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ABSTRACT 26 

Euphausiids (or krill) are important contributors to marine biomass and key players in marine 27 

pelagic trophic webs. Euphausiids stomachs represent a specific niche for microbes that 28 

participate in the digestion of the host dietary components. To date, methods for the study of the 29 

diversity and function of these microorganisms remain complex. Often, bacterial ribosomal 30 

sequences obtained from lysates of stomachs are overrepresented by organisms from the 31 

surrounding environment. Flow cytometry with cell sorting (FC-CS) have become a powerful 32 

technique to study microbial community structure but also for the study of population genomics 33 

of gut-associated bacteria, even at a single-cell level. 34 

In this study, we used FC-CS and sequencing of the bacterial 16S rRNA gene to study the 35 

microorganisms inhabiting the stomach of the Humboldt Current krill, Euphausia mucronata. 36 

This approach was complemented with DNA extraction and sequencing from whole lysate 37 

stomachs as described for other crustacean species. 38 

Non-specific amplification was not retrieved in the polymerase chain reaction (PCR) from cells 39 

sorted, opposite to the observed using the DNA from the whole lysate. Sequences obtained from 40 

the whole stomach DNA were enriched in picocyanobacteria, meanwhile, sequences retrieved 41 

from cells sorted belonged almost exclusively to Balneola sp. of the new phylum, Balneolaeota. 42 

This study represents, to our knowledge, the first report of Balneola sp. in the stomach for any 43 

organism inhabiting the Humboldt Current System (HCS). 44 

Our results suggest that the stomach-associated microbiota can be characterized by FC-CS and 45 

sequencing by manual scraping of the stomach coupled with the DNA extraction and sequencing. 46 

This work represents a baseline for similar studies of other mesozooplankton groups. The 47 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.08.31.275677doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.275677
http://creativecommons.org/licenses/by-nc-nd/4.0/


implementation of this technique might complement future studies on host-microbes’ interaction 48 

and their implications on the marine pelagic food web. 49 

 50 

INTRODUCTION 51 

Krill are small zooplankton crustaceans found across the world’s oceans. Like other 52 

zooplankton groups, their stomachs represent a specific niche for diverse microorganisms which 53 

normally differ from the microbial communities in the surrounding seawater (Tang et al., 2010). 54 

Zooplankton bodies offer protection and an organic-rich micro-environment for the attached-55 

bacteria (Tang et al., 2010), whereas bacteria can provide different metabolisms for maintaining 56 

the health of the host animals (Shoemaker and Moisander, 2017). 57 

One of the most studied krill species is the Antarctic krill Euphausia superba, where 58 

bacterial growth occurs in the krill stomach’s, which is an important component of the entire 59 

digestive process of euphausiids. Bacterial growth in krill (E. superba) stomach has been 60 

suggested based on electron micrographs (Rakusa-Suszczewski, 1988). Also, diverse studies have 61 

been focused in the characterization of bacteria from krill stomach through different 62 

methodologies. These include: spread plate count method (Kelly et al., 1978; Fevolden & Eidså, 63 

1981; Donachie & Zdanowski, 1998), acridine orange direct count under epifluorescence 64 

microscopy (Fevolden & Eidså, 1981), identification of cell sizes and morphology with optical 65 

and scanning electron microscopy (Kawaguchi & Toda, 1997), isolation and cultivation 66 

(Donachie et al., 1995; Denner et al., 2001; Cui et al., 2016), chromatographic analyses of 67 

bacterial proteins and enzymatic activity measurements with microassays (Donachie et al., 68 

1995), and recently, the characterization of the bacterial diversity on the krill tissue has been 69 

done by using high-throughput sequencing (Clarke et al., 2019). 70 
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In the Humboldt Current System (HCS), one of the most productive marine systems in 71 

the world, the most abundant and endemic krill species is Euphausia mucronata. Its habitat is 72 

mainly restricted to the continental shelf in the coastal upwelling zones (Riquelme-Bugueño et 73 

al., 2012), where it has a high population density and biomass, contributing to the carbon cycling 74 

(Gonzalez et al., 2009; Antezana, 2010; Riquelme-Bugueño et al., 2013). These characteristics 75 

and their ecological role have recently prompted research in order to further our understanding 76 

about this species (Gonzalez & Quiñones, 2002; Riquelme-Bugueño et al., 2015, 2016a,b). Even 77 

though there has been quite a bit of progress in the study of krill ecology and physiology, little 78 

progress has been made in the last few years about the relationship between this krill species and 79 

their stomach-associated bacteria in the HCS, compared to the extensive analysis done for E. 80 

superba (Schmidt & Atkinson 2016). 81 

 To fill this gap and contribute to the study of E. mucronata stomach-microbiome, we 82 

used a complementary approach utilizing Flow cytometry and cell sorting (FC-CS) together with 83 

a conventional tissue DNA extraction, to assess the composition of the stomach microbial 84 

community. Flow cytometry is a high-precision technique that has been used intensively in 85 

microbiology since the early 1990s (Amann et al., 1990). It represents a specific approach for the 86 

counting of microbial cells. The cell-sorting capacity also enables further molecular analysis, 87 

allowing it to specifically characterize and quantify the microbiota component and predict its 88 

phylogenetic relationships. Flow cytometry and cell sorting (FC-CS) have become powerful 89 

techniques to study microbial community structure and population genomics of gut-associated 90 

bacteria at a single-cell level (Koch et al., 2013; Engel et al., 2014). In this work, we propose the 91 

use of Flow cytometry along with cell sorting to study the stomach-associated microorganisms of 92 

zooplankton species, in order to better understand the microbial composition of this largely 93 
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unexplored ecological niche. We used the Humboldt Current Krill E. mucronata, as a study 94 

model in order to identify the microorganisms that are present in the krill stomach as well as 95 

their phylogeny. We also sought to explore new applications of flow cytometry in zooplankton 96 

ecology and the information that can be drawn from this technique. 97 

 98 

MATERIALS & METHODS 99 

Sampling 100 

Sampling was carried out on March 2, 2016, at Station 18, located over the continental 101 

shelf off coast of central Chile (36.5°S, 73.1°W; seafloor 94 m depth) (Fig. S1). Physicochemical 102 

parameters were obtained using a conductivity-temperature-depth (CTD) SB911E profiler, 103 

equipped with an additional fluorescence sensor. Water samples were collected at night, using 104 

10-L Niskin bottles on-board the R/V Kay Kay II (Department of Oceanography, University of 105 

Concepcion). The zooplankton was sampled from a depth of 50 m of the surface with a WP-2 106 

standard plankton net (mesh size of 200 µm) and non-filtering cod ends. Once on board, live 107 

individuals were transported immediately to the laboratory for subsequent analyses. For flow 108 

cytometry analysis, of the planktonic free-living microbial community, 1.5 mL of seawater 109 

samples (in triplicates) were taken from 5, 10, 20, 50, 65, and 80 m depth, and were fixed on 110 

board with 10% dimethyl sulfoxide (DMSO) plus 0.05% of pluronic acid, maintained at room 111 

temperature for 20 min and quickly frozen in liquid nitrogen. The fixed samples were stored at -112 

20° C until the analysis was performed. 113 

 114 

 115 

 116 
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Krill stomach dissection and analyses 117 

Specimens of E. mucronata were identified and separated (3 live individuals per 118 

analysis), washed with 0.2 μm filtered sterile seawater in sterile petri dishes under a laminar flow 119 

hood. Individuals were dissected, and their stomachs were extracted using sterile tweezers and 120 

scraped under a Stereo Discovery V8 zoom stereomicroscope (Zeiss). The stomachs were 121 

washed, dissected, and the content from three stomachs was pooled and re-suspended in 1 mL of 122 

sterile filtered seawater (Fig. 1) containing 10% of DMSO for flow cytometry analysis. Cell 123 

suspension was passed through a cell strainer (70-μm mesh) to remove particles that can clog the 124 

sample line of the flow cytometer and it was then stored in 1.5 mL sterile centrifuge tubes. 125 

Another set of three krill stomachs was dissected and stored in sterile 1.5 mL centrifuge tubes at 126 

-20° C for further DNA extraction. The genomic DNA was extracted from intact stomachs using 127 

the NucleoSpin Tissue XS kit (Macherey-Nagel®). The integrity of the DNA was checked in a 128 

1% agarose gel, and the concentration was determined using a Qubit fluorometer V 1.27 129 

(Invitrogen®). The DNA was then stored at -20° C until amplification. 130 

 131 

Flow cytometry and cell sorting analysis 132 

Picoplankton in the water column was enumerated using a high-performance InFlux® 133 

flow cytometer (Becton Dickinson, formerly Cytopeia). Autofluorescent particles were identified 134 

by their red fluorescence, detected at 692/40 nm using three excitation lasers (457 nm, 488 nm, 135 

and 532 nm). For heterotrophic cells counts, samples were fixed with DMSO (10% final 136 

concentration), stained with the DNA dye SYBR Green I, as described in Marie et al. (Marie et 137 

al., 1997), and they were differentiated by light scatter (forward angle light scatter, FALS). 138 

SYBR Green I fluorescence was detected at 530/15 nm using a 488-nm excitation laser (Fig. 3). 139 
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Each cytometer run was calibrated with 1 mm diameter fluorescent Ultra Rainbow beads 140 

(Spherotech Inc.). 100 μL for autofluorescent cells and 75 μL for heterotrophic cells were run at 141 

an average flow rate of 20 μL min-1 and monitored with a liquid flowmeter (Sensirion US). The 142 

events were recorded with Spigot software (Cytopeia), and FlowJo software v7.6.1 (Tree Star 143 

Inc.) was used for data analysis. Positive events for SYBR Green I fluorescence (530/20 nm) in 144 

stomach samples were sorted in the purity mode. The cytometer was configured in a two-tube 145 

mode, the sort chamber was UV sterilized, and 2 × 104 cells from stomach samples were sorted 146 

into 1.5 mL sterile centrifuge tubes. Cells were centrifuged at 10,000 rpm for 10 min. The 147 

supernatant was removed, and the cells were re-suspended in 16.85 mL of ultrapure nuclease-148 

free water (IDT technologies) and stored at -20°C until analysis (Fig. 3). 149 

 150 

Polymerase chain reaction (PCR) conditions 151 

The 16S rRNA gene was amplified using the eubacterial 358F 5´-152 

CCTACGGGAGGCAGCAG-3´ (Muyzer et al., 1993) and 907RM 5´-153 

CCGTCAATTCMTTTGAGTTT-3´ (Muyzer & Smalla, 1998) primer pairs. The PCR 154 

amplifications were carried out with a total reaction volume of 25 μL per sample. Each mix 155 

contained 0.5 mM dNTPs, 0.75 mM MgCl2, 0.2 μM of each primer, 1 U of Taq polymerase, and 156 

1X Go taq buffer (Kappa Biosystems, Wilmington, MA, USA). For total community PCR, 20 ng 157 

of stomach-extracted DNA was added. A mixture of the reagents was added directly into the tube 158 

containing the cells for the sorted samples. The amplification conditions consisted of initial 159 

denaturation at 95° C for 5 min, followed by 30 cycles at 94° C for 30 s, at 52° C for 30 s, and at 160 

72° C for 1 min, with a final extension at 72° C for 10 min. 161 

 162 
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Cloning, sequencing and phylogenetic analyses 163 

The clone libraries were constructed from the PCR products, obtained from the DNA of 164 

both the whole-stomach microbial communities and the sorted populations, using the pGEM®-T 165 

easy Vector System (Promega). Duplicate PCR products from the samples were pooled and 166 

purified with the Wizard® Gel and PCR Clean-Up System (Promega), ligated and subsequently 167 

cloned into E. coli JM109 competent cells, following the manufacturer’s specifications 168 

(Promega). After a PCR screening was conducted, selected clones with the correct size were 169 

sequenced at Macrogen Inc. (Korea), and the sequences were deposited in GenBank under the 170 

accession numbers MG010923-MG011103.  171 

The sequences retrieved in this work were quality filtered and then locally aligned against 172 

the latest Bacterial and Archaeal 16S rRNA database from the National Center for 173 

Biotechnology Information (NCBI), in addition to the IMG-ER annotated genomes using 174 

MEGABLAST. For Balneolales order phylogeny, operational taxonomic units (OTUs) having a 175 

sequence similarity of 97% and ones that matched Balneolales were aligned against reference 176 

sequences using SSU-Align. Phylogenetic reconstructions were performed on 560 aligned 177 

nucleotides. The phylogeny was inferred by the maximum likelihood (ML) method, using the 178 

generally time reversible parameter and assuming a discrete gamma distribution (GTR+G). The 179 

model was selected according to the Bayesian and Akaike information criterion, using the 180 

JModel test 2.1.3 (Darriba et al., 2012). The phylogenetic inference by ML was done with 181 

BOSQUE Software (Ramirez-Flandes & Ulloa, 2008). The topologies of the trees were obtained 182 

after ML analyses were done, and the robustness of inferred topologies were supported from 100 183 

nonparametric bootstrap samplings for ML. The tree was drawn with iTOL (Letunic & Bork, 184 

2006). To detect Balneola-related sequences from the study area, 16S rRNA bacterial sequences 185 
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from the HCS were retrieved from NCBI (Accession numbers: KM461719, KM461941, 186 

DQ810296 and DQ810787.1; respectively n = 700). The sequences were locally aligned against 187 

our dataset by using MEGABLAST. 188 

 189 

Genomic potential of Balneola DSM 17893 and Balneola sp. EhC07 190 

Cell motility, adhesion, and polymer degradation genes were searched in the available 191 

genome for Balneola DSM 17893 through the IMG-ER platform (https://img.jgi.doe.gov). Genes 192 

for Balneola sp. EhC07 were searched using the draft genome sequence, available under the 193 

GenBank accession number LXYG00000000.1. 194 

 195 

RESULTS 196 

Oceanographic setting 197 

Photosynthetically active radiation (PAR) was 1.7 μE m-2 s-1 at surface strongly 198 

diminishing to 1 μE m-2 s-1 within the first 5 m of the water column. From this depth, PAR subtly 199 

decreased at a rate of 0.002 μE m-2 s-1 until 80 m. The above coincides with the peak of 200 

fluorescence, around 5 m depth, declining to cero at 20 m. Also, the oxygen concentration 201 

declined rapidly in the first 20 m of the water column, stablishing an oxygen minimum zone 202 

(OMZ) from 20 m until the sea bed (< 1 mL/L or ~20 µM of dissolved oxygen). The bacterial 203 

abundance presented two peaks, the first at 5 m depth, with a decline at the oxycline and a 204 

second peak around 65 m depth, in the core of the OMZ. The temperature varied from 13.5º C at 205 

the surface to 11.5º C at 80 m depth, with the thermocline (observed from 5 to 20 m) coinciding 206 

with the oxycline and showing a stratification of the water column (Fig. S1). This profile match 207 
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with the upwelling conditions observed at that station during that season over time (Sobarzo et 208 

al., 2007).  209 

 210 

Flow cytometry analyses of the water column and krill stomachs 211 

Different groups of autofluorescent picoplankton were observed, mainly in surface waters 212 

of the study area, including small photosynthetic eukaryotes and picocyanobacteria that differs in 213 

their pigment properties (Fig. 2A). These groups of autofluorescent organisms were not observed 214 

in the stomach samples (Fig. 2C), suggesting a niche differentiation between the water column 215 

and the krill stomach. In contrast, a clear fluorescent signature was observed in the stomach 216 

samples when stained with the DNA dye Sybr Green I (Fig. 2D), and this pattern differed in their 217 

optical properties to the patterns observed through the water column (Fig. 2B; Fig. S2). A 218 

specific aggregation of cells of similar optic characteristics was selected for cell sorting, 219 

indicated by the dotted line circle in figure 2, cytogram in panel D. 220 

 221 

PCR amplification and sequencing of sorted cells and extracted DNA 222 

Flow cytometry positive events for Sybr Green I fluorescence (dotted circle in Fig. 2D) 223 

were sorted and subjected to amplification of the bacterial 16S rRNA gene. The sorting 224 

procedure allowed for a specific amplification of the 16S rRNA gene fragment, contrary to the 225 

PCR products of multiple sizes obtained from the stomach-extracted DNA (Fig. S3). Most of the 226 

sequences retrieved from the amplification of the 16S rRNA gene, from the whole-stomach DNA 227 

extraction, were affiliated to picocyanobacteria (60.4%, n=52). Other genera found in this DNA 228 

sample, belonging to phylum Proteobacteria, where Halioglobus, Tateyamaria, Sulfitobacter, 229 

Roseobacter, and Paracoccus among others (Table 1). While sequences obtained from sorted 230 
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stained cells from the pool of the three stomachs belonged almost exclusively to Balneola sp. 231 

(96.4%, n=80), a member of the recently defined phylum Balneolaeota. The closest cultured 232 

organisms corresponded to Balneola DG1502, a symbiont of the coccolithophore Coccolithus 233 

pelagicus f. braarudii, and Balneola sp. EhC07, a symbiont of the coccolithophore Emiliania 234 

huxleyi (Fig. 3), which were isolated from the South Pacific Ocean (Green et al., 2015). 235 

 236 

DISCUSSION 237 

The methodology used in this study, allowed us targeting specific bacterial populations 238 

from stomach samples based on their optical properties. Stomach-associated bacteria can be 239 

characterized by FC-CS and sequencing by manual scraping of the stomach, complemented with 240 

the DNA extraction and sequencing from the whole euphausiids’ stomachs. In this way, the 241 

optical properties of the stained cells indicated that sorted cells remained intact, inferred by the 242 

diameter measured with FALS parameter, and did not represent degraded DNA material, 243 

supporting the suitability of this methodology for an accurate analysis of the bacterial 244 

community from the stomach.  245 

The intricate environment inside the krill stomach (Ullrich et al., 1991), probably fosters 246 

the development of unique niches for particular microorganisms. Balneola sp. EhC07 and 247 

Balneola vulgaris DSM 17893, whose genome information is available, contains a genetic 248 

repertoire for twitching (NCBI accession numbers: WP 018126390 and WP 066223579) and 249 

gliding motility (NCBI accession numbers: WP 018127305.1 and WP 066218663.1). These 250 

capacities favor physical contact of the bacteria with the host cells (Tuson & Weibel, 2013) and 251 

represent an advantage against the very intricate structure of euphausiids’ stomachs, as described 252 

for the Antarctic krill (Ullrich et al., 1991). Members of the order Balneolales have been found 253 
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in different marine habitats. However, Balneola sp. have not been reported to be a free-living 254 

organism in the HCS (Aldunate et al., 2018; Stevens & Ulloa, 2008). Nevertheless, Balneola 255 

alkaliphila strain CM41_14b has been observed and isolated from surface waters, in the coastal 256 

north-western Mediterranean Sea (Urios et al, 2008). The functional capacities present in 257 

Balneola sp. for host colonization have also been reported in a wide range of plant and animal 258 

pathogens as well as in the formation of biofilms and fruiting bodies (Green et al., 2015; Mattick, 259 

2002; Rosana et al., 2016). For example, Balneola sp. display the same capacities that are 260 

observed in Polaribacter spp., belonging to the phylum Bacteroidetes, which form an important 261 

part of the microbiota of marine organisms, especially in the gastrointestinal tract (Moisander et 262 

al., 2015; Thomas et al., 2011). 263 

The lack of Balneola-related sequences in the whole stomach-extracted DNA may be 264 

related to the complexity of the euphausiids’ stomach (Ullrich et al., 1991) as well as 265 

methodological issues like the absence of a scraping of the stomachs prior the DNA extraction. It 266 

is possible that microorganisms were strongly attached to the stomach cells and cannot be 267 

disaggregated during extraction. Nevertheless, in the sorting approach, cell removal might be 268 

more efficient by scraping the stomach mucosa with a scalpel. This technique could facilitate cell 269 

recovery from the stomach tissue and, therefore, representing a technique improvement to study 270 

attached bacterial cells. The methodology used in this work allowed us to detect organisms that 271 

were not present in sequence libraries. Nevertheless, transcriptomic or stable isotopes analysis 272 

for the study of in situ activity are necessary to establish direct associations. 273 

Microorganisms associated with the zooplankton digestive tract can be classified as 274 

resident, when bacteria are persistently present in the gut, and transient when bacteria do not 275 

form stable populations within the gut (Tang et al., 2010). In that sense, as cyanobacteria 276 
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normally occur in the water column of the study area (Iriarte et al., 2012) and they are mainly 277 

grazed by nano and microplankton (Böttjer & Morales, 2005), its high abundance detected from 278 

the whole stomach-extracted DNA may represent transient microbiota passing through the 279 

digestive tract of krill during feeding. Whereas, Balneola sp. detected from sorted stained cells 280 

exhibit capacities favoring the physical contact with the host cells, therefore may be part of the 281 

resident bacteria associated with the Humboldt Current Krill. Nevertheless, experimental 282 

evidence is required to support this hypothesis. 283 

The uses of different methodologies that can complement each other, such as flow 284 

cytometry with cell sorting coupled with whole stomach-extracted sequencing is proposed. The 285 

use of FC-CS can be also couple to high-throughput sequencing, to uncover the population 286 

diversity of groups of microorganisms with similar optic characteristics but with low abundance, 287 

and for single-cell genomics (SCG), isolating singular components of the community to explore 288 

its genetic repertoire. Both applications that will help to improve our understanding in future 289 

studies on host-microbes’ interactions and pelagic food webs. 290 

 291 
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FIGURE LEGENDS 295 

Table 1: Phylogenetic affiliation, number, and percentage of sequences obtained from clones of 296 

sorted and DNA samples of the stomachs of Euphausia mucronata collected from Station 18. 297 
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Figure 1: Methodology diagram. Schematic summary of the methodological procedures used in 298 

this study to identify microorganisms in the Euphausia mucronata stomach. The diagram was 299 

created using the BioRender (biorender.com) web platform.  300 

Figure 2: Flow cytometry plots from sorted seawater and Euphausia mucronata stomach 301 

samples collected from Station 18. Left panel: Detection of auto-fluorescent particles by using a 302 

two-laser approach. Red fluorescence was detected at 692 nm plus a 40 nm window, using a 532 303 

nm green excitation laser (x axes) and a 457 nm blue laser (y axes). A: 5-meter depth seawater 304 

sample. C: E. mucronata stomach sample. Right panel: Detection of SYBR Green I fluorescence 305 

for picoplankton enumeration. Green fluorescence was detected at 530 nm plus a 15 nm window, 306 

using a 488-nm blue excitation laser (y axes). Forward angle light scatter (FALS) was used to 307 

identify particles. B: seawater sample at 5 meters. D: E. mucronata stomach sample. Syn: 308 

Synechococcus, PEs: Photosynthetic eukaryotes. The black dashed line in Fig. 1D indicates the 309 

sorted population for molecular analysis. The 1 µm beads are used as a size scale to identify the 310 

different populations of picoplankton.  311 

Figure 3:   Phylogenetic tree (maximum likelihood) of 16S rRNA gene sequences obtained from 312 

sorted samples of Euphausia mucronata stomachs (dotted square), showing the affiliation within 313 

the family Balneolaceae. The tree includes the genus Aliifodinibius, Balneola, Fodinibius, 314 

Gracilimonas, and Rhodohalobacter. OTUs affiliated to Balneola were highlighted in bold. 315 

Bootstrap values of >50% are plotted at the nodes with grey circles. The size of the circles 316 

ranged between 50% and 100%. The tree-scale bar indicates the percentage of sequence 317 

divergence. Salinibacter ruber M31 was included as an outgroup. 318 

 319 
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Table 1 

Affiliation N of sequences from % of the total of sequences from 

(phylum/genus) Sorting Total DNA from 

stomach 

Sorting Total DNA from 

stomach 

Proteobacteria     

   Pseudomonas  1  1.14 

   Vibrio   1  1.14 

   Lysobacter  1  1.14 

   Halioglobus  3  3.40 

   Luminiphilus 2 1 2.40 1.14 

   Haliaea  1  1.14 

   Lautropia  1  1.14 

   Tateyamaria  5  5.68 

   Sulfitobacter 

   Roseobacter 

 3 

2 

 3.40 

2.27 

   Paracoccus 

   Jannaschia 

   Citreimonas 

   Pseudoruegeria 

   Aliiroseovarius 

 2 

1 

1 

1 

1 

 2.27 

1.14 

1.14 

1.14 

1.14 

   Geoalkalibacter  2  2.27 

Actinobacteria     

   Ilumatobacter  5  5.68 

   Cutibacterium  1  1.14 

Firmicutes     

   Staphylococcus  1  1.14 

   Geobacillus  1  1.14 

Balneolata     

   Balneola 80  96.38  

Bacteroidetes     

   Polaribacter 1  1.20  

Cyanobacteria     

   Synechococcus  18  20.45 

   Prochlorococcus  35  39.77 
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