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Abstract 24 

As a type of relatively new methodology, the transcriptome-wide association study (TWAS) has 25 

gained interest due to capacity for gene-level association testing. However, the development of 26 

TWAS has outpaced statistical evaluation of TWAS gene prioritization performance. Current 27 

TWAS methods vary in underlying biological assumptions about tissue specificity of 28 

transcriptional regulatory mechanisms. In a previous study from our group, this may have 29 

affected whether TWAS methods better identified associations in single tissues versus multiple 30 

tissues. We therefore designed simulation analyses to examine how the interplay between 31 

particular TWAS methods and tissue specificity of gene expression affects power and type I 32 

error rates for gene prioritization. We found that cross-tissue identification of expression 33 

quantitative trait loci (eQTLs) improved TWAS power. Single-tissue TWAS (i.e., PrediXcan) had 34 

robust power to identify genes expressed in single tissues, but, had high false positive rates for 35 

genes that are expressed in multiple tissues. Cross-tissue TWAS (i.e., UTMOST) had overall 36 

equal or greater power and controlled type I error rates for genes expressed in multiple tissues. 37 

Based on these simulation results, we applied a tissue specificity-aware TWAS (TSA-TWAS) 38 

analytic framework to look for gene-based associations with pre-treatment laboratory values 39 

from AIDS Clinical Trial Group (ACTG) studies. We replicated several proof-of-concept 40 

transcriptionally regulated gene-trait associations, including UGT1A1 (encoding bilirubin uridine 41 

diphosphate glucuronosyl transferase enzyme) and total bilirubin levels (p = 3.59 � 10���), and 42 

CETP (cholesteryl ester transfer protein) with high-density lipoprotein cholesterol (p = 4.49 �43 

10���). We also identified several novel genes associated with metabolic and virologic traits, as 44 

well as pleiotropic genes that linked plasma viral load, absolute basophil count, and/or 45 

triglyceride levels. By highlighting the advantages of different TWAS methods, our simulation 46 

study promotes a tissue specificity-aware TWAS analytic framework that revealed novel aspects 47 

of HIV-related traits.   48 
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publicly available. 49 

 50 

Introduction 51 

Translating fundamental genetics research discoveries into clinical research and clinical practice 52 

is a challenge for biomedical studies of complex human traits [1,2]. Greater than 90% of 53 

complex trait-associated single-nucleotide polymorphisms (SNPs) identified via genome-wide 54 

association studies (GWAS) are located in noncoding regions of the human genome [3,4]. The 55 

difficulty in making connections between noncoding variants and downstream affected genes 56 

can hinder the translatability of GWAS discoveries to clinical research. The emerging 57 

transcriptome-wide association studies (TWAS) are a type of recently developed bioinformatics 58 

methodology that provide a means to address the challenge of GWAS translatability. TWAS 59 

mitigates the translational issue by integrating GWAS data with expression quantitative trait loci 60 

(eQTLs) information to perform gene-level association analyses. TWAS hypothesizes that SNPs 61 

act as eQTLs to collectively moderate the transcriptional activities of genes and thus influence 62 

complex traits of interest [5,6]. Accordingly, TWAS methods in general comprise two steps. The 63 

first step in TWAS is to impute the genetically regulated gene expression (GReX) for research 64 

samples in a tissue-specific manner. The second step is to conduct association analyses 65 

between GReX and the trait of interest to evaluate the gene-trait relationship for statistical 66 

significance [7-9]. Genome-wide eQTLs data are now available for various primary human 67 

tissues (e.g., liver, brain and heart) thanks to large-scale eQTL consortia including the 68 

Genotype-Tissue Expression (GTEx) project [10] and the eQTLGEN consortium [11]. The 69 

considerable centralized eQTL data have been fostering the development and application of 70 

TWAS.  71 

 72 
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While TWAS is an innovative and potentially powerful computational approach, several factors 73 

can influence TWAS. The choice of eQTL datasets matters for the performance of TWAS [12]. 74 

Most available eQTLs to date are identified in a tissue-by-tissue manner [5,10]. This approach, 75 

however, does not leverage the potential for shared transcriptional regulatory mechanisms 76 

across tissues, and can be limited by sample sizes of single tissues. One way to overcome this 77 

limitation is to take into consideration all available tissues, so as to increase sample sizes and 78 

improve the quality of eQTL datasets. We referred this type of eQTL detection method as the 79 

integrative tissue-based eQTL detection method [13-15]. Without a simulation study, however, it 80 

was unclear how the choice of eQTL detection methods will impact TWAS. 81 

 82 

Another prominent question in TWAS studies is the choice of the association approaches. 83 

TWAS started with single-tissue association approaches, such as PrediXcan [5] and FUSION 84 

[6]. The most recent TWAS methods, such as UTMOST [15] and MulTiXcan [16], perform cross-85 

tissue association analyses. Such TWAS methods evaluate whether a gene is significantly 86 

associated with a trait by integrating association data across tissues and adjusting for the 87 

statistical correlation structure among tissues. However, genes may vary substantially with 88 

regard to how they are regulated across tissues. When a gene is specifically expressed in a 89 

single or few tissues versus expressed in multiple tissues, how will tissue specificity of gene 90 

expression affect TWAS power and type I error rates? 91 

 92 

Another appealing feature of TWAS is its capacity for tissue-specific association analyses 93 

thanks to the availability of tissue-specific eQTLs in a variety of primary human tissues. 94 

However, several recent studies revealed shared regulatory mechanisms across multiple 95 

human tissues [17] and showed that cis-eQTLs are less tissue-specific than other regulatory 96 

elements [10,11]. This suggests that TWAS can possibly identify genes in tissues that share 97 

biology with the causal tissue(s), but in fact are not the causal tissues for the trait of interest 98 
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[18]. While TWAS is likely to identify false positive tissues, to date, the false positive rates of 99 

tissues in TWAS is unknown.  100 

 101 

The above TWAS challenges can be summarized in two questions — How does tissue 102 

specificity affect TWAS performance? How would this impact the choices of TWAS methods? 103 

Available simulation strategies can be limited in answering these questions. Some have not 104 

taken into consideration the gene expression correlation structure across tissues  [19,20]. Some 105 

assume a monogenic structure of transcriptional regulation [13-15,21], rather than the polygenic 106 

structure suggested by recent studies [10,22,23]. To address these issues, we applied a novel 107 

strategy to simulate eQTLs and gene expression of a wide range of tissue specificity (see 108 

Methods). We then applied different TWAS methods on the simulated datasets to assess 109 

power, type I error rates, and false positive rates of tissues. We found that the tissue specificity 110 

affected TWAS performance, with no single type of TWAS method being best for every type of 111 

genetic background of transcriptional regulation.  112 

 113 

The simulation results motivated the development and implementation of an enhanced, tissue 114 

specificity-aware TWAS (TSA-TWAS) analytic framework. We tested the performance of TSA-115 

TWAS analytic framework using AIDS Clinical Trials Group (ACTG) data (described in 116 

Methods). We showed that the TSA-TWAS was able to both replicate proof-of-concept gene-117 

trait associations and identify novel trait-related genes. The simulation scheme highlighted the 118 

effects of tissue specificity on TWAS performance, and that TSA-TWAS could help better 119 

understand regulatory mechanisms that underlie complex human traits.  120 
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Results 121 

Simulation design 122 

We designed a novel simulation framework to investigate how the tissue specificities of eQTLs 123 

and gene expression affected TWAS power and type I error rates, and the choices of TWAS 124 

methods (Fig 1). We tested two representative eQTL detection methods, elastic net 125 

(implemented in PrediXcan [5]) and group LASSO (implemented in UTMOST [15]); and two 126 

gene-trait association approaches, Principal Component Regression (PC Regression; 127 

implemented in MulTiXcan [16]) and Generalized Berk-Jones test (GBJ test; implemented in 128 

UTMOST [15]) (Table 1).  129 

Table 1. TWAS methods tested in this simulation study 130 

eQTL detection methods Gene-trait association approaches Equivalent 

developed TWAS 

methods 

PMID 
Type Name Type Name 

Single tissue-

based 

Elastic net Single-tissue 

association 

Linear or logistic 

regression 

PrediXcan 31086352 

Integrative 

tissue-based 

Group 

LASSO 

Single-tissue 

association 

Linear or logistic 

regression 

Single-tissue 

UTMOST 

30804563 

Single tissue-

based 

Elastic net Cross-tissue 

association 

Principal component 

regression 

MulTiXcan 30668570 

Integrative 

tissue-based 

Group 

LASSO 

Cross-tissue 

association 

Generalized Berk-

Jones test 

Cross-tissue 

UTMOST 

30804563 

 131 

Tissue-specific eQTLs were defined as those that were only functioning in one single tissue. 132 

Multi-tissue eQTLs were defined as those that had regulatory effect across all gene-expressing 133 

tissues (see Methods). We generated genes that had different genetic makeup of tissue-134 

specific and multi-tissue eQTLs in a gene to evaluate the influence of tissue specificity of eQTLs 135 

on TWAS performance. 136 
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 137 

Tissue specificity of gene expression was determined by the number of gene-expressing tissues 138 

and the similarity of gene expression levels across tissues. (see Methods). Tissue-specific 139 

genes were those specifically expressed in only one or two tissues. Ubiquitously expressed 140 

genes were those expressed in all ten simulated tissues with high gene expression similarity 141 

(expression similarity = 60%, 80%). Differentially expressed and similarly expressed genes were 142 

those having distinctive gene expression levels (gene expression similarity = 0, 20% 40%) or 143 

highly correlated gene expression levels across tissues (gene expression similarity = 60%, 144 

80%), respectively, regardless of the number of gene-expressing tissues. To evaluate the 145 

impact of tissue specificity of gene expression on TWAS performance, we generated genes that 146 

were expressed in varied numbers of tissues and had diverse gene expression similarities 147 

across tissues.  148 

 149 

In addition, we designed different strength of gene-trait associations defined by 	�������	
����	�
�  150 

(the proportion of phenotypic variation explained by gene expression levels), but the reported 151 

results by default were the cases under 	�������	
����	�
�  = 1%. Only continuous traits were 152 

evaluated in this simulation study, in accordance with ACTG baseline laboratory values in the 153 

real-world application dataset.  154 

 155 

Power of different TWAS methods 156 

We did not observe any obvious effect of tissue-specificity of eQTLs on TWAS power, except for 157 

ubiquitously expressed genes. TWAS, specifically group LASSO (implemented in 158 

UTMOST[15]), had greater power to prioritize ubiquitously expressed genes that were mostly 159 

regulated by multi-tissue eQTLs than those that were not (Fig 2, bottom row).    160 

 161 
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We then asked how eQTL detection methods affected TWAS gene-prioritization power, and 162 

whether one eQTL detection method was preferred over another. We found that the integrative 163 

tissue-based eQTL detection method had, on average, approximately 2% greater power than 164 

the single-tissue method. Take differentially expressed genes for instance, eQTLs identified via 165 

the Group LASSO led to 53.8% gene prioritization power of TWAS and eQTLs identified via the 166 

Elastic Net led to 50.7% power (Wilcoxon Signed-rank Test p = 5.85 � 10��; S4 Fig, top right 167 

corner). More pairwise comparison results among all TWAS methods can be found in S1 Table. 168 

Overall, TWAS gained slightly more power when using eQTLs identified in an integrative tissue 169 

context.  170 

 171 

Gene-trait association approaches affected TWAS power more so than did choice of eQTL 172 

detection method. For tissue-specific genes or differentially expressed genes, SLR consistently 173 

had equal or greater power (average 70%) than the cross-tissue association approaches (PC 174 

regression and GBJ test; Fig 2, top left triangle). For ubiquitously expressed genes or similarly 175 

expressed genes, GBJ test had equal or greater power than the single-tissue association 176 

approach (SLR; Fig 2, bottom right triangle). Especially for ubiquitously expressed genes, GBJ 177 

test had statistically significant greater power (62%) compared to SLR (51%) (Fig 2, bottom right 178 

corner, Wilcoxon Signed-rank Test p = 9.4 � 10��). 179 

 180 

The group LASSO-GBJ test (implemented in UTMOST) had a greater power to prioritize 181 

similarly or ubiquitously expressed genes. For genes that were expressed in five tissues, power 182 

of the group LASSO-GBJ test increased from 62.2% for differentially expressed genes (Fig 2, 183 

top left corner) to 66.6% for similarly expressed gene (Fig 2, bottom right corner). For genes that 184 

were expressed in all ten tissues, power of the group LASSO-GBJ test increased from 51.2% 185 

for differentially expressed genes (Fig 2, top left corner) to 61.9% for ubiquitously expressed 186 

gene (Fig 2, bottom right corner). Moreover, the group LASSO-GBJ test showed equal or 187 
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statistically significant greater power than other TWAS methods in 65 of the 76 simulated 188 

scenarios (~84%). Black brackets in Fig 2 showed cases where Group LASSO-GBJ had higher 189 

power than other three methods; red brackets showed cases where Group LASSO-GBJ had 190 

lower power than other three methods. Comprehensive statistical test results of power 191 

differences are available in S4 Fig and S1 Table. However, GBJ test cannot handle the case 192 

where the gene was only expressed in one single tissue.  193 

 194 

Overall, the group LASSO-GBJ test had equal or greater power in prioritizing genes that were 195 

expressed in multiple tissues. Single-tissue association approaches (e.g. SLR) had greater 196 

power and robust performance in prioritizing tissue-specific genes.  197 

 198 

The strength of gene-trait associations affected TWAS gene prioritization power. The stronger 199 

the gene-trait associations, the greater the power for TWAS gene prioritization (Fig 2, S5-7 200 

Figs). 201 

 202 

Type I error rates of various TWAS methods 203 

All TWAS methods had well-controlled type I error rates (� 5%; Fig 3, S2 Table). Significance 204 

thresholds in this simulation were corrected using the Bonferroni approach to control for family-205 

wise error rate. All single-tissue association approaches (Elastic Net-SLR and Group LASSO-206 

SLR) had less type I error rates than the cross-tissue associations approaches (Wilcoxon 207 

Signed-rank Test p < 0.01, S8 Fig). Both GBJ test and PC regression had average type I error 208 

rates of approximately 5%. The GBJ test showed statistically significant lower type I error rates 209 

than PC regression for ubiquitously expressed genes (Wilcoxon Signed-rank p < 0.05, S8 Fig, 210 

S2 Table).  211 

 212 
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False positives of statistically significant tissues 213 

If not corrected for the number of tested tissues, single-tissue TWAS would have greater power 214 

(S9 Fig), but also a higher false positive rate for tissues (S10 Fig). False positive rates of tissues 215 

were at least 10% for genes that were expressed in more than one tissue. In effect, while the 216 

genes might be related to a trait of interest, 10% of statistically significant results pointed to 217 

wrong tissues. The false positive rate of tissues proportionally increased with the number of 218 

gene-expressing tissues. The highest false positive rates were seen in the case of ubiquitously 219 

expressed genes (S10 Fig, bottom right corner), which on average, had an 84% false positive 220 

rate based on 20 random replications. This suggested that any single-tissue TWAS may have 221 

10-84% false positive rate tissues associations if not adjusted for the number of tested tissues.  222 

 223 

Adjusting for the number of tested tissues reduced the false positive rates somewhat, but 224 

number-wise, the false positive rate may remain quite high. False positive rates of tissues were 225 

relatively controlled at approximately 5% for tissue-specific genes (Fig 4, top left corner). False 226 

positive rates still increased with the number of tissues in which a gene was expressed (Fig 4). 227 

Genes expressed in ten tissues had at least on average a 24% false positive rate. False positive 228 

rates were as high as 77% for ubiquitously expressed genes (Fig 4, bottom right corner).  229 

 230 

Validation and support of simulation design 231 

To evaluate whether our simulation findings would translate from in silico parameter designs to 232 

real world scenarios, we designed a Monte Carlo simulation process to estimate the trait 233 

heritability behind various genetic scenarios (S11 Fig). The results suggested that 234 

	�������	
����	�
�  increased with trait heritability (S12 Fig). Heritability of traits with 235 

	�������	
����	�
�  = 1% were estimated to be on average 1% (standard error (s.e.) = 0.059%) 236 

which were derived from multiple, repeated random sampling. In contrast, the minor allele 237 
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frequencies (MAF) of eQTLs had almost no effect on trait heritability. This suggested that trait 238 

heritability positively influenced the strength of gene-trait associations in TWAS. In other words, 239 

if a trait was moderated by genetic factors through differential gene expression, the greater a 240 

trait’s heritability is, the stronger the associations were in TWAS. 241 

 242 

Designing the TSA-TWAS analytic framework 243 

Our simulation suggested an influence of tissue specificity on TWAS performance. Thus, we 244 

designed a TSA-TWAS analytic framework to balance trade-offs among power, type I error 245 

rates, and false positive rates of tissues and to take into consideration the distribution of GReX 246 

(S13 Fig). The idea was illustrated in Fig 5. When trait-related tissue(s) are known, we 247 

recommend single-tissue TWAS in the known related tissues only. Additionally, we recommend 248 

using eQTLs identified by integrative tissue-based eQTL detection methods (for example, group 249 

LASSO), which showed slightly greater power. In contrast, if trait-related tissue(s) are uncertain, 250 

it may be better to stratify genes based on the number of tissues in which the genes are 251 

predicted to be expressed. For genes predicted to be expressed in just one tissue, single-tissue 252 

TWAS will have greater power and can provide information on trait-related tissues. For genes 253 

that are expressed multiple tissues, cross-tissue TWAS will provide overall equal or greater 254 

power, as well as controlled type I error rates.  255 

 256 

TSA-TWAS replicated known associations 257 

We applied TSA-TWAS to 37 baseline laboratory values from a combined dataset of five clinical 258 

trials from AIDS Clinical Trials Group (ACTG) with available genotype data (N = 4,360; Table 2). 259 

We first imputed the GReX to distinguish genes whose GReX were only expressed in one tissue 260 

versus multiple tissues. Genes expressed in just one tissue comprised 2,812 (23%) of 12,038 261 

genes on which data were available. The remaining 9,226 (77%) genes had GReX in multiple 262 
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tissues. Genes expressed in one, and in more than one tissue were tested for associations with 263 

baseline laboratory values using single-tissue, and by cross-tissue gene-trait association 264 

approaches, respectively (see Methods). TSA-TWAS found in total 83 statistically significant 265 

gene-trait associations, comprising 45 distinct genes and 10 traits (Fig 7).  266 

Table 2. Summary statistics of the ACTG genotyping phase I-IV baseline laboratories. 267 

Trait 
Sample 

Size Mean 
Std. 
Dev. Min Max 

Transfo
rmation Unit Description 

Albumin 1216 4.05 0.44 1.80 5.30 g/dL week 0 albumin (Alb, g/dL) 

Bicarbonate 3971 26.01 2.94 12.00 35.00 mmol/L 
week 0 bicarbonate (Bicarb, 
mmol/L) 

Calcium 1336 9.17 0.44 7.40 10.80 mg/dL week 0 calcium (Ca, mg/dL) 

Chloride 4048 103.27 2.94 88.00 117.00 mmol/L week 0 chloride (Cl, mmol/L) 

Cholesterol 4286 159.27 36.80 5.90 414.00 mg/dL week 0 cholesterol (Chol, mg/dL) 

Creatinine 4100 0.91 0.20 0.05 2.80 mg/dL week 0 creatinine (Creat, mg/dL) 

HDL-c 2376 37.31 12.78 3.90 148.00 mg/dL week 0 HDL-c (HDL-c, mg/dL) 

Hemoglobin 4293 13.49 1.77 6.00 20.20 g/dL week 0 hemoglobin (Hgb, g/dL) 
Absolute 
basophil count 2526 1.44 0.32 0.00 3.39 Log10 

cells/mm
3 

log10 transformed week 0 absolute 
basophil count (Baso, cells/mm3) 

Absolute 
eosinophil count 3932 2.06 0.40 0.18 3.55 Log10 

cells/mm
3 

log10 transformed week 0 absolute 
eosinophil count (Eos, cells/mm3) 

Alkaline 
phosphatase 4226 1.88 0.15 0.70 2.72 Log10 U/L 

log10 transformed week 0 alkaline 
phosphatase (AlkP, U/L) 

ALT 4233 1.48 0.27 0.04 2.81 Log10 U/L 
log10 transformed week 0 ALT (ALT, 
U/L) 

Absolute 
lymphocyte 
count 4149 3.11 0.24 0.92 4.03 Log10 

cells/mm
3 

log10 transformed week 0 absolute 
lymphocyte count (Lymph, 
cells/mm3) 

Absolute 
monocyte count 4116 2.58 0.21 0.66 3.69 Log10 

cells/mm
3 

log10 transformed week 0 absolute 
monocyte count (Mono, cells/mm3) 

Amylase 1026 1.85 0.20 1.11 2.89 Log10 U/L 
log10 transformed week 0 amylase 
(Amyl, U/L) 

Absolute 
neutrophil count 4277 3.32 0.21 2.28 4.67 Log10 

cells/mm
3 

log10 transformed week 0 absolute 
neutrophil count (ANC, cells/mm3) 

AST 4235 1.49 0.21 0.48 2.81 Log10 U/L 
log10 transformed week 0 AST 
(AST, U/L) 

BUN 4221 1.08 0.15 -0.22 2.17 Log10 mg/dL 
log10 transformed week 0 BUN 
(BUN, mg/dL) 

CK 1360 1.97 0.38 -0.05 3.79 Log10 U/L 
log10 transformed week 0 CK (CK, 
U/L) 

Fasting glucose 3233 1.93 0.08 1.52 2.64 Log10 mg/dL 
log10 transformed week 0 fasting 
glucose (Gluc fasting, mg/dL) 

Glucose (Log10) 3031 1.93 0.08 1.70 2.77 Log10 mg/dL 
log10 transformed week 0 glucose 
(Gluc, mg/dL) 

LDL-c 3539 1.95 0.16 0.00 2.57 Log10 mg/dL 
log10 transformed week 0 LDL-c 
(LDL-c, mg/dL) 

Lipoprotein 1118 1.58 0.32 0.30 2.85 Log10 log10 transformed week 0 lipoprotein 

Platelet count 4263 2.30 0.15 1.15 3.34 Log10 x10E9/L 
log10 transformed week 0 platelet 
count (Plat, x10E9/L) 

Total bilirubin 4202 -0.31 0.21 -1.00 0.49 Log10 mg/dL 
log10 transformed week 0 total 
bilirubin (TBili, mg/dL) 

Triglyceride 4318 2.07 0.25 1.08 3.45 Log10 mg/dL 
log10 transformed week 0 
triglyceride (Trig, mg/dL) 

White blood cell 
count 4279 0.62 0.16 -0.05 1.49 Log10 

x10E3 
cells/cu 

log10 transformed week 0 white 
blood cell count (WBC, x10E3 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.273458doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.273458
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

13

mm cells/cu mm) 

Hematocrit 4274 39.83 5.10 1.00 62.10 percent week 0 hematocrit (Hct, percent) 

Phosphate 3261 3.44 0.61 0.80 7.70 mg/dL week 0 phosphate (Phos, mg/dL) 

Potassium 4062 4.15 0.39 2.00 8.00 mmol/L week 0 potassium (K, mmol/L) 

Sodium 4067 138.88 2.80 123.00 151.00 mmol/L week 0 sodium (Na, mmol/L) 

CD4 count 4358 14.78 6.46 0.00 36.55 
Square 
root 

cells/mm
3 

square root of absolute CD4 count 
at week 0 

Viral load 4358 4.75 0.72 2.02 7.11 Log10 copies/dL week 0 viral load RNA 
Fasting 
cholesterol 4136 158.42 36.24 6.10 414  mg/dL week 0 fasting cholesterol 

Fasting HDL-c 4126 1.56 0.15 0.60 2.20 Log10 mg/dL 
log10 transformed week 0 fasting 
HDL-c 

Fasting LDL-c 4042 1.95 0.15 0.85 2.57 Log10 mg/dL 
log10 transformed week 0 fasting 
LDL-c 

Fasting 
triglyceride 3888 2.05 0.24 1.08 2.45 Log10 mg/dL 

log10 transformed week 0 fasting 
triglycerides 

 268 

TSA-TWAS replicated several previously reported risk genes for certain baseline lab values 269 

(Table 3). The lowest p-values for association were observed between total plasma bilirubin 270 

levels and several genes on chromosome 2, nearby or overlapping UGT1A1. These included 271 

MROH2A (p = 1.39 � 10���), which has been previously reported by GWAS of various 272 

populations [24-27], UGT1A6 (p = 2.78 � 10���), UGT1A7 (p = 4.51 � 10���) and UGT1A1 (p = 273 

3.59 � 10���) [24,25,27,28]. We replicated the well-known association between CETP and high-274 

density lipid-cholesterol levels (HDL-c; p = 4.49 � 10���) [29]. Association was also found 275 

between GPLD1 and plasma alkaline phosphatase levels (p = 1.08 � 10���) [30]. GPLD1 276 

encodes a glycosylphosphatidylinositol-degrading enzyme that releases attached proteins from 277 

the plasma membrane and engages in regulation of alkaline phosphate activities. Other 278 

replicated discoveries included association between ALDH5A1 and plasma alkaline 279 

phosphatase levels (p = 1.79 � 10���) [31], C6orf48 and absolute basophil count (p = 1.69 �280 

10���) [32], KCNJ15 and plasma triglyceride levels  (p = 3.18 � 10���) [33].  281 

Table 3.  Replicated associations related to HIV baseline laboratory values identified by 282 

TSA-TWAS. 283 

Trait Gene Chromosome TSS P 

Alkaline phosphatase GPLD1 6 24428177 1.08E-11 
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ALDH5A1 6 24494852 1.79E-11 

Fasting HDL CETP 16 56961850 4.49E-12 

HDL CETP 16 56961850 4.49E-12 

Total bilirubin UGT1A6 2 233692866 2.78E-15 

MROH2A 2 233775679 1.39E-12 

UGT1A1 2 233760248 3.59E-12 

UGT1A7 2 233681938 4.51E-12 

Triglyceride KCNJ15 21 38256698 3.18E-13 

Viral load C4B 6 32014762 4.11E-15 

GABBR1 6 29602228 1.14E-12 

ABCB4 7 87401697 1.07E-11 

HLA-B 6 31269491 1.15E-11 

C6orf48 6 31834608 2.32E-11 

A4GALT 22 42692121 8.39E-11 

 284 

We have additionally replicated several genes’ association with plasma viral loads in HIV-285 

positive adults, including A4GALT (p = 8.39 � 10���) [34], ABCB4 (p = 1.07 � 10���) [35], C4B 286 

(p = 4.11 � 10���) [36], GABBR1(p = 1.14 � 10���) [37], and HLA-B (p = 1.15 � 10���) [38]. 287 

 288 

 289 

 290 

Novel genes prioritized by the TSA-TWAS  291 

In addition to the above replications, TSA-TWAS identified novel associations with plasma viral 292 

load (Table 4). For instance, PRDX5 (p = 7.01 � 10���, which encodes a member of the 293 

peroxiredoxin family of antioxidant enzymes) was associated with plasma viral load with great 294 

significance. Several novel genes were first time reported to be associated with certain baseline 295 

laboratory values, which were otherwise associated with other traits by previous studies. For 296 

instance, ATF6B is a protein-coding gene that encodes a transcription factor in the unfolded 297 

protein response (UPR) pathway during ER stress and it has been associated with HIV-298 
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associated neurocognitive disorders in previous research. In our study, ATF6B associates with 299 

plasma viral load (p = 2.83 � 10��).  300 

Table 4.  Novel associations related to HIV baseline laboratory values identified by TSA-301 

TWAS. 302 

Trait Gene Chromosome TSS P 

Absolute basophil count KCTD7 7 66628767 3.08E-14 

CNBD2 20 35955360 3.83E-13 

CD2AP 6 47477789 7.27E-13 

RP11-385F7.1 6 47477243 1.32E-12 

C6orf48 6 31834608 1.69E-12 

PARM1 4 74933095 1.84E-11 

USP19 3 49108046 1.51E-10 

GPATCH4 1 156594487 2.24E-10 

GPR22 7 107470018 1.81E-09 

HIST1H1E 6 26156354 2.19E-09 

RPS28 19 8321500 2.87E-09 

KCNJ15 21 38256698 4.72E-09 

TTI2 8 33473423 6.35E-09 

CDK5RAP3 17 47967810 1.05E-08 

F2RL1 5 76818933 2.99E-08 

C4B 6 32014762 8.92E-08 
Absolute neutrophil count PMVK 1 154924734 3.63E-08 

Alkaline phosphatase PCDHB3 5 141100756 7.44E-09 

KCNJ15 21 38256698 2.77E-08 
Fasting HDL NLRC5 16 56989485 1.70E-09 

Sodium CNBD2 20 35955360 7.71E-08 
Triglyceride PCDHB3 5 141100756 5.78E-14 

GPATCH4 1 156594487 2.12E-12 

CNBD2 20 35955360 7.21E-12 

C6orf48 6 31834608 9.13E-12 

PARM1 4 74933095 1.88E-11 

TTI2 8 33473423 2.69E-11 

USP19 3 49108046 9.69E-11 
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HIST1H1E 6 26156354 1.20E-10 

CD2AP 6 47477789 1.04E-09 

RP11-385F7.1 6 47477243 1.17E-09 

C4B 6 32014762 1.23E-09 

KCTD7 7 66628767 1.34E-08 

RPS28 19 8321500 1.40E-08 

C11orf74 11 36594493 1.94E-08 

ATAT1 6 30626842 5.32E-08 
Viral load PPP1R18 6 30676389 6.27E-14 

PRDX5 11 64318088 7.01E-14 

F2RL1 5 76818933 1.81E-12 

CDK5RAP3 17 47967810 1.95E-12 

RPS28 19 8321500 3.50E-12 

USP19 3 49108046 3.60E-12 

KCTD7 7 66628767 3.84E-12 

TTI2 8 33473423 4.27E-12 

TSTD1 1 161037631 4.57E-12 

UBFD1 16 23557732 5.27E-12 

RP11-385F7.1 6 47477243 1.05E-11 

KCNJ15 21 38256698 1.08E-11 

CD2AP 6 47477789 1.54E-11 

CNBD2 20 35955360 1.70E-11 

PARM1 4 74933095 1.86E-11 

ATAT1 6 30626842 2.20E-11 

HIST1H1E 6 26156354 8.44E-11 

MTRF1L 6 152987362 1.14E-10 

MLF1 3 158571163 1.23E-10 

PCDHB3 5 141100756 2.42E-09 

ATF6B 6 32115335 2.83E-09 

GPR22 7 107470018 3.75E-09 

RBM17 10 6088987 5.39E-09 

PLA2G7 6 46704320 6.34E-09 

GPATCH4 1 156594487 1.81E-08 

NDUFS4 5 53560633 2.07E-08 

C11orf74 11 36594493 2.14E-08 
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CSNK2B 6 31665391 2.76E-08 

GPR18 13 99254714 4.10E-08 

FEZ2 2 36531805 4.54E-08 
 303 

Pleiotropic genes associated with baseline laboratory values 304 

We also found several pleiotropic genes which were statistically significantly associated with 305 

plasma viral load, triglyceride levels, and/or absolute basophil count (Fig 7). These included 306 

ABCB4, ATAT1, C11orf74, C4B, C6orf48, CD2AP, CDK5RAP3, CNBD2, F2RL1, GPATCH4, 307 

GPR22, KCNJ15, KCTD7, PARM1, PCDHB3, RPS28, TTI2, USP19. Some of them were 308 

located on chromosome 6, surrounding the major histocompatibility complex (MHC) region, 309 

while the rest scattered across the human genome. Meanwhile, we did not observe correlations 310 

among plasma viral load, triglyceride levels, or absolute basophil count. The strongest 311 

correlation was observed between plasma viral load and triglyceride levels (r2 = 0.24), 312 

suggesting only weak correlation, and correlations for the other pairs of laboratory values were 313 

approximately 0. Overall, there were potential pleiotropic genes for plasma viral load, 314 

triglyceride levels, and/or absolute basophil count in HIV-positive adults.  315 

Discussion 316 

Novel design of the simulation framework  317 

In this report, we described a novel simulation framework for TWAS, and evaluated TWAS gene 318 

prioritization performance for genes with various degrees of tissue specificity. Our simulation 319 

results validated conclusions from several previous eQTL or TWAS studies [13-15,21], and also 320 

generated new findings that warrant attention in future TWAS. First, TWAS methods tested in 321 

this study all had well-controlled type I error rates (� 5%) for genes with any degrees of tissue-322 

specificity. Second, single-tissue TWAS tended to have higher false positive rates of tissues. 323 

The phenomenon became more obvious when genes had more correlated expression levels 324 
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across tissues. For tissue-specific genes, false positive rates of tissues could be controlled (� 325 

5%) by adopting a more stringent multiple testing correction approach. However, for 326 

ubiquitously expressed genes, false positive rates of tissues remained significant (~77%) even 327 

after a stringent multiple testing adjustment. Third, TWAS gene prioritization power was 328 

improved by eQTLs that were identified by jointly analyzing transcriptomic data across tissues. 329 

Fourth, for tissue-specific genes, single-tissue and cross-tissue gene-level association 330 

approaches had similar power. For ubiquitously expressed and similarly expressed genes, 331 

cross-tissue association approaches had greater power.  332 

 333 

We further tested our simulation designs for how they would translate to real-world data by 334 

evaluating trait heritability in our simulated datasets. We found no apparent effect of MAF 335 

distribution on trait heritability under TWAS models. Instead, trait heritability increased with 336 

	�������	
����	�
� . When 	�������	
����	�

�  = 1%, trait heritability was approximately 1% (s.e. = 337 

0.059%). The estimated trait heritability was within a reasonable range and supported our 338 

simulation design.  339 

 340 

Associations in the clinical trials dataset 341 

TSA-TWAS successfully replicated proof-of-concept gene-trait associations, including 342 

associations between CETP and HDL-c, and between GPLD1 and plasma alkaline phosphatase 343 

levels. For total plasma bilirubin levels, our TSA-TWAS framework prioritized UGT1A1 and 344 

genes near UGT1A1. UGT1A1 encodes the hepatic protein that glucuronidates bilirubin [28], 345 

and has been known to affect bilirubin levels [24,25,27]. Other genes have been associated with 346 

total bilirubin levels in numerous studies [24-27]. These genes span 1Mbp at the 2q37.1 locus 347 

and are within the same topologically associating domain (TAD), which suggests that a 348 
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regulatory mechanism may affect expression of the entire KCNJ13-UGT1A-MROH2A gene 349 

region.  350 

 351 

TSA-TWAS has also identified several pleiotropic genes that linked plasma viral load, absolute 352 

basophil count, and/or triglyceride levels, which were otherwise independent from each other. 353 

Plasma viral load is a strong predictor of clinical outcome and is highly variable among people 354 

living with HIV. Individuals vary in their ability in suppressing viral loads, in the absence of 355 

antiretroviral treatments. Moreover, people living with HIV experience dyslipidemia to different 356 

degrees. Grunfeld et al. [39] found that AIDS patients experienced different lipid changes from 357 

HIV-infected patients without AIDS. The discovery of pleiotropic genes suggests the complexity 358 

of HIV pathogenesis and provides a future direction for research on the complex inter-individual 359 

variability among people living with HIV.  360 

 361 

Limitations & future directions 362 

Our simulations revealed high false positive rates of tissues for single-tissue TWAS. The high 363 

false positive rates seen with single-tissue TWAS may be due to limited sample sizes for eQTL 364 

discovery. GTEx analysis has shown that discovery of tissue-specific eQTLs is contingent on 365 

the sample sizes of tissues [10]. Unfortunately, many tissues still have limited sample sizes for 366 

the identification of tissue-specific eQTLs. Consequently, single-tissue TWAS may not have 367 

ample power to prioritize potential trait-related tissues. Adopting stricter multiple testing 368 

adjustment strategies for single-tissue TWAS is one practical approach to help reduce false 369 

positive rates in prioritized tissues, but this will sacrifice power.  370 

 371 

The evaluation of TWAS power and type I error rates estimated from this simulation study might 372 

be limited due to the small sample sizes (N = 2,000 for association analyses). We selected this 373 
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sample size for simulation in order to make it comparable to the average sample size of the 374 

ACTG phase I-IV combined clinical traits interrogated in this study. TWAS gene prioritization 375 

power can be improve with greater sample, but also under influence of many other factors as 376 

shown in Veturi et al. [21] and this study. Thus, TWAS performance can differ from dataset to 377 

dataset when using different TWAS methods. It was difficult to take every factor into 378 

consideration in this work. We dedicated this study to explore tissue specificity’s impact on 379 

TWAS performance, and, for future TWAS studies, suggest customized simulation to better 380 

understand TWAS performance on specific datasets and diseases of interest.  381 

 382 

Conclusions 383 

Gene-level association studies offer the opportunity to better understand the genetic 384 

architecture of complex human traits by leveraging regulatory information from both noncoding 385 

and coding regions of the genome. This may expedite translation of basic research discoveries 386 

to clinical applications. We provide a comprehensive simulation algorithm to fully investigate 387 

TWAS performance for diverse biological scenarios. Based on our simulation, we promote a 388 

TSA-TWAS analytic framework. TSA-TWAS framework on ACTG clinical trials data ascribed 389 

statistical significance to proof-of-concept gene-trait associations, and also found several novel 390 

associations and pleiotropic genes, suggesting the complexity of HIV-related traits that latest 391 

bioinformatics methods can reveal.  392 

 393 

Additional work is needed to fully understand the tissue and genetic architecture underlying 394 

complex traits. The simulation algorithm and schema developed for this study is versatile 395 

enough to answer other questions regarding causal genes and tissues for complex traits. 396 

Overall, our work provides and tests a novel, flexible simulation framework and an TSA-TWAS 397 

analytic framework for future complex trait studies. 398 
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 399 

Materials and Methods 400 

TWAS simulation design 401 

The simulation study systematically evaluated how the tissue-specificity of eQTLs and gene 402 

expression levels influences TWAS gene prioritization performance. We assumed additive 403 

genetic effects of eQTLs on gene expression levels, and of gene expression levels on traits. 404 

The TWAS simulation scripts are available in R programming language at GitHub 405 

(https://github.com/BinglanLi/multi_tissue_twas_sim). 406 

 407 

Genotype. We started by simulating genotypes for one gene in 1,500 individuals, which 408 

include eQTL and non-eQTL SNPs. Genotypes are denoted as ���� throughout this paper, 409 

where � denotes the total number of individuals and � denotes the total number of SNPs in a 410 

gene that include tissue-specific eQTLs, multi-tissue eQTLs and non-eQTL SNPs. These 411 

individuals were later stratified into an eQTL discovery dataset (����� = 500) and a TWAS 412 

testing dataset (����� = 1000), sample sizes comparable to those of current GTEx and ACTG 413 

datasets used in this analysis, respectively. Genotypes were simulated as biallelic SNPs and 414 

then converted into allele dosages as is done in most eQTL detection methods. MAF assigned 415 

to SNPs raged from 1% to 50% and were randomly drawn from a uniform distribution, 416 

��0.01, 0.5�. Parameter settings of eQTLs in this simulation were drawn from observations in 417 

different eQTL databases (S1-3 Figs).  418 

 419 

Gene expression level. We simulated one gene’s standardized expression levels at a time 420 

such that it was expressed in a fixed number of tissues. Let � denote the number of tissues 421 

where the gene is expressed, � = 1, 2, 5, or 10. If a gene is only expressed in a single tissue (� 422 
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= 1), then, only single-tissue eQTLs were simulated for this given gene and no multi-tissue 423 

eQTLs were present.  424 

 425 

A previous study showed that the number of eQTLs in a gene does not have as pronounced an 426 

effect on the TWAS power in comparison to other parameters [21]. Hence, we assumed that a 427 

given gene was regulated by the same total number of eQTLs in each of the � tissues, which is 428 

denoted by ������ (������ = 30). eQTLs can be tissue-specific or have effect across multiple 429 

tissues. Here, we defined tissue-specific eQTLs as those that had effects in one and only one 430 

tissue. Multi-tissue eQTLs were defined as those who had effects in all � tissues in which the 431 

given gene is simulated to be expressed. We allowed multi-tissue eQTLs to have different effect 432 

sizes in different tissues. Assuming that a gene was expressed in � tissue(s) (say � = 5), then, 433 

this gene is regulated by both, tissue-specific eQTLs and multi-tissue eQTLs, in any of the � 434 

tissues. Let ��������� denote the number of tissue-specific eQTLs, and ��������� the number 435 

of multi-tissue eQTLs. A simulated gene had the same ��������� across � tissues, and the 436 

same ��������� across � tissues, such that ��������� and ��������� added up to ������  in 437 

each of the � tissues. Five different numbers of ��������� (0, 6, 12, 18, 24, corresponding 438 

��������� = 30, 24, 18, 12, 6) were evaluated, except when a gene was simulated to be 439 

expressed only in one gene, in which case ��������� always equaled 0. 440 

 441 

Each gene was simulated under an additive genetic model per tissue. Let ���� denote the 442 

simulated gene expression levels for one gene, of � individuals, and across � tissues. For the 443 

given simulated gene, let ��� represent the simulated expression level of the �th individual in 444 

the �th tissue, which is an aggregate of tissue-specific eQTLs, multi-tissue eQTLs and non-445 

eQTL effects in individual � for tissue �. The multivariate normal random effects model to 446 

simulate one gene’s expression levels is then expressed as follows: 447 
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� � ������������������ � ������������������ � ��  

where � is the � � � matrix of standardized gene expression levels for a gene in � individuals 448 

across � tissues. ��������� is the � � ��������� matrix of standardized tissue-specific eQTL 449 

genotypes. Similarly, ��������� is the � � ��������� matrix of standardized multi-tissue eQTL 450 

genotypes. ��������� is a ��������� � � matrix of tissue-specific eQTL effects. ���������,	� 451 

represents the �th tissue-specific eQTL in the �th tissue, which could be a different eQTL across 452 

� tissues. Each value in the ��������� is independent of the others. ��������� is a ��������� � � 453 

matrix of multi-tissue eQTL effects wherein ���������,�� represents the  th multi-tissue eQTL in 454 

the �th tissue. In contrast to tissue-specific eQTLs, ���������,�. denotes the same  th multi-455 

tissue eQTL in all � tissues, and is allowed to have similar or dissimilar effect sizes across � 456 

tissues (explained later in this section). !"#���������� �~��%����������� , & ���
��������

⊗I���������
�  457 

()"*" & ���
�������� � +)�����������	
�

� � ���������

������

,  � � �!

0,  � , �!

-. The constant, )�����������	
�
� � ���������

������

, 458 

represents the proportion of variation in gene expression that can be explained by tissue-459 

specific eQTLs. !"#�����������~��%����������� , & ���
��������

⊗I���������
�  460 

()"*" & ���
�������� � . )�����������	
�

� � ���������

������

,  � � �/
#0*12�334"� ,  2�334"�!5 � )�����������	
�

� � ���������

������

,  � , �/-. The constant, 461 

)�����������	
�
� � ���������

������

, represents the proportion of gene expression variation that can be 462 

explained by multi-tissue eQTLs. #0*12�334"� ,  2�334"�!5 represents the extent of similarity 463 

between ���������,.� and ���������,.�!, i.e. the Pearson Correlation Coefficient between multi-464 

tissue eQTL effect sizes in the �th and �/th tissues, respectively. The simulation algorithm 465 

allows multi-tissue eQTLs to have five different levels of #0*12�334"	 ,  2�334"�5 (0, 0.2, 0.4, 0.6, 466 
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and 0.8). �� is the � � � matrix of residual errors that represent non-eQTL effects on a gene’s 467 

expression level and !"#����~��%��� , & ���
�

⊗I��  468 

where & ���
� � + 1 6  )�����������	
�

� ,  � � �/#0*12�334"� ,  2�334"�!5 � 1 6 )�����������	
�
� ,  � , �/-. The constant, 1 6469 

 )�����������	
�
� , represents the proportion of gene expression variation that can be explained by 470 

factors other than eQTLs that can also regulate a gene’s final transcription isoforms and levels. 471 

We designed the error term to have such a covariance structure that the final aggregate 472 

expression levels of the given gene in �th tissue (�.�) was correlated with that in the �/th tissue 473 

(�.�!) due to multi-tissue eQTLs as well as other biological factors. These other biological factors 474 

(such as alternative splicing events, post-transcriptional modifications and regulation of mRNA 475 

degradation) can either be shared or different across tissues. We adopted a simple assumption 476 

that the more similar a gene’s expression levels are across tissues, the more likely multi-tissue 477 

eQTLs (and non-eQTL biological factors) will share effect sizes across tissues. Thus, correlation 478 

of gene expression across tissues (for example, correlation between �.� and �.�!) is expected to 479 

be similar to, if not the same as, the correlation of multi-tissue eQTL effect sizes (for example, 480 

correlation between ���������,.� and ���������,.�!) as well as the correlation between non-eQTL 481 

biological factors. All three random effect terms, i.e. ��������� , ���������, and �� were simulated 482 

using the rmvnorm function from the R package, mvtnorm. We evaluated the extent of bias 483 

between assumed combination of simulation parameters and those estimated from the empirical 484 

distribution of simulated ����, which met the expectation (S16 Fig). 485 

 486 

In the special case where a gene was simulated to be expressed only in a single tissue, the 487 

model was equivalent to a univariate normal distribution with mean 0 and variance equal to the 488 

expression heritability of that gene.  489 

 490 
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Tissue specificity of genes was characterized by the number of tissues in which genes are 491 

expressed as well as the similarity of gene expression levels across tissues. Tissue specificity of 492 

eQTLs was characterized by the proportion of multi-tissue eQTLs in a gene, the number of 493 

tissues where multi-tissue eQTLs were effective, and the similarity of eQTL effect sizes across 494 

tissues.   495 

  496 

Phenotype. We assumed one and only one causal tissue for a phenotype and simulated 497 

phenotype datasets for the TWAS testing dataset (� = 1,000). This design was adopted from 498 

the simulation work of Dr. Yiming Hu et al. in the paper that described UTMOST [15]. Let ������ 499 

denote the standardized genetically regulated expression component in the causal tissue. The 500 

model to simulate traits from gene expression levels can be expressed as 7 � ������8� � ��, 501 

where 7 is a 1000 � 1 vector of standardized responses for the 1,000 individuals in the TWAS 502 

testing dataset, 8� is the ������ � 1 vector of gene expression effect drawn from a normal 503 

distribution with mean zero and variance 	�������	
����	�
� , and �� is the vector of normally-504 

distributed errors with mean zero and variance 1- 	�������	
����	�
� . 	�������	
����	�

�  was 505 

assigned values in 0.001%, 0.05%, 0,5% and 1%, to represent different strengths of gene 506 

expression level-trait relations. To evaluate type I error rates, 	�������	
����	�
�  = 0% 507 

corresponded to the null model where gene and trait were unrelated.  508 

 509 

eQTL detection. We adopted two types of eQTL detection methods, 1) elastic net 510 

(implemented in PrediXcan [5]) and 2) group LASSO (implemented in UTMOST [15]). For ease 511 

of parallel computation, these two algorithms were adapted and integrated into the TWAS 512 

simulation tool scripts. eQTLs detected in a single tissue context (elastic net) and those 513 

detected in an integrative tissue context (group LASSO) were then used to impute GReX, and 514 

for gene-trait association analyses.  515 
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 516 

Imputation of GReX. Expression level of a gene can be imputed using a linear model as 517 

� � ��, where � is the � � 1 vector of imputed gene expression levels of the gene, � is the 518 

� � � matrix of genotypes, and � is the � � 1 vector of eQTLs’ estimated regulatory effects on 519 

the gene, and can be obtained by either elastic net or group LASSO.  520 

 521 

Association analysis. Single-tissue gene-trait associations were then estimated using SLR 522 

model, i.e., lm function in R. Cross-tissue gene-trait association analyses were also conducted 523 

in R but using PC Regression (implemented in MulTiXcan [16]) and GBJ test (implemented in 524 

UTMOST [15]).  525 

 526 

Measures of TWAS performance. Each combination of simulation parameters was 527 

repeated 100 times independently to assess power and type I error rates at 9 � 0.05. Estimation 528 

of TWAS power was calculated as the percentage that a simulated causal gene was 529 

successfully identified as statistically significant in the causal tissue in the hundred simulations. 530 

Estimation of TWAS type I error rates were calculated as the percentage that a gene was falsely 531 

identified as statistically significant when there was no gene-trait signal simulated in the hundred 532 

simulations. We assumed that a gene is related to a trait in a single tissue, which is often the 533 

case for non-pleiotropic genes. In the simulation, we knew the causal tissues for the simulated 534 

traits. We calculated the false positive rates of tissues by counting the proportion of statistically 535 

significant results that were in non-causal tissues.  536 

 537 

The entire process was repeated 20 times for each combination of simulation parameters to 538 

avoid sampling variability and to determine distributions of power, type I error rates, and false 539 

positive rates of tissues. We further evaluated the statistical significance of the differences in 540 
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power and type I error rate between every pairs of TWAS methods using Wilcoxon Signed-rank 541 

test. 542 

 543 

Evaluation of simulated genetic scenarios 544 

Trait heritability assessment validated and supported our design of simulation parameters. We 545 

designed a Monte Carlo simulation approach to randomly generate eQTL-gene-trait relations 546 

using the aforementioned simulation tool. Each replication simulated one genotypic dataset and 547 

one subsequent GReX profile for a gene. We simulated 30 non-eQTL and 30 eQTL SNPs for 548 

5,000 individuals in which MAF followed a uniform distribution of 1-50% and eQTLs explained 549 

30% of gene expression variation. The GReX profile was then used to generate 50 different 550 

traits using different random seeds. Thus, each simulated genotypic dataset had 50 estimated 551 

trait heritability values available; we took the average of these as the point estimate of the trait 552 

)� for each genotypic dataset. GCTA [40] was not appropriate for our simulation as it assumes 553 

genome-wide genotypic data. Instead, we used the R package, regress, to estimate trait 554 

heritability in the simulated datasets. The entire process was repeated 30 times to generate a 555 

distribution of estimated trait heritability for a given combination of simulation parameters.  556 

 557 

To determine the influence of MAF on trait heritability, we designed different ranges of MAF 558 

distributions. MAF of SNPs followed a uniform distribution of 1-50% as in the primary TWAS 559 

performance evaluation, and also 1-20% and 1-5%. We also simulated traits where 560 

	�������	
����	�
�  = 0% (negative control), 2%, or 5% (positive controls) to support the estimation 561 

of trait heritability when 	�������	
����	�
�  = 0.001%, 0.05%, 0.5%, and 1%.  562 

 563 

AIDS Clinical Trials Group studies 564 

The ACTG is the world’s largest HIV clinical trials network. It has conducted major clinical trials 565 
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and translational biomedical research that have improved treatments and standards of care for 566 

people living with HIV in the United States and worldwide. In this study, we used data from four 567 

separate genotyping phases of specimens from ACTG studies in a combined dataset that 568 

comprises HIV treatment-naïve participants at least 18 years of age enrolled in randomized 569 

treatment trials [41-47]. Participants enrolled into ACTG protocols A5095, A5142, ACTG 384, 570 

A5202 or A5257. Informed consent for genetic research was obtained under ACTG protocol 571 

A5128. Clinical trial designs and outcomes, and results of a genome-wide pleiotropic study for 572 

baseline laboratory values have been described elsewhere[24,25].  573 

 574 

Genotypic data and quality control 575 

A total of 4,411 individuals were genotyped in four phases. Phase I (samples from study A5095) 576 

was genotyped using Illumina 650Y array; Phase II (studies ACTG384 and A5142) and III (study 577 

A5202) were genotyped using Illumina 1M duo array; Phase IV (study 5257) was genotyped 578 

using Illumina HumanCoreExome BeadChip. Preparation of genotypic data included pre-579 

imputation quality control (QC), imputation, and post-imputation QC. Pre- and post-imputation 580 

QC followed the same guidelines [48] and used PLINK1.90 [49] and R programming language. 581 

Imputation was performed on the combined ACTG phase I-IV genotype dataset after pre-582 

imputation QC, which used IMPUTE2 [50] with 1000 Genomes  Phase 1 v3 [51] as the 583 

reference panel. Combined ACTG phase I-IV imputed data comprised 27,438,241 variants. The 584 

following procedures/parameters were used in the post-imputation QC by PLINK1.90: sample 585 

inclusion in the ACTG genotyping phase I-IV phenotype collection, biallelic SNP check, 586 

imputation score (> 0.7), concordance of genetic and self-reported sex, genotype call rate (> 587 

99%), sample call rate (> 98%), MAF (> 5%), and relatedness check (:;> 0.25; one individual 588 

was dropped from each related pair). Subsequent principal component analysis (EIGENSOFT 589 

[52]) projected remaining individuals onto the 1000 Genomes Project Phase 3 sample space to 590 
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examine for population stratification. Based on percent of variance explained, the first three 591 

principal components estimated by SmartPCA in EIGENSOFT were used as covariates to 592 

adjust for population structure in the subsequent analyses. The final QC’ed ACTG phase I-IV 593 

combined imputed data comprised 2,185,490 genotyped and imputed biallelic SNPs for 4,360 594 

individuals. 595 

 596 

Phenotypic data and QC 597 

Data for 37 baseline (i.e., pre-treatment) laboratory measures were available from 5,185 HIV 598 

treatment-naive individuals in the ACTG genotyping phase I-IV datasets. We assembled these 599 

laboratory traits using a MySQL database and applied QC using R. We retained only individuals 600 

with available genotype data, and traits that were normally distributed and met the criterion of 601 

phenotype missing rate < 80%. Frequency distributions of traits were inspected using 602 

hist_plot.R that facilitates manual inspection of continuous traits by providing fast, high-603 

throughput visualization along with necessary summary statistics of each visualized traits[53]. 604 

hist_plot.R is part of the CLARITE [53], which is available at https://github.com/HallLab/clarite. 605 

We also cross-referenced the retained traits to other published work that analyzed the same 606 

traits using these clinical trials datasets [24,25]. Non-fasting serum lipid measures were retained 607 

based on data from several studies [54-56]. The final combined dataset for ACTG genotyping 608 

phases I-IV comprised 37 baseline laboratory traits (Table 2). 609 

 610 

Description of a general TSA-TWAS analytic framework  611 

The TSA-TWAS analytic framework has the following general steps. 612 

1) Impute the GReX for the gene based on the input eQTL database(s) and the genotypic 613 

dataset. 614 
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2) Determine whether the gene is predicted to be expressed in only one tissue or in 615 

multiple tissues. 616 

3) If the gene is predicted to be expressed in only one tissue, perform single-tissue TWAS 617 

using simple linear or logistic regression depending on the trait. 618 

4) If the gene is predicted to be expressed in multiple tissues, perform cross-tissue TWAS 619 

using the GBJ test. 620 

5) Repeat step 2-4 for the next gene. 621 

6) (Optional) If there is more than one trait, repeat step 1-5 for the next trait. 622 

 623 

Imputation of GReX for genes 624 

We used GTEx v8 MASHR-based eQTLs models [57] to impute gene expression levels in a 625 

tissue-specific manner. MASHR-based eQTLs models selected variants that have biological 626 

evidence of a potential causal role in gene expression, and estimated these variants’ effect 627 

sizes on gene expression levels in 49 tissues, using GTEx v8 as the reference dataset 628 

(available at http://predictdb.org/). The GTEx v8 MASHR-based eQTLs models were 629 

downloaded from their website on October 31, 2019. The QC’ed ACTG phase I-IV combined 630 

imputed data was used to impute the individual-level GReX in 49 human tissues.  631 

 632 

Statistical analysis for Gene-level associations 633 

We tested for single-tissue gene-trait associations by performing association tests on imputed 634 

GReX and ACTG baseline lab traits using PLATO [58,59] in 49 tissues, separately. All baseline 635 

laboratory traits were continuous and thus were modeled by linear regression with covariates. 636 

Covariates included age, sex, and the first three principal components calculated by 637 

EIGENSOFT to adjust for sampling biases and underlying population structure. For cross-tissue 638 

association analyses, we adapted the UTMOST script in R programming language and 639 
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performed the GBJ test for the individual-level ACTG data. The lowest p-value that can be 640 

generated by GBJ test in R is approximately 1 � 10���. No obvious inflation was observed in the 641 

TSA-TWAS framework. ACTG phenome-wide TWAS results were visualized using PhenoGram 642 

[60], a web-based, versatile data visualization tool to create chromosomal ideograms with 643 

customized annotations, available at http://visualization.ritchielab.org/phenograms/plot. 644 

Supplementary manhattan plot was created by hudson, a R package available at 645 

https://github.com/anastasia-lucas/hudson. 646 

 647 

Statistical correction 648 

Two strategies to correct for multiple testing were implemented in the ACTG analysis, method-649 

wise and family-wise Bonferroni significance thresholds. The method-wise approach ascribes 650 

significance to statistical tests by controlling for the number of tests conducted in one type of 651 

method. For single-tissue gene-trait associations, the method-wise Bonferroni significance 652 

threshold was corrected for the number of genes (n = 483) and traits (n = 37), which resulted in 653 

9 � "."�

�,#����$
< 4.8 � 10�$. For cross-tissue gene-trait associations, the method-wise Bonferroni 654 

significance threshold corrected for the number of genes and traits, which gave 9 � "."�

�,��%��$
<655 

1.46 � 10�$. The family-wise approach assigns significance to tests by accounting for all tests 656 

performed in this study to control for FWER. Hence, single-tissue and cross-tissue association 657 

tests shared the same family-wise Bonferroni significance threshold, 
"."�

��,"�#��$
< 1.12 � 10�$. 658 

The significance threshold for interpreting results, by default, referred to the family-wise 659 

threshold. All results reported are exact p-values and thus, can be easily compared to either 660 

multiple testing threshold. 661 

 662 
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Fig 1. Cross-tissue TWAS simulation scheme. With the simulation parameters, we were able 

to generate SNP-gene-trait relations of varied tissue specificity backgrounds. In each 

replication, simulated datasets were divided into an eQTL detection dataset and a TWAS 

dataset. The former was used to identify eQTLs using different eQTL detection methods and the 

sample size was equivalent to that of GTEx. The detected eQTLs were then passed, separately, 

to the TWAS dataset to assist gene-level association tests. The TWAS dataset sample size was 

equivalent of that of the ACTG clinical trial dataset. Two types of gene-level association 

approaches estimated and ascribed p-values to the simulated gene-trait relations. In each 

replication, we simulated 100 different SNP-gene-trait pairs for one single point estimation of 

TWAS gene prioritization performance. All association p-values had been adjusted for the 

number of genes and tissues in each replication. 20 independent replications were conducted to 

obtain the distribution of TWAS performance statistics.  
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Fig 2. Power of different TWAS methods in prioritizing genes of varied tissue specificity 

properties. Power was the proportion of successfully identified gene-trait associations in the 

causal tissue out of all simulations. X-axis is the number of gene-expressing tissues. Each 

column stands for the proportion of eQTLs that are shared among tissues for a gene. Each row 

is the similarity of gene expression profiles across tissues which is estimated by correlation. 

Moving from the top left to the bottom right is a gradient spectrum from tissue-specific genes to 

broadly expressed genes. The colors represent different TWAS methods and y-axis is the 
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power. For tissue-specific genes at the top left, single-tissue TWAS (Elastic Net-SLR) and 

cross-tissue TWAS (Group LASSO-GBJ) had similar power. For broadly expressed genes at the 

bottom right, cross-tissue TWAS (Group LASSO-GBJ) had greater power. Brackets showed 

pairwise comparison of power between the Group LASSO-GBJ and other TWAS methods using 

Wilcoxon Signed-rank Test. Black brackets were cases where Group LASSO-GBJ had higher 

power than other three methods; red brackets were cases where Group LASSO-GBJ had lower 

power than other three methods. *p-value < 0.05, **p-value < 0.01, ***p-value 

< 0.0001.  
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Fig 3. Type I error rates of different TWAS methods in prioritizing genes of diverse tissue 

specificity properties. Type I error rate was the probability that TWAS wrongly identified a 

gene-trait association as significant while there was not any signal simulated in the dataset. 

Association p-values were controlled for the number of genes and tested tissues. X-axis is the 

number of gene-expressing tissues. Each column stands for the proportion of eQTLs that are 

shared among tissues for a gene. Each row is the similarity of gene expression profiles across 

tissues which is estimated by correlation. Moving from the top left to the bottom right is a 
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gradient spectrum from tissue-specific genes to broadly expressed genes. The colors represent 

different TWAS methods and y-axis is the type I error rate. All TWAS methods had controlled 

type I error rates (≤ 5%).  
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Fig 4. False positive rates of tissues among statistically significant results. False positive 

rates were the proportion of significant associations found in trait-irrelevant tissues amongst all 

significant results. Association p-values were controlled for the number of genes and tested 

tissues. X-axis is the number of gene-expressing tissues. Each column stands for the proportion 

of eQTLs that are shared among tissues for a gene. Each row is the similarity of gene 

expression profiles across tissues which is estimated by correlation. Moving from the top left to 

the bottom right is a gradient spectrum from tissue-specific genes to broadly expressed genes. 
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Colors represent different TWAS methods and y-axis is the false positive rate of tissues among 

statistically significant results. Single-tissue TWAS wrongly identified 5% and 77% trait-

irrelevant tissues for tissue-specific and broadly expressed genes, respectively.  
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Fig 5. A proposed TSA-TWAS analytic framework that leverages TWAS performance on 

genes of different tissue specificity properties. The framework proposed based on our 

simulations is as follows: If trait-related tissue(s) are known for a trait or disease of interest, run 

single-tissue TWAS, for example, PrediXcan. If trait-related tissue(s) are unknown, run cross-

tissue TWAS (UTMOST) on the genes that are expressed in more than one tissue and run 

single-tissue TWAS (PrediXcan) on the genes that are expressed in one single tissue.  
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Fig 6. The TSA-TWAS analytic framework for the ACTG combined genotyping phase I-IV 

baseline laboratory traits. Approximately 2.2 million SNPs, 4,360 individuals, and 37 baseline 

laboratory traits survived the QC. UTMOST eQTL models were used to impute GReX of a total 

of 12,038 genes in 49 tissues. 2,812 genes (23%) had GReX in one single tissue, and 9,226 

genes (77%) had GReX in more than one tissue.  
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Fig 7. PhenoGram of statistically significant gene-trait associations identified by the TSA-

TWAS analytic framework. We plotted the associations with p-value < 1.12 × 10&'. Each 

association is arranged according to the SNP location on each chromosome and the points are 

color-coded by baseline laboratory values. Diamonds represented previously reported or 

replicated associations, and circle represented novel associations identified in this study. 
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