1 2	Daily rewiring of a neural circuit generates a predictive model of environmental light
3	Bryan J. Song ¹ , Slater J. Sharp ¹ , Dragana Rogulja ^{1,2,*}
4	¹ Department of Neurobiology, Harvard Medical School, Boston, MA 02115
5	*Correspondence to: Dragana Rogulja@hms.harvard.edu
6	
7	
8	Ongoing sensations are compared to internal, experience-based, reference models;
9	mismatch between reality and expectation can signal opportunity or danger, and can
10	shape behavior. The nature of internal reference models is largely unknown. We describe
11	a model that enables moment-to-moment luminance evaluation in flies. Abrupt shifts to
12	lighting conditions inconsistent with the subjective time-of-day trigger locomotion,
13	whereas shifts to appropriate conditions induce quiescence. The time-of-day prediction
14	is generated by a slowly shifting activity balance between opposing neuronal
15	populations, LNvs and DN1as. The two populations undergo structural changes in axon
16	length that accord with, and are required for, conveying time-of-day information. Each
17	day, in each population, the circadian clock directs cellular remodeling such that the
18	maximum axonal length in one population coincides with the minimum in the other;
19	preventing remodeling prevents transitioning between opposing internal states. We
20	propose that a dynamic predictive model resides in the shifting connectivities of the LNv-
21	DN1a circuit.
22	
23	The brain assigns valence to incoming sensory stimuli, allowing responsiveness to be context-
24	dependent. To do this, it must continually check ongoing sensations against expectations, an
25	idea known as predictive coding ¹ . Discrepancy between expected and actual outcomes is
26	famously reflected in the activity of dopaminergic neurons ² , which have been proposed to
27	encode reward prediction error ³ . The mechanisms that give rise to this integrated signal are not
28	yet understood. It has been theorized that dopaminergic neurons are a point of convergence
29	between ongoing sensory signals and expectations generated from prior outcomes ¹ . In order to
30	understand the computations underlying predictive coding, it is necessary to identify the sensory

- 31 and predictive information streams that are integrated by downstream comparators. While
- 32 sensory circuits have been successfully mapped in many systems, the representation of
- 33 expectations in the brain remains largely unknown.

34

35 Predictable schedules enable planning for future events. Biological mechanisms have evolved 36 to take cues from regular environmental fluctuations and organizing preparatory physiological 37 and behavioral processes. For example, anticipating nightfall means seeking food and shelter 38 before sundown. This is made possible by circadian clocks, conserved molecular oscillators that operate on a \sim 24 hour schedule⁴ and are entrained by rhythmic cues such as daily cycles of 39 light⁵ or temperature⁶. Under normal light-cycling conditions, the progression of daytime and 40 41 nighttime is tracked by the rise and fall of key circadian clock proteins⁷. When external cues are removed (animals are put into constant darkness), molecular clocks continue to cvcle⁷. These 42 clocks give proper timing to rhythmic processes such as sleeping and feeding⁸, but there is no 43 44 evidence that they are used moment-to-moment to assess conditions in the environment. We 45 show that the circadian system assists in prediction evaluation, and describe a mechanism by 46 which it does this: a microcircuit within the network of circadian neurons uses cellular 47 remodeling as a strategy to organize slowly shifting internal predictions. The experimental 48 paradigm we established provides a new way to study how expectations are encoded and 49 evaluated.

50

51 Results

52 Locomotor reactivity to light depends on time-of-day

53 We used a protocol similar to Lu et al⁹, where flies experienced light and darkness alternating 54 every 12 hours for several days (mimicking daytime and nighttime) before spending at least 24 55 hours in darkness. They were then exposed to light for an hour at different times of day (Fig. **1a**). When light was presented during the nighttime, wild-type¹⁰ flies immediately increased 56 57 locomotion (startle, Fig. 1a,b and Extended Data Video 1). During subjective daytime (daytime, 58 but in darkness) their reaction was the opposite - they immediately slowed down or stopped 59 moving (Fig. 1a,b and Extended Data Video 1). The difference in baseline locomotion 60 (Extended Data Fig. 1a) does not explain differential responsiveness between day and night, 61 based on the following: locomotion was similar at 8pm and 8am, but diverged when lights turned 62 on (Fig. 1b); responsiveness in individuals showed no correlation with baseline locomotion, and 63 weak correlation with sleep status (Extended Data Fig. 1a,b); normalizing light-evoked locomotion to baseline did not change the results (Extended Data Fig. 1c). Though males 64 generally sleep during the day while females do not¹¹, both sexes responded to daytime light by 65 66 decreasing activity (Fig. 1a,b; Extended Data Fig. 2a,b).

67

Two opposing states of responsiveness lasted ~12 hours each (**Fig. 1c**), correlating with the

- 69 schedule of light and darkness previously experienced during entrainment. To test whether
- 70 time-of-day light responses are indeed instructed by prior experience, we entrained flies to
- shortened or lengthened light schedules (**Extended Data Fig. 3a**). At the same hour (7pm), a
- 72 light pulse either suppressed or evoked locomotor activity, depending on whether light had been
- on at 7pm during entrainment (**Extended Data Fig. 3b-f**). Locomotion always seemed triggered
- by subjective mismatch (i.e. experiencing different conditions than expected at that time of day).
- In support of this idea, startle was evoked not only by nighttime light (**Fig. 1a-c**), but also by
- 76 daytime darkness (Extended Data Fig. 3g,h). Locomotor reactivity to light pulses therefore
- reports internal estimates of daytime vs nighttime with moment-to-moment resolution (Fig. 1d).
- 78

79 Circadian clocks contextualize environmental light

80 Based on the timescales involved, we suspected the involvement of circadian clocks, molecular 81 programs that are entrained by environmental cues and that organize daily rhythms in physiology and behavior¹². When core clock proteins Clock¹² or Period¹³⁻¹⁵ (Per) were depleted 82 from the network of ~150 circadian neurons^{16,17} (Fig. 1e, Extended Data Fig. 4a-d), flies lost 83 84 the ability to contextualize light relative to time of day. Instead, they always responded with a 85 startle – but this startle was weak relative to the nighttime startle in controls (Fig. 1f,g). The 86 implication is that the circadian system bidirectionally modifies a stereotyped behavioral 87 response to an abrupt change in luminance - during daytime (when light is appropriate) clocks suppress the startle, but they enhance it during nighttime (when light is inappropriate (Fig. 1h). 88 Predictions originate from molecular clock oscillations, as mutants with faster clocks¹³ cycled 89 90 through light-responsive states faster (Extended Data Fig. 5a,b and Extended Data Table 2).

91

92 Separate clock neuron subpopulations contextualize daytime and nighttime light

93 To find the neuronal mechanism that organizes predictions about environmental light, we first examined LNvs¹² (Fig. 2a,b). This small group of neurons regulates normal locomotor activity 94 rhythms (i.e. the pattern of activity seen under basal conditions, where periods of high and low 95 activity occur at predictable times of day)¹⁸. Using the green-light-gated chloride channel 96 97 GtACR1¹⁹, we silenced LNvs conditionally, avoiding potential developmental artifacts (Methods). 98 Here light served as both a visual stimulus and effector for GtACR1. LNv silencing caused flies 99 to startle in response to light during subjective daytime (**Fig. 2c**), as if they no longer held the 100 expectation that light during the daytime is appropriate – mimicking the daytime phenotype of 101 flies lacking clocks entirely (Fig. 1g). The near-instantaneous nature of optogenetics allows us

102 to conclude that LNvs contextualize daytime light on a moment-by-moment basis. Surprisingly, 103 unlike general clock disruption (Fig. 1g), LNv silencing produced no nighttime phenotype (Fig. 104 2c). Daytime-specific phenotypes were also seen with RNAi-mediated depletion of the LNVspecific neuropeptide Pigment Dispersing Factor²⁰ (PDF, **Extended Data Fig. 6a**), and with 105 hypomorphic mutations in the PDF receptor (PDFR)²¹ (**Extended Data Fig. 6b,c**). Though 106 knocking down PDF in the small LNv subpopulation²⁰ (Extended Data Fig. 7a,b,d) was 107 sufficient to disrupt daytime light responsiveness (Extended Data Fig. 7c,e), the phenotype 108 109 was stronger when the small and large LNvs were manipulated simultaneously (Extended Data 110 Fig. 6a), so we treated them as a unit.

111

Because LNvs are considered to be a central pacemaker¹⁸, a reasonable concern is that LNv-112 113 disrupted flies lack circadian rhythms entirely. Several lines of evidence argue for specific, 114 rather than general, loss of clock function. First, LNvs silencing did not affect nighttime 115 responsiveness to light (Fig. 2c, Extended Data Fig. 6a), unlike when the entire clock network 116 was disabled (Fig. 1g). Second, the arrhythmic phenotypes of LNv disruption have been argued to stem from developmental problems²², which are avoided with conditional optogenetics. Third, 117 it takes many days for LNv silencing to cause arrhythmicity - most animals are rhythmic during 118 119 the first two days of constant darkness¹⁸ (**Extended Data Table 2**), which is when our testing is done. Finally, other subpopulations can support timekeeping in the absence of LNv function²². 120 121 We conclude that LNvs signal that light is appropriate during daytime but are dispensable for 122 contextualizing light during nighttime.

123

124 LNv silencing recapitulates only the daytime phenotype of clock disruption, suggesting that 125 other populations might have analogous function during the nighttime. Since LNvs signal 126 through the peptide PDF, we looked for their targets by restoring expression of the PDF 127 receptor to various neuronal populations in the receptor mutants (Fig. 2d, Extended Data Fig. 128 8a). For this pdfr rescue screen, we predominantly tested Gal4 lines expressed sparsely in the 129 nervous system, and also looked at lines expressed in sleep- and locomotion-regulating 130 centers, circadian subpopulations, and neurons expressing specific neurotransmitters or 131 peptides (Extended Data Table 3). Restoring PDFR to most neuronal populations, including known LNv targets²³⁻²⁵, could not fully suppress the *pdfr* mutant phenotype (Extended Data 132 133 Table 3). Only a few of the 274 tested Gal4 lines allowed complete rescue; of these, we focused 134 on the lines with the most restricted expression. When PDF transmission was enabled onto neurons labeled by R23E05-Gal4²⁶, normal responsiveness to daytime light (decrease in 135

136 locomotor activity) was restored (Fig. 2d,e; Extended Data Fig. 8b). R23E05 labels ~20 137 neurons in the ventral nerve cord, and ~10 neurons in the brain (Extended Data Fig. 9a,b). The 138 brain neurons include the four dorsal-anterior clock neurons (DN1as; Fig. 2f,g; Extended Data 139 Fig. 9c). DN1a dendrites and cell bodies are in the dorsomedial protocerebrum, and their axons descend towards the accessory medulla^{27,28} (Extended Data Fig. 9d). We restricted expression 140 141 of R23E05-Gal4 to mostly DN1as with addition of teashirt-Gal80 (tsh-Gal80), a Gal4 inhibitor 142 expressed in the ventral nerve cord (Extended Data Fig. 9e). We refer to this intersectionally-143 derived driver as DN1a-Gal4.

144

145 DN1a silencing had the opposite effect from LNv silencing, perturbing only the nighttime 146 response to light (Fig. 2h). The phenotype – a less robust startle - was similar to the nighttime 147 phenotype of clock-disrupted flies (Fig. 1g) suggesting that without DN1as flies can no longer 148 evaluate light as inappropriate during the night. The only other studies of DN1a function in adults found that these neurons produce the neuropeptide CCHamide1 (CCHa1)²⁹ (Extended 149 **Data Fig. 10a**), and promote wakefulness in the morning^{29,30}. In our assay, there was no effect 150 151 of depleting CCHa1 or its receptor (CCHa1R, Extended Data Fig. 10b), showing that the function we found for DN1as is distinct from what was previously observed²⁹ – these neurons 152 153 signal that light is inappropriate during nighttime, which is complimentary to the daytime role of 154 LNvs.

155

156 Attenuated responsiveness to nighttime light could reflect general locomotor and visual deficits, 157 so we tested whether all genotypes were capable of robust visual and motor function. We 158 reanalyzed data from key experiments (Fig. 1g; Fig. 2c,h) to see if the animals whose 159 responsiveness to light was attenuated ever reached high levels of locomotor activity. There 160 was no significant difference between experimental animals and controls (Extended Data Fig. 161 **11a**). The lower population-averaged responsiveness in DN1a-silenced, or clock-disrupted flies, 162 is instead accounted for by infrequency of high activity bouts (Extended Data Fig. 11b) which 163 suggests that these animals were less likely to be in a startled state. To further assess 164 locomotor vigor, we tested animals with mechanical stimulation and found that all genotypes 165 reacted with high levels of locomotor activity, easily exceeding levels elicited by light (Extended Data Fig. 11c). A visually guided behavior, courtship^{31,32}, was also normal (Extended Data Fig. 166 167 **11d**, Methods). Taken together, these data argue that clock neuron manipulations do not simply 168 impair sensory input or motor output, but instead disrupt the ability to contextualize light. 169

170 LNv and DN1a clock neurons are mutually interconnected

171 LNvs and DN1as appear to have opposite and complimentary functions which suggests that 172 these subpopulations might be somehow coordinated. This theory is supported by the fact that 173 LNvs use PDF to signal onto DN1as during the daytime (Fig. 2d). Based on their opponency, we tested whether LNv-to-DN1a signaling is inhibitory, by expressing membrane-tethered PDF³³ 174 175 in DN1as. Since tethered PDF is anchored to the membrane, it has short-range, cell-176 autonomous effects on cells that natively express PDF receptor³⁴. Ectopic nighttime PDFR 177 activation attenuated the nighttime startle to light (Fig. 2i), similar to the DN1a silencing phenotype (Fig. 2h). This result confirms that DN1as express PDFR^{35,36} and suggests that PDF 178 179 normally inhibit DN1as during the daytime. Taken together, results presented thus far suggest 180 that LNvs and DN1as have opposite roles in contextualizing light during daytime vs nighttime, 181 and that the peptide PDF is a crucial organizational signal between these subpopulations (Fig.

182 **2j)**.

183

184 The interdigitated arrangement of LNv and DN1a projections (Fig. 3a, Extended Data Fig. 12a 185 and Extended Data Video 2) is suggestive of reciprocal communication. Genetically encoded markers of pre-and post-synaptic sites ^{37,38} showed that LNv axons terminate onto DN1a dendrites 186 187 within the superior lateral protocerebrum, while DN1a axons terminate onto LNv dendrites within the accessory medulla (Fig. 3b, Extended Data Videos 3.4). The trans-synaptic tracing tool 188 189 trans-Tango³⁹ indeed reported LNvs and DN1as as mutual synaptic targets (Fig. 3b and 190 Extended Data Fig. 12b,c). To test whether these putative connections are functional, we activated each population at times when their activity is predicted to be low, and looked at the 191 192 response of the other population ex vivo. When LNvs were stimulated via the ATP-gated cation channel P2X₂^{40,41}, the calcium sensor GCaMP6s⁴² reported transient inhibition in DN1as (**Fig. 3d**; 193 194 Extended Data Fig. 13a,b). Conversely, stimulating DN1as led to transient LNv inhibition (Fig. 195 3e; Extended Data Fig. 13c,d). The weaker effects of DN1a stimulation could be due to biological 196 reasons, or because R23E05-LexA is a weaker driver than PDF-LexA (Extended Data Fig. 14a). 197 These results suggest that a reciprocal inhibition motif within the Drosophila circadian circuit 198 contributes to opponent predictions about light (Fig. 3f).

199

200 Presynaptic structural plasticity regulates behavioral state transitions

LNv and DN1a neurons are required to contextualize light at different times of day and are mutually connected. How does the LNv-DN1a circuit alternate between activity states? It was known that s-LNv axons undergo daily structural remodeling, spreading out in the morning and

bundling up at night⁴³⁻⁴⁶, but the function of this change has remained mysterious⁴⁷⁻⁵¹. We 204 205 discovered that DN1a axons are also remodeled daily, on a schedule that is anti-phase to LNvs 206 (Fig. 4a) - their axons are extended at night and retracted during the day. The fluorescently tagged 207 presynaptic protein Bruchpilot (Brp) showed that changes in presynaptic area correspond with 208 changes in synapse number (Fig. 4b, Extended Data Fig. 15a,b). The rhythmicity of axonal 209 remodeling is set by the circadian clock, as it was absent in *period* mutants (Fig. 4c). These 210 results raise the possibility that daily changes in connectivity within a mutually inhibitory LNv-211 DN1a microcircuit underlie transitions between light-predictive states.

212

213 The LNv-DN1a circuit appears in distinct physical configurations during the day (more LNv output 214 sites) vs night (more DN1a output sites). For each population, the time of day when their axons 215 occupy the most space correlates with the time when that population is necessary. To test the 216 idea that axonal structural remodeling contributes to the light-predictive internal model, we looked 217 for manipulations that can affect remodeling in the two populations. We found that DN1as might utilize similar cellular programs as LNVs⁴⁶ - manipulating the GTPase Rho1 levels bidirectionally 218 219 affected remodeling in both populations. For both LNvs and DN1as, Rho1 overexpression (OE) 220 decreased axonal area, while RNAi-mediated Rho1 depletion increased axonal area (Fig. 4d,e). 221

222 In agreement with the idea that remodeling supports transitions between opponent predictive 223 states, Rho1 overexpression in LNvs caused increased locomotion in response to daytime light, 224 while overexpression in DN1as attenuated the startling effect of nighttime light (Fig. 4f). That is, 225 preventing presynaptic area from increasing phenotypically resembles silencing (Fig. 2c,h). 226 Rho1 overexpression did not appear to overtly damage the LNv neurons, as animals had 227 relatively intact locomotor activity rhythms (Extended Data Fig. 16a and Extended Data Table 228 2) and did not have accelerated evening locomotor activity onset, which occurs when LNvs are ablated or constitutively silenced^{18,52} (Extended Data Fig. 16a). The daytime phenotype of 229 230 Rho1 overexpression in LNvs, and nighttime phenotype of Rho1 overexpression in DN1as, 231 together match the light response phenotypes seen when circadian clocks are disabled (Fig. 232 1g). These data fit a model in which structural plasticity biases the outcome of LNv-DN1a 233 reciprocal inhibition, leading to a flexible internal model of what the light conditions should be at 234 any moment (Fig. 4g).

235

236 Discussion

237 Alterations of neuronal activity, rather than morphology, are usually considered the cause of 238 cognitive flexibility⁵³. The mechanism that we describe relies on physical cellular restructuring. 239 What are the advantages of a system like this? While near-instantaneous electrical activity is 240 the basic language of neurons, many behaviors and internal states occur on much longer 241 timescales. Morphological remodeling is a slower process, aligning with functions that change 242 over the course of several hours. In support of this view, changes in neuronal morphology have been found to underlie appetite⁵⁴, sexual experience⁵⁵, and foraging history⁵⁶. Though 243 244 seemingly wasteful, physical remodeling may be particularly useful for encoding relatively stable 245 states, due to presumably high energetic barrier.

246

247 Understanding the mechanisms of circuit state transitions may help clarify the etiology of mood 248 disorders like depression of bipolar disorder, which are characterized by the lack, or excess, of 249 transitions between extreme states. Disorders like these may reflect a collapse of organizational 250 principles that normally permit flexible circuit function. An unsolved question is how behavioral 251 states can be stable across long timescales, but also undergo flexible transitions. Motifs from 252 the LNv-DN1a circuit illustrate one solution to this apparent contradiction. LNvs and DN1as are 253 arranged in a mutually inhibitory system, which may help ensure consistency and accuracy over 254 long timescales. In the absence of external influence, reciprocal inhibition can stabilize a winner-255 take-all steady state⁵⁷. Structural plasticity is a potential way to overcome this inflexibility, by 256 providing a molecular mechanism to overcome electrical inhibition. We show that Drosophila 257 make remarkably accurate estimates of daytime and nighttime, which may be enabled by 258 flexible transitions between stable circuit configurations.

259

260 A predictive nervous system enables continual evaluation of reality relative to context. One 261 result of this is that a fixed stimulus can evoke a multitude of behaviors depending on an 262 animal's history, needs, and external context. We show how the circadian system creates a 263 dynamic internal reference of what environmental conditions should be. The paradigm that we 264 developed offers opportunities to understand the interface between internal models and sensory 265 evidence. Circadian neurons are sensitive to environmental inputs - can they autonomously 266 compute prediction error? Clock neurons communicate with downstream dopaminergic populations^{58,59}: are those analogous to mammalian midbrain dopaminergic neurons whose 267 268 activities reflect prediction error? We propose that flies assign valence to experienced 269 environmental conditions, a computation that utilizes an internal model generated through circuit 270 remodeling.

271

272 Acknowledgments

273 We thank our lab, the Crickmore lab, Charles Weitz, Michael Do, Matt Pecot, Gordon Fishell, 274 and Michael Rosbash for advice and comments on the manuscript. Tara Kane assisted with 275 experiments. Stephen Zhang helped with coding and curated a collection of sparse driver lines 276 from FlyLight. Stephen Thornguist helped with optogenetics. We thank Rachel Wilson and her 277 lab for saline and for calcium imaging advice; and Corey Harwell for microscope access. For fly 278 stocks, we thank David Anderson, Andreas Bergmann, Justin Blau, Adam Claridge-Chang, 279 Michael Crickmore, Barry Dickson, Paul Hardin, Robert Kittel, Michael Nitabach, Matt Pecot, 280 Jeff Price, Orie Shafer, Amita Sehgal, Paul Taghert and Rachel Wilson. We are especially 281 grateful to Dr. Gerry Rubin and the Howard Hughes Medical Institute's Janelia Research 282 Campus for access to JRC SS00681-Gal4 and JRC SS00645-Gal4 lines prior to publication. 283 These strains will be described further in Dionne, Rubin, and Nern (manuscript in preparation). 284 For antibodies, we thank Paul Hardin and Amita Sehgal. Funding: This work was supported by 285 the National Science Foundation Graduate Research Fellowship Program under Grant No. (BS, 286 NSF Grant No. DGE1144152). Any opinions, findings, and conclusions or recommendations 287 expressed in this material are those of the author(s) and do not necessarily reflect the views of 288 the National Science Foundation. BS was also supported by the National Institutes of Health 289 (F31 EY027252). DR is a New York Stem Cell – Robertson investigator. This work was 290 supported by a New York Stem Cell Foundation grant, and a Klingenstein-Simons Fellowship 291 Award in the Neurosciences.

292

293 Author contributions

B.S. and D.R. designed the study. B.S., S.S. and D.R. performed experiments. B.S. and D.R.

analyzed the data and wrote the paper.

296

297 Declaration of interests

298 The authors declare no conflict of interest.

299 Figures

300

301 Figure 1. Circadian clocks bidirectionally modulate light responsiveness. (a) Experimental protocol and daily locomotor activity of an isogenic wild-type strain, w^+ iso31, during entrainment, 302 baseline, and test periods. Vertical bars: 15-minute bins of locomotor activity, where height 303 304 indicates mean. Error bars, S.E.M. Yellow indicates light; reactivity to light depends on time-of day, even though animals are in complete darkness. (b) A closer view of acute locomotor 305 306 responses to light at different times. Boxed insets show representative activities of individual flies; below, averaged activity of all tested wild-type flies. These data are collected at 1-minute 307 308 intervals. Shading: error bars (S.E.M in all figures). (c) Change in activity evoked by light, in 309 independent wild-type cohorts, across a 24 hour period. (d) Schematic of daily light responses in wild-type flies. (e) Left. Tim-Gal4 is expressed throughout the circadian network, labeled with 310 GFP. The whole brain is visualized with an antibody against Bruchpilot (Brp), a presynaptic 311 312 protein. Tim-Gal4 is also expressed in noncircadian neurons in the antennal lobe and glia⁶⁰, 313 which was partially blocked by inclusion of repo-Gal80 (data not shown) in all experiments using this driver. Right, clock neurons labeled with an antibody against Clock. (f) Light-evoked 314 315 changes in activity across 24 hours in controls (black and gray), and in flies in which circadian 316 proteins Clock (Clk, red) or Period (Per, purple) were depleted with RNAi. Independent cohorts 317 were tested at different time points. (g) Clock disruption (red) perturbs acute light 318 responsiveness during daytime and nighttime. (h) Proposed model for daily switches in light contextualization, regulated by the clock. For all figures, behaviors were analyzed with Two-way 319 320 ANOVA, Tukey's post-test, unless otherwise indicated. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 for all figures. Extended Data Table 1 shows sample sizes for all figures. For all 321 322 figures, scale bars: 20 µm.

323

324 Figure 2. Different clock neurons are required for normal davtime, vs nighttime, reactivity to light. (a) Left, LNv neurons in the brain labeled with GFP. Arrows point to LNv cell bodies. 325 326 Right, non-LNv expression in the ventral nerve cord (VNC) indicated by asterisk. LNv-Gal4 is driven by *pdf* regulatory elements^{18,61}. (b) Clock staining in the LNvs. (c) Silencing LNvs using the 327 328 light-gated chloride channel GtACR1 perturbs mid-day but not mid-night light responsiveness. For 329 all optogenetic experiments, the light used for neuronal silencing simultaneously served to probe 330 behavior. (d) A pdfr genetic rescue screen reveals a role for LNv-to-DN1a transmission in contextualizing daytime light. PDFR was expressed in candidate neuronal populations in han³³⁶⁹ 331 or han⁵³⁰⁴ pdfr mutant backgrounds. (e) Activity traces for flies in which PDFR was expressed 332 using R23E05-Gal4 (dark green) or using R23E05-Gal4 with teashirt-Gal80 (DN1a-Gal4, light 333 green) in the han³³⁶⁹ pdfr mutant background. This experiment was also done in the han⁵³⁰⁴ pdfr 334 mutant background (Figure S4A). (f) DN1as visualized by GFP (DN1a > GFP). (g) Clock and 335 336 Period staining in DN1as. (h) DN1a silencing perturbs mid-night but not mid-day light 337 responsiveness. (i) Constitutive activation of PDFR with t-PDF in DN1as attenuates nighttime 338 response to light. (i) Model of LNv and DN1a roles in contextualizing light.

Figure 3

339

340 Figure 3. Reciprocal targeting between LNvs and DN1as. (a) Expression of GFP in DN1as. and tdTomato in LNvs, reveals overlapping projections. (b) LNv axons overlap with DN1a 341 342 dendrites (left), and vice versa (right). Synaptotagmin (Syt): presynaptic marker; Denmark: postsynaptic marker. Left, area outlined on the top in (a). Right, area outlined on the bottom in 343 (A). (c) Postsynaptic targets labeled by trans-Tango indicate that LNvs and DN1as target each 344 other. Arrows point to target cells expressing Clock. Asterisks: DN1as and LNvs not labeled by 345 346 trans-Tango. (d) Chemogenetic activation of LNvs during the nighttime silences DN1as ex vivo. 347 (e) Chemogenetic activation of DN1as during the daytime silences LNvs ex vivo. In all conditions, 348 a steady decline in GCaMP6s fluorescence was seen in LNvs, likely due to photobleaching. For 349 (d) and (e), measurements were taken from flies that were in light-dark cycles (at ~2pm (ZT6) for 350 daytime, at ~2am (ZT18) for nighttime). Minimal and maximal changes in calcium are reported for each trial. One-way ANOVA with Tukey's post-hoc test. (f) Model of LNv and DN1a inhibitory 351 352 circuit connectivities.

353

354 Figure 4. Axon remodeling in LNvs and DN1as is required for normal light reactivity (a) 355 LNvs and DN1as show antiphase oscillations in neurite morphology. Measurements were taken from flies that were in light-dark cycles (at 2pm (ZT6) for daytime, at 2am (ZT18) for nighttime). 356 357 Quantifications show data for individual brain hemispheres. For this figure, t-Test in LNvs, Two-358 way ANOVA with Tukey's post-hoc test in DN1as. Ventromedial (VM) tracts are internal controls 359 for ventrolateral (VL) tracts in DN1as. (b) Daily changes in presynaptic site number in LNvs and 360 DN1as, as reported by a synaptic marker Brp:mCherry (magenta) within GFP-labeled neurites (black). (c) Period mutants lack LNv and DN1a plasticity rhythms. (d) Manipulating Rho1 in LNvs 361 362 (Rho1-RNAi vs Rho1 overexpression (OE)) bi-directionally changes axonal fasciculation. One-363 way ANOVA with Tukey's post-hoc test. (e) Manipulating Rho1 in DN1as bi-directionally changes axonal fasciculation. One-way ANOVA with Tukey's post-hoc test. (f) Flies with fasciculated 364 365 (closed) dorsal LNv axons (Rho1 OE in LNvs, blue) have perturbed daytime, but not nighttime. 366 light responsiveness. The opposite is true in flies in which DN1a axons are kept short (Rho1 OE in DN1as, green). 'GFP control' is LNv > GFP during the daytime, and DN1a > GFP during the 367 nighttime. (g) Schematic summary of LNv-DN1a circuit state transitions that regulate opponent 368 369 predictions about light.

370

372 EXPERIMENTAL PROCEDURES

373

374 Drosophila melanogaster stocks

375 All Drosophila stocks used in this study are listed in the key resource table. Flies were grown on 376 cornmeal-agar medium at 25°C under 12 hour light : 12 hour dark conditions in a room with ~70 377 lux white light. UAS-myr::GFP, UAS-mCD8::GFP, UAS-tethered PDF, and UAS-Dicer2 lines 378 were outcrossed six or seven times into the control iso31 background. No differences in light 379 responses were observed between outcrossed and non-outcrossed lines. One experiment (Fig. 380 1f,g (2pm and 2am only) had UAS-mCD8::GFP controls in the GFP condition, whereas the genotype is UAS-myr::GFP elsewhere in the paper. No behavioral differences were seen 381 382 between UAS-mCD8::GFP and UAS-myr::GFP. RNAis were co-expressed with Dicer2 (Dcr) to increase efficiency ⁶². "LNv-Gal4" used in this study has two copies of Pdf-Gal4, on the second 383 384 and third chromosomes. Similar results for silencing and neuropeptide knockdown were found 385 using a single copy of Pdf-Gal4 on the second chromosome, although effect sizes were smaller 386 (data not shown). Wild-type w^+ iso31 wild-type strains were created by backcrossing Canton S 387 six times into the *iso31* background. Detailed genotypes and samples sizes for each experiment 388 are provided in **Extended Data Table 1**. Origin of each fly stock is shown in **Extended Data** 389 Table 4. Stocks are available upon request.

390

391 Generation of R23E05-LexA and R23E05-Gal80

Standard Gateway cloning protocols (Thermo Fisher Scientific, 11791020 and 11789020) were followed to derive constructs in which either LexA or Gal80 are driven by the R23E05 enhancer. gtcccgatttcgtcgaaggattcaa forward and gctaaccggatgacggtaccaggag reverse primers were used to PCR-amplify a 644kb enhancer fragment from R23E05-Gal4 flies. This product was subcloned into pBPLexa:P65UW (Addgene plasmid # 26231, ⁶³ or pBPGal80uw-6 (Addgene plasmid # 26236, ⁶³), which were gifts from Gerry Rubin. Resulting constructs were inserted into the attP2 landing site by embryo injection (Rainbow Transgenics).

399

400 Locomotor activity measurements

401 Male flies, 1-9 days old, were collected and individually housed in 65 mm glass tubes with

- 402 approximately 20 mm of cornmeal-agar media. To avoid cumulative effects of repeated
- 403 exposure to light, separate cohorts were tested for each trial. They were given at least 48 hours
- 404 to acclimate before experiments began. Female flies were collected as virgins (<1 day old) upon
- 405 eclosion, and group housed for at least 3 days before testing. Activity and sleep were measured

406 using the Trikinetics *Drosophila* activity Monitor system, which counts infrared beam crosses

- 407 through the midline of the glass tube. Experiments were conducted in DigiTherm CircKinetics
- 408 incubators (Tritech Research, DT2-CIRC-TK) at 25°C. Aside from optogenetic experiments, light
- 409 pulses were delivered using white incubator lights (~260 lux white fluorescent bulbs, ~102
- 410 μ W/mm² in the 470 nm range). Most experiments in **Fig. 2d** and all experiments in **Extended**
- 411 Data Fig. 11c and Extended Data Video 1 were conducted in larger incubators (Percival, DR-
- 412 41VL) to accommodate video cameras, the mechanical stimulation apparatus, or the large
- 413 number of locomotor activity monitors required to screen for LNv-Downstream neurons (Fig
- 414 2d).
- 415

416 **Optogenetics**

417 For 48-96 hours before the experiment, control and experimental flies were fed 50 mM all-trans-retinal 418 (Sigma Aldrich R2500) that was diluted in ethanol (Koptec, V1001) and coated onto rehydrated potato 419 food (Carolina Bio Supply Formula 4-24 Instant Drosophila Medium, Blue). For GtACR1 experiments, 420 six 530 nm green LEDs (Luxeon Rebel, LXML-PM01-0100) were driven by a 700 mA constant current 421 driver (LuxDrive BuckPuck, 03021-D-E-700), and pulse-width modulated signal to an averaged intensity 422 of $\sim 202 \,\mu$ W/mm². LEDs were placed along the wall of the incubator and controlled with an Arduino Uno 423 Rev3 (Arduino, A000066) microcontroller using a custom script. Between replicates, genotypes were 424 positionally counterbalanced within the incubator to control for nonuniform illumination from the light 425 source (LEDs or white fluorescent bulb). Silencing motor neurons with VGlut-Gal4 allowed us to confirm 426 that all flies received enough illumination to access neurons expressing GtACR1^{19,64}, regardless of 427 position within the incubator. Light intensity measurements were recorded using a power meter 428 (Thorlabs, PM100D). Lux measurements were recorded using a light meter (Extech, LT300). The 429 spectra of ambient white light in the laboratory and in experimental incubators were measured with a 430 spectrometer (Thorlabs, CCS200). All reported measurements were taken with devices facing the light 431 source. Power measurements for white light were taken at the 470 nm range. 432

433 Mechanical stimulation

- Flies were shaken using a multi-tube vortexer (Trikinetics TVOR-120) modified to house *Drosophila*Activity Monitors (Trikinetics). The vortexer was programmed to deliver medium intensity vibrations
 continuously for an hour.
- 437
- 438 Courtship assay

Courtship assays were conducted as previously described⁶⁵. Briefly, male flies were isolated at least 439 440 five days before the assay, to allow recovery of mating drive^{65,66}. On the day of the assay, one male 441 was aspirated into a cylindrical chamber (10 mm diameter and 3 mm height) with one virgin w^{\dagger} iso31 442 female. Flies were videotaped from above using a handheld camera (Canon, Vixia HRF800) and videos 443 were manually scored for courtship behaviors. Courtship indices were calculated from the percentage 444 of time spent in mating behaviors during a five minute window following courtship initiation (as indicated 445 by unilateral wing extension). If flies did not engage in courtship throughout the entire 15 minute assay, 446 they were given a courtship index value of 0. Flies were illuminated from below (~3.7 μ W/mm² in the 447 475 nm range) using a light pad (Artograph, LightPad 930), in addition to aforementioned overhead 448 white room lighting. Because optogenetic LEDs interfered with the ability to visualize and record flies. 449 we relied on the white light from the light pad as an optogenetic effector. While the lightpad was 450 substantially dimmer than the LEDs used in our optogenetic silencing experiments, our control 451 experiments with other drivers showed that this light could in principle penetrate the cuticle to effect 452 GtACR1 in the nervous system. For positive controls, we verified the lightpad's efficacy in inducing 453 paralysis or extending mating duration in flies where GtACR1 was expressed by VGLUT-Gal4 or Corazonin-Gal4 respectively (data not shown, ^{19,67}). 454

455

456 Immunohistochemistry

457 Flies were anesthetized under CO2. Brains were then dissected in cold Schneider's medium (Gibco, 458 21720-001) and immediately fixed in 4% paraformaldehyde (PFA, Electron Microscopy Sciences, 459 15710). After a 20 minute fixation at room temperature, brains were washed three times with PBS 460 containing 0.3% Triton X-100 (Amresco, M143-1L), 20 minutes per wash, and blocked overnight with 461 10% donkey serum (Jackson ImmunoResearch, 017-000-121) at 4°C. Primary and secondary 462 antibodies were diluted in donkey serum and incubated with brains for 48 hours each. For Brp (nc82) 463 stainings, the primary antibody incubation was conducted for 72 hours due to the large number of Brp 464 epitopes in the brain. Three 20 minute washes were done after primary and secondary antibody 465 incubations.

- 466
- 467 Primary antibodies used: Guinea pig anti-Clock antibody (Gift from Paul Hardin, 1:2000 dilution),
- 468 Chicken anti-GFP antibody (Aves, GFP-1020, 1:1000 dilution), Mouse anti-Brp antibody
- 469 (Developmental Studies Hybridoma Bank (DSHB), NC82, 1:7 dilution), Mouse anti-PDF antibody
- 470 (DSHB, PDF C7, 1:100 dilution), Rabbit anti-DsRed antibody (Clontech, 632496, 1:100 dilution),
- 471 Guinea pig anti-Period antibody (Gift from Amita Sehgal, 1:50 dilution), Rabbit anti-CCHa1 (Our lab
- 472 raised antibodies against the peptide QIDADNENYSGYELT ⁶⁸, Genscript, 1:50 dilution). Secondary

473 antibodies used: Donkey anti-Mouse 488 (Thermo Fisher Scientific, A-21202, 1:1000 dilution), Donkey

- anti-Rabbit 568 (Thermo Fisher Scientific, A-10042, 1:1000 dilution), Donkey anti-Mouse 647 (Thermo
- Fisher Scientific, A-31571, 1:1000 dilution), Donkey anti-Guinea Pig 488 (Jackson ImmunoResearch,
- 476 703-545-148, 1:100 dilution), Donkey anti-Chicken 488 (Jackson ImmunoResearch, 703-545-155,
- 477 1:100 dilution), Donkey anti-Guinea pig Cy3 (Jackson ImmunoResearch, 706-165-148, 1:100 dilution),
- 478 Donkey anti-Guinea pig 647 (Jackson ImmunoResearch, 706-605-148, 1:100 dilution).
- 479
- 480 Tissues were whole-mounted in Prolong Gold Antifade reagent (Invitrogen, 1942345) on glass slides
- 481 with coverslips (Electron Microscopy Sciences, 64321-10, 72230-01). Confocal images were obtained
- using a Leica SP8 confocal microscope at 10x, 2.4 µm intervals, for morphology quantifications; 20x, 1
- 483 µm intervals for expression patterns, and 63x, 0.3 µm intervals for imaging of pre- and postsynaptic
- 484 sites. Maximum projection images and quantifications were obtained using FIJI. Levels of brightness
- and contrast were adjusted across the whole image using FIJI or Adobe Photoshop.
- 486

487 For guantifications comparing neurite morphologies between mid-day and mid-night, whole heads were 488 fixed because prolonged exposure to light (required for dissections) can modify the operation of the 489 clock. Heads were fixed for 50 minutes at room temperature with fixative containing 4% PFA and 0.3% 490 Triton X-100. For mid-night samples, heads were fixed with minimal light exposure, using red light that is less disruptive to the light-sensitive clock protein Cryptochrome⁶⁹⁻⁷². Acquisitions were conducted at 491 492 10x due to the large number of samples; as the drivers we used are expressed sparsely, this resolution 493 was sufficient. Because the z-axis of the slide/coverslip chamber is slightly shorter than the height of 494 the brain, all of the brains were pressed slightly, and in similar orientation.

495

For *trans*-Tango experiments, flies were raised for 5 weeks at 18° C, which permits stronger expression than 25° C³⁹. We often noticed aberrant morphology in cells expressing the *trans*-Tango construct, likely

- due to overexpression of neurexin and the cell adhesion molecule ICAM1 at presynaptic sites 39 .
- 499

500 Calcium imaging

- 501 Experiments were conducted in a 6-hour window centered around periods of putative peak activity
- 502 (mid-day for DN1a->LNv and mid-night for LNv->DN1a), alternating between control and experimental
- 503 samples. *Ex vivo* whole mount brains were explanted in Nunclon cell culture dishes (Thermo Scientific,
- 504 150318) which contained 3 mL of chilled *Drosophila* saline (Gift from Rachel Wilson, 103 mM NaCl, 3
- 505 mM KCI, 5 mM N-tris (hydroxymethyl) methyl-2-aminoethane-sulfonic acid, 8 mM trehalose, 10 mM
- 506 glucose, 26 mM NaHCO3, 1 mM NaH2PO4, 1.5 mM CaCl2, and 4 mM MgCl2 (osmolarity adjusted to

507 270–275 mOsm). Saline was bubbled with 95/5% carboxygen prior to the experiment. Brains were 508 dissected in the same media used to conduct the experiment. Brains in which GCaMP was expressed 509 in LNvs were allowed to rest for 2.5 minutes prior to the experiments under the blue imaging light. 510 Brains in which GCaMP was expressed in DN1as were allowed to rest for 5 minutes prior to the 511 experiments under the blue imaging light. During this baseline period, we noticed increased large 512 calcium transients (Extended Data Fig. 13a,c), likely due to control of clock neuron activity by the lightsensitive protein Cryptochrome^{73,74}. During pilot experiments we chose baseline intervals that were 513 514 usually sufficient to allow activity to stabilize. Two trials were excluded (one experimental and one 515 control) because baseline activities were not stable. These trials are shown as red traces in Extended 516 Data Fig. 13a,b. For P2X₂ experiments, 20 µL of 150 mM ATP (Sigma, A2383), diluted in Drosophila 517 saline, was pipetted gently down the side of the dish, to a final concentration of 1 mM. Positive control 518 experiments in which both P2X₂ and GCaMP were expressed in LNvs showed that ATP delivered this 519 way could start inducing small changes within a few frames of delivery. Acquisition occurred at 1 520 frame/second.

521

522 Quantifying locomotor activity

523 Sleep and activity data were analyzed using custom Matlab software (available on github at

524 https://github.com/CrickmoreRoguljaLabs) and plotted in Graphpad Prism 8 for Macintosh.

525 Activity counts were collected at 1 minute intervals. A sleep episode was defined as inactivity

526 lasting at least five minutes 75,76 .

527

528 Circadian analysis was conducted using the Cycle-P function in FaasX, using 30-minute bins⁷⁷.

529 Our experiments occurred during the second day of darkness, but rhythmicity, tau and power of

530 locomotor rhythms (**Extended Data Table 2**) were calculated during 4 days in darkness.

531 Additional days of analysis allowed us to acquire more accurate measurements^{77,78}. This

analysis is conservative, because circadian deficits grow stronger with more time spent in

- 533 darkness¹⁸.
- 534

535 Quantifying morphological imaging data

536 Measurements were conducted blind using the segmented line tool in FIJI on the maximum

537 intensity projection of whole brain z-stacks. No obvious daytime-nighttime differences were

538 observed in the z-axis for the DN1a ventrolateral tract. For Brp quantifications, acquisitions were

done at 63x. The sparsity of synaptic sites along the ventrolateral DN1a tract allows for

540 visualization and counting of individual punctum. Brp counts were conducted blind. Each

541 hemisphere was computed as an independent sample because of variability between

542 hemispheres.

543

544 Quantifying immunostaining intensity

545 For quantifications of fluorescence intensities used to validate the efficiency of RNAi, the experimenter 546 was not blinded during quantification, which we deemed acceptable due to the large and consistent 547 effect sizes. Regions of interest were selected using the freehand selection tool in FIJI, on summed 548 intensity projections of whole brain z-stacks. For measurements of Clock- and Period- RNAi efficacy, 549 intensity measurements were taken within the most visible s-LNv cell body per brain because all 5 s-550 LNvs could not all be easily identified in the knockdown conditions. For measurements of GFP intensity, 551 when comparing the strength of LexA drivers, there was substantial variability between hemispheres. 552 Thus measurements were taken for both hemispheres and subsequently averaged.

553

554 Quantifying ex vivo calcium imaging

555 Data were analyzed with ImageJ, using the freehand selection tool to choose a ~100µm ROIs from s-556 LNv dorsal terminals. Only the brighter hemisphere was used for analysis. LNv axons and DN1a 557 dendrites were chosen for quantification because these regions were consistently identifiable, whereas 558 DN1a axons and LNv dendrites were not usually visible with GCaMP6s. For figures, 2-3 frames (two 559 seconds) of data was removed from each sample because of motion artifacts from pipetting. Unaltered 560 trials are in reported in Extended Data Fig. 13a,c. Baseline fluorescence was calculated from the 561 average of ten frames prior to ATP delivery, excluding the first frame before ATP. Minimum and 562 maximum fluorescence was calculated using standard Excel functions from all frames after ATP 563 delivery except for the first five frames, to exclude potential residual motion artifacts. 1-3 samples per 564 condition showed drift after pipetting, thus we used an ImageJ registration plugin (TurboReg) to create 565 a new series corrected against a time-series averaged reference. Two nonrepresentative trials (one 566 experimental trial and one control) were excluded from averaged results shown in Fig. 3e. These 567 excluded trials are shown in Extended Data Fig. 13b and were excluded due to unusually large and 568 early depolarizations that were putatively due to the effects of blue light stimulation. 569

570 Statistical analysis

571 All statistical tests were conducted with Prism 8 for Macintosh (GraphPad). All data are

572 presented as mean ± S.E.M. For significance indicators (asterisks) referring to multiple post hoc

- tests, we conservatively report the largest (least significant) p-value from each of the tests.
- 574 Exact p values are in Extended Data Table 1. Only significant comparisons are indicated. For

575 light probe experiments, group means were compared using a Two-way ANOVA with Tukey's 576 post-hoc comparisons against all possible conditions. For all behavioral panels using two-way 577 ANOVA, multiple comparisons between time points are not reported, except for **Extended Data** 578 Fig. 1a. Significant differences between control genotypes are not indicated in figures. We 579 report them here: in **Fig 2i** the two parental controls significantly differed during the day (p =580 0.0111), the two parental controls in **Extended Data Fig. 6b**. significantly differed from each 581 other at night (p < 0.0001), and in **Extended Data Fig. 10c**, DN1a>GFP was significantly 582 different from both other conditions during the day, p = 0.0384 vs. DN1a > CCHa1 RNAi and p =583 0.0005 vs UAS parental control). Behavioral experiments in main figures each had at least three 584 replicates of approximately sixteen flies each. In cases where genotypes were only tested at 585 one time point, we used a One-way ANOVA followed by Tukey's post-hoc test. For imaging 586 experiments where we quantified LNv or DN1a morphology, we treated each hemisphere as a 587 single sample because we noticed substantial variability between hemispheres. In Figure 4, 588 comparisons between VL and VM DN1a tracts are not reported. Comparisons between Rho1 589 overexpression and Rho1-RNAi are also not reported. Power analyses to predetermine sample 590 size were not conducted. Experimenters were not blind to conditions except during 591 quantifications of morphology. Sample sizes are shown in **Extended Data Table 1**. 592

593 DATA AND SOFTWARE AVAILABILITY

- All data and materials are available upon request.
- 595
- Watabe-Uchida, M., Eshel, N. & Uchida, N. Neural Circuitry of Reward Prediction Error.
 Annu Rev Neurosci 40, 373-394, doi:10.1146/annurev-neuro-072116-031109 (2017).
 Mirenowicz, J. & Schultz, W. Importance of unpredictability for reward responses in
- 598 2 Mirenowicz, J. & Schultz, W. Importance of unpredictability for reward responses in 599 primate dopamine neurons. *J Neurophysiol* **72**, 1024-1027,
- 600 doi:10.1152/jn.1994.72.2.1024 (1994).
- 601
 3
 Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward.

 602
 Science 275, 1593-1599, doi:10.1126/science.275.5306.1593 (1997).
- 4 Vitaterna, M. H., Takahashi, J. S. & Turek, F. W. Overview of circadian rhythms. *Alcohol Res Health* 25, 85-93 (2001).
- 6055Golombek, D. A. & Rosenstein, R. E. Physiology of circadian entrainment. Physiol Rev 90,6061063-1102, doi:10.1152/physrev.00009.2009 (2010).
- 607 6 Rensing, L. & Ruoff, P. Temperature effect on entrainment, phase shifting, and
 608 amplitude of circadian clocks and its molecular bases. *Chronobiol Int* 19, 807-864,
 609 doi:10.1081/cbi-120014569 (2002).
- Top, D. & Young, M. W. Coordination between Differentially Regulated Circadian Clocks
 Generates Rhythmic Behavior. *Cold Spring Harb Perspect Biol* 10,
- 612 doi:10.1101/cshperspect.a033589 (2018).

613 614	8	Eckel-Mahan, K. & Sassone-Corsi, P. Metabolism and the circadian clock converge.
615	٥	Lu B Liu W Guo E & Guo A Circadian modulation of light-induced locomotion
616	5	responses in Drosophila melanogaster. Genes Brain Behav 7, 730-739
617		doi:10 1111/i 1601-183X 2008 00411 x (2008)
618	10	Ryder E et al. The Dros Del collection: a set of P-element insertions for generating
610	10	custom chromosomal aberrations in Drosonbila melanogaster <i>Genetics</i> 167 , 707-813
620		doi:10 1534/genetics 104 026658 (2004)
621	11	Huber B et al Sleep homeostasis in Drosonhila melanogaster Sleep 27 628-639
622	11	doi:10 1093/sleen/27 4 628 (2004)
623	12	Dubowy C & Sebgal A Circadian Bhythms and Sleen in Drosonhila melanogaster
624	12	Genetics 205 1373-1397 doi:10.1534/genetics 115.185157 (2017)
625	13	Kononka R I & Benzer S Clock mutants of Drosonhila melanogaster Proc Natl Acad
626	15	Sci // S A 68, 2112-2116, doi:10.1073/pnas.68.9.2112 (1971)
627	1/	Bargiello T A Jackson F R & Young M W/ Restoration of circadian behavioural
628	14	rhythms hy gene transfer in Drosonhila <i>Nature</i> 312 752-754 doi:10.1038/312752a0
629		(1984)
630	15	Zehring W A <i>et al</i> P-element transformation with period locus DNA restores
631	15	rhythmicity to mutant, arrhythmic Drosophila melanogaster. <i>Cell</i> 39 , 369-376.
632		doi:10.1016/0092-8674(84)90015-1 (1984)
633	16	Tataroglu O & Emery P Studying circadian rhythms in Drosonhila melanogaster
634	10	Methods 68 , 140-150, doi:10.1016/i.vmeth.2014.01.001 (2014).
635	17	Blau, J. & Young, M. W. Cycling vrille expression is required for a functional Drosophila
636		clock. <i>Cell</i> 99 , 661-671, doi:10.1016/s0092-8674(00)81554-8 (1999).
637	18	Renn, S. C., Park, J. H., Rosbash, M., Hall, J. C. & Taghert, P. H. A pdf neuropeptide gene
638		mutation and ablation of PDF neurons each cause severe abnormalities of behavioral
639		circadian rhythms in Drosophila. <i>Cell</i> 99 , 791-802 (1999).
640	19	Mohammad, F. et al. Optogenetic inhibition of behavior with anion channelrhodopsins.
641		Nat Methods 14, 271-274, doi:10.1038/nmeth.4148 (2017).
642	20	Helfrich-Forster, C. The period clock gene is expressed in central nervous system
643		neurons which also produce a neuropeptide that reveals the projections of circadian
644		pacemaker cells within the brain of Drosophila melanogaster. Proc Natl Acad Sci U S A
645		92 , 612-616, doi:10.1073/pnas.92.2.612 (1995).
646	21	Hyun, S. et al. Drosophila GPCR Han is a receptor for the circadian clock neuropeptide
647		PDF. <i>Neuron</i> 48 , 267-278, doi:10.1016/j.neuron.2005.08.025 (2005).
648	22	Schlichting, M., Diaz, M. M., Xin, J. & Rosbash, M. Neuron-specific knockouts indicate
649		the importance of network communication to Drosophila rhythmicity. <i>Elife</i> 8 ,
650		doi:10.7554/eLife.48301 (2019).
651	23	Lear, B. C., Zhang, L. & Allada, R. The neuropeptide PDF acts directly on evening
652		pacemaker neurons to regulate multiple features of circadian behavior. <i>PLoS Biol</i> 7 ,
653		e1000154, doi:10.1371/journal.pbio.1000154 (2009).
654	24	Zhang, L. <i>et al.</i> DN1(p) circadian neurons coordinate acute light and PDF inputs to
655		produce robust daily behavior in Drosophila. <i>Curr Biol</i> 20 , 591-599,
656		doi:10.1016/j.cub.2010.02.056 (2010).

Pirez, N., Christmann, B. L. & Griffith, L. C. Daily rhythms in locomotor circuits in 657 25 658 Drosophila involve PDF. J Neurophysiol 110, 700-708, doi:10.1152/jn.00126.2013 (2013). 659 26 Jenett, A. et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2, 991-660 1001, doi:10.1016/j.celrep.2012.09.011 (2012). 661 Hamasaka, Y. et al. Glutamate and its metabotropic receptor in Drosophila clock neuron 27 circuits. J Comp Neurol 505, 32-45, doi:10.1002/cne.21471 (2007). 662 Shafer, O. T., Helfrich-Forster, C., Renn, S. C. & Taghert, P. H. Reevaluation of Drosophila 663 28 melanogaster's neuronal circadian pacemakers reveals new neuronal classes. J Comp 664 665 Neurol 498, 180-193, doi:10.1002/cne.21021 (2006). 666 29 Fujiwara, Y. et al. The CCHamide1 Neuropeptide Expressed in the Anterior Dorsal 667 Neuron 1 Conveys a Circadian Signal to the Ventral Lateral Neurons in Drosophila 668 melanogaster. Front Physiol 9, 1276, doi:10.3389/fphys.2018.01276 (2018). 669 30 Alpert, M. H. et al. A Circuit Encoding Absolute Cold Temperature in Drosophila. Curr 670 Biol, doi:10.1016/j.cub.2020.04.038 (2020). 671 31 Ribeiro, I. M. A. et al. Visual Projection Neurons Mediating Directed Courtship in 672 Drosophila. Cell 174, 607-621 e618, doi:10.1016/j.cell.2018.06.020 (2018). 673 32 Markow, T. A. & Manning, M. Mating success of photoreceptor mutants of Drosophila 674 melanogaster. Behav Neural Biol 29, 276-280, doi:10.1016/s0163-1047(80)90612-3 675 (1980). 676 33 Choi, C. et al. Cellular dissection of circadian peptide signals with genetically encoded membrane-tethered ligands. Curr Biol 19, 1167-1175, doi:10.1016/j.cub.2009.06.029 677 678 (2009).679 34 Choi, C. & Nitabach, M. N. Membrane-tethered ligands: tools for cell-autonomous 680 pharmacological manipulation of biological circuits. Physiology (Bethesda) 28, 164-171, 681 doi:10.1152/physiol.00056.2012 (2013). Im, S. H., Li, W. & Taghert, P. H. PDFR and CRY signaling converge in a subset of clock 682 35 683 neurons to modulate the amplitude and phase of circadian behavior in Drosophila. PLoS 684 One 6, e18974, doi:10.1371/journal.pone.0018974 (2011). 685 Shafer, O. T. et al. Widespread receptivity to neuropeptide PDF throughout the neuronal 36 686 circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. *Neuron* 687 58, 223-237, doi:10.1016/j.neuron.2008.02.018 (2008). 688 37 Nicolai, L. J. et al. Genetically encoded dendritic marker sheds light on neuronal 689 connectivity in Drosophila. Proc Natl Acad Sci U S A 107, 20553-20558, 690 doi:10.1073/pnas.1010198107 (2010). 691 38 Zhang, Y. Q., Rodesch, C. K. & Broadie, K. Living synaptic vesicle marker: synaptotagmin-692 GFP. Genesis 34, 142-145, doi:10.1002/gene.10144 (2002). 693 Talay, M. et al. Transsynaptic Mapping of Second-Order Taste Neurons in Flies by trans-39 694 Tango. Neuron 96, 783-795 e784, doi:10.1016/j.neuron.2017.10.011 (2017). 695 Lima, S. Q. & Miesenbock, G. Remote control of behavior through genetically targeted 40 696 photostimulation of neurons. Cell 121, 141-152, doi:10.1016/j.cell.2005.02.004 (2005). 697 Yao, Z., Macara, A. M., Lelito, K. R., Minosyan, T. Y. & Shafer, O. T. Analysis of functional 41 698 neuronal connectivity in the Drosophila brain. J Neurophysiol 108, 684-696, 699 doi:10.1152/jn.00110.2012 (2012).

700	42	Chen, T. W. <i>et al.</i> Ultrasensitive fluorescent proteins for imaging neuronal activity.
701	40	Nature 499 , 295-300, doi:10.1038/nature12354 (2013).
702	43	Fernandez, M. P., Berni, J. & Ceriani, M. F. Circadian remodeling of neuronal circuits
703		involved in rhythmic behavior. <i>PLoS Biol</i> 6 , e69, doi:10.13/1/journal.pbio.0060069
704		(2008).
705	44	Sivachenko, A., Li, Y., Abruzzi, K. C. & Rosbash, M. The transcription factor Mef2 links the
706		Drosophila core clock to Fas2, neuronal morphology, and circadian behavior. <i>Neuron</i> 79 ,
707		281-292, doi:10.1016/j.neuron.2013.05.015 (2013).
708	45	Gorostiza, E. A., Depetris-Chauvin, A., Frenkel, L., Pirez, N. & Ceriani, M. F. Circadian
709		pacemaker neurons change synaptic contacts across the day. Curr Biol 24, 2161-2167,
710		doi:10.1016/j.cub.2014.07.063 (2014).
711	46	Petsakou, A., Sapsis, T. P. & Blau, J. Circadian Rhythms in Rho1 Activity Regulate
712		Neuronal Plasticity and Network Hierarchy. Cell 162, 823-835,
713		doi:10.1016/j.cell.2015.07.010 (2015).
714	47	Agrawal, P. & Hardin, P. E. The Drosophila Receptor Protein Tyrosine Phosphatase LAR Is
715		Required for Development of Circadian Pacemaker Neuron Processes That Support
716		Rhythmic Activity in Constant Darkness But Not during Light/Dark Cycles. J Neurosci 36,
717		3860-3870, doi:10.1523/JNEUROSCI.4523-15.2016 (2016).
718	48	Prakash, P., Nambiar, A. & Sheeba, V. Oscillating PDF in termini of circadian pacemaker
719		neurons and synchronous molecular clocks in downstream neurons are not sufficient for
720		sustenance of activity rhythms in constant darkness. PLoS One 12, e0175073,
721		doi:10.1371/journal.pone.0175073 (2017).
722	49	Kula, E., Levitan, E. S., Pyza, E. & Rosbash, M. PDF cycling in the dorsal protocerebrum of
723		the Drosophila brain is not necessary for circadian clock function. J Biol Rhythms 21,
724		104-117, doi:10.1177/0748730405285715 (2006).
725	50	Muraro, N. I., Pirez, N. & Ceriani, M. F. The circadian system: plasticity at many levels.
726		<i>Neuroscience</i> 247 , 280-293, doi:10.1016/j.neuroscience.2013.05.036 (2013).
727	51	Fernandez, M. P. et al. Sites of Circadian Clock Neuron Plasticity Mediate Sensory
728		Integration and Entrainment. <i>Curr Biol</i> , doi:10.1016/j.cub.2020.04.025 (2020).
729	52	Wu, Y., Cao, G. & Nitabach, M. N. Electrical silencing of PDF neurons advances the phase
730		of non-PDF clock neurons in Drosophila. J Biol Rhythms 23, 117-128,
731		doi:10.1177/0748730407312984 (2008).
732	53	Dajani, D. R. & Uddin, L. Q. Demystifying cognitive flexibility: Implications for clinical and
733		developmental neuroscience. <i>Trends Neurosci</i> 38 , 571-578.
734		doi:10.1016/i.tins.2015.07.003 (2015).
735	54	Liu. Q. <i>et al.</i> Branch-specific plasticity of a bifunctional dopamine circuit encodes protein
736		hunger. Science 356 , 534-539, doi:10.1126/science.aal3245 (2017).
737	55	Hart, M. P. & Hobert, O. Neurexin controls plasticity of a mature, sexually dimorphic
738		neuron. <i>Nature</i> 553 , 165-170, doi:10.1038/nature25192 (2018).
739	56	Farris, S. M., Robinson, G. E. & Fahrbach, S. E. Experience- and age-related outgrowth of
740		intrinsic neurons in the mushroom bodies of the adult worker honeybee. J Neurosci 21 .
741		6395-6404 (2001).
742	57	Kim, S. S., Rouault, H., Druckmann, S. & Jayaraman, V. Ring attractor dynamics in the
743		Drosophila central brain. Science 356, 849-853, doi:10.1126/science.aal4835 (2017).

744 745 746	58	Liang, X. <i>et al.</i> Morning and Evening Circadian Pacemakers Independently Drive Premotor Centers via a Specific Dopamine Relay. <i>Neuron</i> 102 , 843-857 e844, doi:10.1016/ii.nouron.2010.03.038 (2010)
740	50	uol.10.1010/J.neuloll.2013.03.028 (2013).
747	59	Potdar, S. & Sheeba, V. Wakeruiness is Promoted during Day Time by PDFR Signalling to
748		Dopaminergic Neurons in Drosophila melanogaster. <i>eneuro</i> 5 ,
749	~~	doi:10.1523/ENEURO.0129-18.2018 (2018).
750	60	Gorska-Andrzejak, J., Chwastek, E. M., Walkowicz, L. & Witek, K. On Variations in the
751		Level of PER In Gilal Clocks of Drosophila Optic Lobe and its Negative Regulation by PDF
752	C1	Signaling. Front Physiol 9 , 230, doi:10.3389/fphys.2018.00230 (2018).
753	61	Park, J. H. <i>et al.</i> Differential regulation of circadian pacemaker output by separate clock
754		genes in Drosophila. Proc Nati Acad Sci U S A 97 , 3608-3613,
755	62	doi:10.10/3/pnas.0/003619/ (2000).
/56	62	NI, J. Q. et al. Vector and parameters for targeted transgenic RNA interference in
/5/		Drosophila melanogaster. Nat Methods 5, 49-51, doi:10.1038/nmeth1146 (2008).
758	63	Pfeiffer, B. D. <i>et al.</i> Refinement of tools for targeted gene expression in Drosophila.
759		Genetics 186, 735-755, doi:10.1534/genetics.110.119917 (2010).
760	64	Mauss, A. S., Busch, C. & Borst, A. Optogenetic Neuronal Silencing in Drosophila during
761		Visual Processing. Sci Rep 7, 13823, doi:10.1038/s41598-017-14076-7 (2017).
762	65	Zhang, S. X., Rogulja, D. & Crickmore, M. A. Dopaminergic Circuitry Underlying Mating
763		Drive. <i>Neuron</i> 91 , 168-181, doi:10.1016/j.neuron.2016.05.020 (2016).
764	66	Boutros, C. L., Miner, L. E., Mazor, O. & Zhang, S. X. Measuring and Altering Mating Drive
765		in Male Drosophila melanogaster. <i>J Vis Exp,</i> doi:10.3791/55291 (2017).
766	67	Tayler, T. D., Pacheco, D. A., Hergarden, A. C., Murthy, M. & Anderson, D. J. A
767		neuropeptide circuit that coordinates sperm transfer and copulation duration in
768		Drosophila. Proc Natl Acad Sci U S A 109 , 20697-20702, doi:10.1073/pnas.1218246109
769		(2012).
770	68	Veenstra, J. A. & Ida, T. More Drosophila enteroendocrine peptides: Orcokinin B and the
771		CCHamides 1 and 2. Cell Tissue Res 357 , 607-621, doi:10.1007/s00441-014-1880-2
772		(2014).
773	69	Busza, A., Emery-Le, M., Rosbash, M. & Emery, P. Roles of the two Drosophila
774		CRYPTOCHROME structural domains in circadian photoreception. Science 304, 1503-
775		1506, doi:10.1126/science.1096973 (2004).
776	70	Berndt, A. et al. A novel photoreaction mechanism for the circadian blue light
777		photoreceptor Drosophila cryptochrome. J Biol Chem 282, 13011-13021,
778		doi:10.1074/jbc.M608872200 (2007).
779	71	VanVickle-Chavez, S. J. & Van Gelder, R. N. Action spectrum of Drosophila
780		cryptochrome. <i>J Biol Chem</i> 282 , 10561-10566, doi:10.1074/jbc.M609314200 (2007).
781	72	Hanai, S., Hamasaka, Y. & Ishida, N. Circadian entrainment to red light in Drosophila:
782		requirement of Rhodopsin 1 and Rhodopsin 6. Neuroreport 19, 1441-1444,
783		doi:10.1097/WNR.0b013e32830e4961 (2008).
784	73	Fogle, K. J., Parson, K. G., Dahm, N. A. & Holmes, T. C. CRYPTOCHROME is a blue-light
785		sensor that regulates neuronal firing rate. Science 331, 1409-1413,
786		doi:10.1126/science.1199702 (2011).

787 788 789	74	Fogle, K. J. <i>et al.</i> CRYPTOCHROME-mediated phototransduction by modulation of the potassium ion channel beta-subunit redox sensor. <i>Proc Natl Acad Sci U S A</i> 112 , 2245-2250, doi:10.1073/pnas.1416586112 (2015).
790	75	Hendricks, J. C. et al. Rest in Drosophila is a sleep-like state. Neuron 25, 129-138 (2000).
791	76	Shaw, P. J., Cirelli, C., Greenspan, R. J. & Tononi, G. Correlates of sleep and waking in
792		Drosophila melanogaster. <i>Science 287,</i> 1834-1837 (2000).
793	77	Klarsfeld, A., Leloup, JC. & Rouyer, F. Circadian rhythms of locomotor activity in
794		Drosophila. Behavioural Processes 64, 161-175, doi:10.1016/s0376-6357(03)00133-5
795		(2003).
796	78	Zielinski, T., Moore, A. M., Troup, E., Halliday, K. J. & Millar, A. J. Strengths and
797		limitations of period estimation methods for circadian data. PLoS One 9, e96462,
798		doi:10.1371/journal.pone.0096462 (2014).
799	79	Houl, J. H., Ng, F., Taylor, P. & Hardin, P. E. CLOCK expression identifies developing
800		circadian oscillator neurons in the brains of Drosophila embryos. BMC Neurosci 9, 119,
801		doi:10.1186/1471-2202-9-119 (2008).
802	80	Shafer, O. T., Rosbash, M. & Truman, J. W. Sequential nuclear accumulation of the clock
803		proteins period and timeless in the pacemaker neurons of Drosophila melanogaster. J
804		<i>Neurosci</i> 22 , 5946-5954, doi:20026628 (2002).
805	81	Siwicki, K. K., Eastman, C., Petersen, G., Rosbash, M. & Hall, J. C. Antibodies to the
806		period gene product of Drosophila reveal diverse tissue distribution and rhythmic
807		changes in the visual system. <i>Neuron</i> 1, 141-150, doi:10.1016/0896-6273(88)90198-5
808		(1988).
809	82	Zerr, D. M., Hall, J. C., Rosbash, M. & Siwicki, K. K. Circadian fluctuations of period
810		protein immunoreactivity in the CNS and the visual system of Drosophila. J Neurosci 10,
811		2749-2762 (1990).
812	83	Shafer, O. T. & Taghert, P. H. RNA-interference knockdown of Drosophila pigment
813		dispersing factor in neuronal subsets: the anatomical basis of a neuropeptide's circadian
814		functions. <i>PLoS One</i> 4 , e8298, doi:10.1371/journal.pone.0008298 (2009).
815	84	Baines, R. A., Uhler, J. P., Thompson, A., Sweeney, S. T. & Bate, M. Altered electrical
816		properties in Drosophila neurons developing without synaptic transmission. J Neurosci
817		21 , 1523-1531 (2001).
818		
010		

820 EXTENDED DATA

Extended Data Figure 1

821

822 Extended Data Figure 1. Light responsiveness is independent of circadian fluctuations in

823 baseline locomotion. (a) Basal locomotor activity is higher in constant darkness than in light-

dark cycles, but only during daytime. (b) Pre-pulse locomotor activity weakly correlates with

activity during the pulse given mid-day (p=0.02). Pre-pulse locomotor activity does not correlate

- with activity during the pulse given mid-night (p=0.89). (c) Sleep bout duration prior to the light
- pulse does not correlate with behavioral response during the mid-day (p=0.31) or mid-night
- 828 (p=0.54). (a-c) show the same flies as Fig.1, a-c. (d) Activity normalized to baseline still shows
- two distinct states. Same flies as Fig. 1c.

831 Extended Data Figure 2. Female flies also respond to light differently during the daytime

- vs nighttime. (a) Experimental setup. Virgin female w^{+} /so31 flies underwent the same
- treatment shown in Fig. 1a. For entrainment and baseline, 24 hours of activity are shown. (b)
- Left, Averaged activity 30 minutes prior to, and during, the 60 minute light probe. Right,
- 835 quantification of light-evoked change in activity.

- 837 Extended Data Figure 3. Locomotor responses to light are instructed by prior
- 838 entrainment experience. Darkness during daytime acutely evokes locomotor activity. (a)

839 The top rows show the standard entrainment protocol used in all other experiments. The bottom 840 two rows show alternative light-dark entrainment cycles. In (a-e), yellow bars indicate when 841 lights are on, black bars indicate when lights are off, and grey bars indicate subjective daytime 842 in constant darkness. (b) 6 hour light : 18 hour dark conditions were used for entrainment and 843 flies were subsequently tested in constant darkness with a one-hour light pulse. Arrows indicate 844 time of light onset. (c) A light pulse at 7pm evokes locomotor activity for flies entrained in 6:18 845 light:dark cycles. (d) Flies were entrained to 16 hour light : 8 hour dark conditions before testing. 846 (e) A light pulse at 7pm suppresses locomotor activity for flies entrained to 16:8 light:dark 847 cycles. (f) Quantification of differences between light-evoked responses at 7pm for flies 848 entrained to 6:18 or 16:8 light:dark cycles. (g) Experimental protocol for testing the effect of 849 acute darkness during daytime. Vertical bars: 15 minute locomotor activity bins. Yellow indicates 850 light. Unlike for experiments shown in other figures, flies were not in constant darkness but only 851 in light-dark cycles. On the experimental day, lights were turned off for 1 hour between 2pm and 852 3pm. (h) Lights-off during the daytime elicits startle. Top, representative individual raster plots.

853 Bottom, averaged activity prior to and during the dark probe.

Extended Data Figure 4

854

855 Extended Data Figure 4. Testing the efficacy of Clock- and Period- RNAi (a) 24-hour activity 856 profiles in light-dark cycles show that targeting the core circadian protein Clock (Clk) by Tim-Gal4-857 driven RNAi prevents anticipatory locomotor activity (i.e. the ramp-up of activity that occurs prior 858 to lights turning on (morning anticipation, M) or off (evening anticipation, E). Arrows indicate the 859 presence (black) or absence (red) of anticipation. (b) 24-hour locomotor activity profiles in 860 constant darkness show arrhythmicity when the clock is disrupted. (c) Evidence that Clk-RNAi 861 effectively depletes Clock protein. Clock staining was arbitrarily performed at ZT6 since Clock protein levels are detectable throughout the day⁷⁹. (d) Confirmation that Per-RNAi effectively 862 863 depletes Per protein. Period staining was performed at 9am (Zeitgeber Time 1, ZT1), since Period expression oscillates in controls and is near peak levels during this time⁸⁰. Period staining is broad 864 because of glial expression^{81,82}. 865

Extended Data Figure 5

866

Extended Data Figure 5. The timing of light responsiveness is controlled by circadian
 clocks. (a) A mutation in *period* (*period*^{Short} or *per*^S) accelerates circadian rhythms. E# indicates
 corresponding peaks of evening activity between control and mutant flies. Arrows indicate
 comparable timepoints - subjective nighttime after the fourth peak of evening activity. (b) This
 mutation also accelerates the timecourse of light responsiveness. Same control flies as in Fig. 1c.

Extended Data Figure 6

873 **Extended Data Figure 6. PDF in LNVs is required for normal daytime, but not nighttime,** 874 **light reactivity. (a)** Expression pattern of PDF in the brain and VNC. Asterisks indicate variable 875 expression in the midline of the brain and non-circadian neurons⁸³ in the VNC. **(b)** Knockdown of 876 PDF in LNvs perturbs only daytime light responsiveness. **(c)** Two hypomorphic mutations of PDF 877 receptor (PDFR) show perturbed responsiveness to daytime light. Though nighttime light 878 responses differ from controls, peak responses to nighttime light are similar to wild-type.

879

880 Extended Data Figure 7. PDF from small LNvs is required for normal daytime light

reactivity. (a) Expression patterns of Gal4 drivers in small (JRC_SS00681-Gal4) or large

882 (JRC_SS00645-Gal4) LNv subpopulations. (b) Representative PDF expression patterns when

- 883 PDF-RNAi was driven in either small or large LNv subpopulations. Arrows indicate quantified
- regions in (d). Note that PDF was not completely depleted by I-LNv-Gal4-driven RNAi. (c) PDF
- knockdown shows that small LNvs (681-Gal4) are a necessary source of daytime PDF. UAS-
- 886 PDF-RNAi controls (black) are duplicated between left and right panels. (d) Quantification of
- 887 PDF immunostaining intensity in s-LNv dorsal axons or I-LNv axons in the optic lobe. (e) Light-

- 888 evoked change in activity using two s-LNv and two I-LNv drivers to express PDF-RNAi. One-
- 889 way ANOVA of daytime light responses, with Tukey's post hoc test. Cross symbols within panel
- 890 indicate significance (p<.05) versus all other conditions, aside from each other.

Extended Data Figure 8

- 892 Extended Data Figure 8. Additional details about PDFR rescue screen (a) Schematic of
- 893 experiment in Fig. 2d. (b) Activity traces for flies in which PDFR was expressed using R23E05-
- 684 Gal4 (dark green) or DN1a-Gal4 (light green) in the *han*⁵³⁰⁴ *pdfr* mutant background. This
- 895 experiment, done in the han^{3369} pdfr mutant background is shown in Fig. 2d.

896

Extended Data Figure 10

908

909 Extended Data Figure 10. The peptide CCHa1 is not the relevant nighttime DN1a-to-LNv

- 910 signal. (a) Co-staining of CCHa1with GFP in DN1as. (b) Schematic of DN1a-to-LNv
- 911 communication via CCHa1. (c) RNAi against CCHa1 in DN1as does not mimic the effects of
- 912 DN1a silencing. (d) RNAi against CCHa1 receptor in LNvs does not mimic the effects of DN1a
- 913 silencing.

Extended Data Figure 11

914

915 Extended Data Figure 11. Manipulating LNv or DN1a activity does not cause general 916 visual or locomotor defects. (a) Left, peak locomotor activity per 1-minute bin, during 917 nighttime light pulses (same flies as Fig. 1g) or during nighttime optogenetic silencing (same 918 flies as Fig 2c and Fig. 2h). Right, number of high activity bouts (animals cross the middle of the 919 tube more than 5 times per 1-minute bin). Cross symbols within panel indicate significance 920 against all other conditions (except against each other). The LNv > GFP control genotype had 921 significantly more high-activity bouts than all other conditions, which is not indicated in the 922 figure. One-way ANOVA with Tukey's post hoc test. (G) Mechanical stimulation of LNv-silenced 923 and DN1a-silenced flies shows that all genotypes are capable of reaching high levels of 924 locomotion. (H) Courtship of clock-disrupted flies and subpopulation-silenced flies, which is 925 compared to GMR-hid flies, a positive control with visual defects. See methods for details about 926 optogenetics during courtship.

Extended Data Figure 12

927

928 Extended Data Figure 12. Additional data for mutual connectivity experiments. (a) Single

- 929 confocal z-stacks with imaging depths of 0.3 µm show proximity of LNv and DN1a terminals (b)
- 930 Single confocal z-stacks show specificity of DN1a->LNv *trans*-Tango experiments. (c) Single
- 931 confocal z-stacks show specificity of LNv->DN1a trans-Tango experiments.

932

Extended Data Figure 13. Additional data for functional imaging. (a) Left, representative
 fields of view during LNv-to-DN1a circuit tracing experiment. Dashed box shows magnified
 DN1a dendritic region selected for analysis. DN1a dendrites and LNv axons were chosen for

- analysis because these regions were consistently identifiable, whereas DN1a axons and LNv
- 937 dendrites were not usually visible with GCaMP6s. Left, representative baseline calcium
- 938 fluctuations in DN1as before ATP stimulation. Right, representative calcium fluctuations in DN1a
- 939 dendrites during two minutes of baseline imaging before ATP stimulation. Each color shows an
- 940 independent trial. (b) All trials for experiments shown in Fig. 3d. Red traces are one
- 941 experimental and one control trial that were excluded from analysis because of non-
- 942 representative depolarizations (see methods for more details). (c) Left, representative fields of
- 943 view during DN1a-to-LNv circuit tracing experiments. Inset represents LNv axonal area selected
- 944 for analysis. Dashed box shows magnified region of analysis in LNv axons. Right,
- 945 representative calcium fluctuations in LNv axons during two minutes of baseline imaging before
- ATP stimulation. Each color shows an independent trial. (d) All trials for experiments shown in
- 947 Fig. 3e.

Extended Data Figure 14

948

- 949 Extended Data Figure 14. Comparisons of LexA driver strengths used for chemogentic
- 950 stimulation in Figure 3. (a) LNv-LexA and DN1a-LexA driver strengths are compared by
- 951 crossing to the same reporter (LexO::myrGFP), and imaged under the same acquisition settings
- 952 GFP intensity was measured in cell bodies for comparison.

953

- 954 Extended Data Figure 15. Additional information related to plasticity patterns. (a) s-LNV
- 955 synapse number as a function of s-LNv axon area. (b) DN1a synapse number as a function of
- 956 DN1a axon length. A and B are reanalyses of the same animals shown in Fig. 4b.

957

959 overexpression does not overtly perturb rhythmic locomotor activity. Locomotor activity of flies

960 expressing Rho1 in LNvs or DN1as, across two days in light-dark cycles and two days in

961 continual darkness. Red asterisks indicate advanced evening activity that occurs when LNvs are

962 constitutively silenced using overexpression of inwardly rectifying potassium channel Kir2.1⁸⁴.

963 Extended Data Video 1. Circadian light reactivity in wild-type flies. Light pulse presented to

- wild-type (w^+ *iso31*) flies. Flies are in glass tubes with food on one end (outer end of the frame),
- and a cotton plug on the other (inner end of the frame). Lights turn on 13 seconds into the video.
- 966 Flies in left and right columns are entrained to opposite cycles. On the left side, lights turn on in
- the middle of subjective day. On the right side, lights turn on in the middle of subjective night.
- 968 Video is sped up 30x.
- 969

970 Extended Data Video 2. Overlapping projections of LNvs (blue) and DN1as (green). 3D 971 reconstruction of confocal stacks using Imaris, shown with and without nc82 (grey). Same image 972 as Fig. 3a.

973

974 Extended Data Video 3. LNv axons (blue) adjacent to DN1a dendrites (green). 3D
975 reconstruction of confocal stacks using Imaris, shown with and without nc82 (grey). Same image
976 as Fig. 3b, left.

977

978 Extended Data Video 4. DN1a axons (green) adjacent to LNv dendrites (blue). 3D
979 reconstruction of confocal stacks using Imaris, shown with and without nc82 (grey). Same image
980 as Fig. 3b, right.

981

982 Extended Data Table 1

Figure	Label	Genotype	Ν	Statistics
Figure 1				
Fig. 1a, Left and Middle (24 hour LD and DD activity)	Wild-type	w⁺, iso31	125	
Fig. 1a, Right	Wild-type	w⁺, iso31	62 (2pm), 63 (2am)	
Fig. 1b	Wild-type	w⁺, iso31	63 (8am), 69 (2pm, Day, same flies as Figure 1a), 67 (8pm), 63 (2am, Night, same flies as Figure 1a)	
Fig. 1c	Wild-type	w⁺, iso31	63 (8am, same flies as 1b), 25	

1		1		
			(8:30am), 14 (9am), 17 (9:30am), 51 (10am), 17, (10:30am), 60 (11am), 26 (12pm), 47 (1pm), 62 (2pm, same flies as 1b), 72 (3pm), 50 (4pm), 24 (4:30pm), 39 (5pm), 81 (6pm), 108 (7pm), 38 (7:30pm), 87 (8pm), 73 (8:30pm), 72 (9pm), 33 (9:30pm), 53 (10pm), 17 (10:30pm), 30 (11pm), 17 (10:30pm), 30 (11pm), 17 (11:30pm), 42 (12am), 17 (11am), 63 (2am, same flies as 1a and B), 62 (3am), 52 (4am), 25 (5am), 62 (6am), 31	
Fig. 1e. left	Tim > GFP	w ⁻ : Tim(UAS)-	(7am), 11 (7:30am) Representative	
		Gal4, Repo-Gal80 / UAS-myr::GFP; UAS-Dicer2 / +	sample of at least ten flies	
Fig. 1e, right	Clock	w ⁻ ; Tim(UAS)- Gal4, Repo-Gal80 / UAS-myr::GFP; UAS-Dicer2 / +	Representative sample of at least ten flies	
Fig. 1f, red	Tim > Clock- RNAi	w ⁻ ; Tim(UAS)- Gal4, Repo-Gal80 / UAS-Clock-RNAi; UAS-Dicer2 / UAS-Dicer2	56 (8am), 31 (11am), 67 (2pm), 34 (5pm), 54 (8pm), 29 (11pm), 61 (2am) , 34	

			(5am) 51 (7am)	
Fig. 1f, purple	Tim > Period- RNAi	w ⁻ ; Tim(UAS)- Gal4, Repo-Gal80 / UAS-Dicer2; UAS-Period-RNAi / UAS-Dicer2	48 (8am), 31 (11am) 58 (2pm), 12 (5pm), 60 (8pm), 20 (11pm), 61 (2am), 45 (5am), 34 (7am)	
Fig. 1f, black			28 (8am), 28 (11am) 77 (2pm), 29 (5pm), 23 (8pm), 44 (11pm), 75 (2am), 55 (5am), 28 (7am)	
Fig. 1f, grey			43 (8am), 46 (11am) 49 (2pm), 27 (5pm), 19 (8pm), 49 (11pm), 74 (2am), 32 (5am), 27 (7am)	
Fig. 1g, black	UAS- Clock- RNAi	w ⁺ ; UAS-Clock- RNAi/+; UAS- Dicer2 / +	88 (2pm), 74 (2am)	Two-way ANOVA F(2,440)=100.4, interaction p<0.0001, with Tukey's
Fig. 1g, grey	Tim > GFP	w ⁻ ; Tim(UAS)- Gal4, Repo-Gal80 / UAS-myr::GFP or UAS-mCD8::GFP; UAS-Dicer2 / +	77 (2pm), 75 (2am)	2pm: UAS-control vs GFP control: p=0.0977. UAS control vs experimental: p<0.0001. GFP control vs
Fig. 1g, red	Tim > Clock- RNAi	w-; Tim(UAS)- Gal4, Repo-Gal80 / UAS-Clock-RNAi; UAS-Dicer2 / UAS-Dicer2	67 (2pm, same flies as 1c), 61 (2am, same flies as 1c)	experimental p<0.0001. 2am: UAS-control vs GFP control: p=0.8602. UAS control vs experimental: p<0.0001. GFP control vs experimental p<0.0001.

Fig. 2a, brain	LNv > GFP	w⁻; Pdf-Gal4 / UAS-myr::GFP; Pdf-Gal4 / +	Representative sample (2pm), of at least ten flies	
Fig. 2a, VNC	LNv > GFP	w ⁻ ; Pdf-Gal4 / UAS-myr::GFP; + / +	Representative sample (2pm), of at least five flies	
Fig. 2b	LNv > GFP	w ⁻ ; Pdf-Gal4 / UAS-myr::GFP; Pdf-Gal4 / +	Representative sample (2pm), of at least ten flies	
Fig. 2c,	UAS-	w⁺; +/+; UAS-	58 (2pm), 70	Two-way ANOVA
black	GtACR1	GtACR1::eYFP / +	(2am)	F(2,365)=30.28, interaction
Fig. 2c, grey	LNV > GFP	w ; Pdf-Gal4 / UAS-myr::GFP; Pdf-Gal4 / +	52 (2pm), 68 (2am)	p<0.0001, with Tukey's multiple comparisons test.
Fig. 2c, blue	LNv > GtACR1	w ⁻ ; Pdf-Gal4 / +; Pdf-Gal4 / UAS- GtACR1::eYFP / +	62 (2pm), 61 (2am)	2pm: UAS-control vs GFP control: p=0.7016. UAS control vs experimental: p<0.0001. GFP control vs experimental p<0.0001.
				2am: UAS-control vs GFP control: p=0.9928. UAS control vs experimental: p=0.6758. GFP control vs experimental: p=0.9411.
Fig. 2d, black	Wild-type	w⁺, iso31	92 (2pm)	
Fig. 2d, blue	<i>pdfr^{han};</i> UAS-Pdfr	han ³³⁶⁹ / y; UAS- Pdfr-16 / +; Attp2 / + and han ⁵³⁰⁴ / y; UAS-Pdfr-16 /+ ; Attp2 / +	154 (2pm). 78 (<i>han³³⁶⁹</i> /y;UAS -Pdfr- 16/+;+/+). 76 (<i>han⁵³⁰⁴</i> /y;UAS -Pdfr- 16/+;+/+).	
Fig. 2d, grey	<i>pdfr^{han};</i> candidate- Gal4 > Pdfr	han ³³⁰⁹ / y; Candidate-Gal4 > UAS-Pdfr-16 and han ⁵³⁰⁴ / y; Candidate-Gal4 > UAS-Pdfr-16	274 candidate Gal4 lines	
Fig. 2d, green	<i>pdfr^{han};</i> R23E05- Gal4 > Pdfr	<i>han</i> ³³⁶⁹ / y; teashirt-Gal80 / UAS-Pdfr-16; R23E05-Gal4 / + and <i>pdfr^{han5304}</i> / y;	56 (2pm)	

		teashirt- Gal80/UAS-Pdfr-		
		16; R23E05-Gal4 / +		
Fig. 2e, blue	<i>han³³⁶⁹;</i> UAS-Pdfr	<i>han³³⁶⁹ /</i> y; UAS- Pdfr-16 / +; Attp2 / +	78 (2pm), 45 (2am)	Two-way ANOVA F(2,347)=14.10, interaction p<0.0001, with Tukey's multiple comparisons test
Fig. 2e, dark green	<i>han³³⁶⁹;</i> R23E05- Gal4 > Pdfr	<i>han³³⁶⁹ /</i> y; UAS- Pdfr-16 / +; R23E05-Gal4 / +	71 (2pm), 67 (2am)	2pm: R23E05 rescue vs DN1a rescue: p=0.9993. Mutant vs R23E05 recue:
Fig. 2e, green	<i>han³³⁶⁹;</i> DN1a-Gal4 > Pdfr	<i>han³³⁶⁹ / </i> y; teashirt-Ga80 / UAS-Pdfr-16;	52 (2pm), 60 (2am)	p<0.0001. Mutant vs DN1a rescue: p<0.0001.
		R23E05-Gal4 / +		2am: R23E05 rescue vs DN1a rescue: p=0.8009. Mutant vs R23E05 recue: p=0.9999. Mutant vs DN1a rescue: p=0.7312.
Fig. 2f	DN1a > GFP	w ⁻ ; teashirt-Gal80 / UAS-myr::GFP; R23E05-Gal4 / +	Representative sample (2am), of at least ten flies	
Fig. 2g, left	DN1a > GFP with Clock antibody	w ⁻ ; teashirt-Gal80 / UAS-myr::GFP; R23E05-Gal4 / +	Representative sample (2pm), of at least ten flies	
Fig. 2g, right	DN1a > GFP with Period antibody	w ⁻ ; teashirt-Gal80 / UAS-myr::GFP; R23E05-Gal4 / +	Representative sample (9am), of at least ten flies	
Fig. 2h, black	UAS- GtACR1	w ⁺ ; +/+; UAS- GtACR1::eYFP / +	87 (2pm), 95 (2am)	Two-way ANOVA F(2,540)=100.4, interaction
Fig. 2h, grey	DN1a > GFP	w ⁻ ; teashirt-Gal80 / UAS-myr::GFP; R23E05-Gal4 / +	64 (2pm), 103 (2am)	p = 0.0002, with Tukey's multiple comparisons test.
Fig. 2h, green	DN1a > GtACR1	w ⁻ ; teashirt- Gal80/+; R23E05- Gal4/UAS- GtACR1::eYFP	85 (2pm), 112 (2am)	2pm: UAS-control vs GFP control: p=0.6804. UAS control vs experimental: p>0.9999. GFP control vs experimental: p=0.6590.
				2am: UAS-control vs GFP control: p>0.9999. UAS control vs experimental: p=0.0003. GFP control vs experimental p=0.0001.
Fig. 2i, black	UAS-t-PDF	w⁺; +/+; 10x UAS- tethered-PDF	62 (2pm), 88 (2am)	Two-way ANOVA F(2.331)=7.990 interaction

Fig. 2i, grey	DN1a > GFP	w⁻; teashirt-Gal80 / UAS-myr::GFP;	41 (2pm), 43 (2am)	p=0.0004, with Tukey's multiple comparisons test
		R23E05-Gal4/+) 19 (2nm) 55	
green	PDF	+; R23E05-Gal4 / 10x UAS tethered- PDF	(2am) (2am)	2pm: UAS-control vs GFP control: p=0.0111. UAS control vs experimental: p=0.2058. GFP control vs experimental p=0.8725.
				2am: UAS-control vs GFP control: p=0.9846. UAS control vs experimental: p<0.0001. GFP control vs experimental: p=0.0001.
Figure 3	L NICES	we to achint Oal00	Dennesentetive	
Fig. 3a	GFP; DN1a > GFP	W; teasnirt-Gal80, PDF-LexA LexAop- myr::TdTomato; R23E05- Gal4/UAS- myr::GFP	sample (2am), of at least ten flies	
Fig. 3b, left	LNv > Denmark; R23E05 > syt::GFP	w ⁻ ; Pdf-Gal4 / UAS-DenMark; R23E05-LexA / LexAop- syt::GDP::HA	Representative sample (2am), of at least ten flies	
Fig. 3b, right	R23E05 > Denmark; LNv > syt::GFP	w ⁻ ; PDF-LexA / UAS-DenMark; R23E05-Gal4 / LexAop- syt::GDP::HA	Representative sample (2pm), of at least ten flies	
Fig. 3c, left	LNv > GFP, <i>trans-</i> Tango	w ⁻ ; UAS- myr::GFP.QUAS- mtdTomato-3xHA; Pdf-Gal4 / <i>trans</i> - Tango; Pdf-Gal4/+	Representative sample of at least ten flies	
Fig. 3c, right	DN1a > GFP, <i>trans-</i> Tango	w ⁻ ; UAS- myr::GFP.QUAS- mtdTomato-3xHA; teashirt-Gal80 / <i>trans</i> -Tango; R23E05-Gal4 / +	Representative sample of at least ten flies	
Fig. 3d, grey	LNv > P2X ₂ ; R23E05 > GCaMP (saline)	w ⁻ ; PDF-LexA / UAS-op- GCaMP6s; R23E05-Gal4 / LexAop-P2X ₂	13 (2am)	2am Minimum: One-way ANOVA F(2,34)=9.721, p=0.0005, with Tukey's multiple comparisons test.
Fig. 3d, black	LNv >	w⁻; PDF-LexA / UAS-op	12 (2am)	

	R23E05 > GCaMP	GCaMP6s; R23E05-Gal4 / +		2am minimum: No P2X ₂ control vs saline control:
Fig. 3d, green	LNv > P2X ₂ ; R23E05 > GCaMP	w ⁻ ; PDF-LexA / UAS-op- GCaMP6s; R23E05-Gal4 / LexAop-P2X ₂	12 (2am)	 p=0.9903. No P2X₂ control vs experimental: p=0.0020. Saline control vs experimental p=0.0011. 2am Maximum: One-way ANOVA F(2,34)=0.1978, p=0.8214, with no multiple comparisons.
Fig. 3e, grey	R23E05 > P2X ₂ ; LNv > GCaMP (saline)	w ⁻ ; Pdf-Gal4 / UAS-op- GCaMP6s; R23E05-LexA / LexAop-P2X ₂	13 (2pm)	2pm Minimum: One-way ANOVA F(2,38)=6.646, p=0.0033, with Tukey's multiple comparisons test.
Fig. 3e, black	R23E05 > LNv > GCaMP	w ⁻ ; Pdf-Gal4 / UAS-op- GCaMP6s; R23E05-LexA / +	13 (2pm)	2pm minimum: No P2X ₂ control vs saline control: p=0.8549. No P2X ₂ control vs experimental: p=0.0050.
Fig. 3e, blue	R23E05 > P2X ₂ ; LNv > GCaMP	w ⁻ ; Pdf-Gal4 / UAS-op- GCaMP6s; R23E05-LexA / LexAop-P2X ₂	14 (2pm)	saline control vs experimental p=0.0175. 2pm Maximum: One-way ANOVA F(2,38)=2.345, p=0.1095, with no multiple comparisons.
Figure 4				
Fig. 4a, left panel, top images	LNv > GFP	w ⁻ ; Pdf-Gal4 / + ; UAS-myr::GFP / +	Representative samples (2pm, 2am) of at least ten flies	
Fig. 4a, left panel, bottom images	DN1a > GFP	w ⁻ ; teashirt-Gal80 / UAS-myr::GFP; R23E05-Gal4 / +	Representative samples (2pm, 2am) of at least ten flies	
Fig. 4a, middle panel		w ⁻ ; Pdf-Gal4 / + ; UAS-myr::GFP / +	40 hemispheres (2pm), 34 hemispheres (2am)	Unpaired t test t(72)=4.200, p<0.0001.
Fig. 4a, right panel		w ⁻ ; teashirt-Gal80 / UAS-myr::GFP; R23E05-Gal4 / +	133 hemispheres (2pm), 174 hemispheres (2am).	Two-way ANOVA F(1,610)=9.709, interaction p=0.0019, with Tukey's multiple comparisons test. 2pm VL tract vs 2am VL tract: p<0.0001. 2pm VM tract vs 2am VM tract: p=0.9930.

	LNUS	we Def Cald /	Depresentative	
Fig. 4b, ieit		w; Pul-Gal4 /	Representative	
panel, top	myr::GFP;	UAS-myr::GFP;	samples (2pm,	
images	brp::Cherry	Pdf-Gal4/UAS-brp-	2am) of at	
		D3::mCherry	least ten flies	
Fig. 4b, left	DN1a >	w ⁻ ; teashirt-Gal80 /	Representative	
panel,	myr::GFP;	UAS-myr::GFP;	samples (2pm,	
bottom	brp::Cherry	R23E05-Gal4 /	2am) of at	
images		UAS-brp-	least ten flies	
-		D3::mCherry		
Fig. 4b,		w; Pdf-Gal4 /	10	Unpaired t test
middle		UAS-mvr::GFP:	hemispheres	t(28)=5.254, p<0.0001.
panel		Pdf-Gal4 / UAS-	(2pm), 20	(,, p, p
P		brn-D3mCherry	hemispheres	
		Sip Doinonony	(2am)	
Fig. 4b		w ⁻ : teashirt_Cal80 /	18	
right nanel		IIAS_myr:GED	homisphores	F(1.62)=6./17 interaction
ngin paner			(2nm) 19	r = 0.0138 with Tukov' c
			(Zpiii), io	p=0.0130, with Tukey S
		UAS-brp-	nemispheres	multiple comparisons test.
		D3::mCnerry	(zam)	
				2pm VL tract vs 2am VL
				tract: p-0.0395.
				2pm VM tract vs 2am VM
				tract: p=0.8316.
Fig. 4c. top	<i>per^{01.}</i> I Ny	per ^{01.} Pdf-Gal4 / +·	Representative	
images		$Pdf_Gal/ / IIAS_$	samples (2nm	
inages	2 011	myr::GEP	2am) of at	
			least ten flies	
Fig. 4o	nor ⁰¹ .	por ⁰¹ : toophirt	Bopropontativo	
Fly. 40,	$\mu e i$,	per, leasing-		
bollom	RZJEUD >		samples (2pm,	
images	GFP		Zam) or at	
A		UAS-myr::GFP		
Fig. 4c,		per"; Pdf-Gal4 / +;	37	Unpaired t test
middle		Pdf-Gal4 / UAS-	hemispheres	t(67)=1.822, p=0.0730.
panel		myr::GFP	(2pm), 30	
			hemispheres	
			(2am)	
Fig. 4c,		per ⁰¹ ; teashirt-	59	Two-way ANOVA
right panel		Gal80 / + ;	hemispheres	F(1,200)=1.619, interaction
		R23E05-Gal4 /	(2pm), 43	p=0.2048, with no multiple
		UAS-myr::GFP	hemispheres	comparisons.
			(2am)	
Fig. 4d. top	LNv > GFP	w: Pdf-Gal4 / + :	Representative	
row		UAS-mvr::GFP / +	samples (2pm	
-			2am) of at	
			least ten flies	
Fig 4d	1 Ny >	w⁻· Pdf_Cal/ / ⊥·	Representativo	
hottom left	GFP	$11\Delta S_m vr \cdot CFD /$	samples (2nm)	
image	Dho1	LIAS Dhat Sah	of at locat tar	
inage		UAS-RHUI.SPN		
1			thes	

Fig. 4d, bottom right image	LNv > GFP, Rho1- RNAi	w -; Pdf-Gal4 / UAS-Rho1- dsRNA; UAS- myr::GFP / UAS- Dicer2	Representative samples (2am) of at least ten flies	
Fig. 4d, blue circles		w ⁻ ; Pdf-Gal4 / +; UAS-myr::GFP / +	67 hemispheres (2pm), 34 hemispheres (2am)	One-way ANOVA F(3,165)=8.681, p<0.0001, with Tukey's multiple comparisons test.
Fig. 4d, blue upward triangle (Rho1 OE)		w ⁻ ; Pdf-Gal4 / +; UAS-myr::GFP / UAS-Rho1.Sph	45 hemispheres (2pm)	2pm control vs 2am control: p=0.0048. 2pm control vs LNv>Rho1: p=0.0019. 2am control vs 2am LNv>Rho1-RNAi:
Fig. 4d, blue downward triangle (Rho1- RNAi)		w ⁻ ; Pdf-Gal4 / UAS-Rho1- dsRNA; UAS- myr::GFP / UAS- Dicer2	22 hemispheres (2am)	p=0.0029.
Fig. 4e, top row	R23E05 > GFP	w ⁻ ; UAS-myr::GFP / +; R23E05-Gal4 / +	Representative samples (2pm) of at least ten flies	
Fig. 4e, bottom left image	R23E05 > GFP, Rho1- RNAi	w ⁻ ; UAS-myr::GFP / UAS-Rho1- dsRNA; R23E05- Gal4 / +	Representative samples (2pm) of at least ten flies	
Fig. 4d, bottom right image	R23E05 > GFP, Rho1	w ⁻ ; UAS-myr::GFP / +; R23E05-Gal4 / UAS-Rho1.Sph	Representative samples (2am) of at least ten flies	
Fig. 4e, green circles		w ⁻ ; UAS-myr::GFP / + ; R23E05-Gal4 / +	33 hemispheres (2pm), 37 hemispheres (2am)	One-way ANOVA F(7,280)=12.98, p<0.0001, with Tukey's multiple comparisons test.
Fig. 4e, downward triangle (Rho1- RNAi)		w ⁻ ; UAS-myr::GFP / UAS-Rho1- dsRNA; R23E05- Gal4 / +	32 hemispheres (2pm)	VL: 2pm control vs 2am control: p=0.0160. 2pm control vs DN1a>Rho1: p=0.0002. 2am control vs 2am DN1a>Rho1:
Fig. 4e, upward triangle (Rho1 OE)		w ⁻ ; UAS-myr::GFP / +; R23E05-Gal4 / UAS-Rho1.Sph	40 hemispheres (2am)	p<0.0001. VM: 2pm control vs 2am control: p>0.9999. 2pm control vs DN1a>Rho1: p>0.9999. 2am control vs

				2am DN1a>Rho1:
F : 46		⁺ · / · · · / · · · · · · · · · · · · · 	74 (0) 0	p>0.9999.
Fig. 4f,	UAS-Rho1	W;+/+;UAS-	71 (2pm), 2am	Two-way ANOVA
DIACK		Rno1.Spn / +	(68)	F(3,546)=10.25, Interaction
Fig. 4f,	GFP	W; Pdf-Gal4 /	57	p<0.0001, with Tukey s
grey (2pm)	Control,	UAS-myr::GFP;		multiple comparisons test.
F : 46	left	Pdf-Gal4 / +	70	-
⊢ig. 4f,	GFP	w; teasnirt-Gai80 /	73	2pm: UAS-control vs
grey (2am)	Control,	UAS-myr::GFP;		LNv>GFP control:
	right	R23E05-Gal4/+		p=0.8420. UAS control vs
Fig. 4f, blue	Rho1 OE	w ⁻ ; Pdf-Gal4 / + ;	97 (2pm), 42	LNv>Rho1: p=0.001. UAS
	in LNvs	Pdf-Gal4 / UAS-	(2am)	control vs DN1a>Rho1:
		Rho1.Sph		p>0.9999. LNv>GFP
Fig. 4f,	Rho1 OE	w; teashirt-Gal80 /	64 (2pm), 82	control vs LNv>Rho1:
green	in DN1as	+; R23E05-Gal4 /	(2am)	p<0.0001. LNv>GFP
		UAS-Rho1.Sph		control vs DN1a>Rho1:
				p=0.7598. LNv>Rho1 vs
				DN1a>Rho1: p=0.0006.
				2am: UAS-control vs
				DN1a>GFP control:
				p=0.3743. UAS control vs
				LNv>Rho1: p=0.9269.
				UAS control vs
				DN1a>Rho1: p=0.0094.
				LNv>GFP control vs
				LNv>Rho1: p=0.9981.
				DN1a>GFP control vs
				DN1a>Rho1: p<0.0001.
				LNv>Rho1 vs
				DN1a>Rho1: p=0.0005.
Extended D	ata		•	•
Extended		w⁺, iso31	62 (2pm), 63	One-way ANOVA
Data Fig.			(2am). Same	F(3,496)=77.85, p<0.0001,
1a,b			flies as 1a and	with Tukey's multiple
			В.	comparisons test.
				LD Day vs DD day:
				p<0.0001. DD Day vs DD
				night: p<0.0353.
Extended		w ⁺ . iso31	33 (2pm). 58	
Data Fig.		,	(2am).	
1c			Subsample of	
-			sleeping flies	
			from Figure 1	
			A and B.	
Extended		w⁺. iso31	62 (2pm). 63	
Data Fig.		.,	(2am), Same	
1d. left			flies as Figure	
,			1, A and B	

Extended Data Fig.		w⁺, iso31	Requantificatio n of flies from	
Extended Data Fig. 2a.b	Wild-type females	w⁺, iso31	31 (2pm), 35 (2am)	Unpaired t test t(64)=8.248, p=<0.0001.
Extended Data Fig. 3b,c		w⁺, iso31	32	
Extended Data Fig. 3d,e		w⁺, iso31	26	
Extended Data Fig. 3f, 6L:18D		w⁺, iso31	32, same flies as 3d,e	Unpaired t test t(56)=7.359, p=<0.0001.
Extended Data Fig. 3f, 16L:8D		w⁺, iso31	26, same flies as 3f,g	
Extended Data Fig. 3g,h		w⁺, iso31	30 (2pm)	
Extended Data Fig. 4a,b left	UAS- Clock- RNAi	w ⁺ ; UAS-Clock- RNAi/+; UAS- Dicer2 / +	32	
Extended Data Fig. 4a,b middle	Tim > GFP	w ⁻ ; Tim(UAS)- Gal4, Repo-Gal80 / UAS-myr::GFP; UAS-Dicer2 / +	33	
Extended Data Fig. 4a,b right	Tim > Clock- RNAi	w ⁻ ; Tim(UAS)- Gal4, Repo-Gal80 / UAS-Clock-RNAi; UAS-Dicer2 / UAS-Dicer2	35	
Extended Data Fig. 4c, left image	UAS- Clock- RNAi	w⁺; UAS-Clock- RNAi / +; UAS- Dicer2 / +	Representative samples (ZT6) of at least ten flies	
Extended Data Fig. 4c, middle image	Tim > Clock- RNAi	w-; Tim(UAS)- Gal4, Repo-Gal80 / UAS-Clock-RNAi; UAS-Dicer2 / UAS-Dicer2	Representative samples (ZT6) of at least ten flies	
Extended Data Fig. 4c, right panel, grey		w ⁺ ; UAS-Clock- RNAi / +; UAS- Dicer2 / +	11	Unpaired t test t(18)=6.464, p=<0.0001.
Extended Data Fig. 4c, right panel, red		w-; Tim(UAS)- Gal4, Repo-Gal80 / UAS-Clock-RNAi;	9	

		UAS-Dicer2 / UAS-Dicer2		
Extended Data Fig. 4d, left image	UAS- Period- RNAi	w⁺; UAS-Dicer2 / +; UAS-Period- RNAi / +	Representative samples (ZT1) of at least ten flies	
Extended Data Fig. 4d, middle image	Tim > Period- RNAi	w ⁻ ; Tim(UAS)- Gal4, Repo-Gal80 / UAS-Dicer2; UAS-Period-RNAi / UAS-Dicer2	Representative samples (ZT1) of at least ten flies	Unpaired t test t(21)=10.91, p=<0.0001.
Extended Data Fig. 4d, right panel, grey		w ⁺ ; UAS-Dicer2 / +; UAS-Period- RNAi / +	11	
Extended Data Fig. 4d, right panel, purple		w ⁻ ; Tim(UAS)- Gal4, Repo-Gal80 / UAS-Dicer2; UAS-Period-RNAi / UAS-Dicer2	12	
Extended Data Fig. 5a, top	Wild-type	w⁺, iso31	46	
Extended Data Fig. 5a, bottom	w⁺per ^s	w⁺per ^s	15	
Extended Data Fig. 5b, grey	Wild-type	w⁺, iso31	Same control flies as Figure 1d.	
Extended Data Fig. 5b, red	w⁺per ^s	w⁺per ^s	9am (16), 14 (1pm), 16 (5pm), 13 (8pm), 13 (9pm), 14 (11pm)	
Extended Data Fig. 6a		w⁺, iso31	Representative sample (2pm), of at least ten flies	
Extended Data Fig. 6b, black	UAS-PDF- RNAi	w⁻; UAS-Dicer2; UAS-PDF-RNAi	52 (2pm), 49 (2am)	Two-way ANOVA F(2,325)=33.52, interaction p<0.0001, with Tukey's multiple comparisons test. 2pm: UAS-control vs Gal4 control: p=0.4789. UAS control vs experimental: p<0.0001. Gal4 control vs experimental p<0.0001

				2am: UAS-control vs Gal4 control: p<0.0001. UAS control vs experimental: p=0.8602. Gal4 control vs experimental: p=0.0051.
Extended Data Fig. 6b, grey	LNv-Gal4	UAS-Dicer2 / y; Pdf-Gal4 / +; Pdf- Gal4 / +	43 (2pm), 68 (2am)	
Extended Data Fig. 6b, blue	LNv > PDF-RNAi	UAS-Dicer2 / y; Pdf-Gal4 / UAS- Dicer2; Pdf-Gal4 / PDF-RNAi	59 (2pm), 60 (2am)	
Extended Data Fig. 6c, black	W ¹¹¹⁸	W ¹¹¹⁸	72 (2pm), 74 (2am)	Two-way ANOVA F(2,404)=35.99, interaction p<0.0001, with Tukey's
Extended Data Fig. 6c, blue	han ³³⁶⁹	han ³³⁶⁹	63 (2pm), 71 (2am)	multiple comparisons test. 2pm: <i>han³³⁶⁹</i> mutant vs
Extended Data Fig. 6c, purple	han ⁵³⁰⁴	han ⁵³⁰⁴	65 (2pm), 65 (2am)	han ⁵³⁰⁴ mutant p=0.0228. WT control vs han ³³⁶⁹ mutant: p=0.0020. WT control vs han ⁵³⁰⁴ mutant: p<0.0001. 2am: han ³³⁶⁹ mutant vs han ⁵³⁰⁴ mutant p=0.0228. WT control vs han ³³⁶⁹ mutant: p<0.0001. WT control vs han ⁵³⁰⁴ mutant: p=0.0056.
Extended Data Fig. 7a, orange	Small LNv (681) > GFP	w ⁻ ; JRC_SS00681 split-Gal4 hemidriver / +; JRC_SS00681 split-Gal4 hemidriver; UAS- myr::GFP	Representative sample of at least five flies	
Extended Data Fig. 7a, purple	Large LNv (645) > GFP	w ⁻ ; JRC_SS00645 split-Gal4 hemidriver / +; JRC_SS00645 split-Gal4 hemidriver; UAS- myr::GFP	Representative sample of at least five flies	
Extended Data Fig. 7b, left panel	UAS-PDF- RNAi	w ⁻ ; UAS-Dicer2; UAS-PDF-RNAi	Representative sample of ten flies	

Extended Data Fig. 7b, middle panel	Small LNv (681) > PDF-RNAi	w ⁻ ; JRC_SS00681 split-Gal4 hemidriver / UAS- Dicer2; JRC_SS00681 split-Gal4 hemidriver; UAS- PDF-RNAi	Representative sample of ten flies	
Data Fig. 7b, right panel	(645) > PDF-RNAi	w, JRC_S300043 split-Gal4 hemidriver / UAS- Dicer2; JRC_SS00645 split-Gal4 hemidriver; UAS- PDF-RNAi	sample of ten flies	
Extended Data Fig. 7c, left and right panels, black	UAS-PDF- RNAi	w ⁻ ; UAS-Dicer2; UAS-PDF-RNAi	30 (same flies in left and right panels)	
Extended Data Fig. 7c, left panel, grey	Small LNv (681) > GFP	w ⁻ ; JRC_SS00681 split-Gal4 hemidriver / +; JRC_SS00681 split-Gal4 hemidriver; UAS- myr::GFP	66	
Extended Data Fig. 7c, left panel, orange	Small LNv (681) > PDF-RNAi	w; JRC_SS00681 split-Gal4 hemidriver / UAS- Dicer2; JRC_SS00681 split-Gal4 hemidriver; UAS- PDF-RNAi	45	
Extended Data Fig. 7c, right panel, grey	Large LNv (645) > GFP	w ⁻ ; JRC_SS00645 split-Gal4 hemidriver / +; JRC_SS00645 split-Gal4 hemidriver; UAS- myr::GFP	46	
Extended Data Fig. 7c, right panel, purple	Large LNv (645) > PDF-RNAi	w; JRC_SS00645 split-Gal4 hemidriver / UAS- Dicer2; JRC_SS00645 split-Gal4	44	

		hemidriver; UAS- PDF-RNAi		
Extended Data Fig. 7d, black		w ⁻ ; UAS-Dicer2; UAS-PDF-RNAi	10 (quantification of Extended Data Fig. 7b)	ZT6: Two-way ANOVA F(2,55)=59.78, interaction p<0.0001, with Tukey's multiple comparisons test.
				Small LNv axons: UAS control vs ILNv>PDF-RNAi: p=0.9995. UAS control vs sLNv>PDF-RNAi: p<0.0001. sLNv>PDF- RNAi vs ILNv-PDF-RNAi: p<0.0001.
				large LNv axons: UAS control vs ILNv>PDF-RNAi: p<0.0001. UAS control vs sLNv>PDF-RNAi: p=0.3529. sLNv>PDF- RNAi vs ILNv-PDF-RNAi: p<0.0001.
Extended Data Fig. 7d, orange		w ⁻ ; JRC_SS00681 split-Gal4 hemidriver / UAS- Dicer2; JRC_SS00681 split-Gal4 hemidriver; UAS- PDF-RNAi	10 (quantification of Extended Data Fig. 7b)	
Extended Data Fig. 7d, purple		w ⁻ ; JRC_SS00645 split-Gal4 hemidriver / UAS- Dicer2; JRC_SS00645 split-Gal4 hemidriver; UAS- PDF-RNAi	10 (quantification of Extended Data Fig. 7b)	
Extended Data Fig. 7e, first column (black)	UAS-PDF- RNAi	w ⁻ ; UAS-Dicer2; UAS-PDF-RNAi	30 (quantification of Extended Data Fig. 7c)	One-Way ANOVA F(7,334)=14.56, with Tukey's multiple comparisons test. 2pm: UAS control vs
Extended Data Fig. 7e, second column (Grey)	GFP control (645-Gal4)	w ⁻ ; JRC_SS00645 split-Gal4 hemidriver / +; JRC_SS00645 split-Gal4 hemidriver; UAS- myr::GFP	46 (quantification of Extended Data Fig. 7c)	681>PDF-RNAi: p<0.0001. UAS control vs R6>PDF- RNAi: p=0.0463. UAS control vs 645>PDF-RNAi: p=0.9186. UAS control vs C929>PDF-RNAi: p=0.1092. UAS control vs

Extended Data Fig. 7e, third column (purple)	Large LNv > PDF- RNAi (645- Gal4)	w ⁻ ; JRC_SS00645 split-Gal4 hemidriver / UAS- Dicer2; JRC_SS00645 split-Gal4 hemidriver; UAS- PDF-RNAi	44 (quantification of Extended Data Fig. 7c)	645>GFP p=0.0226. UAS control vs 681>PDF-RNAi: p=0.1901. UAS control vs R6>GFP: p>0.9999. 645>GFP vs 645>PDF- RNAi: p=0.9282. 645>PDF-RNAi vs C929>PDF-RNAi: p=0.7739. 645>PDF-RNAi vs 681>PDF-RNAi: p<0.0001. 645>PDF-RNAi vs R6>PDF-RNAi: p=0.0095. C929>PDF- RNAi vs R6>PDF-RNAi: p=0.0002. 681>GFP vs 681>PDF-RNAi: p<0.0001. 681>GFP vs R6>PDF- RNAi: p=0.0002. 681>GFP vs R6>GFP: p=0.0002. 681>PDF-RNAi vs R6>PDF-RNAi vs R6>PDF-RNAi vs R6>PDF-RNAi vs R6>PDF-RNAi: p=0.9999. R6>Myr vs R6>PDF-RNAi p=0.0875.
Extended Data Fig. 7e, fourth column (purple)	Large LNv > PDF- RNAi (C929- Gal4)	w ⁻ ; C929-Gal4 / UAS-Dicer2; UAS- PDF-RNAi / +	15	One-Way ANOVA F(7,334)=14.56, with Tukey's multiple comparisons test. 2pm: UAS control vs
Extended Data Fig. 7e, fifth column (grey)	GFP control (R6-Gal4)	UAS-Dicer2 / y; R6-Gal4/UAS- myr::GFP; UAS- Dicer2 / +	26	681>PDF-RNAi: p<0.0001. UAS control vs R6>PDF- RNAi: p=0.0463. UAS control vs 645>PDF-RNAi: p=0.9186. UAS control vs
Extended Data Fig. 7e, sixth column (orange)	Small LNv > PDF- RNAi (R6- Gal4)	UAS-Dicer2 / y; R6-Gal4/UAS- Dicer2; UAS- Dicer2; UAS-PDF- RNAi	14	C929>PDF-RNAi: p=0.1092. UAS control vs 645>GFP p=0.0226. UAS control vs 681>PDF-RNAi: p=0.1901. UAS control vs
Extended Data Fig. 7e, seventh column (grey)	GFP control (681-Gal4)	w ⁻ ; JRC_SS00681 split-Gal4 hemidriver / +; JRC_SS00681 split-Gal4 hemidriver; UAS- myr::GFP	66 (quantification of Extended Data Fig. 7c)	R6>GFP: p>0.9999. 645>GFP vs 645>PDF- RNAi: p=0.9282. 645>PDF-RNAi vs C929>PDF-RNAi: p=0.7739. 645>PDF-RNAi vs 681>PDF-RNAi:
Extended Data Fig. 7e, eighth	Small LNv > PDF-	w ⁻ ; JRC_SS00681 split-Gal4 hemidriver / UAS-	45 (quantification	p<0.0001.645>PDF-RNAi vs R6>PDF-RNAi: p=0.0095.C929>PDF-

column (orange) Extended	RNAi (681- Gal4) <i>han⁵³⁰⁴;</i> UA	Dicer2; JRC_SS00681 split-Gal4 hemidriver; UAS- PDF-RNAi han ⁵³⁰⁴ / y; UAS-	of Extended Data Fig. 7c) 76 (2pm), 55	RNAi vs R6>PDF-RNAi: p=0.0002. 681>GFP vs 681>PDF-RNAi: p<0.0001. 681>GFP vs R6>PDF- RNAi: p=0.0002. 681>GFP vs R6>GFP: p=0.0002.
Data Fig. 8b, blue	S-Pdfr	Pdfr-16 /+ ; Attp2 / +	(2am)	681>PDF-RNAI vs R6>PDF-RNAi: p=0.9999.
Extended Data Fig. 8b, dark green	<i>han⁵³⁰⁴;</i> R23E05- Gal4 > Pdfr	<i>han⁵³⁰⁴ /</i> y; UAS- Pdfr-16 / + ; R23E05-Gal4 / +	68 (2pm), 77 (2am)	R6>Myr vs R6>PDF-RNAi p=0.0875.
Extended Data Fig. 8b, green	<i>han⁵³⁰⁴</i> ;DN 1a-Gal4 > Pdfr	<i>han⁵³⁰⁴ /</i> y; teashirt- Ga80/UAS-Pdfr- 16; R23E05-Gal4 / +	68 (2pm), 45 (2am)	Two-way ANOVA F(2,383)=34.21, interaction p<0.0001, with Tukey's multiple comparisons test. 2pm: R23E05 rescue vs DN1a rescue: p<0.0001. Mutant vs R23E05 recue: p<0.0001. Mutant vs DN1a rescue: p<0.0001. 2am: R23E05 rescue vs DN1a rescue: p=0.9898. Mutant vs R23E05 recue:
				p=0.5132. Mutant vs DN1a rescue: p=0.9348.
Extended	R23E05 >	w⁻; UAS-	Representative	
Data Fig. 9a	RedStinger	RedStinger / +; R23E05-Gal4 / +	sample of at least ten flies	
Extended	R23E05-	w ⁻ ; +/+; R23E05-	Representative	
Data Fig. 9b	LexA > LexAop- Myr::GFP	LexA / 13xLexAop2-IVS- Myr::GFP	sample of at least five flies	
Extended Data Fig. 9c	DN1a > myr::GFP	w ⁻ ; teashirt-Gal80 / UAS-myr::GFP; R23E05-Gal4/+	Representative sample of at least five flies	
Extended Data Fig. 9d	DN1a > Denmark, Syt::GFP	w ⁻ ; teashirt-Gal80 / repo-Gal80; UAS- Denmark, UAS- Syt::GP; R23E05- Gal4/+	Representative sample of at least ten flies	
Extended	R23E05 >	w ⁻ ; UAS-myr::GFP	Representative	
Data Fig.	myr::GFP	/ +; R23E05-Gal4 /	sample of at	
9e, top		+	least ten flies	
Extended	R23E05 >	w; teashirt-Gal80 /	Representative	
Data Fig.	myr::GFP,	UAS-myr::GFP;	sample of at	
<u>9e, bottom</u>	tsh-Gal80	R23E05-Gal4/+	least ten flies	

Extended	R23E05 >	w⁻; / UAS-	Representative	
Data Fig.	myr::GFP	myr::GFP;	sample of at	
10a Extended Data Fig. 10b, top, black	UAS- CCHa1- RNAi	R23E05-Gal4 / + w⁺; UAS-CCHa1- RNAi / +; +/+	least ten flies 42 (2pm), 44 (2am)	Two-way ANOVA F(2,289)=6.517, interaction p=0.0017, with Tukey's multiple comparisons test. 2pm: UAS-control vs GFP control: p=0.0005. UAS control vs experimental: p=0.0384. GFP control vs experimental p<0.0001. 2am: UAS-control vs FP control: p=0.9599. UAS control vs experimental:
Extended Data Fig.	R23E05 > GFP	w ⁻ ; UAS-Dicer2 / UAS-myr::GFP;	55 (2pm), 48 (2am)	experimental: p=0.6900.
10b, top, grey		R23E05-Gal4 / +		
Extended Data Fig. 10b, top, green	R23E05 > CCHa1- RNAi	w ⁻ ; UAS-Dicer2 / UAS- CCHa1; R23E05-Gal4 / +	51 (2pm), 55 (2am)	
Extended Data Fig. 10b, bottom, black	UAS- CCHa1R- RNAi	w ⁺ ; UAS-CCHa1R- RNAi / +; +/+	49 (2pm), 61 (2am)	Two-way ANOVA F(2,311)=0.4671, interaction p=0.6272, no multiple comparisons test.
Extended Data Fig. 10b, bottom, grey	LNv > GFP	UAS-Dicer2 / y; Pdf-Gal4 / UAS- myr::GFP; Pdf- Gal4 / +	58 (2pm), 63 (2am)	
Extended Data Fig. 10b, blue	LNV > CCHa1R- RNAi	UAS-Dicer2 / y; Pdf-Gal4 / UAS- CCHa1R-RNAi; Pdf-Gal4 / +	41 (2pm), 45 (2am)	
Extended Data Fig. 11a, first column	UAS- Clock- RNAi	w+;UAS-Clock- RNAi/+; UAS- Dicer2 / +	74 (2am, same flies as Figure 1g).	One-way ANOVA F(8,739)=2.557, p=0.0094, with Tukey's post hoc test.
(black) Extended Data Fig. 11a, second	Tim > GFP	w-; Tim(UAS)- Gal4, Repo-Gal80 / UAS-myr::GFP; UAS-Dicer2 / +	75 (2am, same flies as Figure 1g).	UAS-GtACR1 (from LNv experiments) vs: LNv>GFP, p=0.8765. LNv>GtACR1, p>0.9999.

column				UAS-GtACR1 (from DN1a
(grey)				experiments), p=0.5163.
Extended	Tim >	w-; Tim(UAS)-	61 (2am, same	DN1a>GFP, p=0.9487.
Data Fig.	Clock-	Gal4, Repo-Gal80	flies as Figure	DN1a>GtACR1, p>0.9999.
11a, third	RNAi	/ UAS-Clock-RNAi;	1g).	Tim>Clk-RNAi, p=0.8894.
column		UAS-Dicer2 /		UAS-Clk-RNAi, p>0.9999.
(red)		UAS-Dicer2		Tim>GFP_p=0.9983
				····· 0···, p 0:00000
				LNv>GFP vs: LNv>GtACR1, p=0.9431. UAS-GtACR1 (from DN1a experiments), p>0.9999. DN1a>GFP, p>0.9999. DN1a>GtACR1, p=0.7552.
				UAS-Clk-RNAi, p=0.8358 Tim>GFP, p=0.4054.
				LNv>GtACR1 vs: UAS-GtACR1 (from DN1a experiments), p=0.6823. DN1a>GFP, p=0.9837. DN1a>GtACR1, p>0.9999. Tim>Clk-RNAi, p=0.8443. UAS-Clk-RNAi, p>0.9999 Tim>GFP, p=0.9948.
				UAS-GtACR1 (from DN1a experiments) vs: DN1a>GtACR1, p=0.2866. DN1a>GFP, p=0.9922 Tim>Clk-RNAi, p=0.0139. UAS-Clk-RNAi, p=0.4602. Tim>GFP, p=0.0965.
				DN1a>GFP vs: DN1a>GtACR1, p=0.8597. Tim>Clk-RNAi, p=0.1327. UAS-Clk-RNAi, p=0.9212. Tim>GFP, p=0.4974.
				DN1a>GtACR1 vs: Tim>Clk-RNAi, p=0.8524. UAS-Clk-RNAi, p>0.9999. Tim>GFP, p=0.9981.
				Tim>Clk-RNAi vs: UAS-Clk-RNAi, p=0.9356. Tim>GFP, p=0.9983.

				UAS-CIk-RNAi vs Tim>GEP_n=0.9996
Extended Data Fig. 11a, fourth column	UAS- GtACR1	w ⁺ ; +/+; UAS- GtACR1∷eYFP / +	70 (2am) . Same flies as Figure 2c.	One-way ANOVA F(8,739)=2.557, p=0.0094, with Tukey's post hoc test.
(black) Extended Data Fig. 11a, fifth column (grev)	LNv > GFP	w ⁻ ; Pdf-Gal4 / UAS-myr::GFP; Pdf-Gal4 / +	68 (2am) . Same flies as Figure 2c.	UAS-GtACR1 (from LNv experiments) vs: LNv>GFP, p=0.8765. LNv>GtACR1, p>0.9999. UAS-GtACR1 (from DN1a experiments), p=0.5163.
Extended Data Fig. 11a, sixth column (blue)	LNv > GtACR1	w ⁻ ; Pdf-Gal4 / +; Pdf-Gal4 / UAS- GtACR1::eYFP / +	61 (2am) . Same flies as Figure 2c.	DN1a>GFP, p=0.9487. DN1a>GtACR1, p>0.9999. Tim>Clk-RNAi, p=0.8894. UAS-Clk-RNAi, p>0.9999. Tim>GFP, p=0.9983.
Extended Data Fig. 11a, seventh column (black)	UAS- GtACR1	w ⁺ ; +/+; UAS- GtACR1::eYFP / +	95 (2am). Same flies as Figure 2h.	LNv>GFP vs: LNv>GtACR1, p=0.9431. UAS-GtACR1 (from DN1a experiments), p>0.9999. DN1a>GFP, p>0.9999.
Extended Data Fig. 11a, eighth column (grev)	DN1a > GFP	w ⁻ ; teashirt-Gal80 / UAS-myr::GFP; R23E05-Gal4 / +	103 (2am). Same flies as Figure 2h.	DN1a>GtACR1, p=0.7552. Tim>Clk-RNAi, p=0.1099. UAS-Clk-RNAi, p=0.8358 Tim>GFP, p=0.4054.
Extended Data Fig. 11a, ninth column (grey)	DN1a > GtACR1	w ⁻ ; teashirt- Gal80/+; R23E05- Gal4/UAS- GtACR1::eYFP	112 (2am). Same flies as Figure 2h.	LNv>GtACR1 vs: UAS-GtACR1 (from DN1a experiments), p=0.6823. DN1a>GFP, p=0.9837. DN1a>GtACR1, p>0.9999.
Extended Data Fig. 11b, left, black	UAS- GtACR1	w ⁺ ; +/+; UAS- GtACR1::eYFP / +	26	Tim>Clk-RNAi, p=0.8443. UAS-Clk-RNAi, p>0.9999 Tim>GFP, p=0.9948.
Extended Data Fig. 11b, left, grey	LNv > GFP	w ⁻ ; Pdf-Gal4/UAS- myr::GFP; Pdf- Gal4 / +	23	UAS-GtACR1 (from DN1a experiments) vs: DN1a>GtACR1, p=0.2866. DN1a>GFP, p=0.9922
Extended Data Fig. 11b, left, blue	LNv > GtACR1	w ⁻ ; Pdf-Gal4 / +; Pdf-Gal4 / GtACR1::eYFP	23	Tim>Clk-RNAi, p=0.0139. UAS-Clk-RNAi, p=0.4602. Tim>GFP, p=0.0965.
				DN1a>GFP vs: DN1a>GtACR1, p=0.8597. Tim>Clk-RNAi, p=0.1327. UAS-Clk-RNAi, p=0.9212. Tim>GFP, p=0.4974.

r		
		DN1a>GtACR1 vs: Tim>Clk-RNAi, p=0.8524. UAS-Clk-RNAi, p>0.9999. Tim>GFP, p=0.9981.
		Tim>Clk-RNAi vs: UAS-Clk-RNAi, p=0.9356. Tim>GFP, p=0.9983.
		UAS-Clk-RNAi vs Tim>GFP, p=0.9996. One-way ANOVA F(8,739)=16.15, p<0.0001, with Tukey's post hoc test.
		UAS-GtACR1 (from LNv experiments) vs: LNv>GFP, p<0.0001. LNv>GtACR1, p=0.9951. UAS-GtACR1 (from DN1a experiments), p>0.9999. DN1a>GFP, p>0.9999. DN1a>GtACR1, p=0.0176. Tim>Clk-RNAi, p<0.0001. UAS-Clk-RNAi, p=0.9424. Tim>GFP, p=0.6718.
		LNv>GFP vs: LNv>GtACR1, p=0.0034. UAS-GtACR1 (from DN1a experiments), p<0.0001. DN1a>GFP, p<0.0001. DN1a>GtACR1, p<0.0001. Tim>Clk-RNAi, p<0.0001. UAS-Clk-RNAi, p<0.0001. Tim>GFP, p<0.0001.
		LNv>GtACR1 vs: UAS-GtACR1 (from DN1a experiments), p=0.9629. DN1a>GFP, p=0.9983. DN1a>GtACR1, p=0.0008. Tim>Clk-RNAi, p<0.0001. UAS-Clk-RNAi, p=0.5040. Tim>GFP, p=0.1798.
		UAS-GtACR1 (from DN1a experiments) vs: DN1a>GFP, p=0.0160 Tim>Clk-RNAi, p<0.0001.

				LIAS CIL DNAL 0-0.0757
				UA3-UIK-RINAI, P=0.9757.
				TIM>GFP, p=0.7553.
				DN1a>GFP vs:
				DN1a>GtACR1, p=0.0016.
				Tim>Clk-RNAi, p=0.8214.
				Tim>GFP, p=0.4081.
				DN1a>GtACR1 vs:
				Tim>Clk-RNAi, p=0.2890.
				UAS-Clk-RNAi p=0 5668
				Tim>GFP, p=0.8594.
				Tim>Clk-RNAi vs:
				UAS-Clk-RNAi, p=0.0042.
				Tim>GFP, p=0.0153.
				UAS-Clk-RNAi vs
				Tim>GFP, p>0.9999.
Extended	DN1a >	w; teashirt-Gal80 /	28	One-way ANOVA
Data Fig.	GFP	UAS-myr::GFP;		F(8,739)=16.15, p<0.0001,
11b, left,		R23E05-Gal4 / +		with Tukey's post hoc test.
grey				
Extended	DN1a >	w ⁻ ; teashirt-	26	UAS-GtACR1 (from LNv
Data Fig.	GtACR1	Gal80/+; R23E05-		experiments) vs:
11b, left,		Gal4/UAS-		LNv>GFP, p<0.0001.
green		GtACR1::eYFP		LNv>GtACR1, p=0.9951.
Extended	UAS-	w ⁺ ; +/+; UAS-	70 (2am) .	UAS-GtACR1 (from DN1a
Data Fig.	GtACR1	GtACR1::eYFP / +	Same flies as	experiments), p>0.9999.
11b, right,			Figure 2c.	DN1a>GFP, p>0.9999.
black			Ū	DN1a>GtACR1, p=0.0176.
Extended	LNv > GFP	w ⁻ ; Pdf-Gal4 /	68 (2am) .	Tim>Clk-RNAi, p<0.0001.
Data Fig.		UAS-mvr::GFP:	Same flies as	UAS-Clk-RNAi, p=0.9424.
11b. right.		Pdf-Gal4 / +	Figure 2c.	Tim>GFP, p=0.6718.
grey				
Extended	LNv >	w ⁻ ; Pdf-Gal4 / +;	61 (2am) .	LNv>GFP vs:
Data Fig.	GtACR1	Pdf-Gal4 / UAS-	Same flies as	LNv>GtACR1, p=0.0034.
11b, right,		GtACR1::eYFP / +	Figure 2c.	UAS-GtACR1 (from DN1a
blue			•	experiments), p<0.0001.
Extended	UAS-	w ⁺ ; +/+; UAS-	95 (2am).	DN1a>GFP, p<0.0001.
Data Fig.	GtACR1	GtACR1::eYFP / +	Same flies as	DN1a>GtACR1, p<0.0001.
11b, right,			Figure 2h.	Tim>Clk-RNAi, p<0.0001.
black				UAS-Clk-RNAi, p<0.0001.
Extended	DN1a >	w ⁻ ; teashirt-Gal80 /	103 (2am).	Tim>GFP, p<0.0001.
Data Fig.	GFP	UAS-myr::GFP;	Same flies as	
11b, right.		R23E05-Gal4 / +	Figure 2h.	LNv>GtACR1 vs:
grey			Ĭ	UAS-GtACR1 (from DN1a
Extended	DN1a >	w ⁻ ; teashirt-	112 (2am).	experiments), p=0.9629.
Data Fig.	GtACR1	Gal80/+; R23E05-	Same flies as	DN1a>GFP, p=0.9983.
Extended			Figure 2h.	DN1a>GtACR1, p=0.0008.

Data Fig. 11b, right,		Gal4/UAS- GtACR1::eYFP		Tim>Clk-RNAi, p<0.0001. UAS-Clk-RNAi, p=0.5040.
green			0	Tim>GFP, p=0.1798.
Data Fig. 11c, first column (brown)	GMR-III0	w , GMR-nid[10]	o	UAS-GtACR1 (from DN1a experiments) vs: DN1a>GFP, p=0.0160 Tim>Clk-RNAi, p<0.0001.
Extended Data Fig. 11c	UAS- Clock- RNAi	w+;UAS-Clock- RNAi/+; UAS- Dicer2 / +	8	UAS-Clk-RNAi, p=0.9757. Tim>GFP, p=0.7553.
second column (black)				DN1a>GFP vs: DN1a>GtACR1, p=0.0016. Tim>Clk-RNAi, p=0.8214.
Extended Data Fig.	Tim > GFP	w-; Tim(UAS)- Gal4, Repo-Gal80	8	Tim>GFP, p=0.4081.
11c, third column (grey)		/ UAS-myr::GFP; UAS-Dicer2 / +		DN1a>GtACR1 vs: Tim>Clk-RNAi, p=0.2890. UAS-Clk-RNAi, p=0.5668. Tim>GFP, p=0.8594.
				Tim>Clk-RNAi vs: UAS-Clk-RNAi, p=0.0042. Tim>GFP, p=0.0153.
				UAS-Clk-RNAi vs Tim>GFP, p>0.9999. One-way ANOVA F(3,28)=14.47, p<0.0001, with Tukey's post hoc test.
				GMR-hid vs: UAS-Clk-RNAi, p<0.0001. Tim>GFP, p<0.0001. Tim>Clk-RNAi, p=0.0008. UAS-GtACR1, p<0.0001. LNv>GFP, p<0.0001. LNv>GtACR1, p<0.0001. DN1a>GFP, p<0.0001. DN1a>GtACR1, p<0.0001.
				UAS-Clk-RNAi vs: Tim>GFP, p=0.9999. Tim>Clk-RNAi, p=0.9878. UAS-GtACR1, p=0.7868. LNv>GFP, p>0.9999. LNv>Gtacr1, p=0.9992. DN1a>GFP, p>0.9999. DN1a>GtACR1, p=0.9973.
				Tim>Clock-RNAi vs:

				UAS-GtACR1, p =0.2117. LNv>GFP, p=0.9956.
				DN1a>GFP, p =0.9884. DN1a>GtACR1, p=0.7247.
				UAS-GtACR1 vs: LNv>GFP, p=0.7055. LNv>GtACR1, p=0.9864. DN1a>GFP, p=0.7830. DN1a>GtACR1: p=0.9944.
				LNv>GFP vs: LNv>GtACR1, p=0.9970. DN1a>GFP, p>0.9999. DN1a>GtACR1, p=0.9919.
				LNv>GtACR1 vs: DN1a>GFP: p=0.9992. DN1a>GtACr1: p>0.9990.
				DN1a>GFP vs DN1a>GtACR1: p>0.9972.
Extended Data Fig. 11c, fourth colun (red)	Tim > Clock- RNAi	w-; Tim(UAS)- Gal4, Repo-Gal80 / UAS-Clock-RNAi; UAS-Dicer2 /	8	One-way ANOVA F(3,28)=14.47, p<0.0001, with Tukey's post hoc test.
				UAS-Clk-RNAi, p<0.0001. Tim>GFP, p<0.0001.
Extended Data Fig. 11c, fifth column (black)	UAS control	w ⁺ ; +/+; UAS- GtACR1::eYFP / +	8	Tim>Clk-RNAi, p=0.0008. UAS-GtACR1, p<0.0001. LNv>GFP, p<0.0001. LNv>GtACR1, p<0.0001. DN1a>GFP, p<0.0001.
Extended Data Fig. 11c, sixth column (grey)	GFP control	w ⁻ ; Pdf-Gal4 / UAS-myr::GFP; Pdf-Gal4 / +	8	DN1a>GtACR1, p<0.0001. UAS-Clk-RNAi vs: Tim>GFP, p=0.9999. Tim>Clk-RNAi, p=0.9878.
Extended Data Fig. 11c, seventh column (red)	LNv > GtACR1	w ⁻ ; Pdf-Gal4 / +; Pdf-Gal4 / UAS- GtACR1::eYFP / +	8	UAS-GtACR1, p=0.7868. LNv>GFP, p>0.9999. LNv>Gtacr1, p=0.9992. DN1a>GFP, p>0.9999. DN1a>GtACR1, p=0.9973.
Extended Data Fig. 11c, eighth column (grey)	GFP control	w ⁻ ; teashirt-Gal80 / UAS-myr::GFP; R23E05-Gal4 / +	8	Tim>Clock-RNAi vs: UAS-GtACR1, p =0.2117. LNv>GFP, p=0.9956. DN1a>GFP, p =0.9884. DN1a>GtACR1, p=0.7247.

Extended	DN1a >	w ⁻ : teashirt-	8	
Data Fig.	GtACR1	Gal80/+: R23E05-		UAS-GtACR1 vs:
11c. ninth		Gal4/UAS-		LNv>GFP. p=0.7055.
column		GtACR1::eYFP		LNv>GtACR1, p=0.9864.
(green)				DN1a>GFP n=0.7830
Extended		w teashirt-Gal80	Single confocal	DN1a>GtACR1 p=0.9944
Data Fig			stock from	
120			Figure 32	
120		mur: TdTomato:	r igure Ja	LNV>CtACR1 n=0.9970
				$DN1_{2}CEP_{0} > 0.0000$
				$DN1_{2}CtACP1 = 0.0010$
				DN1a > G(AC(1), p=0.9919).
Extended			Single confecel	
			Single contocal	$DN1_{2}CEP: n=0.0002$
Data Fig.		myr::GFP.QUAS-	Stack from	DN1a>GFF. p=0.9992.
120		mto I omato-3xHA;	Figure 3c	DN1a - GIACI1. p - 0.9990.
		teasnirt-Gai80 /		
		trans-lango;		DN1a>GFP VS
		R23E05-Gal4 / +		DN1a>GtACR1: $p>0.9972$.
Extended		w; UAS-	Single contocal	
Data Fig.		myr::GFP.QUAS-	stack from	
12b		mtdTomato-3xHA;	Figure 3c	
		teashirt-Gal80 /		
		<i>trans</i> -Tango;		
		R23E05-Gal4 / +		
Extended		w; UAS-	Single confocal	
Data Fig.		myr::GFP.QUAS-	stack from	
12c		mtdTomato-3xHA;	Figure 3c	
		Pdf-Gal4 / trans-		
		Tango; Pdf-Gal4/+		
Extended	LNv-LexA;	w ⁻ ; PDF-LexA /	Representative	
Data Fig.	R23E05 >	UAS-op-	sample (2am).	
13a, middle	GCaMP	GCaMP6s;	Same image	
		R23E05-Gal4 /	as Fig. 3d.	
		LexAop-P2X ₂		
Extended	LNv-LexA;	w⁻; PDF-LexA /	Representative	
Data Fig.	R23E05 >	UAS-op-	samples	
13a right	GCaMP	GCaMP6s;	(2am).	
		R23E05-Gal4 / +		
Extended	LNv >	w ⁻ ; PDF-LexA /	13 (2am).	
Data Fig.	P2X2;	UAS-op-	Individual trials	
13b, left	R23E05 >	GCaMP6s;	from Figure 3e.	
	GCaMP	R23E05-Gal4 /	-	
	(saline)	LexAop-P2X ₂		
Extended	LNv-LexA;	w; PDF-LexA /	12 (2am).	
Data Fig.	R23E05 >	UAS-op-	Individual trials	
13b, middle	GCaMP	GCaMP6s;	from Figure 3e.	
		R23E05-Gal4 / +		
Extended	LNv >	w ⁻ ; PDF-LexA /	12 (2am).	
Data Fig.	P2X2;	UAS-op-	Individual trials	
13b, right		GcaMP6s;	from Figure 3e.	

Unpaired t-test
t(17)=10.34, p<0.0001.
Pearson correlation
r=0.83, p<0.0001.
Pearson correlation
Pearson correlation r=0.46, p=0.0004
Pearson correlation r=0.46, p=0.0004.
Pearson correlation r=0.46, p=0.0004.

Extended Data Fig. 16a	UAS-Rho1	w⁺; +/+; UAS- Rho1.Sph / +	24	
Extended Data Fig. 16a	LNv > GFP	w ⁻ ; Pdf-Gal4 / UAS-myr::GFP; Pdf-Gal4 / +	24	
Extended Data Fig. 16a	LNv > Kir2.1	w ⁻ ; Pdf-Gal4 / UAS-Kir2.1; Pdf- Gal4 / +	17	
Extended Data Fig. 16a	LNv > Rho1	w ⁻ ; Pdf-Gal4 / + ; Pdf-Gal4 / UAS- Rho1.Sph	22	
Extended Data Fig. 16a	DN1a > GFP	w ⁻ ; teashirt-Gal80 / UAS-myr::GFP; R23E05-Gal4/+	24	
Extended Data Fig. 16a	DN1a > Rho1	w ⁻ ; teashirt-Gal80 / +; R23E05-Gal4 / UAS-Rho1.Sph	21	
Extended Data Fig. 17a	Wild-type	w⁺, iso31	44 (same animals as Table S2, aside from 2 deceased animals).	
Extended Data Fig. 17b	Wild-type	w⁺, iso31	46 (same flies as Table S2)	
Extended Data Fig. 17c,d	Wild-type	w⁺, iso31	29 (6am), 29 (8am), 32 (10am), 26 (6pm), 27 (8pm), 26 (20pm)	

983 984

Extended Data Table 2. Circadian rhythmicity during the first four days in darkness

Genotype	N	% Rhythmic after 4 days in darkness	Tau (S.E.M.)	Power (S.E.M.)
w⁺, iso31	46	100	23.9 (0.12)	71.9 (1.7)
UAS-Clock- RNAi	23	100	23.8 (0.12)	74 (2.44)
Tim > GFP	24	100	23.6 (0.1)	86.3 2.33)
Tim > Clock- RNAi	22	9.1	17.8 (0.75)	22.7 (2.55)
UAS-Period- RNAi	23	100	24.7 (0.13)	71.9 (1.7)
Tim > Period- RNAi	24	0	****	****
w ⁺ per ^s	19	94.7	18.9 (0.05)	69.8 (4.82)

UAS-GtACR1	20	95	23.6 (0.06)	68.2 (4.91)
LNv > GFP	24	100	24.3 (0.16)	71 (2.47)
LNv > GtACR1	21	52.4	23.8 (0.31)	53.8 (5.3)
UAS-Kir2.1	20	94.4	23.7(0.15)	74.7 (3.52)
LNv > Kir2.1	17	70.6	23 (0.13)	66.7 (5.71)
DN1a > GFP	25	84	23.8 (0.11)	56 (4.59)
DN1a >	19	78.9	23.9 (0.23)	37.8 (3.49)
GtACR1				
<i>han³³⁶⁹;</i> UAS- PDFR16	14	57.1	23.4 (0.48)	52.9 (7.09)
han ⁵³⁰⁴ ; UAS-	17	70.6	23.1 (0.21)	46.2 (5.56)
PDFR16			× ,	(<i>'</i>
<i>han³³⁶⁹;</i> DN1a >	10	90	23.4 (0.15)	66 (7.86)
PDFR16				
<i>han⁵³⁰⁴;</i> DN1a >	17	100	22.9 (0.12)	84.1 (3.82)
PDFR16				
UAS-tethered	22	95.5	23.5 (0)	87.5 (3.79)
PDF				
DN1a >	21	100	23.5 (0.02)	87.8 (3)
tethered PDF				
UAS-Rho1	24	95.8	23.7 (0.09)	72.2 (3.26)
LNv > Rho1	22	90.9	24.8 (0.28)	52 (2.74)
DN1a > Rho1	21	95.2	23.5 (0.07)	71.5.4 (3.95)
UAS-Rho1-	24	95.8	23.9 (0.13)	73.8 (3.56)
RNAi				
LNv > GFP (with	22	100	24 (0.16)	70.1 (2.43)
Dicer2)				
LNv > Rho1-	15	66.7	23.6 (0.16)	55 (6.19)
RNAi (with				
Dicer2)				
R23E05 > GFP	24	100	23.5 (0)	81.8 (4.79)
(with Dicer2)				
R23E05 >	25	72	23.9 (0.17)	60.2 (6.29)
Rho1-RNAi				
(with Dicer2)				

985

986 Extended Data Table 3. Selected results from PDFR screen

Gal4 Line	Change in locomotor activity	Expression pattern	Expression in DN1a		
All hits (activity decreased by light. Δ below 0.)					
R23E05-Gal4	-18.0	This paper	Yes		
R23E05-Gal4 + tsh Gal80 (data not shown in 2D)	-16.0	This paper	Yes		
Trojan VGLUT-Gal4	-17.3	Glutamatergic	Unknown		
		-			
--	---------------	-----------------------------	------------		
VGLUT-Gal4 (data not shown					
in 2D because redundancy					
with Trojan VGLUT-Gal4)	-35.9	Glutamatergic	Unknown		
		Serotonergic and			
DDC-Gal4	-15.5	dopaminergic	Unknown		
Gad-Gal4	-14.6	GABAergic	Unknown		
R78H08-Gal4	-13.9	Available on FlyLight	Unknown		
R94G04-Gal4	-10.9	Available on FlyLight	Unknown		
R94C05-Gal4	-10.8	Available on FlyLight	Unknown		
VGAT-Gal4	-8.9	GABAergic	Unknown		
		Putative PDFR			
207324VT-Gal4	-6.1	expressing	Unknown		
TM5c-Gal4 (Ortc1a- Gal4··DBD· Volut-Gal4··AD)	-5 1	Glutamatergic neurons	Unknown		
		DN1a some DN1p			
		(canonical LNv target).			
		some LNd (canonical			
200573VT-Gal4	-4.6	LNv target)	Yes		
		DN1a, LNds (canonical			
Mai179-Gal4; PDF-Gal80	-4.6	LNv target)	Yes		
		Peptidergic neurons,			
C929-Gal4	-4.5	including I-LNvs	Unknown		
R85C03-Gal4	-4.2	Available on FlyLight	Unknown		
R17C09-Gal4	-3.5	Available on FlyLight	Unknown		
C217-Gal4	-3.0	Available on FlyLight	Unknown		
R38E07-Gal4	5.8	Available on FlyLight	Unknown		
Elav-Gal4	-2.0	Pan-neuronal	Unknown		
		Putative PDFR-			
200112VT-Gal4	-1.6	expressing	Unknown		
R13B08-Gal4	-1.6	Available on FlyLight	Unknown		
		Neuropeptide F-			
NPF-Gal4	-1.1	expressing	Unknown		
R22E12-Gal4	-1.1	Available on FlyLight	Unknown		
R51B02-Gal4	-0.7	Available on FlyLight	Unknown		
Canonical LNv-targets, broad	d neurotransr	mitter lines and regions co	ontrolling		
R18H11-Gal4		DN1a and DN1p	Yes		
	3.1	(canonical s-LNv target)			
Crv-Gal4-Gal4		DN1a, LNvs, some	Yes		
		DN1ps (canonical LNv			
		target), some LNds			
	6.6	(canonical LNv target)			
R6-Gal4-Gal4		s-LNv (Canonical I-LNv			
	99	target)	Unknown		

987

988

989	Extended Data	Table 4. Sources	of fly s	tocks used	in this paper

Drosophila melanogaster	Source	Stock Number
iso31	Ryder et al.,	
	Genetics, 2004	
Canton S	Barry Dickson (via	
	Michael Crickmore)	
UAS-myr::GFP (attP2)	BDSC (Bloomington	
	Drosophila Stock	
	Center) 32197 (via	
	Matt Pecot)	
UAS-myr::GFP (attP40)	BDSC 32198	
Tim(UAS)-Gal4	Blau and Young,	
	Cell, 1999	
	(Flybase:FBtp00118	
	39)	
UAS-Dicer2 (X)	BDSC 24646	
UAS-Dicer2 (2)	BDSC 24650	
UAS-Dicer2 (3)	BDSC 24651	
repo-Gal80	Awasaki et al., J.	
	Neurosci, 2008	
	(Flybase:	
	FBtp0067904)	
UAS-Clock-RNAi	Vienna Drosophila	107576KK
	Resource Center	
	VDRC (VDRC)	
UAS-Period-RNAi	Fly Stocks of	2647R-1
	National Institutes of	-
	Genetics (via	
	Michael Young)	
w ⁺ per ^S	Jeffrey Price	
vw: PDF-Gal4: PDF-Gal4 (LNv-Gal4)	Justin Blau	
UAS-GtACR1"eYFP	Adam Claridge-	
	Chang (via Michael	
	Crickmore)	
LIAS-ChR2-XXM	Robert Kittel (via	
	Michael Crickmore)	
R23E05-Gal4	BDSC	BDSC 49029
UAS-ChR2-XXI	BDSC	BDSC 58374
trans-Tango	BDSC	BDSC 77124
ndfrHan3369	Loboratory of Daul	DD00_11124
	Taghert	
ndfrHan5304		
	Tanhert	
	Laboratory of Paul	
UAS-Denmark	RDSC	BDSC_33062

PDF-LexA	Shang et al., PNAS,	
	2008 (Flybase:	
	FBtp0093323)	
LexAop-myr::tdTom	Laboratory of Matt	
	Pecot (Chen et al.,	
	<u>2014</u>)	
LexAop-syt::GDP::HA	BDSC	BDSC_62142
UAS-opGCaMP6s	Laboratory of David	
	Anderson (via	
	Michael Crickmore)	
UAS-tdTomato	BDSC 36327	
LexAop-P2X2	Laboratory of Orie	
	Shafer (via Rachel	
	Wilson)	
UAS-brp-D3::mCherry	Christiansen et al.,	
	J. Neurosci, 2011	
	(Flybase:	
01	FBtp0069949)	
per ^{br}	Konopka and	
	Benzer, PNAS, 1971	
	FBal0013649)	DD00 7004
UAS-Rho1.Sph	BDSC	BDSC_7334
UAS-Rho1-RNAi	BDSC	BDSC_9909
R6-Gal4	Helfrich-Forster et	
	al., J. Comp.	
	Neurol., 2007	
	Laboratory of Corry	
JKC_3300045		
C020-Cal/	BDSC	BDSC 0000
	Loboratom (of Corm (BD3C_9909
JRC_5500681	Laboratory of Gerry	
		1200
	VDRC	4300
UAS-10X UAS t-PDF	Laboratory of	
		DD00 40000
		BDSC_49029
R23E05-LexA	This paper	
R23E05-Gal80	This paper	
UAS-RedStinger	BDSC	BDSC_8546
PDF-Gal80	Stoleru et al.,	
	Nature, 2004	
	(Flybase:	
LexAop-myr::GFP	BDSC (via Matt	BDSC_32209
	Pecot)	
I Valut-Gal4 (OK371)	BDSC	BDSC_26160

GMR-hid[10]	Laboratory of	
	Andreas Bergmann	
UAS-mGluRA-RNAi	BDSC	BDSC_34872
UAS-CCHa1-RNAi	VDRC	104794KK
UAS-CCHa1R-RNAi	VDRC	103055KK
UAS-mCD8::GFP	Laboratory of	
	Michael Crickmore	
UAS-Kir2.1	Laboratory of	
	Michael Crickmore	

990