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Highlights 

• Small leucine rich proteoglycans (SLRPs) and large chondroitin sulfate (CS) 
proteoglycans (PGs) have distinct effects on collagen fibrous network behavior. 

• Unlike other matrix proteoglycans, versican promotes collagen fibrillogenesis in an in 
vitro spectrophotometric (turbidity) assay. 

• The versican core protein has a larger impact on collagen behavior in a fibrillogenesis 
assay than its glycosaminoglycan chains do. 

• Versican increases the diameter of collagen fibers and the porosity of collagen fibrous 
networks, unlike aggrecan and SLRPs. 

• The addition of versican to collagen does not alter fibroblast contractility but leads to 
enhanced cell-mediated collagen reorganization and contraction. 
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Abstract 

The extracellular matrix (ECM) is a complex mixture composed of fibrillar collagens as well as 
additional protein and carbohydrate components. Proteoglycans (PGs) contribute to the 
heterogeneity of the ECM and play an important role in its structure and function. While the 
small leucine rich proteoglycans (SLRPs), including decorin and lumican, have been studied 
extensively as mediators of collagen fibrillogenesis and organization, the function of large matrix 
PGs in collagen matrices is less well known. In this study, we showed that different matrix PGs 
have distinct roles in regulating collagen behaviors. We found that versican, a large chondroitin 
sulfate PG, promotes collagen fibrillogenesis in a turbidity assay and upregulates cell-mediated 
collagen compaction and reorganization, whereas aggrecan, a structurally-similar large PG, has 
different and often opposing effects on collagen. Compared to versican, decorin and lumican 
also have distinct functions in regulating collagen behaviors. The different ways in which matrix 
PGs interact with collagen have important implications for understanding the role of the ECM in 
diseases such as fibrosis and cancer, and suggest that matrix PGs are potential therapeutic 
targets.   
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Introduction 

The compositional and structural complexity of the extracellular matrix (ECM) is important for 
maintaining appropriate cell and tissue function [1]. The ECM consists of a 3D network of fibers, 
primarily type I and other fibrillar collagens, in the form of cross-linked fibrous networks. The 
structure and organization of these networks can be regulated by cell-generated forces [2] and 
by interactions with other ECM components including proteoglycans (PGs) and 
glycosaminoglycans (GAGs) [3][4]. PGs are highly negatively charged (especially the large PGs 
with multiple GAG side chains) and, in part through their interactions with collagen and water, 
contribute to tissue mechanics by swelling and stiffening tissues, which enables them to resist 
compression and to retain water [5]. They are also important regulators of ECM related 
diseases including inflammation, fibrosis and cancer [6][7]. 

There are two groups of matrix (interstitial) PGs. The first is the family of small leucine-rich PGs 
(SLRPs), which have core proteins of about 50-60 kDa attached to 1-4 GAG chains; this group 
includes decorin, biglycan, fibromodulin, lumican and others. SLRPs have been well studied as 
collagen regulators [8][9], and the binding sites between collagen and some of the SLRPs have 
been identified through a combination of crystal structures and solid-phase binding data 
[10][11]. SLRPs are crucial for regulating collagen fiber formation and organization during 
development, especially in tissues such as cornea and tendon that require a highly-organized 
collagen network for their functions. Biglycan- and lumican-deficient mice show a disrupted 
lamellar structure in the cornea and impaired corneal transparency [12], and decorin-, 
fibromodulin- and lumican-deficient mice have tendons with irregular fiber morphology, 
abnormal fiber diameter distributions, and atypically non-uniform interfibrillar spaces [13][14]. 

The second family of matrix PGs is the hyalectan family of large chondroitin sulfate (CS) PGs, 
which includes versican (with a core protein of approximately 360 kDa and 12-15 CS chains) 
and aggrecan (with a core protein of approximately 250 kDa and around 100 GAG chains, 
including both CS and keratan sulfate (KS)) [15][16]. Compared with SLRPs, large PGs have a 
significantly larger mass of negatively-charged GAG side chains (with total molecular weights of 
1-2.5 MDa) and they can bind hyaluronic acid (HA) to form even larger space-occupying 
aggregates [17][18]. Versican is universally distributed throughout the human body and has 
roles in regulating tissue morphogenesis and homeostasis and in the matrix response to injury 
[19][20], while aggrecan is predominantly expressed in cartilage and blood vessels [21]. 
Versican has at least 5 different isoforms that are generated by alternative splicing, and that 
have different distributions, degrees of GAG modification, and potentially functions [22][23]. 
Aggrecan interacts with collagen through its KS binding domain, as shown by a solid-phase 
binding assay [24]. There is one report, also based on a solid-phase binding result, that versican 
binds to type I collagen [25], but the physical nature of the interaction between versican and 
collagen has not been well defined and the effects of large PGs on fibrillogenesis are overall not 
well understood. There is a particular need to clarify the role of versican in regulating collagen 
behavior given its widespread distribution and regulated expression.  

We report here an investigation into the effects of matrix PGs, particularly versican, on collagen 
fibrous network behavior. We report that different matrix PGs (even within a particular family) 
have distinct roles in the regulation of collagen behavior, suggesting that the relative expression 
of individual matrix PGs may be an important regulator of tissue function and cell behavior in 
disease. 
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Results  

Matrix proteoglycans have different effects on collagen fibrillogenesis in vitro 

Proteoglycans and their GAG side chains have been well studied as collagen regulators [26] 
through the use of in vitro spectrophotometric (fibrillogenesis) assays whereby the turbidity of a 
collagen solution is measured as gelation proceeds [27], generating a sigmoidal curve with a lag 
phase followed by a growth phase and then, after complete gelation, a plateau. During the 
lateral growth of collagen fibrils, the formation of large aggregates contributes to increases in 
turbidity due to the increased molecular weight of the aggregates and alterations in particle 
scattering, reflected in absorbance at 400 nm [28]. While this assay does not directly measure 
fibrillogenesis, increments in turbidity reflect collagen fibril/fiber formation and changes in 
collagen organization; the assay has been widely used to identify factors that impact 
fibrillogenesis [28][29]. We tested both rat tail telocollagen and bovine atelocollagen in the in 
vitro collagen fibrillogenesis assay and studied the effect of versican in both cases (Fig. 1A). We 
found that gelation time for bovine atelocollagen was longer than for rat tail telocollagen. This is 
expected because it has been reported that telopeptides can function as docking sites, guiding 
collagen monomer alignment and lateral growth, and thus the diffusion time for collagen  
monomer addition to telocollagen would likely be lower than for atelocollagen [30]. Addition of 
versican isolated from bovine liver, which consisted primarily of the large, GAG-modified V0 and 
V1 isoforms, accelerated fibrillogenesis and increased the height of the plateau for both forms of 
collagen. Because of the rapidity of telocollagen gelation and our desire to study modulators of 
the process, we used atelocollagen for our remaining experiments, reasoning that it would 
better enable us to evaluate differences in collagen behavior with different matrix PGs added. 
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Fig. 1. Different matrix proteoglycans have distinct effects on collagen fibrillogenesis in an in 
vitro turbidity assay. (A) Versican (Ver; 0.1mg/ml) was added to rat tail telocollagen (Col; 1.5 
mg/ml) and bovine atelocollagen (1.5 mg/ml). (B) Versican (Ver; purple curve) or aggrecan 
(Agg; blue curve), both at 0.1 mg/ml, were added to atelocollagen (Col; 1.5mg/ml, black curve). 
Versican accelerated gelation dramatically while aggrecan slightly right-shifted the turbidity 
curve. (C) Versican alone (0.1 mg/ml) failed to gel and showed no change in turbidity over time 
under the assay conditions. (D) The SLRPs lumican (Lum; 0.01, 0.05 and 0.1 mg/ml) and 
decorin (Dec, 0.1 mg/ml) were added to atelocollagen (Col; 1.5 mg/ml). Decorin had a larger 
impact on decreasing fibrillogenesis than lumican. For all turbidity assays under all testing 
conditions, the pH and gelation temperature were the same. For all panels except C, three 
independent experiments were carried out for each condition, each with three technical 
replicates. Because there can be day-to-day differences in the absolute absorbance values for 
the assay, a representative figure from one experiment with mean curves is shown for each 
condition; however, all assays in a panel were carried out in parallel, and relative values among 
the different conditions were consistent in each individual experiment. The dotted lines 
represent Standard Deviation (SD). C was performed once with three technical replicates; the 
dotted lines represent SD. 

To test the impact of versican versus aggrecan on collagen fibrillogenesis, we combined either 
of the two large PGs with atelocollagen before initiating the gelation assay. When versican was 
added to collagen, increases in turbidity of the mixture were more rapid and the plateau was 
higher than for collagen alone (Fig. 1B, 2C, purple and black curves). Carrying out the assay 
under identical conditions with versican alone showed no significant change in turbidity (Fig. 
1C), suggesting that the change in the collagen curve with the addition of versican was due to 
interactions between versican and collagen. Surprisingly, the addition of the structurally-related 
large PG aggrecan to collagen slowed fibrillogenesis without changing the plateau (Fig. 1B, blue 
curve). The addition of CS (a GAG that modifies both versican and aggrecan) in unbound form 
(in a distribution of sizes ranging from 10-150 nm, as shown in Supplementary Fig. 1) left-shifted 
the turbidity curve in a dose-dependent manner, although less markedly than for intact versican 
even at similar concentrations (Fig. 2A). We then tested whether the versican protein core alone 
could alter collagen fibrillogenesis. We added the recombinant versican V3 isoform, which only 
contains the G1 and G3 domains, to telo- and atelocollagen and found it had the same effects 
on accelerating fibrillogenesis and increasing the plateau (Fig. 2B). We also removed the CS 
side chains by digesting with chondroitinase ABC (ChABC) (followed by dialysis against diH2O 
to remove the small, digested chains) and we observed an impact on the rate and plateau of the 
turbidity curves that was only slightly less than seen with the intact protein (Fig. 2C). In tests 
with enzyme-treated material, we confirmed that the heat-inactivated ChABC had minimal effect 
on this assay (Fig. 2C, blue curves). Thus, the versican core protein, with at best a minor 
contribution from its GAG side chains, modulates collagen gelation. 

The versican preparation we used was contaminated with a small amount of decorin 
(Supplementary Fig. 2), so we then tested whether the SLRPs had different effects on collagen 
fibrillogenesis in this assay and whether decorin could account for the effects noted using our 
versican preparation. We observed that the addition of both lumican (recombinant core protein 
with no GAGs) and decorin (full structure with GAGs, extracted from bovine articular cartilage) 
decreased the rate of collagen fibrillogenesis; decorin had particularly marked effects on both 
the rate and plateau and lumican decreased fibrillogenesis rate in a dose-dependent manner 
(Fig. 1C). The presence of decorin in the non-recombinant versican preparation is unlikely to 
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account for the effects observed in the gelation assay (Fig. 1A, B) given that decorin alone had 
opposite effects (Fig. 1D) and that the recombinant form of versican (Fig. 2B) had similar effects 
as the form we isolated. Thus, we conclude from Figures 1 and 2 that matrix proteoglycans 
have different effects on collagen fibrillogenesis, regardless of their sizes and GAG 
modifications. 

 

 

 

Fig. 2. Versican core protein, with a minor contribution from the CS side chains, regulates 
collagen gelation. (A) Chondroitin sulfate (CS; 0.01, 0.04, 0.07 and 0.1 mg/ml; green, yellow, 
orange and red curves) was added to collagen (Col; 1.5 mg/ml; black curve). (B) Recombinant 
V3 isoform (V3, 0.1 mg/ml) was added to rat rail telocollagen (1.5 mg/ml) and bovine 
atelocollagen (1.5 mg/ml).  (C) After digestion of the versican CS with ChABC, the remaining 
versican core protein was added at 0.1 mg/ml (pink curve) to atelocollagen (1.5 mg/ml; red 
curve) and caused a similar although slightly blunted right shift to the curves. Heat-inactivated 
ChABC had minimal effect on collagen gelation (blue curve). Three independent experiments 
were carried out for each condition, each with three technical replicates.  Because there can be 
day-to-day differences in the absolute absorbance values for the assay, a representative figure 
from one experiment with mean curves is shown for each condition; however, all assays in a 
panel were carried out in parallel, and relative values among the different conditions were 
consistent in each individual experiment. The dotted lines represent SD. 

 

Matrix proteoglycans have distinct effects on collagen fibrous networks 

Scanning electron microscopy (SEM) of collagen matrices gelled plus or minus PGs was used 
to further analyze the impact of PGs on the collagen network. We tested both telo- and atelo-
collagen (Supplementary Fig. 3). Telocollagen was used in this assay because the gelation of 
atelocollagen took up to 2-3 times as long (see Fig. 1A), raising concerns that dehydration might 
occur during atelocollagen solution gel formation. The addition of versican to collagen resulted 
in significantly enlarged fiber diameter and decreased porosity of the network as compared to 
collagen alone (Fig. 3A, B). The addition of aggrecan did not alter the diameter of collagen 
fibers or network porosity (Fig. 3C). The addition of decorin, but not lumican, decreased the 
diameter of collagen fibers slightly (Fig. 3D, F). Importantly, gelled samples were dehydrated as 
part of the preparation for SEM, causing the network to lose its native hydrated structure and 
the volume occupied by PGs due to negative charges to significantly decrease. The relative 
thickness of the fibers and porosity of the networks, however, are likely to persist. 
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Fig. 3. Matrix PGs have different effects on the structure of collagen networks. (A-E) 
Representative SEM images of telocollagen matrices with different PGs added. (A) Telocollagen 
(1.5 mg/ml) alone; (B-E) Telocollagen (Col; 1.5 mg/ml) with 0.1 mg/ml versican (Ver) (B), 0.1 
mg/ml aggrecan (Agg) (C), 0.05 mg/ml lumican (Lum) (D) and 0.1 mg/ml decorin (Dec) (E). (F, 
G) Quantification of fiber diameter and porosity using DiameterJ. Three independent 
experiments were carried out and one gel was generated for each condition in each experiment. 
5 SEM images were taken for each gel at random locations. When analyzed using FibrilTool, 5 
sections were cropped from each SEM image and a measurement was taken on each cropped 
figure. Each data point represents a single measurement. Scale bar = 1 µm. Data represent 
mean ± SD. ****P<0.0001. 

Matrix proteoglycans regulate cell-mediated collagen compaction and alignment 
differently 

The impact of PGs on cell-mediated collagen reorganization was studied using an in vitro model 
mimicking collagen organization and long-range force transmission at the tissue level [2]. In this 
assay, pairs of contractile cell spheroids (of either NIH 3T3 fibroblasts or primary liver portal 
fibroblasts) were placed atop collagen gel mixtures, and cell contractility-mediated collagen 
alignment and compaction were visualized using collagen second harmonic generation imaging 
(SHG) [31]. We mixed versican, aggrecan, decorin or lumican with collagen and allowed full 
gelation to occur, then placed fibroblast spheroids on the gels and imaged the collagen fibers 
after 24 hours of potential cell-mediated reorganization (Fig. 4A-C, blue). In this assay, 
increased SHG signal (blue) reflects increased local concentration and alignment of collagen. 
As was also shown in the in vitro turbidity assay, versican and aggrecan had distinct effects. 
The addition of versican, but not aggrecan, significantly increased cell-mediated collagen 
compaction (Fig. 4A-C, D), although there were no differences seen between any of the 
conditions in collagen organization in regions of the gels distant from cells. Interestingly, cell-
mediated compaction of collagen in the collagen-versican mixture was sensitive to pH at pH 
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values ranging from 7.20 to 7.40 (Fig. 4G). Cell-mediated compaction in the pure collagen plug, 
however, was not sensitive to pH in this range (Fig. 4F). There was no significant difference in 
anisotropy between any of the conditions, indicating that fibers in all conditions were equally 
parallel in the aligned area (Fig. 4E).  

 

Fig. 4. Large CS proteoglycans have differential effects on cell-mediated collagen 
reorganization. (A-C) Representative SHG images of aligned collagen fibers between pairs of 
NIH 3T3 spheroids. Blue represents the SHG signal from collagen; green is cell 
autofluorescence. (A) collagen (Col; 1.5 mg/ml) alone, (B) collagen-versican (Ver; 0.1 mg/ml) 
and (C) collagen-aggrecan (Agg; 0.1 mg/ml) plugs. (D-E) Intensity and anisotropy in the aligned 
collagen area for A-C. (F,G) Collagen compaction in pure collagen plugs (F) was not pH 
sensitive, but the impact of versican on collagen compaction was highly pH-dependent (G). 
Each data point in D-G represents collagen behavior between one pair of spheroids. At least 3 
independent experiments were carried out for each condition, with at least 3 pairs of plugs 
examined for each experiment. For the pH testing in F and G, 4-12 pairs of spheroids were 
analyzed for each pH. Spheroids were seeded approximately 500 µm apart. Scale bars = 100 
µm. Data represent mean ± SD. *P<0.05, **P<0.01, ***P˂0.001 and ****P<0.0001. 
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We used spheroids of portal fibroblasts to assess the impact of decorin and lumican. There was 
a significant decrease in collagen compaction with the addition of either SLRP (Fig. 5A-D, E). 
Interestingly, the inclusion of decorin decreased changes in anisotropy significantly, although 
anisotropy was similar under all other conditions (Fig. 5F). To rule out changes in cell 
contractility on different matrices as an explanation for the observed differences in collagen 
compaction, traction force microscopy was used to measure contractility directly 
(Supplementary Fig. 4). We found that the addition of PGs to collagen did not lead to altered cell 
contractility (although with the caveat that this was done in 2D), suggesting that PGs regulate 
collagen behaviors through either direct or indirect effects on the structure of the fibrous 
network.  

 

 
Fig. 5. SLRPs regulate cell-mediated collagen reorganization differently. (A-D) Representative 
SHG images of collagen fibers between portal fibroblast spheroids on (A) collagen (1.5 mg/ml) 
alone, (B) collagen-decorin (Dec; 0.1 mg/ml) and (C, D) collagen-lumican (Lum, 0.01 or 0.05 
mg/ml) plugs. (E, F) Quantification of cell-mediated collagen alignment with the addition of 
decorin and lumican, from A-D. Each data point in E and F represents collagen behavior 
between one pair of spheroids. At least 3 independent experiments were carried out for each 
condition, with at least 3 pairs of plugs in each experiment. Spheroids are seeded approximately 
500 µm apart. Scale bar = 100 µm. Data represent mean ± SD. **P<0.01, ***P˂0.001 and 
****P<0.0001.  

 

Matrix proteoglycans have different roles in altering engineered microtissue contraction 

We then used engineered microtissues (µTUGs) to determine whether the presence of PGs 
altered cell-mediated compaction of collagen matrices in 3D. Microtissues were generated by 
gelling collagen/cell mixtures in PDMS microwells with pairs of cantilevers; microtissue 
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contractility resulted in displacement of the cantilevers (Fig. 6A, B). Representative light 
microscopic images of microtissues (pure collagen with NIH 3T3 cells, Fig. 6A, B) showed the 
displacement of the cantilevers in the presence and absence of microtissues. SHG imaging 
showed that the collagen fibers in engineered microtissues are well organized and aligned (Fig. 
6C). Analysis of a large number of microtissues with and without PGs showed that the addition 
of versican significantly increased microtissue contraction while addition of aggrecan did not. 
For the SLRPs, decorin (0.1 mg/ml) and lumican (0.05 mg/ml) resulted in decreased contraction 
compared to collagen alone, while the addition of lumican at a lower concentration (0.01 mg/ml) 
had no effect. The addition of matrix PGs had no effect on fibroblast contractility tested by 2D 
traction force microscopy or on fibroblast proliferation culturing 24 h in contractile collagen gels 
(Supplementary Figs. 4, 5). Thus, we have shown that matrix PGs function as collagen 
regulators, with different effects on cell-mediated microtissue contraction. 

 

Fig. 6. Matrix PGs have different effects on the contraction of engineered collagen microtissues. 
(A, B) Representative light microscopy images of PDMS cantilever displacement in µTUGs. (C) 
SHG imaging of µTUGs made using collagen and NIH 3T3 fibroblasts. (D) Quantification of 
increased displacement observed with inclusion of 0.1 mg/ml versican (Ver) in 1.5 mg/ml 
collagen (Col) microtissue. (E) Quantification of the displacement observed in collagen 
microtissues with or without aggrecan (Agg; 0.1 mg/ml), decorin (Dec; 0.1 mg/ml), or lumican 
(Lum; 0.01 mg/ml or 0.05 mg/ml). N>30 microtissues per each platform, three independent 
experiments (platforms) per condition. Points represent mean per platform. Scale bar = 200 µm. 
Data represent mean ± SE. *P<0.05 and **P<0.01. 

 

Discussion 

Matrix PGs are important regulators of collagen fibrillogenesis and cell-mediated reorganization 
both in vitro and in vivo. We report here that different PGs, regardless of their structural 
similarity, have distinct effects on collagen behaviors. Versican, a widely-distributed hyalectan 
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PG, has particularly notable behaviors compared to other PGs. It accelerates collagen gelation 
and upregulates cell-mediated collagen compaction and contraction, while aggrecan, another 
large hyalectan PG, slows gelation and has no effect on cell-mediated collagen reorganization. 
SLRPs, which also belong to the group of matrix PGs, similarly have opposing effects on 
collagen behaviors when compared to versican. 

Previous in vitro spectrophotometric (fibrillogenesis) assays of collagen gelation have shown 
that decorin, lumican and biglycan (both the full protein and the core protein were tested) slow 
down fibrillogenesis, with a lower fibril formation plateau compared to collagen alone, and that 
their GAG side chains play a significant role in these effects [32][33][34]. Similarly, the use of 
atomic force microscopy to scan a mica disc coated with collagen-PG mixtures showed that 
adding the recombinant core proteins of decorin and lumican to collagen resulted in larger 
interfibrillar spaces and decreased fibril diameters [35]. We made similar observations using the 
in vitro spectrophotometric assay, although the differences in the kinetic curves for collagen with 
the addition of decorin are more pronounced (much flatter, with a lower plateau) than for those 
with the addition of lumican. One potential explanation for the difference between decorin and 
lumican is that decorin has 12 leucine rich repeats [36] and lumican has 11 [37], resulting in 
different geometries of their otherwise similar horseshoe-shaped, leucine-rich protein domains. 
These domains, which bind collagen at the C- and N-terminal domains [38], may have different 
effects on collagen spacing during fibrillogenesis. Decorin, for example, interacts with charged 
residues in the d band of the collagen a1 chain via the charged residues on its inner surface 
[10], and may do so differently than lumican. Another possible explanation relates to the source 
of SLRPs we used. The decorin used was a native PG isolated from bovine cartilage, and has 
one CS or DS side chain close to its N-terminus, while the lumican we used was recombinant, 
without the native GAG chains (in vivo, 4 KS chains on the leucine-rich domain) [39][40]. The 
negatively-charged side chain in decorin might cause physical repulsion that inhibits fibril lateral 
growth and thus, the different types, numbers and locations of side chains on SLRPs may cause 
distinct effects on the interactions between collagen and SLRPs which could affect 
fibrillogenesis.  

In contrast to SLRPs, large matrix PGs have not been well studied as modulators of collagen 
fibrillogenesis. This is particularly true for versican, which, unlike the more widely-studied 
aggrecan, is distributed throughout the body. Published work has focused primarily on studying 
the functional role of versican on cell and tissue phenotype in development and disease 
[41][42][43]. Interestingly, versican and aggrecan, in spite of significant structural similarities, 
have distinct effects in multiple assays, as reported here. We observed that versican 
accelerates collagen gelation while aggrecan had a modest negative effect. Our in vitro findings 
on aggrecan are consistent with recently reported in vivo data suggesting that the loss of 
aggrecan led to enhanced surface fibrillation in cartilage [44]. A typical aggrecan chain has 
approximately 100 GAG chains; physical repulsion caused by negatively-charged GAGs bound 
to collagen potentially limits the interactions between collagen fibrils, leading to slowed 
fibrillogenesis. Versican, in contrast to aggrecan, has only about 10-15 GAG chains, although 
they are all CS (which is longer and contains more negatively charges than KS) rather than a 
mixture of CS and KS. Our data suggest that the core protein of versican rather than its GAG 
chains is the main determinant of its effects on collagen. The versican core protein may bind 
collagen more tightly than the aggrecan core protein, or the GAG chains (potentially the KS 
chains found on aggrecan but not versican) may play a role in aggrecan interactions with 
collagen. CS has a complicated and controversial role in regulating fibrillogenesis. While some 
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published work [45][46] shows that CS chains increase the rate of fibrillogenesis, other work 
suggests the opposite [47]. Although our findings suggest that CS slightly accelerates collagen 
gelation, we also find that the concentration of the CS chains has an impact. 

SEM imaging of collagen matrices provided detailed visualized and quantitative data on the 
impact of matrix PGs on the structure of the collagen network, but in a dehydrated state. It has 
been reported that the presence of versican, aggrecan or the SLRPs (mainly decorin) 
decreases collagen fibril width [26]. Our data show that versican and aggrecan, which are both 
large CS PGs, have different effects on the structure of the collagen network. The results 
highlight the potentially unique role of versican on collagen fibrils and the network. Evidence 
addressing the regulation of SLRPs on the structure of the collagen network is contradictory. 
Raspanti et al. [48] showed that the presence of decorin in a 1:5 ratio with collagen promoted 
collagen fusion and increased collagen fibril diameter. Reese et al., however, found that the 
inclusion of decorin into collagen matrices at a ratio of 1:40 resulted in a denser network with 
thinner fibrils [34]. Our data show that addition of decorin at a ratio of 1:15 with collagen yields 
thinner fibrils in a looser network, suggesting a potential dose dependence that needs to be 
further investigated. For lumican, Rada et al. found that its addition into the collagen network in 
vitro resulted in thinner collagen fibrils, as visualized by transmission electron microscopy [33], 
while in vivo studies by Chakravarti et al. showed that the diameter of collagen in corneal 
stroma was increased in lumican-deficient mice [49]. Our data suggest that lumican has minimal 
effect on collagen fiber diameter, but there are no other SEM data published for comparison. 

Contractile cells can generate force, which acts on ECM fibers and mediates ECM organization 
[2][50]; structural and mechanical stimuli from the ECM can also feedback on cells and impact 
cell behavior through conversion into biochemical signals. This reciprocal crosstalk between 
cells and the ECM is important in regulating cell function and tissue morphogenesis. The 
collagen plug assay enables the study of both cellular and matrix factors regulating cell-
mediated long-range force transmission, which is one manifestation of this crosstalk. This assay 
is of particular interest because it may serve as a model of in vivo pathology such as the 
bridging fibrosis typical of advanced liver fibrosis [51]. SLRPs including decorin and lumican 
decrease collagen fiber compaction, while versican (but not aggrecan), increase collagen 
condensation. The finding (using traction force microscopy) that fibroblast contractility is not 
altered when PGs are added to collagen in 2D suggests that the behavior of the collagen 
network is altered by specific interactions between PGs and collagen fibers and not by 
differences in cell behaviors. The arch-like shape of decorin can occupy the space around 
collagen to limit parallel fibril assembly via binding with collagen α1 chain [34], which is 
consistent with our observation that the addition of decorin blunted the increase in anisotropy of 
collagen fibers in response to cell contractility. Decorin, as a structural spacer, would make it 
harder for contractile forces to stretch fibers closer in a linear fashion. 

Higher level tissue contraction is also mediated by collagen organization. Engineered 
microtissue gauges represent a recently developed technique to investigate both cell 
contractility and ECM contraction in 3D. This technique has been used to study the organization 
of matrix proteins (including collagen and fibronectin) in response to applied force or cell 
contractility [52]. It has been shown previously that the presence of decorin in collagen gels or 
culture media inhibits collagen gel contraction, which is consistent with our results [53][54]. 
Another report suggested that the inclusion of lumican at very small amount (approximately 0.4 
ng/ml) increased fibroblast-mediated collagen gel contraction; in contrast, we found that 10 
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ng/ml (consistent with the concentration in native tissues [55]) had no effect on contraction, 
while the inclusion of lumican at 50 ng/ml decreased microtissue contraction. Understanding the 
potentially dose-dependent effect of lumican on collagen behavior will require further 
investigation. Versican has been shown to upregulate fibroblast-mediated collagen gel 
contraction [56], which is the same behavior we find in our microtissues. However, aggrecan 
has no effect on microtissue contraction. As matrix PGs have no effects on cell contractility in 
2D and cell proliferation after 24h culturing in contractile collagen gels (shown in Supplementary 
Figs. 3, 4), we conclude that the distinct roles of PGs in altering tissue contraction are due 
mainly to their different effects on the structure and organization of the collagen network. 

In sum, we observe distinct effects of different matrix PGs, even from the same subfamily, on 
collagen fibrillogenesis and the organization of collagen fibrous networks. Interestingly, versican 
appears to enhance fibrillogenesis while aggrecan and the SLRPs have the opposite effect. This 
suggests that the precisely-controlled deposition and the relative amounts of different PGs 
expressed in normal and disease states, including during development and in fibrosis and 
cancer, may have an important impact on collagen organization and on cell-ECM cross talk. 
Specific matrix PGs may be potential therapeutic targets; by controlling and altering their 
expression, it might be possible to control collagen behavior, including cell-generated collagen 
fiber reorganization, tissue contraction, and long-range cell-cell communication.  
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Experimental procedures 

Reagents, antibodies and cells 

Bovine type I atelocollagen (lacking N- and C-terminal telopeptide regions) was from Advanced 
Biomatrix (San Diego, CA, USA) and rat tail type I telocollagen (with intact telopeptide regions) 
was from Corning (Corning, NY, USA). Versican was isolated from bovine liver as described 
below. Aggrecan was isolated from bovine cartilage [57]. Decorin from bovine articular cartilage 
was from Sigma (St. Louis, MO, USA) and human recombinant lumican protein (lacking GAG 
chains) was from R&D Systems (Minneapolis, MN, USA). CS sodium salt isolated from bovine 
cartilage and ChABC from Proteus vulgaris were from Sigma. Sylgard 184 PDMS and its curing 
agent were from Dow Corning (Midland, MI, USA). Trichloro silane, isopropanol, pluronic F127 
and Medium 199 were purchased from Sigma; sodium bicarbonate from Corning; and 
CellPURE™ HEPES from Fisher Scientific (Hampton, NH, USA). Protease complete tablets 
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were from Roche (Roche, Basel, Switzerland). 40% acrylamide and 2% bisacrylamide stock 
solutions were purchased from Bio-Rad (Bio-Rad Laboratories, Hercules, CA, USA). 
Tetramethylethylene diamine (TEMED), ammonium persulfate (APS) and a solution of 0.2 µm 
fluorescent beads was from Fisher Scientific. Coverslip activation reagents were 
aminopropyltrimethoxysilane (Sigma) and glutaraldehyde (Sigma). PAA gel surface activation 
reagents were ethyl(dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide 
(NHS) solution (Fisher Scientific). Collagenase from Clostridium histolyticum was purchased 
from Sigma. 

Anti-versican antibody 12C5 was from DSHB (Developmental Studies Hybridoma Bank, Iowa 
city, IA, USA), anti-aggrecan antibody BC-3 was from Thermo Scientific and anti-decorin 
antibody ab175404 was from Sigma. 

NIH 3T3 fibroblasts (CRL-1658™) were obtained from the ATCC® (Manassas, VA, USA) and 
portal fibroblasts were isolated from rat liver as described [58]. Both types of fibroblasts were 
cultured in DMEM (Dulbecco’s Modification of Eagle’s Medium with 4.5 g/L glucose and L-
glutamine without sodium pyruvate (Corning)) with 10% fetal bovine serum (Gemini Bio-
Products, West Sacramento, CA, USA) supplemented with 1% penicillin/streptomycin (Corning) 
and 0.5% fungizone (Life Technologies, Carlsbad, CA, USA) at 37°C in a humidified 
atmosphere with 5% CO2/balance air.  

Dynamic light scattering 

A dynamic light scattering nano-sizer (Zetasizer, Malvern, Westborough, MA, USA) was used to 
quantify the size of the CS sodium salt from Sigma, which was isolated from bovine cartilage. 
CS was diluted to 0.01 mg/ml with PBS and 0.5 ml CS solution was loaded into a glass cuvette. 
The cuvette was inserted into the instrument and the number of measurements was set to 3.    

Versican isolation 

Versican was isolated from bovine liver by a modification of a published protocol [59]. Briefly, 
bovine liver was mechanically disrupted and treated with extraction buffer containing 4 M 
guanidine hydrochloride, 100 mM sodium acetate and protease complete tablets (Roche, Basel, 
Switzerland) (pH=7.2) at 4°C for 72 h. Tissue residue was removed by centrifugation for 1 h at 
16,000×g. Cesium chloride was added to the supernatant solution until the density reached 1.59 
g/ml and then spun at 100,000×g for 24 h. 1 ml fractions were taken carefully from the top to the 
bottom and the density of each fraction was measured. Fractions above a density of 1.54 g/ml 
were dialyzed against 1 M sodium chloride for 24 h and against diH2O for 24 h. Samples were 
re-concentrated using a 100k centrifugal filter (Millipore Sigma, Burlington, MA, USA). The 
composition of isolated samples and the presence of versican were confirmed by dot blotting 
using anti-versican antibody 12C5, anti-aggrecan antibody BC-3 and anti-decorin antibody 
ab175404 (Supplementary Fig.2). 

In vitro spectrometric (turbidity) assay 

Type I bovine atelocollagen was diluted to a final concentration of 1.5 mg/ml. All solutions were 
kept on ice before gelation. Briefly, 187.5 µL collagen solution (3.2 mg/ml) was gently mixed 
with 40 µL 10× PBS, 4 µL 1N NaOH, and 168.5 µL deionized water (diH2O). In some cases, 
type I rat tail telocollagen was used and prepared similarly. For some experiments, versican, 
aggrecan and decorin were added to the collagen solution to a final concentration of 0.1 mg/ml; 
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lumican was added to 0.01 and 0.05 mg/ml. CS side chains were tested by adding CS at 0.01, 
0.04, 0.07 and 0.1 mg/ml. The versican core protein was obtained by treating the intact protein 
with 250 mU chondroitinase ABC (ChABC) per mg substrate (in 50 mM sodium acetate, 
pH=8.0) at 37°C overnight, followed by dialysis against distilled water to remove the small CS 
chains and confirmation of the absence of CS chains using the Blyscan assay (Bicolor, UK). 
The pH of all collagen solutions was carefully adjusted to 7.4; solutions were incubated on ice 
for exactly 1 h before pipetting into 96-well plates. The absorbance of the solution was read at 
400 nm by a plate reader (Infinite 200 Pro, Tecan Life Sciences) at 37°C until gelation was 
complete (when the absorbance curve reached its plateau) [26]. For all gelation assay 
experiments, all conditions compared in a given graph were tested at the same time. 

Scanning electron microscopy 

Rat tail type I telocollagen was diluted to a final concentration of 1.5 mg/ml and supplemented 
with different PGs as descried above for the spectrometric (turbidity) assay. It was polymerized 
on 8 mm coverslips for 25 min. The bovine atelocollagen gel sample was made similarly. The 
collagen gels were fixed with 2.5% glutaraldehyde in cacodylate buffer overnight at 4°C. The 
samples were further processed by the Cell and Developmental Biology Microscopy Core 
(University of Pennsylvania, Philadelphia, PA, USA). Briefly, samples were dehydrated with a 
graded series of ethanol washes (50, 75, 90, 95, 100%) and incubated with 50% 
hexamethyldisilazane (HDMS) for 30 min. Samples were then incubated with 100% HDMS 
three times and air dried before mounting on stubs. Samples were imaged on a FEI Quanta 250 
FEG scanning electron microscope (Thermo Scientific). Bovine atelocollagen was prepared and 
studied in the same manner. 5 SEM images were taken per each gel at 5 random locations with 
10,000 × magnitude. 5 randomly-cropped figures (384×256 pixels) from each SEM image were 
analyzed using DiameterJ, an imageJ plugin, which was used to quantify fiber diameter and 
network porosity (porosity is the area of pores over the total area of the figure) [60]. 

Collagen plug assay 

Rat tail type I collagen was diluted to a final concentration of 1.5 mg/ml with 10× PBS and diH2O 
as for the gelation assay. Versican, aggrecan or decorin were added to the collagen solution to 
concentrations of 0.1 mg/ml; lumican was added to 0.01 and 0.05 mg/ml. The pH of the collagen 
solution was adjusted to 7.4 and incubated on ice for 1 h before pipetting into a microwell plate 
with a glass-bottomed cutout (14 mm Microwell, MatTek, Ashland, MA). The plate was sealed 
with parafilm and kept in an incubator (5% CO2/balance air) overnight at 37°C. Fibroblast 
spheroids were formed by the hanging droplet method [61]. Briefly, cells were trypsinized and 
suspended in DMEM at 25,000 cells/ml (for NIH 3T3 cells) and 200,000 cells/ml (for portal 
fibroblasts). 20 µL droplets were placed on the underside of a petri dish lid. To avoid drying, 10 
ml DMEM was added to the dish. After inversion of the lid, the cell droplets were cultured for 5 
days (for NIH 3T3) or 3 days (for portal fibroblasts). At the time of seeding, 1 ml media was 
added on top of each collagen gel. Spheroids were captured by a 20 µL pipette and carefully 
placed on the gel in pairs approximately 500 µm apart. After spheroids were cultured on gels for 
24 h, gels were fixed with 10% formalin for 10 min. SHG imaging using a Leica SP5 spectral 
imaging confocal/dual-photon microscope was used to image collagen fiber reorganization 
between each pair of spheroids [62]. Aligned collagen fibers were analyzed using Image J. The 
pixel intensity of each aligned region was quantified and the FibrilTool plug-in [63] was used to 
define the anisotropy of alignment in selected bridging areas. 
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Engineered microtissue assay 

Micro-tissue gauges (µTUGs) were fabricated as per a published protocol. Briefly, the mold was 
rinsed with isopropanol, plasma coated and salinized in a vacuum chamber overnight. PDMS 
was mixed with its curing agent (10:1) for 5 min and degassed. PDMS was pipetted on top of 
the stamps and again degassed. PDMS was also placed on 35 mm petri dishes to cover the 
bottom and incubated at 65°C for 30 min. After degassing, the stamps were inverted and placed 
in the center of dishes. The dishes were then filled with PDMS and incubated at 65°C overnight. 
After incubation, stamps were removed and the µTUG platforms were rinsed with ethanol and 
isopropanol. 1.5 mg/ml collagen solution was prepared as in Table 1. Versican, aggrecan and 
decorin were added to reach a final concentration of 0.1 mg/ml while lumican was used at 0.01 
and 0.05 mg/ml. The pH was adjusted to 7.4 and the collagen solution was incubated on ice. 
The platforms were sterilized with UV light for 15 min and rinsed with 70% ethanol, then rinsed 
with 0.2% pluronic F127 and centrifuged at 500×g until there were no bubbles in the wells. After 
rinsing the platforms twice with PBS, 1 ml collagen-PG solution was added to each and 
degassed for 3 min. The platforms were then centrifuged at 700×g for 2 min and stored at 4°C 
for avoiding gelation. NIH 3T3 fibroblasts were harvested from culture plates and 150,000 cells 
were mixed with 0.5 ml collagen solution before gently pipetting to mix, then added to each 
platform. The platforms were spun at 206×g for 2 min, then turned 90 degrees and spun for 
another 2 min. Extra solution was carefully aspirated and the platforms were placed inverted in 
a centrifuge and spun at 37×g for 15-20 s. 1 ml PBS was added to the lid and the platforms 
were incubated at 37°C for 20 min until gelation. 1.5 ml culture media was added to each 
platform and the platforms were incubated at 37°C for 24 h, until microtissues had formed. 
Images were taken using a light microscope (Leica DM IRM) before and after removal of 
microtissues by pipetting and rinsing with PBS. Cantilever displacements were measured by 
ImageJ and used to determine microtissue contraction. 

diH2O 1067 µL 
M199 (10×) 200 µL 
HEPES (250mM) 80 µL 
NaHCO3 (5% w/v) 14 µL 
NaOH (1M) 24 µL 
Collagen (4.88 mg/ml) 615 µL 

Table 1. Components of collagen gels in engineered microtissue assay 

Traction force microscopy 

Traction force microscopy was used to study the effect of matrix PGs on cell contractility. The 
protocol was modified from previous publications [64][65]. Briefly, 7.9 kPa polyacrylamide gels 
(Table 2) were made by mixing 40% acrylamide and 2% bisacrylamide stock solutions with 
tetramethylethylene diamine (TEMED) and 1% ammonium persulfate (APS). This gel solution 
was mixed with 0.2 µm fluorescent bead solution (diluted at 1:1000) and then covered with a 25 
mm glass coverslip pre-activated with 0.5% aminopropyltrimethoxysilane and 0.5% 
glutaraldehyde. After polymerization for 30 min, the gel surface was activated with 
ethyl(dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) solution 
(17.5mg/ml NHS and 10 mg/ml EDC in milliQ water) and coated with collagen mixed with 
different matrix PGs and either cellular or plasma fibronectin. 3T3 Fibroblasts were seeded at 
20,000 cells per gel and incubated overnight. Live cell imaging was applied using EVOS AUTO2 
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(Thermo Invitrogen) and single cell images were taken before and after removing cells with 10% 
sodium dodecyl sulfate. The average traction force was calculated by measuring the 
displacement of fluorescent beads (ImageJ plugin available at 
https://sites.google.com/site/qingzongtseng/tfm) [66]. 

Stiffness 
(Pa) 

40% 
acrylamide 
(µL) 

2% 
bisacrylamide 
(µL) 

10×PBS 
(µL) 

diH2O 
(µL) 

TEMED 
(µL) 

1% 
APS 
(µL) 

Total volume 
(µL) 

7900 187.5 35 100 576.5 1 100 1000 

Table 2. The protocol for making 7.9 kPa polyacrylamide gel 

Fibroblast proliferation in contractile collagen gels 

The same numbers of 3T3 fibroblasts used in the µTUG assays were cultured in contractile 
collagen gels for 24h and cell proliferation was measured. Briefly, after preparing collagen 
solutions with different PGs, NIH 3T3 fibroblasts were mixed with gel solution and incubated at 
37°C for 20 min. Then, gels were carefully detached from each well and cultured for 24 h. The 
contractile collagen gels were digested with 10 mg/ml collagenase for 15 min; the cell numbers 
were counted and compared among each condition. 

Statistical analysis 

All results were analyzed by GraphPad Prism 7 (San Diego, CA, USA) using unpaired t test or 
one-way ANOVA. P values were determined by Tukey’s multiple comparison test, in which 
*P<0.05 was considered to be statistically significant. 
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Supplementary figures 
 

 

Supplementary Fig. 1. The size distribution of chondroitin sulfate tested by dynamic light 
scattering. CS sodium salt isolated from bovine cartilage (Sigma) has a distribution of sizes 
ranging from 10-150 nm. 

 

 

Supplementary Fig. 2. Purity of versican preparation. (A) Dot blotting column fractions and 
staining with versican antibody 12C5 confirmed the presence of versican. (B, C) Dot blots also 
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demonstrated minor contamination of the versican sample with aggrecan (B) and decorin 
(approximately 0.37 mg/ml decorin in 4.68 mg/ml extracted sample) (C). 

 

 

Supplementary Fig. 3. The structure of the telo- and atelo-collagen networks with SEM. Atelo-
collagen lacks the telo-peptide regions which are the most common sites of covalent crosslinks, 
and therefore not surprisingly formed a looser network. It also shows thicker fibers compared to 
telo-collagen. (A, B) SEM imaging of collagen matrices: (A) 1.5 mg/ml telocollagen; (B) 1.5 
mg/ml atelocollagen. (C, D) Quantification of fiber diameter and porosity analyzed using 
DiameterJ. The data show thicker fibers and a looser network for atelocollagen. Three 
independent experiments were carried out for each condition. 5 images were taken for each gel 
and measurements taken on 5 random locations for each image. Scale bar = 1µm. Data 
represent mean ± SD. ****P<0.0001.  
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Supplementary Fig. 4. Traction force microscopy of NIH 3T3 cells on matrices of various 
composition. 7.9 kPa polyacrylamide gels were coated with 0.1 mg/ml collagen (Col) mixed with 
plasma fibronectin (pFn), cellular fibronectin (cFn), aggrecan (Agg), versican (Ver) and lumican 
(Lum) at 0.1mg/ml. The inclusion of PGs did not alter cellular contractility. In contrast, there was 
a significant increase with both variants of fibronectin, which are included for comparison. Three 
independent experiments were carried out for each condition. Data represent mean ± SD. 
**P<0.01 and ****P<0.0001. 

 

 

Supplementary Fig. 5. 3T3 fibroblasts were cultured in contractile collagen gels with the same 
proteoglycan manipulations used in the µTUG assay (lumican was tested at 0.05 mg/ml); see 
Fig. 6. After culture for 24 h, collagen gels were digested with collagenase and the total cell 
number was counted. We confirmed that the matrix PGs we studied had no influence on 
proliferation of fibroblasts cultured in collagen gels when compared with collagen alone over 24 
h. Three independent experiments were carried out for each condition. 
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