.1).  591 

7.5 CANDIDATE MODEL RANKING, MODEL SELECTION AND SELECTION VALIDATION 592 
Model scores, indicating the consistency between flux and gene expression (S1.1.4.1), were used to 593 
rank candidate models (S1.1.4.2). The distribution of model scores computed from each dataset were 594 
approximately normal, as evidenced by their linear Q-Q plots. This permitted the construction of a 595 
background normal distribution of model scores (Figure S 20). We then selected high-performing 596 
models, those with z-score normalized model scores greater than 1.646 (i.e., greater than the top 5% 597 
of scores from a normal distribution) for further study. Model selection was performed on scores 598 
computed independently for cohort 1 and cohort 2. Commonly high-performing models were those 599 
that perform well in both cohort 1 and cohort 2. Hypergeometric enrichment was used to confirm 600 
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that the top cohort 1 and cohort 2 models significantly overlapped. (see Supplemental Methods 601 
S1.1.4.2) 602 

7.6 SUMMARY NETWORK EXTRACTION FROM THE REDUCED NETWORK 603 
The Summary Network relates a heuristic selection of the most important reactions in the HMO 604 
biosynthesis network as measured by proportion of inclusion in the commonly high-performing 605 
models and enrichment in the commonly high-performing models relative to the background. Paths 606 
drawn from observed HMOs to the root lactose were scored for their aggregate importance. The top 607 
5% of paths leading to each observed HMO were retained to form the Summary Network 608 
(Supplemental Methods see S1.1.4.3). 609 

7.7 AMBIGUOUS GENE SELECTION 610 
We aimed to match 10 elementary glycosyltransferase reactions to the supporting genes (Table 1). 611 
Candidate genes were filtered from the relevant gene families to exclude gene products well known 612 
to perform unrelated reactions (Table 1). Candidate genes were first evaluated for expression in 613 
breast epithelium samples including microarrays in this study, independent RNA-Seq (GSE45669) 31 614 
and comparison to global expression distributions in GTEx32; genes unmeasured by microarray in at least 615 
75% of microarray samples (3rd Quartile, Q3) within each cohort were excluded unless they were 616 
non-negligibly expressed in the independent RNA-Seq (TPMLemay>2 or TPMLemay>Median(TPMGTEx) 617 
(see supplemental results, Table S 1,  Figure S 7). 618 

We used the model score definition, which quantifies how well the genes explain a model, i.e., if the 619 
expression of the genes are best correlated to the normalized flux of the reaction (Figure S 11, S1.1.4) 620 
they are proposed to support. We examined each gene contribution to the overall model score in 621 
three ways to determine a consensus support score for each gene-reaction association (see S1.1.5.2). 622 

The first metric we examined was the proportion (PROP) of commonly high-performing models best 623 
explained by an isoform relative to the proportion of background models that select that same 624 
isoform. The second metric was the average gene-linkage score (GLS) in high-performing models, i.e., 625 
the Spearman correlation between the normalized flux (Figure S 11, S1.1.4) and gene expression of 626 
corresponding candidate genes. The gene-linkage score is a continuous measure of the consistency 627 
between each gene with the flux it was proposed to support. Because it considers every gene, not just 628 
the most flux-consistent gene, it is helpful for judging performance when the most flux-consistent 629 
gene is more ambiguous. The third metric was the model-score contribution (MSC). MSC quantifies 630 
the Pearson correlation between the gene-linkage score, the gene expression consistency with the 631 
normalized flux, and the overall model score (i.e., the average correlation of all most-flux-consistent 632 
genes). The model score indicates the frequency with which a gene is the most flux-consistent gene 633 
normalized by its contribution relative to the other most flux-consistent genes in that model.  634 

An aggregate reaction support score was constructed to describe performance within each individual 635 
score (PROP, GLS, and MSC) and consistency across cohorts. To measure significance, the gene-636 
linkage score matrix (i.e., Spearman correlation between each candidate gene and the corresponding 637 
normalized flux for each model) was shuffled (n=27) and all analyses rerun on each shuffle to 638 
generate a permuted background distribution for PROP, GLS and MSC; shuffling of the GLS matrix 639 
was done using a perfect minimal hash to remap all entries back to the GLS matrix in a random 640 
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order110. Performance within each independent cohort was described as the sum of z-scores for each 641 
of three measures; z-score was calculated relative to the mean and standard deviations of these 642 
scores in the permutation results. Consistency across cohorts was determined by pooling p-values 643 
using the Fisher’s log-sum method 94,111. The score presented in Figure 5B is the -log10(FDR(cohort-644 
pooled-p).  645 

7.8 IN VITRO GLYCOSYLTRANSFERASE ACTIVITY ASSAYS 646 

Recombinant forms of the respective glycosyltransferases were expressed and purified as previously 647 
described112. Enzyme activity was determined using the UDP-GloTM or UMP/CMP-GloTM 648 
Glycosyltransferase Assay (Promega) that determined UDP/CMP concentration formed as a by-649 
product of the glycosyltransferase reaction. Assays were performed according to the manufacturer’s 650 
instructions using reactions (10 µL) that consisted of a universal buffer containing 100 mM each of 651 
MES, MOPS, and TRIS, pH 7.0, donor (1 mM UDP-GlcNAc (Promega) for B3GNT2; 1 mM UDP-Gal 652 
(Promega) for B3GALT2; 0.2 mM CMP-SA (Nacalai USA Inc.) for ST3GAL1-6, ST6GALNAC2, and 653 
ST6GALNAC5), 1 mM acceptor (lactose (Sigma) and lacto-N-neotetraose (LNnT) (Carbosynth) for 654 
B3GNT2; lacto-N-tetraose (LNT, Bode lab) and pentasaccharide (GlcNAc-b1,3-Gal-b1,4-GlcNAc-b1,3-655 
Gal- b1,4-Glc, Boons lab, University of Georgia) for B3GALT2; LNnT, LNT, and Gal-ꞵ1,3-GalNAc 656 
(Carbosynth) for ST3GAL1-6; LNT for ST6GALNAC2 and ST6GALNAC5. The B3GNT2 and B3GALT2 657 
assays also contained 1 mg/ml BSA and 5 mM MnCl2. Assays were carried out for 1 h (B3GNT2, 658 
B3GALT2, ST6GALNAC2, and ST6GALNAC5) or 30 min (ST3GAL1-6) at 37 °C. Reactions (5 μL) were 659 
stopped by mixing with an equal volume of Detection Reagent (5 μL) in white polystyrene, low-660 
volume, 384-well assay plates (Corning) and incubated for 60 min at room temperature. After 661 
incubation, luminescence measurements were performed using a GloMax Multi Detection System 662 
plate reader (Promega). The average luminescence was subtracted from the average luminescence 663 
of respective blank to correct for background. Background and reaction measurements were 664 
performed in triplicate. 665 

7.9 DIFFERENTIAL EXPRESSION (DE) ANALYSIS 666 

The differential expression analysis was conducted on three different datasets: 1) 16 different HMOs 667 
(2’FL, 3’SL, 3FL, FLNH, LNT, LNnT, LSTb, LNFP-III, LNFP-II, LNFP-I, DFLNT, LSTc, DSLNT, FDSLNH, 668 
DSLNH, DFLNH), 2) 19 glycan motifs (X18, X32, X34, X35, X37, X40, X62, X63, X64, X65, X66, X94, 669 
X106, X113, X120, X127, X141, X142, X143, see Figure S 19), and 3) 4 differential motifs for the 670 
difference ("conversion rate") between related motifs (X65-X40, X106-X62, X63-X37, X62-X40, see 671 
Figure S 19). Substructure abundance for glycan motifs and conversion ratios were computed using 672 
Glycompare v1 17. The gene expression data were downloaded from the Gene Expression Omnibus 113 673 
(GSE36936). Specifically, for each HMO, motif or differential motif, we used concentration (e.g., HMO–674 
3FL) as the predictor for gene expression in the differential expression analysis (e.g., “gene 675 
expression ~ [3FL]”). The differential expression analysis was performed by fitting linear models 676 
using empirical Bayes method as implemented in the limma v3.40.6 in R v3.6.1 package 114 and p-677 
values were adjusted for multiple testing using Benjamini-Hochberg (BH) method115. In this way, we 678 
determined gene-expression signatures indicative of each HMO and motif abundance. 679 
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7.10 INGENUITY PATHWAYS ANALYSIS (IPA) UPSTREAM REGULATOR 680 

Differential expression signatures indicative of differential abundance in 16 HMOs, 19 motifs and 4 681 
differential motifs were analyzed to predict upstream regulators using Ingenuity Pathway Analysis 682 
(IPA, QIAGEN Inc.). Gene expression signatures indicative of HMO and motif abundance were defined 683 
as genes differentially expressed with abundance in the previous limma analysis(FDR q<0.05 and 684 
|Fold Change|>1.5). 685 

7.11 DE NOVO TF BINDING SITE MOTIFS DISCOVERY AND KNOWN TF BINDING SITE IDENTIFICATION 686 

We downloaded promoter sequences (file: “upstream1000.fa.gz”; version: GRCH38) from UCSC 687 
Genome Browser public database (https://genome.ucsc.edu/) for the O-glycosyltransferase genes 688 
used in this study (Table S 1). These promoter sequences included 1,000 bases upstream of annotated 689 
transcription starts of RefSeq genes with annotated 5' UTRs. To conduct de novo TF binding site 690 
motifs discovery, we first applied the motif discovery program MEME 116 to identify candidate TF 691 
binding site motifs on the downloaded promoter sequences with default parameters. The 10 TF 692 
binding site motifs found by MEME were analyzed further for matches to known TF binding sites for 693 
mammalian transcription factors in the motif databases, JASPAR Vertebrates 117, via motif 694 
comparison tool, TOMTOM 118. The resulting discovered TF binding site motifs and their significantly 695 
associated known TF binding sites (Table S 6, Table S 7) for mammalian transcription factors were 696 
used further to compare with the IPA predicted upstream regulators.  697 

 698 
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