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Abstract 

MdfA, a member of the major facilitator superfamily (MFS), is a multidrug/proton antiporter from E. coli that 

has been considered a model for secondary multidrug (Mdr) transporters. Its transport mechanism, driven by a 

proton gradient, is associated with conformational changes, which accompany the recruitment of drugs and 

their release. In this work, we applied double-electron electron resonance (DEER) spectroscopy to locate the 

binding site of one of its substrates, tetraphenylphosphonium (TPP) within available crystal structures. We 

carried out Gd(III)-nitroxide distance measurements between  MdfA labeled with a Gd(III) tag and the TPP 

analog mito-TEMPO (bearing the nitroxide moiety). Data were obtained both for MdfA solubilized in detergent 

micelles (n-dodecyl-β-D-maltopyranoside )DDM)), and reconstituted into lipid nanodiscs (ND). For both DDM 

and ND, the average position of the substrate at a neutral pH was found to be close to the ligand position in 

the If (inward facing) crystal structure, with the DDM environment exhibiting a somewhat better agreement 

than the ND environment. We therefore conclude that the If structure provides a good description for 

substrate-bound MdfA in DDM solution, while in ND the structure is slightly modified.  A second binding site 

was found for the ND sample situated at the cytoplasmic side, towards the end of transmembrane helix 7 

(TM7). In addition, we used DEER distance measurements on Gd(III) doubly labeled MdfA to track  

conformational changes within the  periplasmic and cytoplasmic sides associated with substrate binding. We 

detected significant differences in the periplasmic side of MdfA, with the ND featuring a more closed 

conformation than in DDM, in agreement with earlier reports. The addition of TPP led to a noticeable 

conformational change in the periplasmic face in ND, attributed to a movement of TM10. This change was not 

observed in DDM.  

Statement of Significance 

MdfA is multidrug transporter from E. coli, which exhibits multidrug efflux activities with an unusually broad 

spectrum of drug specificities. While it has been established that solute transport by similar transporters is 

coupled to significant conformational changes, previous studies raised the possibility that this is not the case 

for MdfA. Moreover, it is not clear how MdfA functionally accommodates chemically dissimilar substrates. 

Towards resolving these open questions, we used double-electron electron resonance distance measurements 

to determine the binding site of a spin labeled drug analog within available crystal structures of MdfA and to 

examine how MdfA responds conformationally to drug binding. Moreover, we explored how these two are 

affected by the media, detergent micelles vs lipid nanodiscs.   

Introduction 

MdfA, a member of the major facilitator superfamily (MFS), is a multidrug/proton antiporter from E. coli that 

has been considered a model for secondary multidrug (Mdr) transporters.(1) MdfA is capable of transporting a 

variety of structurally dissimilar compounds out of the cell, including antibiotics like chloramphenicol.(2) This  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.08.31.275321doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.275321
http://creativecommons.org/licenses/by-nc-nd/4.0/


transport is driven by a proton gradient, and in each transport cycle MdfA imports one proton into the cell.(2) 

Similar to most of MFS antiporters, MdfA folds in the canonical, basic MFS fold which consists of 12 

transmembrane (TM) helices.(3, 4) Previous studies suggest that MdfA is unusually flexible (1), a fact that 

makes crystallization difficult. The first high-resolution X-ray structure of  MdfA was published only in 2015 in 

an inward facing conformation (If, PDB 4ZP0),(5) and more recently, another crystal structure that depicts 

MdfA in an outward open conformation (Oo, PDB 6GV1) has been published.(6) Both crystal structures, 

however, do not represent MdfA in its native state. The If crystal structure was determined from the non-

functional mutant Q131R  with bound deoxycholate and other ligands(5), while for the more recent Oo 

structure, crystallization was facilitated by a Fab antibody fragment attached to the cytoplasmic side of the 

protein.(6) 

The solution structure of MdfA solubilized in detergent at neutral pH, was explored by double electron-

electron resonance (DEER) measurements on a series of double cysteine mutants of MdfA labeled with two 

different spin labels – a pair of nitroxide labels (NO) or a pair of C2-Gd labels (see Fig. 1a).(7) Both labels, which 

are dissimilar in their structures, sizes, charge and hydrophobicities, revealed the flexibility of detergent-

solubilized MdfA, and showed that the periplasmic side has a similar structure to the Oo conformation 

reported by the 6GV1 crystal structure, though somewhat more closed, and is quite different from the If crystal 

structure. For the cytoplasmic face, the results show only a slight similarity to the Oo with a more open 

conformation.  

A model of the transport process suggested that MdfA relies on the alternate-access mechanism, in which the 

protein is open towards the cytoplasm, undergoes a substrate-induced structural rearrangement that closes 

the cytosolic region and opens the protein towards the periplasm, and vice versa.(8) Relating these steps to 

published crystal structures suggests that the Oo conformation presumably captures the state in which 

substrates are released in the periplasm. On the other hand, the ligand occluded If conformation is assumed 

following deprotonation. MdfA’s transport capabilities include neutral, zwitterionic and cationic cytotoxic 

compounds such as ethidium bromide, tetraphenylphosphonium (TPP) bromide, ciprofloxacin, and 

chloramphenicol.(9) Drug/proton exchange requires a site that can be protonated, which in MdfA has been 

identified as Asp34 that together with Glu26 are essential for transporting cationic drugs.(10) Results from 

biochemical studies suggested that a substrate must be released prior to binding of a proton, so there is a 

competition between binding a substrate and binding a proton.(11) Mechanistically, in the If conformation 

residue Asp34 gets deprotonated, enabling the binding of a substrate in the multidrug recognition pocket. A 

conformational change towards the Oo conformation is triggered by this binding. The substrate is released to 

the periplasm and, consequently, the Asp34 residue becomes exposed. Following protonation, the protein 

undergoes a second conformational change towards the If structure and the cycle is complete. Interestingly, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.08.31.275321doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.275321
http://creativecommons.org/licenses/by-nc-nd/4.0/


this mechanism implies that the antiporter cannot export cationic substrates at an external alkaline pH above 

7.6.(1)  

Recently,  MdfA has been studied in phospholipid bilayers, more specifically in nanodiscs (ND) and native 

membrane by DEER spectroscopy and biochemical cysteine cross-linking.(12) The study reported that in this 

environment, MdfA assumes a relatively flexible, outward-closed/inward-closed (Oc/Ic) conformation,(12) 

which is different from the observation in detergent.(7) Moreover, the data show that neither the substrate 

TPP nor protonation induces large scale conformational changes as expected from the above description. In 

turn, the authors identified a substrate-responsive lateral gate, which is open toward the inner leaflet of the 

membrane and closes upon drug binding. This recent work suggested a modified model for the functional 

conformational cycle of MdfA that does not invoke canonical structural elements of alternating access. So far, 

the experimental structural studies of MdfA in detergent or in membrane mimics, focused on the 

conformational changes of MdfA upon substrate binding(7, 8, 12, 13) but not directly on the location of the 

substrate within the structure.  

In the present work, we focus on the location of TPP within the structure of MdfA. We investigated both MdfA 

solubilized in DDM (n-Dodecyl-B-D-Maltoside) detergent and reconstituted in lipid ND, looking for indications 

that structural differences may be induced by the lipid environment. We labeled MdfA with a Gd(III) spin label, 

C2-Gd (Fig. 1a), as used earlier(7) and added to it an NO labeled TPP analogue, mito-TEMPO (see Fig. 1b,c). We 

carried out W-band (95 GHz) Gd(III)-NO DEER measurements on three singly labeled C2-Gd sites on the 

periplasmic side in the presence of bound mito-TEMPO and obtained the Gd(III)-NO distance distributions. The 

advantage of using Gd(III)-NO DEER, as opposed to NO-NO or Gd(III)-Gd(III)  DEER, is the ability to track 

protein-substrate distances for weak binding with  minimal interferences from overlapping EPR signals from 

unbound substrate.  Using DEER derived distance distributions and triangulation, we located the NO group of 

mito-TEMPO within the If structure, which was solved with several ligands and a substrate(5), and the Oo 

structure(6). The location of the substrate agreed rather well with the If and not the expected Oo structure, and 

the DDM results showed better agreement than the ND results. This suggests that the If structure, which was 

obtained from MdfA solubilized in DDM, is a good representation for substrate bound MdfA solubilized in DDM 

and less so for ND. In addition, using Gd(III)-Gd(III) DEER on doubly labeled MdfA to track conformational 

changes upon TPP binding, we identified significant conformational changes on the periplasmic side of MdfA in 

ND but not in DDM.  
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Figure 1. Chemical structure of (a) Gd-C2 (b) mito-TEMPO, (c) TPP 

 

 Experimental 

Gd-C2 was obtained from Bim Graham and synthesized as described earlier(14). Mito-TEMPO chloride was 

purchase from Sigma-Aldrich and used without further purification. TPP bromide was purchased from Fluka. 

Preparation of the double cysteine-less (CL)-MdfA mutants A128C/S280C and L168C/S310C , the single CL 

mutants L101C, S310C and L168C, their solubilization in 1.1% n-dodecyl-β-D-maltopyranoside (DDM) detergent 

and their labeling with Gd-C2 was done as described earlier.(7) The MdfA activity of all single and double 

cysteine mutants was confirmed earlier.(7)  

 Preparation of MdfA reconstituted in ND. 

 The MSP protein: Here we followed the protocol described in (12, 15). E. coli BL21(DE3) transformed with 

plasmid pET-28a(+) encoding MSP1D1E3 were grown in Terrific Broth (TB) supplemented with 30 µg/ml 

Kanamycin at 37 °C to A600 of 2.5-3, and induced using 1 mM IPTG. After 4 h of expression, cells were harvested 

and resuspended in lysis buffer (50 mM sodium phosphate buffer, 1 % Triton X-100), supplemented with 1 

tablet of Complete Mini, EDTA-free Protease Inhibitor Cocktail (Roche) and 1 mM PMSF. Cells were then lysed 

by sonication (two cycles, 8 min at 30% amplitude, 15 s on, 15 s off, using Sonics Ultra Cell). The suspension 

was ultracentrifuged at 30,000 g for 30 min to remove non-lysed material. The protein was then purified by Ni-

NTA affinity chromatography and eluted with 300 mM Imidazole in a tris-buffer (40 mM Tris, 300 mM NaCl, 

300 mM Imidazole, pH 8.0). Finally, the protein was desalted using a HP Desalting column (GE Healthcare) into 

50 mM Tris/MES buffer (pH 7.5), concentrated to a volume of around 2 ml (~15 mg/ml) and stored at 4 °C.  

Phospholipids: Phospholipids (E. coli polar lipid extract, Avanti Polar Lipids) were prepared by dissolving the 

powder in CHCl3/MeOH (3:2) and subsequent removal of the solvent in vacuo. Lipids were then hydrated by 

addition of 20 mM Tris-HCl, pH 7.5, 0.12 M NaCl (15mg/ml) and subjected to ten cycles of freezing and thawing 

in liquid nitrogen, followed by sonication. Lipids were then flash frozen and stored at -80°C.  

(a)(a)
(b)

(c)
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The desired MdfA single or double mutant was grown, purified, and labeled as described earlier.(7) Following 

labeling, the sample was loaded on a Superdex 200 10/30 GL (GE) gel filtration column, eluted, and 

appropriate fractions combined after verification by SDS-PAGE. The protein volume was reduced to 0.5 ml 

using a Vivaspin concentrator with a cutoff of 10 kDa and fresh MSP (MdfA:MSP 1:10), lipids (MSP:Lipids 1:60, 

E. coli polar lipid extract) and 0.1 M Sodium Cholate (Lipids:Detergent 1:5, where detergent refers to the total 

detergent concentration in the final sample, including DDM) were added. After 1 h of incubation at 4 °C, 

Biobeads (Bio-rad) were added stepwise: 100 mg per 1 ml of sample after 1 h, 100 mg after 2 h, 200 mg after 3 

h and another 200 mg after overnight incubation. After removal of the beads by centrifugation the sample was 

concentrated using a 100 kDa Vivaspin concentrator, loaded on a Superdex 200 10/30 GL gel filtration column 

and eluted using 20 mM Tris-HCl, pH 7.5, 120 mM NaCl, 10% glycerol. Following elution, fractions containing 

MdfA, embedded in nanodiscs were combined, as determined by SDS-PAGE for the presence of MSP and MdfA 

(see Fig. S1).  

Preparation of MdfA + TPP or mito-TEMPO samples for DEER  

TPP bromide was added in excess (1 mM) to doubly labeled MdfA, mixed and the mixture incubated for 15 

minutes on ice. Samples containing mito-TEMPO were prepared by adding 1, 2, or 5 equivalents of mito-

TEMPO from a 1 mM stock solution in 20 mM Tris-HCl buffer (pH 7.5) to the protein sample, followed by 

mixing and 20 min incubation on ice.  

All EPR samples were in 20 mM Tris-HCl, pH 7.5, 120 mM NaCl buffer D2O glycerol-d8, (9:1 v/v). Protein 

concentration was determined by measuring the absorbance at 280 nm, A280 (1 mg/mL ~ 2.1 A280) and the 

protein was concentrated to a final concentration of 20 – 50 μM using a 100K MWCO concentrator (Amicon). 

Finally the sample was loaded in 0.8 o.d. 0.6 i.d mm quartz capillaries, flash frozen in liquid nitrogen and kept 

until measured.  

Mito-TEMPO binding constant measurements. 

 Binding of mito-TEMPO was performed as described earlier(16) with small modifications. Purified protein (2 

µg/sample) was mixed with Ni-TNA (talon) resin (10 µl of suspended resin/sample) in buffer A (20 mM Tris-HCl, 

pH 8, 0.5 M NaCl, 10% glycerol, 0.1% DDM, 5 mM imidazole), and incubated at 4°C for 1 h, with gentle 

agitation. Unbound protein was then discarded by centrifugation (2 min, 700 g) and the resin was resuspended 

in 100 μl/sample of buffer (20 mM Tris-HCl, pH 8.0, 0.5 M NaCl, 0.1% DDM). Samples were then mixed with 

100 μl/sample of buffer C, supplemented with 2 µM of [3H]TPP (two-fold concentration) and mito- TEMPO at 

concentrations ranging from 0-80 µM (two fold concentration). The final mixture, containing 1 µM of [3H]TPP 

(1 Ci/mmol) and 0-40 µM of mito-TEMPO, was then incubated at 4°C for 15 min with continuous tilting. The 

resin (180 μl) was then transferred to a Promega Wizard minicolumn, placed on a microcentrifuge tube, and 

centrifuged at >10,000 g for 20 sec. Unbound material (flow-through) was discarded, and the resin was 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.08.31.275321doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.275321
http://creativecommons.org/licenses/by-nc-nd/4.0/


resuspended in 100 μl of buffer D (20 mM Tris-HCl, pH 7.0, 0.5 M NaCl, 0.1% DDM, 350 mM imidazole) and 

removed to scintillation vials. Scintillation fluid (5 ml) was added to the samples and then measured in a beta-

counter for 1 min. To determine the inhibition constant of mito- TEMPO (Ki), the data was fitted to the 

equation B=Bmax-Bmax([I]/[I]+Ki) using nonlinear regression, where B equals to bound TPP (µM), Bmax equals to 

the maximum of bound TPP (µM), and [I] refers to the concentration of mito-TEMPO (µM). Calculation of Ki 

and nonlinear regression was performed using MATLAB Curve Fitting toolbox.  

 

 

 

Spectroscopic measurements 

Continuous-wave EPR experiments of the Gd(III)-NO samples were performed at X-band (9.4 GHz) on a Bruker 

E500 spectrometer at room temperature. Modulation amplitude was 1 G, Time constant 164 ms, conversion 

time 40.96 ms, and sweep time 41.94 ms. All pulsed EPR experiments were performed on a home-built 95 GHz 

(W-band) EPR spectrometer equipped with two microwave channels and an Arbitrary Waveform Generator 

(AWG). The pulse sequence used for the echo detected EPR (ED-EPR) was π/2 – τ – π – τ – echo. For optimized 

the observation the NO signal the conditions were as follows: 50 K: t/2, = 20/40 ns, τ = 600 ns, shot repetition 

rate 5 ms. For optimizing Gd(III) signal : 10 K, t/2, = 20/40 ns, τ = 600 ns, shot repetition rate 500 μs ( see Fig. 

S2). 

Gd(III)-Gd(III) DEER. DEER experiments were recorded at 10 K with the standard dead-time free DEER sequence 

(π/2νobs – τ1 – πνobs – (τ1+t) – πνpump – (τ2-t) – πνobs – τ2 – echo)(17) where the pump pulse was replaced with a 

linear chirp(18, 19), referred to as AWG DEER or rDEER(20), where the shaped pump pulse is swept between 

the primary echo and the first refocusing pulse. An 8-step phase cycling on the observer pulses was used; the 

observed pulse was set at 94.9 GHz, which corresponds to maximum echo intensity with pulse lengths: t/2, = 

15/30 ns. Two consecutive pump pulses set at 94.5-94.8 GHz and 95-95.3 GHz with pulse lengths of 96 ns each 

were applied. Most data were collected with rDEER where τ2=2.2 µs and the delay that determines the length 

of the DEER evolution time, τ1, varied from sample to sample. When AWG DEER was applied τ1= 1 µs was 

used and τ2 varied according to the DEER evolution time needed (or possible). 

Gd(III)-NO DEER. Gd(III)-NO rDEER experiments were performed at 10 K by tuning the resonator at 94.9 GHz 

and setting the field maximum of the NO spectrum to 94.95 GHz. A single, 128 ns long linear chirp was used as 

a pump pulse from 94.9 – 95.1 GHz while the observe sequence was placed at 94.8 GHz. An 8-step phase 

cycling was used, shot repetition time was 200 μs. Here τ2 was in the range of 1.0-2.2, depending on the 
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sample. Fig. S2 shows the DEER set up for the Gd(III)-Gd(III) and Gd(III)-NO DEER. The echo detection observe 

pulses were optimized for Gd(III) with lengths of 12.5 or 15 ns for the /2 pulses and 25 or 30 ns for the . The 

repetition rate was 0.2-0.5 ms, to ensure saturation of the NO signal. 

Data analysis: DEER data were analyzed using Tikhonov regularization with the  DeerAnalysis 2018 software 

package.(21)  The background decay was fitted with a dimension of 3 and default values were used for the 

validation process including noise addition.  

The calculated Gd(III)-Gd(III) distance distribution were carried out as described earlier(7) and the same 

program was used to calculate the average position of the Gd(III) in the Gd-C2 labels. These coordinates were 

used in the triangulation to determine the position of the NO radical in the mito-TEMPO in the If and Oo crystal 

structures.  

 

Results 

The effect of the environment and substrate on the conformation of MdfA. We first explored the effect of the 

environment, namely ND vs DDM micelles, on the conformation of MdfA. We chose two cysteine-less (CL) 

MdfA double mutants, A128C/S280C and L168C/S310C designated as TM4128 - TM8280 and TM5168 - TM10310, 

respectively. This nomenclature, used also in our earlier publication(7), highlights their location in terms of the 

MdfA TM helices. The first pair probes the cytoplasmic side of MdfA, whereas the second pair examines the 

periplasmic side (see Fig. 2).  

 

Figure 2. Labeling positions in MdfA, illustrated on several views, on the If (PDB 4ZP0(5)) and Oo (PDB 6GV1(6)) 

crystal structures. The substrate deoxycholate is shown as grey sticks in the If structure and the labeling 
residues are shown as sticks with colors matching the color of the TM helix they are part of. The periplsamic 
and cytoplasmic sides of the membrane are indicated.  

 

DEER form factors and the corresponding distance distributions of TM4128 - TM8280 and TM5168 - TM10310 in 

DDM and ND, presented in Fig. 3, show that while the ND environment leads to a significant shortening of the 
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distance between the periplasmic labels by ~ 1 nm, as compared to DDM micelles, no change was observed for 

the cytoplasmic pair. Comparison of NO-NO distance measurements of the cytoplasmic pair TM120-TM8280 in 

DDM and ND revealed a small change in the maxima of the distance distribution (0.37 nm)(7, 12) consistent 

with our observation. For the periplasmic pair TM3101-TM11373, the ND distance was shorter by 0.82 nm, 

whereas for the TM5163-TM10307, TM5163-TM11373 and TM5168-TM11373 pairs the shortening was considerably 

milder, 0.13-0.35 nm.(7, 12) We also compared the obtained distances to those predicted from the If and Oo 

crystal structures (PDB 4ZP0(5) and 6GV1(6)). For TM4128 - TM8280 the maxima of the predicted distance 

distribution is 2.8 nm for both structures(7), which is in a good agreement with the experimental maxima of 

2.85 nm for the DDM sample and 2.9 nm for the ND sample. For TM5168 – TM10310 the predicted distance 

derived from the If structure (4.35 nm) agrees with the DDM experimental results, whereas the Oo predicts a 

maxima at 5.45 nm, which is in disagreement with both DDM and ND results. 

 

Figure 3. Gd(III)-Gd(III) DEER results on (A,B) TM4128 - TM8280 and (C,D) TM5168 – TM10310   in DDM and ND with 
and without the drug TPP. (A,C)  DEER form factors obtained from the primary DEER after background 
correction and (B,D) the corresponding distance distribution with color coding of the reliability regions as 
defined in DeerAnalysis. (Pale green: the shape of the distance distribution is reliable. Pale yellow: the mean 
distance and distribution width are reliable. Pale orange: the mean distance is reliable. Pale red: long-range 
distance contributions may be detectable, but cannot be quantified.) The light grey regions, representing the 
uncertainty range of the data, show alternative distributions obtained by varying the parameters of the 
background correction as calculated by the validation tool in the DeerAnalysis software package. The vertical 
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red lines are drawn to highlight the shift of the distance distribution. The primary DEER data are shown in Fig. 
S3 

Next, we looked at the effect of TPP addition on the distance distributions of TM4128 - TM8280 and TM5168 – 

TM10310 in DDM and ND. For the cytoplasmic TM4128 - TM8280 pair, the addition of the drug did not lead to any 

significant change in either environments, whereas for the periplasmic TM5168 – TM10310, a significant shift was 

observed only for the ND sample. The maxima of the distance distribution shifted from 3.6 nm to 4.5 nm. The 

latter is similar to that observed for the DDM sample and agrees with the If crystal prediction. We note that 

this crystal structure was obtained with a trapped ligand, deoxycholate. The recent work on MdfA in ND using 

NO spin labels reported no major changes for cytoplasmic pairs upon TPP binding. However, an increase in the 

maxima of the distance distribution of 0.6 nm was detected for the periplasmic pair TM3101 – TM11373 (12), 

which is  on the order of the difference we observed for TM5168 – TM10310 in ND. To summarize this part, we 

detected structural differences in the periplasmic side, between ND and DDM environment in the absence of 

substrate, but not in the presence of substrate.  

Substrate binding. To determine the location of  TPP in MdfA solubilized in DDM or reconstituted into ND, we 

employed an NO spin-labeled substrate, mito-TEMPO, which is an analog of TPP. (Fig. 1). The inhibition 

constant, Ki, of mito-TEMPO/MdfA (wild type) complex in DDM was determined by competitive binding assay 

where the binding of [3H]TPP was inhibited by Mito-TEMPO (Fig. S4). Measurements were done with 1 μM of 

[3H]TPP in the presence of increasing concentrations of mito-TEMPO. The resulting Ki = 8.86 μM 

(RMSE=0.0047) is similar to the Kd of TPP (~4.7 µM) (16). For this Ki and for the range of MdfA and mito-TEMPO 

concentrations (20-50 µM) used, we calculated that 52-66% of the MdfA proteins should carry a bound mito-

TEMPO. We also verified the binding by continuous wave (CW) X-band (~9.5 GHz) EPR. The addition of mito-

TEMPO to Gd-C2 TM5168 MdfA resulted in the appearance of a slow motion component in the EPR spectrum 

which is indicative of binding (Fig. S5A). Simulation of the EPR spectrum of TM5168/mito-TEMPO 1:1 molar ratio 

in DDM showed that only 17-20% of the mito-TEMPO was bound (Fig. S5B). This suggests that the dissociation 

constant for the CL-MdfA Gd-C2 labeled mutant is higher than that of WT MdfA.  Somewhat higher dissociation 

constants for TPP were already reported for MdfA mutants(2, 11).   

We tested whether MdfA form oligomers by performing Gd(III)-Gd(III) DEER measurements on the singly 

labeled constructs in the absence of mito-TEMPO and observed only background decay with no modulation 

(Fig. S6A). To optimize the modulation depth, we tested samples with 1, 2, and 5 equivalents of mito-TEMPO 

(Fig. S6B) and the 1:2 ratio gave the largest modulation depth without introducing a too large background 

decay. This ratio was further used for all samples.  Here we stress that carrying out Gd(III)-NO DEER under 

conditions of low binding is highly advantageous as compared to Gd(III)-Gd(III) or NO-NO DEER because of the 

spectroscopic selectivity feature the former offers. This  allows increasing the relative substrate concentration 

to increase the % of bound MdfA, without paying the penalty of reduced DEER efficiency owing to a large 
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background signal from the unbound subtract, which contribute to the observed echo and reduces significantly 

the modulation depth. In the case of  Gd(III)-NO DEER, the NO signal does not contribute to the Gd(III) 

observed signal and its excess just increases the background decay.     

For locating the position of the mito-TEMPO in the MdfA structure using the DEER derived distance 

distributions in DDM and ND we used triangulation, following the approach of Freed(22) , where  a bound lipid 

substrate was located in  soybean seed lipoxygenase-1, and of Mchaourab and coworkers who located a spin-

Labeled substrate in the multidrug antiporter NorM. (23) In these cases, both the substrates and the proteins 

were labeled with NO spin labels, while in our work the protein was labeled with Gd(III) and the substrate with 

NO, and Gd(III)-NO distance measurements(24-28) were carried out. We chose to label the periplasmic side, 

where we observed differences in the Gd(III)-Gd(III) distances between the two environments and where the 

binding of TPP led to a change in this distance (see Fig. 3). The Gd(III)-NO DEER form factors and the 

corresponding distance distributions of the three periplasmic singly labeled MdfA  mutants TM3101, TM10310 

and TM5168 with mito-TEMPO are shown in Fig. 4. In these experiments the observe pulses and repetition rates 

are optimized for Gd(III) (28) (see Fig. S2) to minimize NO contributions to the observed echo. For all samples, 

we observed a distance distribution with a major peak at a short distance in the range of 3-3.5 nm and a 

smaller peak at a longer distance of 4-5 nm. In general, the long distance peak is more intense in the ND 

samples. A small difference between the DDM and ND samples was detected only for  TM5168, where the 3.5 

nm peak in the DDM sample shifted to 3.8 nm in the ND sample.  

The modulation depth observed is only a few percent (2-6%), with the exception of the TM3101 DDM sample 

that showed a much lower modulation depth. This is significantly lower than the 12-15% expected for the 

experimental set up used, based on other samples measured in the lab. For the Ki determined above and a 

MdfA/mito-TEMPO molar ratio of 1:2 we expect that 74-87% of the  MdfA proteins would carry  a bound mito-

TEMPO. This should yield a  modulation depth close to 10%. If we consider the % of bound MdfA for 1:1 

MdfA/mito-TEMPO derived from the EPR simulations, for a 1:2 ratio we expect only 31-37% bound MdfA, 

which is in better agreement with the low modulation depth observed. In general, we observed a higher 

modulation depth for the ND samples, which seems to correlate with a more intense long-distance peak. This 

maybe an indication for second binding site of mito-TEMPO within the lipid layers. 

To validate that the DEER effect observed is indeed due to mito-TEMPO binding to MdfA, we added 10 

equivalents of the stronger binder TPP to TM5168 /mito-TEMPO (1:2) and TM3310/mito-TEMPO (1:2). After 15 

minutes of incubation we observed no DEER effect, except for the background decay  (Fig. S6C), confirming 

that the distance distributions observed are indeed due to the interaction with the mito-TEMPO. Finally we 

exclude any contributions of NO-NO DEER to the distance distribution; although the observed pulse frequency 

overlapped with the NO signal (see Fig. S2), because of the saturation of the NO signal owing to the fast 

repetition rate and the pulse length optimized for the Gd(III) signal. 
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The location of the mito-TEMPO in the MdfA substrate recognition pocket. From the Gd(III)-NO distance 

distributions for TM5168 , TM3101 and TM10310, shown in Fig. 4, we determined the mean location of the NO 

group in mito-TEMPO in the If and Oo structures by triangulation(22), (23). Three distances is the minimal 

requirement for triangulations, naturally the larger the numbers of distances the higher is the accuracy.(29) 

Such calculations require the position of the Gd(III) within the protein structure and this was determined by 

modeling, where the Gd-C2 tag was grafted on the available crystal structures as described in the experimental 

section. First, we determined the mean position of the Gd(III) in each of the labeling sites, shown as cyan, 

green and orange spheres in Fig.5. Details, along with X, Y, Z coordinate’s distributions of the position of the 

Gd(III) ions for each tag conformation are given in Fig. S8 for the If structure and in Fig. S9 for the Oo structure. 

Using these distributions we determined the mean  X, Y, Z coordinates for each Gd(III) labeling site and its 

mean location. These, and the Gd(III)-NO most probable distances (maxima of the distance distribution) were 

then used to determine the NO location by triangulation. For TM3101, where the intensity of the short and long 
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distances are comparable, we took the peak of the short distance. Fig. 5 shows the two crystal structures, Oo 

and If, with the mean positions of the three Gd(III) labels and the location of NO group of mito-TEMPO for ND 

and DDM. In the If structure, the most probable location of the NO group is close to the position of the 

deoxycholate ligand. The difference between the two environments is small, with the ND position situated on 

top of TM11, further away from the deoxycholate location. In Fig. 6A we show the location of the NO group 

with respect to the If structure with different ligands (deoxycholate and N,N-Dimethyldodecylamine N-oxide 

(LDAO)) and a substrate (chloramphenicol), where the proximity of the mito-TEMPO to the location of these 

compounds is obvious. In Fig. S10A we present a close up on the location of the NO in DDM and ND within the 

If structure highlighting the amino-acids in its close vicinity, that are mostly aromatic. In contrast, the location 

of the NO radical in the Oo structure is closer to the bottom of the open funnel, where it is surrounded by a 

smaller number of amino acid residues with which it can interact (see Fig. S10B). These results suggest that the 

If structure describes better the mito-TEMPO bound structure of MdfA than the Oo structure. The closer 
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Figure 4. Gd(III)-NO DEER results of (A,B) TM5168 , (C,D) – TM3101   and  (E,F) TM10310    in DDM and ND with 
mito-TEMP. (A,C,E)  The DEER form factor and (B,D,F) the corresponding distance distribution with color 
coding of the reliability regions as defined in DeerAnalysis. (Pale green: the shape of the distance distribution 
is reliable. Pale yellow: the mean distance and distribution width are reliable. Pale orange: the mean distance 
is reliable. Pale red: long-range distance contributions may be detectable, but cannot be quantified.) The light 
grey regions, representing the uncertainty range of the data, show alternative distributions obtained by 
varying the parameters of the background correction as calculated by the validation tool in the DeerAnalysis 
software package.  The primary DEER data are shown in Fig.S7.  
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location of the NO radical to the substrates in the If structure for the DDM sample as compared to the ND 

samples indicates that the If structure reflects better the DDM solution structure than the ND structure.  

We also evaluated the probability distribution of the NO location in the If structure, taking into account the 

width of the distance distribution peaks and the distribution in the Gd(III) location due to the flexibility of the 

Gd(III) tag (see SI for details). The result, shown in Fig. S11, reflects a rather large anisotropic distribution 

featuring a larger spread perpendicular to the membrane axis, which could be biased by the choice of the 

Gd(III) spin labels.  

The Gd(III)-NO distances distributions of the ND samples showed an additional peak with a significant intensity 

at 4.5-5 nm,  (Fig. 4), which suggests the presence of a second binding site for mito-TEMPO. Using these three 

distances, we located this second binding site of NO radical in the If structure at the entrance to the 

cytoplasmic side, just at the edge of the protein (see Fig. 6B). The Gd(III)-NO distance distributions of the DDM 

samples have peaks at the 4.5-5 nm range, which give an average location similar to that of the ND samples. 

However, the intensities of these peaks in the DDM samples are lower than in the ND samples, indicating a 

significantly lower population and higher uncertainty. 

  

 

Figure 5. Two views of the location of the NO group of mito-TEMPO in ND (purple sphere) and DDM (blue 
sphere) in the Oo (top) and If (bottom) structures. The NO location was determined from the maximum of the 
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short distance peak in the corresponding distance distribution. The views on the left include residues E26 and 
D34.  

 

 

Figure 6. (A) Zoom on the aligned If MdfA structures with deoxycholate (PDB 4ZP0, cyan), dimethylamine N-
oxide (PDB 4ZP2, magenta), chloramphenicol (PDB 4ZOW, yellow) and the location of the NO group of mito-
TEMPO in ND (purple sphere) and in DDM (blue sphere). (B) The location of the NO group of mito-TEMPO in 
the second binding site in ND (purple sphere) and DDM (blue sphere) corresponding to the long distance in the 
distance distribution in the If structure. 

Discussion 

In this work we focused on substrate binding to MdfA solubilized in DDM, or reconstituted into ND, to obtain 

insight into the conformational changes it may undergo upon substrate binding and its sensitivity to its 

surrounding media, considering that ND are a superior membrane mimic environment than detergent 

micelles.(29-33) DEER studies, which compared these two environments using NO spin labels on various 

proteins, showed varying results on whether the ND reconstitution changes the conformation of the 

protein.(32, 33) It has also been shown that other parameters such as solvent or ligand accessibility might be 

enhanced in ND.(34) For substrate free MdfA in ND it was reported that the cytoplasmic side is closed, similar 

to that of the If structure, and somewhat less than in the Oo structure, which is in general similar to the 

substrate-free MdfA in DDM. (7, 12) Larger differences were observed for the periplasmic side, where in ND it 

is more closed than in DDM. For the former it was more similar to the If structure, whereas in DDM it 

resembled better the Oo structure, though somewhat more closed. (7, 12). Accordingly, the predominately 

outward facing Oo structure in DDM changes under the influence of the lipids to outward closed/inward closed 

(Oc/Ic) conformation.(12) The question that arises is whether the substrate location is also affected by the 

conformational changes induced by the environment on substrate free MdfA.  

To determine the location of the substrate we made use of Gd(III)-NO measurements(24, 35, 36), between 

Gd(III) singly labeled MdfA and a NO labeled TPP analog, mito-TEMPO. The choice of employing Gd(III)-NO 

(
b
) 
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measurements, as opposed to the more standard NO-NO distance measurements allowed us to work under 

conditions of excess substrate with minimal interferences from the unbound substrate and avoid potential 

contributions of substrate-substrate distances to the distance distributions because the NO signal is saturated 

under the measurement conditions optimized for Gd(III) detection(28). In general, the Gd(III)-NO distance 

distributions observed for the three Gd(III) labeling sites were rather similar in DDM and ND (at neutral pH). 

The differences were limited to a somewhat shorter distance (0.3 nm) for TM5168 in DDM, larger modulation 

depth and the more intense peak at 4.5-5 nm for ND samples. For the DDM data, the average location of the 

NO radical of mito-TEMPO agrees rather well with the location of the ligands in the If structure (see Fig. 6a), 

suggesting the tri-phenylphosphonium part of the mito-TEMPO molecule is projected away from TM11 

towards the substrate binding pocket. The position of the NO group, calculated from the ND distance 

distributions, gave an average position close to that of the DDM data (at a distance of 0.47 nm) but more 

pushed into TM11. This indicates that the If structure represents slightly better the DDM-solubilized MdfA with 

bound substrate than the ND-reconstituted transporter. The location of the NO group in the Oo structure 

seems to be more at the edge of the protein for both the DDM and ND samples and therefore we conclude 

that the Oo structure does not represent satisfactorily the occluded conformation of substrate-bound MdfA, in 

agreement with a recent study. (12)  

We also calculated the distribution of the NO location in the structures, taking into account the distribution of 

the calculated Gd(III) positions in the structure arising from the flexibility of the Gd-C2 tether to the protein 

and the width of the distance distribution. The distribution was large and anisotropic, with the largest 

distribution found along the membrane axes. We attribute this mainly to experimental error in combination 

with choices of labeling sites, which were limited to the periplasmic side. The location of TPP within the If 

structure was also calculated using substrate docking.(8) In this work the If structure was used as the initial 

structure for MD simulations where the Q131R was abolished and docking of TPP was carried out on the 

resulting structures. The binding sites of TPP are distributed between the center of the recognition pocket, 

lined with and below residue D34, confined to the center of the MdfA, similar to the average position we 

obtained. The site distribution found in the docking calculations extended mainly along the channel 

perpendicular to the membrane axes towards the recognition pocket, which together with other residues, 

constitutes the rim around the entrance to the pocket from the cytoplasm. This rim comprises of E135, E136 

R332 and E132 and the distribution indicated potential location around the rim, with rather low probability. 

This distribution was significantly narrower, than what we found. 

Our results suggested the existence of a second binding site for the ND-reconstituted MdfA, as indicated by a 

second peak in the distance distribution at a longer distance. This site is located at the cytoplasmic side, near 

the edge of TM7. This position is however too far from the site in the rim indicated by the docking calculations. 

As these longer distance distributions were not prominent in the DDM sample, it is possible that the presence 

of the lipids in the NDs allowed the binding of TPP to this tentative second site. Recently, Yardeni et al.(12) 
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identified a substrate-responsive lateral gate, in between TM5 and TM8 which is open toward the inner leaflet 

of the membrane and closes upon drug binding. Unfortunately, the site we have found cannot be assigned to 

this location as it is too far.  

 

The Gd(III)-Gd(III) results, which track the MdfA conformational changes upon TPP binding,  obtained under 

neutral pH and using different pairs than those described in ref (12), are consistent with the results of this 

work. For the cytoplasmic mutant, TM4128 – TM8280, the distance was not affected by the environment, 

whereas the periplasmic mutant TM5168 – TM10310 in apo-MdfA exhibited a significantly shorter distance in the 

ND, with a difference on the order of that observed earlier for TM3101-TM11373.(12) This earlier study showed 

that in ND, substrate induced conformational changes are small and limited to closure of the periplasmic edges 

of TM1 and TM7, increasing distance of the TM3-TM11 edges and shortening of TM5—TM10 and TM5-TM8 on 

the cytoplasmic side. These probably generate the occluded conformation, which does not involve rigid body 

movement of both halves (N6 and C6, representing the pseudo-symmetric halves of MdfA) against each other. 

Interestingly, upon TPP binding, the distance of TM5168 – TM10310  in ND increased, as observed for TM3101-

TM11373, and it became similar to that observed in DDM, which did not changes upon TPP binding.  

Several pairs involving labeling at the periplasmic edge of TM11 (TM11373
 and TM11371) did not show any 

change upon TPP binding in ND (TM8259 -TM11371, TM5163 -TM11373, TM5168 -TM11373)(12). This indicates that 

change in distance is a consequence of the movement of TM3. Similarly, the change we observed for TM5168 – 

TM10310 and the invariance reported for TM5163 -TM11371 and TM5163 -TM11373 (12) suggests that the 

movement takes place at TM10. To account for the TM5163 -TM9307 small shortening (~ 0.3 nm) with a 

concomitant increase of  1.1 nm  for TM5168 – TM10310, upon TPP binding, TM10 should undergo a rotation. 

The TM3 and TM10 movement allows accommodating the drug and affords the closure of TM1 and TM7 to 

generate the occluded conformation (Fig. 8 in ref (12)). While there are clear differences between the 

conformations of apo-MdfA in ND and DDM, we did not detect differences in the substrate-bound occluded 

conformation. Interestingly, the position/orientation of TM10 in apo-MdfA DDM did not require any 

adjustment for the transition into the occluded conformation.   

Conclusions 

Gd(III)-NO distance measurements between Gd(III) singly labeled MdfA and the TPP analog mito-TEMPO 

provided the location of the substrate within the If and Oo structure. The choice distance measurements 

between Gd(III) and NO, which display very different spectroscopic properties, allowed measuring DEER under 

conditions of a rather high dissociation constant , which require excess mito-TEMPO, with minimal 

interferences from the signal of the unbound mit-TEMPO.  For both DDM and ND, the average position of the 

drug was found to be close to the ligand position in the If structure, with the DDM environment exhibiting a 
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somewhat better agreement with the crystal structure than the ND environment. We therefore conclude that 

the If structure provides a good description of substrate bound- MdfA in DDM,  but it is slightly modified in ND. 

A second substrate-binding site was found in the ND-reconstituted MdfA at the cytoplasmic side, towards the 

end of TM7. 

In addition, Gd(III)-Gd(III) distance measurements on doubly labeled MdfA revealed  conformational changes 

upon TPP binding.  We detected significant differences in the periplasmic region in apo-MdfA , with  ND 

featuring a more closed conformation than that observed in DDM. These findings are in agreement with recent 

reports where in ND apo-MdfA assumes an Oc/IC conformation, whereas in DDM the conformation resembles 

the Oo structure.(7, 12) The addition of TPP led to a noticeable conformational change in the periplasmic face 

in ND, attributed to a movement of TM10, increasing the TM5-TM10 distance. This is in addition to the 

movement of TM3 and closure of TM1-TM7 on the periplasmic side and an identified substrate lateral gate 

between TM5-TM8 in the inner membrane leaflet.(12) 

The methodology presented here can be further applied to other MdfA drugs, having different chemical 

properties in order to resolve the question of how MdfA can accommodate chemically dissimilar substrates. 
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