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Abstract 

Facial infra-red imaging (IRI) is a contact-free technique complimenting the traditional 

psychophysiological measures to characterize physiological profile. However, its full potential 

in affective research is arguably unmet due to the analytical challenges it poses.  Here we 

acquired facial IRI data, facial expressions and traditional physiological recordings (heart rate 

and skin conductance) from healthy human subjects whilst they viewed a 20-minute-long 

unedited emotional movie. We present a novel application of motion correction and the 

results of spatial independent component analysis of the thermal data.  Three distinct spatial 

components are recovered associated with the nose, the cheeks and a respiratory 

component. We first benchmark this methodology against a traditional region-of-interest 

based technique. We then show significant correlation of all the physiological responses 

across subjects, including the thermal signals, suggesting common dynamic shifts in 

emotional state induced by the movie. Finally, we show that thermal responses were 

significantly anti-correlated with the positive emotional content of the movie thus an index 

of emotionally-driven physiological response. In sum, this study introduces an innovative 

approach to analyse facial IRI data and highlights the potential of thermal imaging to robustly 

capture emotion-related changes in ecological contexts.  
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Introduction 

Measures of physiological correlates of emotion predominantly use galvanic skin response 

(GSR) and heart rate (HR) metrics (Cacioppo & Tassinary, 1990; Kreibig, 2010; Rainville, 

Bechara, Naqvi, & Damasio, 2006). However, it has been argued that measures targeting a 

variety of somatic effects may be best able to capture emotion-related brain-body states 

(Kreibig, 2010). An innovative technique which compliments the traditional measures is facial 

infra-red imaging (IRI). IRI quantifies the temperature fluctuations of the face resulting from 

blood flow changes (Ioannou, Gallese, & Merla, 2014). As a contact-free technique, it allows 

ecologically valid experimental conditions which recent studies have exploited (Srivastava et 

al., 2020). Although it has not yet been widely used, thermal imaging has shown promising 

results in affective research (Ebisch et al., 2012; Engert et al., 2014; Ioannou et al., 2013). 

The current use of thermal imaging analysis is based on ad hoc choices of facial location, 

usually chosen a priori and used with a region of interest (ROI) analysis i.e. extracting the 

thermal signals from specific facial regions like the nose-tip, the cheeks and the forehead 

(Ebisch et al., 2012; Engert et al., 2014; Ioannou et al., 2013; Kuraoka & Nakamura, 2011; 

Pavlidis, Levine, & Baukol, 2001; Pinti, Cardone, & Merla, 2015). ROI-based thermal signal 

extraction can be strongly influenced by motion artefacts (Strakowska, Strakowski, Wiecek, & 

Strzelecki, 2012) with only a few studies implementing motion tracking or motion correction 

(Manini et al., 2013; Sonkusare, Ahmedt-Aristizabal, et al., 2019). Furthermore, ROI based 

approaches have their own unique challenges and limitations. First, they only exploit a small 

portion of the information encoded in the whole face. Second, manual steps are time 

consuming and only feasible for the analysis of small data sets with low sampling rate. Third, 
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different choices for the size of ROIs, their shapes and placement can further introduce biases 

(Ioannou et al., 2014).  

Although thermal signal extraction based on ROIs has provided many insights into thermal 

effects in affective research, these methods can be complemented by data-driven approaches 

which uncover underlying data features with less a priori assumptions. Independent 

component analysis (ICA), specifically spatial ICA (sICA), is a subset of such methods for blind 

signal separation employed under assumptions of statistical independence of the source 

signals (McKeown, Hansen, & Sejnowsk, 2003). Due to the effectiveness in capturing the 

essential structure of diverse kinds of data, ICA has been widely used in many applications, 

such as functional magnetic resonance imaging (fMRI) analysis (Beckmann, DeLuca, Devlin, & 

Smith, 2005; Calhoun, Adali, Hansen, Larsen, & Pekar, 2003) which measures the 

haemodynamic changes as a proxy for neuronal activity. Similar to the brain, facial skin has 

an extensive distribution of blood vessels. Furthermore, temperature changes associated with 

the face can have various contributions, including stimulus induced chances but also 

respiratory confound, perspiration, and noise. The diverse nature of these signals suggests 

that blind signal separation techniques could be advantageous for isolating the different 

sources of signal (McKeown et al., 2003) and distinct spatial components.  

With these considerations in mind, we sought to employ a sICA approach to characterize the 

dynamic facial thermal responses during naturalistic emotional experience. For this we 

acquired facial IRI data alongside other traditional physiological measures while subjects 

watched an emotionally salient movie. Movies are relatively unconstrained, motivating the 

need for data-driven signal extraction approaches. To analyse thermal signals in a maximally 

naturalistic setting where participants were free to move, we combined state-of-the-art 
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motion correction method based on optical flow with sICA to extract dynamic temperature 

changes that manifest in different facial regions. Since ROI-based facial IRI studies have 

recognized the nose-tip as the most sensitive region for temperature fluctuations, we 

hypothesised that a nose-tip spatial component would be reliably captured with the sICA 

method as well.  

To induce affective states in subjects, we employed a long continuous and an unedited 

emotional movie (~20 minutes). Whereas static stimuli such as photos have often been used 

with thermal imaging in the past (Salazar-López et al., 2015) they have limitations for evoking 

the physiological responses (Gross & Levenson, 1995) that are integral to emotional 

experiences (James, 1922). Naturalistic stimuli have emerged as an alternative to strictly 

controlled paradigms and stimuli, such as pictures and sounds, as they offer better ecological 

validity (Hasson, Nir, Levy, Fuhrmann, & Malach, 2004; Sonkusare, Breakspear, & Guo, 2019). 

In neuroimaging studies, inter-subject correlation (ISC) analyses of movie viewing data have 

demonstrated common covarying patterns of brain activity (Hasson et al., 2004; Nguyen et 

al., 2016; Pajula, Kauppi, & Tohka, 2012). However, is the shared quality of affective 

experience between people detectable at the physiological level? Here we investigate 

whether such shared responses are present in various physiological signals (heart rate 

metrics, skin conductance and thermal responses).  Furthermore, reports also suggest the 

differentiating role of facial temperature in emotional valence [(Matsukawa et al., 2017; 

Zenju, Nozawa, Tanaka, & Ide, 2004) but also see (Kosonogov et al., 2017; Salazar-López et 

al., 2015)]. Hence, we also sought to investigate whether there is an association between 

emotion characteristics of the movie and facial thermal changes.  
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Materials and methods 

Thermal imaging and physiological data acquisition 

Twenty healthy human participants (11 females, aged 22-30 years, mean = 25.7 years) were 

recruited for the study. All participants signed a consent form and were informed of the 

method. All participants had normal or corrected-to-normal vision. Exclusion criteria included 

habitual smoking, the presence of a chronic illness (e.g., cardiovascular or thyroid conditions), 

psychological disorders (e.g. depression or anxiety) or any other illness requiring regular 

medication. The study was approved by the Research Ethics Board of QIMR Berghofer and 

performed in agreement with the Declaration of Helsinki. The participants had the choice to 

withdraw from the study at any time. Each participant was compensated with a $50 voucher 

for their time. At the end of the data acquisition session a questionnaire was completed by 

the participants regarding subjective ratings of emotional response to the movie (Table S1). 

Physiological data from three out of twenty participants were excluded from analysis due to 

the failure of accurate trigger information and incomplete data acquisition. Questionnaire 

ratings could not be recorded from one subject.  Informed consent to publish identifying 

images (RGB and thermal) was obtained from a subset of subjects. 

Prior to the data acquisition, participants acclimatized for about 10 minutes within the 

experimental room. The temperature and the humidity of the room were kept within a steady 

range (22 ± 2 °C; 55–65% relative humidity). Where necessary, participants’ hair was secured 

away from their forehead with an unobtrusive hat. Participants were also asked to avoid 

alcohol and caffeine for at least 2 hours prior to the experimental session in order to minimize 

the vasoactive effects that these substances have on the skin temperature. Testing was 

performed exclusively between 2-5 pm to avoid any potential confounding effects of the 
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circadian rhythm. After the participants had assumed a comfortable posture in a fixed chair, 

GSR and ECG electrodes were attached to fingers and arms respectively. A thermal imaging 

camera and an RGB video camera were then manually focused on the face. The researcher 

checked the recording quality and left the experimental room but retained audio-visual 

contact via CCTV. The paradigm consisted of a ~20-minute short movie The Butterfly Circus 

(Weigel, Williams, & Weigel, 2009). Ten seconds of countdown was prefixed to the movie. 

Stimuli were presented on a 24-inch computer screen 40 cm in front of the subject. The sound 

was kept to the same levels for all subjects and was presented via two loudspeakers placed 

beside the stimulus screen.  

An in-house built integrated hardware and software experimentation platform LabNeuro was 

used to integrate the multi-modal data acquisition. Thermal imaging of the face was 

performed by a FLIR A615 camera with a 15mm lens, an uncooled Vanadium Oxide (VoX) 

detector producing images of 640x480 pixels in size. The FLIR A615 provides a temperature 

detection range from -20 to 2000℃ with the NEDT (noise equivalent differential temperature) 

smaller than 0.05℃ at 30℃. The thermal camera response was blackbody-calibrated to nullify 

noise-effects related to the sensor drift/shift dynamics and optical artifacts. The sampling rate 

for thermal imaging was set at 5 Hz. This was performed in order to generate sufficient frames 

to balance out any potential movement artifacts by the participant. The cameras were 

incorporated into LabNeuro using the LabVIEW Image Acquisition library. 

GSR recordings were obtained by two Ag/AgCl electrodes (0.8-cm diameter) filled with a 

conductive paste and attached to the distal phalanges of the index and ring fingers of the 

participant’s left hand. Skin conductance was recorded using a standard constant voltage 

system of 0.5 V and recordings were continuously digitized by an A/D converter with a 
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sampling rate of 2 kHz. The recording of GSR data was acquired using National Instruments 

(NI) CompactDAQ modular IO hardware and software for the system was written using NI 

LabVIEW and NI Biomedical Toolkit. For ECG data collection, electrodes were attached to the 

mid-upper left arm, left wrist, and mid-upper right arm. We asked participants to put their 

hands-on chair hand-rests to minimize motion artifacts. ECG data was recorded with a 

sampling rate of 2 KHz. GSR signals and ECG data were collected simultaneously with the 

thermal imaging data. 

Extraction of facial thermal responses  

The pipeline for this workflow is illustrated in Fig 1. Thermal video motion correction was 

achieved by applying a dense optical flow algorithm (Weinzaepfel, Revaud, Harchaoui, & 

Schmid, 2013). Specifically, the nonlinear motion vector field between each frame pair was 

first estimated by this method. Discontinuities in the transformation, which could distort the 

boundary of the face, were effectively removed by iterating motion correction and a Gaussian 

smoothing step applied to the motion vector field until convergence (where the displacement 

of all pixels is less than 1). 

Similar to its use in fMRI data, spatial ICA was applied to identify and remove artifacts and to 

unmix statistically independent (true) sources of facial thermal signal change. To reduce noise 

and the number of parameters to be estimated, pre-whitening and dimension reduction were 

employed before the application of ICA. sICA was applied using a publicly available software 

package FastICA (http://research.ics.aalto.fi/ica/fastica/code/dlcode.shtml). The pipeline of 

the implementation of ICA together with motion correction is shown in Figure 1. 

Though the motion correction and the ICA are both automated processes, the selection of 

physiologically meaningful independent components still needs manual inspection. To 
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identify independent components with the most anatomico-physiological meaning we 

restricted attention to spatially localized components corresponding to broad anatomical 

boundaries such as nose, cheeks and forehead.  The time series corresponding to each 

component was then normalized to have values between 0-1.  

Comparison of nose component signal with region-of-interest based nose-tip signal 

A circle of 9-pixel radius was used to extract thermal signals from the nose-tip of thermal 

video data motion-corrected using optical flow (Fig 4A left). The time series were then 

normalized to have values between 0-1 for each subject to mitigate against spurious inter-

subject differences. The correlation of ROI based nose-tip signal to that obtained from nose 

IC was computed, and significance of this correlation assessed using a non-parametric 

permutation test. Specifically, we calculated the group mean of the Pearson correlation 

between each subject’s nose component signal and their ROI based nose-tip signal. To 

generate the null distribution, each permutation used the ROI nose-tip signal with a random 

circular shift, so as to preserve temporal autocorrelation, and the group mean of the 

correlation between these shifted data and the thermal signals was computed. The null 

distribution was generated from 5000 permutation realizations. 

Heart rate variability 

The ECG signal was pre-processed using QRSTool software (Allen, Chambers, & Towers, 2007) 

to detect the R peaks with the ability to manually correct for missed peaks. Inter-beat interval 

(IBI) time series was then computed from this and normalised to have values between 0-1. R 

peak data were further analysed using HRVAS toolbox (Ramshur, 2010) to obtain heart rate 

variability (HRV) frequency domain measures. These were calculated via the auto-regressive 

method using a window size of 16 seconds, with 15 samples overlap, nfft of 1024 and cubic 
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spline interpolation rate of 2 Hz (Sonkusare, Ahmedt-Aristizabal, et al., 2019). HRV data 

metrics were computed for the whole stimulus but edge effects for frequency estimation led 

to loss of approximately 8 seconds of data at the beginning and the end. Time-frequency 

decompositions of IBI are typically linked to autonomic influences in distinct frequency bands. 

Lower frequency (LF) HRV (0.04 – 0.14 Hz) mainly reflects changes in sympathetic and 

parasympathetic outflows, while high frequency (HF) variability (0.15 to 0.4 Hz) is primarily 

due to modulation of parasympathetic outflow (Akselrod et al., 1981; Pomeranz et al., 1985). 

Respiratory sinus arrhythmia (RSA) is a major contributor to HF HRV and is thought to be due 

to respiration modulating the cardiac vagal activity (Bernardi, Porta, Gabutti, Spicuzza, & 

Sleight, 2001). 

Comparison of nose component signal with skin conductance (GSR) 

GSR is a standard measure of arousal. Event based studies have found an inverse relation 

between these two physiological measures (Shastri, Merla, Tsiamyrtzis, & Pavlidis, 2009; 

Sonkusare, Ahmedt-Aristizabal, et al., 2019). The GSR time courses were first detrended and 

low pass filtered at 5 Hz and subsequently normalized to have values between 0-1 for each 

subject to mitigate against spurious inter-subject differences in baseline. For statistically 

comparing GSR with nose component signal, identical permutation testing procedure as used 

for comparison of thermal signals to that ROI based signal was used. 

Inter-subject correlation of physiological signals 

Pearson correlation coefficients between each pair of participants were computed separately 

for both thermal signals, GSR data and heart rate data. Inter-subject correlation (ISC) was 

computed as the mean pairwise correlation between participants. With 17 participants, each 

analysis comprised a total of 136 correlation pairs. Non-parametric permutation tests were 
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used to identify statistically significant inter-subject correlation (p = 0.05) (Kauppi, 

Jääskeläinen, Sams, & Tohka, 2010; Nguyen et al., 2016). Specifically, the null distribution was 

generated from 5000 permutation realizations. These permutations comprised circularly 

shifted data in a way to preserve temporal autocorrelation in the physiological signals but 

disrupt correlations between subjects.  

Testing for similarity between two different recordings at group level 

To assess statistically whether two different physiological responses were significantly 

correlated (such as the nose IC and nose-tip ROI thermal signals, the nose IC thermal signals 

with GSR, and the nose IC thermal signals with movie emotions), we employed non-

parametric permutation testing. We first calculated for each subject the Pearson correlation 

coefficient between the two signals of interest. The correlation values were then averaged 

for all the subjects to obtain a group mean correlation value. To statistically test the 

significance of the obtained group mean correlation value, we applied non-parametric 

permutation tests with a null model where data from one modality was randomly circularly 

shifted relative to the other (thus preserving autocorrelation), before computing the group 

mean correlation of the null. Five thousand realizations were used to generate the null 

distribution. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.276592doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.276592
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 1. The computational pipeline for employing spatial independent component analysis (sICA) on 

thermal imaging data (a) Motion correction framework showing co-registered images with and 

without application of optical flow. For each subject, the whole thermal imaging data are aggregated 

into a single matrix, in which each row represents the thermal imaging data in one time point and 

each column stands for the time series of one single pixel (b) A mask to exclude background, i.e. neck 

and clothes, and retain only the face was applied to each frame. The data from these images were 

used as the source matrix (c) sICA - illustration of the mixing matrix, each column of which represents 

the time course of the corresponding source signal. An exemplar time series of nose components is 

shown. Each row of the source signal matrix represents one independent spatial map. Thermal image 

of subject L06 is used for illustrative purposes. (Facial images not displayed as individual facial images 

display is against bioarxiv policies)  

 

Facial expression analysis  

Facial emotions expression scores, both for the movie actors and for the subject’s responses 

were obtained by processing the movie frames, and the RGB video recordings of the each 

subject through the Microsoft CNTK Face API (Cognitive Toolkit) (Del Sole, 2018). This 

software has been rated as one of the best for emotion categorisation (Khanal, Barroso, 

Lopes, Sampaio, & Filipe, 2018). The software takes a facial image as an input and returns the 

likelihood of each emotion class, across a pre-specified set of emotions, for each face in the 

image. The emotion classes permissible are anger, contempt, disgust, fear, happiness, 

neutral, sadness and surprise. They are ranked in descending order, with the overall total 

score summing to 1. The score was averaged for all the frames corresponding to each second. 

Briefly, emotion recognition is usually based on three key steps: 1) face detection, 2) feature 

detection—such as eyes and eye corners, brows, mouth corners, the nose-tip etc. and 3) 
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feature classification—translation of the features into Action Unit codes, emotional states, 

and other affective metrics (Cowie et al., 2001). We summed the emotion scores for each 

emotion category for each subject before undertaking inter-subject correlation analysis to 

investigate the consistency of facial expressions among subjects.  

Results 

Subjective ratings showed that the participants perceived the movie to be positively valenced 

(Table S1 Question 1: mean = 5.95, SD = 1.43) as well as emotionally intense (Table S1 

Question 2: mean = 5.53, SD = 1.26).  

Consistent facial components identified by sICA 

We extracted fifty independent components (ICs) from each subject. Of these, three 

components could be consistently identified across all subjects based on spatial and temporal 

characteristics. These were a nose component which mainly included pixels on the nose-tip, 

a cheek component which mainly contained pixels distributed on bilateral cheeks, and a 

respiratory component. The spatial patterns of these components clearly follow anatomical 

boundaries of facial features, supporting that they are driven by underlying physiological 

processes (Fig 2 left).   

The temporal courses of these three ICs showed gradual evolution over the course of the 

movie (Fig 3 left). To investigate whether the nose and the cheek ICs identified were distinct 

from the respiratory component, we compared the power spectra of these signals (Fig 3 

right). A frequency range of 0.16 - 0.35 Hz is indicative of normal respiration frequency (Russo, 

Santarelli, & O’Rourke, 2017). The nose IC was minimally affected by respiration whereas the 

power spectra of both the cheek and the respiration IC exhibited a peak at frequency range 
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of 0.16 - 0.35 Hz. The similar time courses and power spectra of the bilateral cheeks to that 

of the respiration IC is consistent with the cheek IC’s diffuse spatial spread which likely 

includes respiration affected signals. 

 
 
 
Figure 2. Distinct spatial components.  Representative components from one subject (L08) are 
shown. Three components were consistently identified in all subjects (except respiratory component 
absent in one subject). Color scale normalized between 0 and 1 for each component for display. 
Results from subject L09 are shown here. (Facial images not displayed as individual facial images 
display is against bioarxiv policies) 
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Figure 3. Group averaged component signals and their spectral signatures. A) nose component signal 
and its power spectra (right). B) bilateral cheek component signal and its power spectra (right). C) 
respiratory component signal and its power spectra (right). Vertical dashed lines on the spectral plots 
indicates the normal respiratory frequency range of 0.16 - 0.35 Hz. Respiratory and cheek components 
both seem to be affected by respiration whereas the nose component seems minimally affected by it. 
Shading indicates SEM. 

 

Validation of sICA nose component by ROI tracking method 

To validate the ICA-based method, we compared the time courses of the nose IC with those 

of thermal signals obtained using a ROI located at the nose tip (Fig 4A). Note that for thermal 
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signal extraction with ROI method, we used the same motion correction algorithm based on 

optical flow. To our knowledge no other facial thermal imaging study has used an optical flow-

based motion correction algorithm. The similarity between signals from the two methods was 

assessed by evaluating the group average Pearson correlation coefficient of nose IC and the 

thermal signal extracted from the corresponding ROI of the subject and statistically tested 

with non-parametric permutation testing (Fig 4B). (see Methods) (r = .94, p< 10-7, SI Fig S2 

left). 

Inverse relation between nose component signals and GSR  

GSR has been extensively validated as an arousal measure in psychophysiological studies 

(Kreibig, 2010). GSR thus provides a valuable benchmark to compare other 

psychophysiological measures and for facial thermal imaging this has previously been done, 

albeit for short event-based stimuli (Pavlidis et al., 2001; Shastri et al., 2009). We thus 

compared the time courses of the nose component with that of corresponding GSR signals to 

further investigate their response relationship during naturalistic emotional experiences. 

Permutation testing showed a significant inverse relationship (r = -.18, p = .03) (Fig 4C, D).  

Similarity of physiological changes across subjects 

We then examined the consistency of all the corresponding physiological variables across 

subjects using inter-subject correlation (ISC) analysis.  We found significant consistency 

between subjects in the dynamic thermal response patterns for the nose IC (mean r = 0.12, p 

= .007, Fig 5A), and still greater consistency for dynamic GSR (mean r = 0.50, p < .0001, Fig 

5B). The high ISC of GSR signals seemed to be mostly attributable to the gradual decrease of 

GSR at the beginning of the movie viewing – by contrast the ISC of GSR signals during the  
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Figure 4.  Nose component signal validation by comparison to ROI (region of interest) method and to 
GSR. A) ROI location on motion-corrected thermal image of a subject (L08) with nine-pixel radius.  B) 
Comparison of group average nose sICA thermal component (red) with that of group average thermal 
signal obtained by ROI method (blue). C) Group average comparison of thermal response obtained 
from nose sICA component (red) to GSR (blue). Shading indicates SEM. D) Null distribution obtained 
with 5000 permutations showing statistical significance of negative correlation between thermal 
response and GSR. (Facial image in A not displayed as individual facial images display is against bioarxiv 
policies) 
 
 

second half of the movie was 0.08 (p = .03), far lower than the ISC coefficient value for the 

thermal signal in the first half of the movie of .14 (p=.003). ISC of frequency components of 

heart rate variability (HRV) also showed significant inter-subject correlation (low frequency 
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HRV:  mean r = 0.03, p = .0002, Fig 5C left, high frequency HRV: mean r = 0.03, p = .00004, Fig 

5C right, pFDR =.05). 

Thermal correlates of emotion during movie viewing 

We then evaluated whether thermal responses were correlated with the emotional content 

of the movie. Previous studies, using an event-related design, have found the latency of 

thermal responses to be around 3.8 s (Merla & Romani, 2007) and 4-5 s (Sonkusare, Ahmedt-

Aristizabal, et al., 2019) after stimulus onset. In this study we employed a naturalistic 

paradigm with continuous narrative instead of discrete events, hence, to compare the 

emotions of the movie and thermal signals we correlated a 3 second lagged thermal signal 

with the movie emotion time series.  The emotional content of the movie was quantified by 

computing the scores of facial emotional expressions of the actors in each frame of the movie 

averaged for each second (see Methods). Thus, each second of the movie was assigned an 

emotional score according to the emotion detected for that frame (happiness, sadness, 

surprise, anger, fear, disgust and contempt), excluding the neutral category (Fig 6A). A non-

parametric permutation test revealed a significant negative correlation between the thermal 

signal and happiness scores (r = 0.06, pFDR = .0004, Fig 6 B) and a significant positive 

correlation between thermal signal and anger scores (r = 0.05, pFDR = .004, Fig 6 B). These 

results are also replicable when using a 4 second lagged thermal signals (happy r = .06, pFDR 

= .0001, anger r = .05, pFDR = .004). 
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Figure 5. Inter-subject correlation (ISC) analysis. A) correlation matrix of nose component thermal 
response time series (left) and null distribution obtained with 5000 permutations  (right) (see 
methods) showing statistical significance of positive mean correlation shown in red. B) correlation 
matrix of GSR responses curves (left) and right - null distribution obtained with 5000 permutations 
(right) (see methods) showing statistical significance of positive mean correlation shown in red C) ISC 
analysis of low frequency heart rate variability (LF HRV) and its statistical significance (shown in red) 
(left) across participants when tested with 5000 permutations. ISC analysis for high frequency (HF) 
HRV (right). FDR corrected for statistical comparisons for LF and HF HRV. Colour bar r denotes 
Pearson’s correlation coefficient. Histogram r denotes mean correlation coefficient at group level. 
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Figure 6. Thermal correlates of emotion. A) The averaged emotion scores from facial expressions 
detected in movie frames. B) Plots with coloured histograms represent the corresponding emotion 
category. Histograms were obtained from permutation testing to test statistical significance of 
correlation between different emotion scores and nose thermal signals. Thermal signal correlation 
with happy and anger emotion are statistically significant after multiple comparisons (p* denotes 
significant results with pFDR < .05). Scientific notation used for r and p values where appropriate. 
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Subjects’ facial expression of emotion was minimal  

We also recorded facial video data of subjects watching the movie. The subjects minimally 

facially expressed the emotions with mean emotional scores for happy and sad categories 

predominantly below .1 score (SI Fig S1). There was no significant inter-subject correlation for 

facial expressions (all emotions summed for each subject) across subjects (r = 0.02, p = .08, SI 

Fig S2 right).  

Discussion  

We sought to develop a new data-driven method for facial thermal imaging analysis and 

determine whether long term facial thermal fluctuations elicited by a dynamic, naturalistic 

stimulus convey emotional signatures. We validated our method with traditional ROI analysis 

showing the robustness of our approach. We also uncovered the association of changes in 

the nose-tip thermal signal with dynamic emotional changes in the stimulus. We further 

demonstrated common physiological responses across subjects as measured by thermal 

signals, heart rate metrics and GSR, underlining common changes in emotional states induced 

by the naturalistic stimulus. Crucially these results were obtained in an ecologically valid 

context.  

We validated our methodology by comparison to the traditionally employed ROI method and 

demonstrated remarkably similar results for nose responses with both these methods. The 

robust correspondence of results with the two methods can be due to state-of-the-art motion 

correction technique employed. As far as we are aware no other thermal imaging study has 

utilized optical flow for motion correction of thermal video. Existing thermal imaging studies 

employing motion correction have used spatial cross-correlation (Manini et al., 2013; Pinti et 

al., 2015) but these are of limited effectiveness when used with a 3D surface that is not flat, 
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such as the human face. The successful applications of optical flow and spatial ICA in this work 

thus provide two separate novel methodological contributions, as the former can be used to 

provide motion correction for ROI based methods as well.  

The spatial components of nose and cheeks identified in this study correspond to facial 

regions widely studied in previous studies (Ebisch et al., 2012; Merla & Romani, 2007; 

Nakanishi & Imai-Matsumura, 2008; Pavlidis et al., 2001; Shastri et al., 2009). In addition to 

these, we consistently identified a respiration related component. Respiration monitoring via 

thermal imaging has already been demonstrated (Cho, Bianchi-Berthouze, & Julier, 2017; Cho, 

Julier, Marquardt, & Bianchi-Berthouze, 2017). The different facial components were 

associated with distinct thermal responses. Specifically, the cheek component and respiratory 

component showed similar time courses and with both being affected by respiration noise. 

Moreover, the spatial maps of the cheek component showed a diffuse distribution and hence 

was likely noisier. The successful application of video motion correction and spatial ICA in this 

work demonstrates the utility of this approach for extracting robust thermal signals in longer-

time naturalistic paradigms. A promising avenue of future research will be to use spatio-

temporal ICA in place of spatial ICA (Stone, Porrill, Porter, & Wilkinson, 2002) to attempt to 

separate sympathetic and parasympathetic influences in the same facial regions. 

Facial blood flow changes detected by thermal imaging are caused not only by sympathetic 

(predominantly) but also parasympathetic influences (Drummond, 1994; Segade & Sua, 

1990). Thus, it is a more complex signal in comparison to GSR which is a uni-dimensional 

sympathetic response representing arousal (Bach, Friston, & Dolan, 2010; Boucsein & 

Hoffmann, 1979). Thermal signals thus seem to convey more nuanced representation of 

sympathetic-parasympathetic balance. The more complex nature of thermal signals may also 
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contribute to greater subject to subject variability and may explain the unexpected anti-

correlations between a few subjects (Fig 6B). GSR signals are considered the gold standard in 

peripheral neurophysiological and psycho-physiological studies, providing a benchmark for 

validation in IRI research. Overall, these results further highlight the biological underpinnings 

that might make thermal responses useful in differentiating emotional valence.  

All the physiological variables (namely thermal imaging, heart rate metrics and GSR) showed 

significant similarity among subjects, highlighting the ability of a dynamic emotional stimulus 

to induce common emotional states. This can be attributed to the use of naturalistic stimuli, 

which have been argued to better evoke physiological responses than traditional stimuli 

(Gross & Levenson, 1995). Naturalistic stimuli offer a trade-off between completely 

uncontrolled stimuli and unconstrained conditions on the one hand (for instance resting state 

paradigms in neuroimaging), and the strict control of simplistic stimuli (for instance auditory 

odd-ball paradigm), placing relevant ecological constraints on physiological processes 

(Sonkusare, Breakspear, et al., 2019). As emotion is built over a longer narrative, these stimuli 

can simulate common, everyday emotional experiences and evoke robust and consistent 

responses in subjects as evident from our inter-subject correlation analysis. These analytical 

methods of inter-subject correlation analysis, when applied to neuroimaging, have also 

shown shared neuronal processes underlying emotional states (Hasson et al., 2004; Nguyen 

et al., 2016; Pajula et al., 2012). Thus, the consistent responses across subjects reported in 

our study for diverse physiological variables provide convergence of findings on a body and 

brain level and reinforce the wider use of naturalistic paradigms to comprehensively 

investigate human emotions. In similar vein though we did not find a temporal consistency of 

facial expressions among subjects (Fig S2).  Facial emotion displays encountered in everyday 

life situations show high variability (Nummenmaa & Calvo, 2015; Scherer & Ellgring, 2007) 
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and spontaneous expressive behaviour is more complex and ambiguous (Pantic, 2009). This 

was true in our subjects as well, as they had low emotion expression scores.  

The movie stimulus we employed is an engaging film with various emotional undertones 

(Nguyen et al., 2016). Although one-to-one mapping of facial emotion content in the movie 

and emotion induced in the viewers is complex, the former can act as a proxy measure to 

quantify emotional undertone of the movie. Importantly, the correlated nature of the two for 

our stimulus is signified by the majority of the movie frames (Fig 4 top panel) with a high 

happy emotion score. We demonstrated that facial thermal response is negatively correlated 

to this happy state. Anticorrelation of thermal responses with positive emotions has been 

previously demonstrated in a controlled paradigm (Matsukawa et al., 2017). However 

contrasting results have also been found (Zenju et al., 2004) but which have used static images 

as stimuli. Our findings were obtained in a naturalistic context. Furthermore, another 

emotion, anger, was positively correlated with thermal responses. Anger and its association 

with increased facial colour change is well documented (Changizi, Zhang, & Shimojo, 2006). 

Many studies also support the association of the colour red with anger (red facilitating the 

identification of anger expressions) (Drummond & Quah, 2001; Young, Elliot, Feltman, & 

Ambady, 2013). Even the English language is replete with phrases such as “red with anger” 

depicting increased blood flow to the face and hence increased temperature.  Aside from 

these significant findings, we did not find any association with other emotion categories. 

Further research to parsimoniously characterize the relationship between emotion 

differentiation and temperature variations of the face is thus needed. Still, a single autonomic 

dimension may not be sufficient to comprehensively characterize all different emotions  

[(Kreibig, 2010) however also see (Rainville et al., 2006)]. Hence, newer techniques such as 

thermal imaging providing contact-less recordings in ecological valid contexts may 
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compliment traditional measures and others techniques less commonly used (such as 

contact-based measures: systolic and diastolic blood pressure, respiratory measures, finger 

temperature) to capture various aspects of the autonomic system or improve the accuracy of 

existing ones in differentiating emotions.  

For the thermal responses and facial colour changes generated in the experience of emotion, 

there is evidence that these supplement communication of emotions (Alkawaz, Mohamad, 

Saba, Basori, & Rehman, 2015). Just as thermal imaging captures these facial blood flow 

changes, some of this information is also available to human vision. Indeed, emotion 

dependent facial blood flow changes were visually interpreted by observers and have also 

been found to convey information partially independent from that conveyed by facial 

expressions (Benitez-Quiroz, Srinivasan, & Martinez, 2018). In some facial thermal imaging 

studies, facial movements and expression may confound the thermal signal. However in this 

study the emotional information conveyed in thermal responses is unlikely due to facial 

movements based on three main reasons: 1) we used a nose-tip component signal which is 

minimally affected in facial expressions, 2) the subjects minimally expressed facial emotions 

and 3) we removed facial movement caused by changes of facial expression by using a robust 

motion correction algorithm. Thermal responses thus can be assumed to capture 

physiological phenomenon aiding in emotional experience and communication.  

Limitations of the Study 

Some caveats and limitations of this study should be noted. First, the three consistent ICA 

components were identified manually based on visual inspection.  An objective automated 

component selection method can help overcome this limitation in the future (Salimi-Khorshidi 

et al., 2014). Motion correction of facial video data has inherent challenges due to the 2D 
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nature of the data while the actual face is a 3D object. We obtained motion correction using 

2D dense optical flow, while future work may explicitly map 2D thermal data to a 3D facial 

model to achieve more precise motion correction. A common standard space for registration 

of all subjects’ faces will also improve the spatial decomposition. Another limitation is the lack 

of a control condition or resting state data to unequivocally conclude that the physiological 

changes were emotionally driven. While there was significant correlation to changes in 

emotion content of the movie, other cognitive factors may also have contributed to the 

physiological changes.  Finally, for the correlation between emotion and thermal response, 

we note that while significant, the correlation coefficient values are not high. This is not 

unexpected as the automated scoring of emotion content was based on discrete facial 

emotion categories, which may be limited in capturing the complex nature of emotions 

portrayed in a movie. Future studies could compliment naturalistic stimulus with separately 

acquired continuous subjective ratings of valence and arousal to further probe temperature 

perturbations dependence on emotions.  

In sum, we developed a novel data-driven analytical technique for facial thermal imaging 

analysis and showed robust facial thermal changes evoked by an emotional movie which were 

correlated with the emotional content of facial expressions in the movie. We also uncovered 

a physiological consistency among subjects thus signifying common responses elicited by the 

movie. Future studies could use simultaneous thermal and brain recordings such as combined 

facial thermal imaging with functional near infrared spectroscopy (Pinti et al., 2015) or 

electroencephalography (EEG), to investigate the brain-body interaction.  
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Data and Code Availability 

Code related to this paper is available from the authors. Data used in the study includes 

personal identifying facial images of participants, and local ethics approval mandated strict 

privacy restrictions around their availability outside of the named investigator team. 

Researchers wishing to access these data will require local ethics approval and a data sharing 

agreement with QIMR Berghofer.  
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Supplementary Material 

Table S1 

 Questions probing subjective emotion ratings in the 

questionnaire 

 Ratings 

1 
 
 
2 
 
 
 
3 
 
 
4 

Is your emotional reaction to the film positive or negative overall? 
(1 = extremely negative, 4 = neutral, 7= extremely positive) 
 
Overall, was your emotional reaction to the film calm or intense? 
(1 = extremely bored/calm, 4 =neutral, 7 =extremely 
excited/intense) 
 
Which emotion best describes what the film made you feel? 
 'happy', 'surprise', 'sad', 'disgust', 'fear', ’anger’, 'others' 
 
How strongly did you feel this emotion during the film?  
(1 = Not at all, 4 = mildly 7 = extremely) 

Mean = 5.95, SD = 1.43 
 
 
Mean = 5.53, SD = 1.26 
 
 
 
14-happy, 4-surprise, 1-
sad 
 
Mean = 5.79, SD = 1.13 

SD – standard deviation 
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Figure S1. Facial expression scores of participants for various emotions. These plots show the mean 
facial expression scores with shading denoting sem. The emotion scores were predominantly below 
a score of .1.  
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Figure S2. Correlation of sICA nose component with ROI nose signal, and Inter-subject correlation 
analysis for facial expressions.  Left: null distribution obtained with 5000 permutations (see 
methods) showing statistical significance of positive correlation between nose thermal response 
from sICA and ROI method, right: null distribution obtained with 5000 permutations (see methods) 
showing no statistical significance of inter-subject correlation for subjects’ facial expressions.  
 
 
 
 

 

Figure S3. Spatial components when 80 components were retrieved, instead of 50.  Representative 
components from one subject (L08) are shown. Note cheek component decomposes into two 
separate components. Color scale normalized between 0 and 1 for display. (Facial images not 
displayed as individual facial images display is against bioarxiv policies) 
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