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1 Abstract 1 

Computational models which predict the neurophysiological response from experimental stimuli 2 

have played an important role in human neuroimaging. One type of computational model, the 3 

population receptive field (pRF), has been used to describe cortical responses at the millimeter 4 

scale using functional magnetic resonance imaging (fMRI) and electrocorticography (ECoG). 5 

However, pRF models are not widely used for non-invasive electromagnetic field measurements 6 

(EEG/MEG), because individual sensors pool responses originating from several centimeter of 7 

cortex, containing neural populations with widely varying spatial tuning. Here, we introduce a 8 

forward-modeling approach in which pRFs estimated from fMRI data are used to predict MEG 9 

sensor responses. Subjects viewed contrast-reversing bar stimuli sweeping across the visual 10 

field in separate fMRI and MEG sessions. Individual subject’s pRFs were modeled on the 11 

cortical surface at the millimeter scale using the fMRI data. We then predicted cortical time 12 

series and projected these predictions to MEG sensors using a biophysical MEG forward model, 13 

accounting for the pooling across cortex. We compared the predicted MEG responses to 14 

observed visually evoked steady-state responses measured in the MEG session. We found that 15 

pRF parameters estimated by fMRI could explain a substantial fraction of the variance in 16 

steady-state MEG sensor responses (up to 60% in individual sensors). Control analyses in 17 

which we artificially perturbed either pRF size or pRF position reduced MEG prediction 18 

accuracy, indicating that MEG data are sensitive to pRF properties derived from fMRI. Our 19 

model provides a quantitative approach to link fMRI and MEG measurements, thereby enabling 20 

advances in our understanding of spatiotemporal dynamics in human visual field maps.  21 
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2 Introduction 22 

  23 

A fundamental goal in human neuroscience is to understand how sensory inputs are 24 

transformed and represented in the nervous system. One approach to reach this goal is to build 25 

encoding models. This approach uses a quantitative description of the operations that relate 26 

input to output, e.g., a visual image to fMRI blood-oxygen-level-dependent (BOLD) responses, 27 

providing a test of our understanding of how visual inputs are encoded in the visual pathways 28 

(Naselaris, Kay, Nishimoto, & Gallant, 2011; Holdgraf et al., 2017). Encoding models have been 29 

successful in predicting neural responses in human visual cortex. For example, visual field 30 

preferences of neural populations were predicted from fMRI BOLD responses (Dumoulin & 31 

Wandell, 2008; Kay, Winawer, Mezer, & Wandell, 2013) and intracranial field potentials, or 32 

electrocorticography (ECoG) (Yoshor, Bosking, Ghose, & Maunsell, 2007; Harvey, Vansteensel, 33 

et al., 2013; Winawer et al., 2013). In addition to providing a functional description of neural 34 

processes, encoding models can be used to compare data across different measurement 35 

techniques. For example, the fMRI BOLD signal measures vascular responses on the time 36 

scale of hundreds of milliseconds to seconds, whereas MEG measures magnetic flux at the 37 

millisecond scale; the data are not directly comparable but by applying a common encoding 38 

model with stimulus-referred parameters, such as position or size of the receptive field, the 39 

measurements can be compared. In this way, there is greater potential to integrate recordings 40 

with a high spatial resolution and recordings with a high temporal resolution, in order to study 41 

the visual system with greater precision. 42 

However, encoding models from stimulus to measurement are relatively uncommon for 43 

non-invasive electromagnetic field measurements, like magnetoencephalography (MEG) or 44 

electroencephalography (EEG). While both MEG and EEG are widely used and provide 45 

excellent time-resolved measurements of brain activity across the whole brain, the pooling area 46 

of a single EEG or MEG sensor spans large parts of the cortex (on the order of several 47 

centimeters). Since this pooling area is much coarser than the spatial scale at which stimulus-48 

selectivity tends to vary in visual cortex (on the order of millimeters for stimulus position, and 49 

sub-millimeter for orientation, spatial frequency, and other properties), building an encoding 50 

model to fit data from an MEG or EEG sensor is not straightforward, and may not be easily 51 

interpretable. For example, a population receptive field (pRF) for a single MEG sensor is likely 52 

to reflect neural signals from many different parts of the visual field and from multiple visual 53 

areas. The other way around, estimating local pRFs on the cortex from MEG sensor responses 54 

would require a computational model that transforms magnetic flux from hundreds of sensors to 55 
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thousands of cortical locations. This inverse problem is ill-posed (under-constrained) and hence 56 

does not have a unique solution. 57 

Here, we propose a novel, pRF modeling approach to predict MEG sensor responses 58 

from the stimulus. To do so, we extend the pRF model developed by Dumoulin and Wandell 59 

(2008), which has been a well-established approach to study the spatial properties of the human 60 

visual system in both healthy and diseased subjects (Wandell & Winawer, 2015; Dumoulin & 61 

Knapen, 2018). Our modeling approach can be divided into two steps. First, it estimates local 62 

pRFs on the cortex using fMRI, and predicts the neural response for a particular visual stimulus 63 

on the cortical surface. Second, the model projects these predicted responses to MEG sensors, 64 

using a biophysical model of the head. We compared predicted MEG sensor responses to 65 

observed MEG responses while subjects viewed a visual mapping stimulus. Using this modeling 66 

approach, we show that MEG responses to a visual stimulus can be predicted using pRF 67 

models estimated from fMRI.  68 
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3 Methods 69 

3.1 Subjects 70 

Ten subjects (5 female), ages 20-45 years (M = 29.7 years, SD = 7.3 years) with normal or 71 

correct-to-normal vision, participated in the study. MRI and MEG sessions were conducted on 72 

separate days. All scanning sessions took place at New York University. Subjects provided 73 

written informed consent. The experimental protocol was in compliance with the safety 74 

guidelines for MRI and MEG research and was approved by the University Committee on 75 

Activities involving Human Subjects at New York University, USA. 76 

3.2 Stimuli 77 

Stimuli were generated using MATLAB (MathWorks, MA, USA) and PsychToolbox (Brainard, 78 

1997; Pelli, 1997; Kleiner et al., 2007) on a Macintosh computer. In both MRI and MEG 79 

sessions, subjects were presented with contrast-reversing checkerboard stimuli (10 Hz), 80 

windowed within a bar aperture that swept across the visual field in discrete steps. The area 81 

outside the stimulus was set to a uniform gray, equal in luminance to the mean of the black and 82 

white checkerboards. Both MRI and MEG stimuli were confined to a circular aperture 10° in 83 

radius, contrast-reversal rate (10 Hz), bar width (2.5°, i.e., 1/4th of the full-field stimulus radius, 84 

10°), but differed in presentation length and sequence (see Experimental design). Details on the 85 

stimulus display and experimental design for the MRI and MEG sessions are separately 86 

described in the following paragraphs. 87 

3.2.1 Stimulus display - MRI 88 

All subject’s structural and functional data were acquired at the Center for Brain Imaging at New 89 

York University. We used a Siemens Allegra 3T head-only scanner for subjects S1 and S2, and 90 

a Siemens Prisma 3T full-body scanner for subjects S3-S10 after the NYU Center for Brain 91 

Imaging acquired a new scanner. Visual display setup was therefore also different for subjects 92 

S1 and S2, compared to subjects S3-S10. 93 

Siemens Allegra 3T: For subjects S1 and S2, stimuli were presented with an LCD 94 

projector (Eiki LC_XG250, CA, US) with a screen resolution of 1024 ⨉ 768 pixels and refresh 95 

rate of 60 Hz. Stimuli were displayed onto a translucent back-projection screen in the bore of 96 

the magnet. Subjects viewed the screen through an angled mirror mounted onto the coil of the 97 
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scanner at a distance of ~58 cm. The stimulus was confined to a circular aperture with a 98 

diameter of 20°. The display was calibrated and gamma-corrected using a linearized lookup 99 

table. 100 

Siemens Prisma 3T: For subjects S3-S10, stimuli were presented with a DPL LED 101 

PROPixx projector (VPixx, QC, Canada) with a screen resolution of 1920 ⨉ 1080 pixels and 102 

refresh rate of 60 Hz. Images were displayed on a translucent back-projection screen in the 103 

bore of the magnet. Subjects viewed the screen through an angled mirror mounted onto the coil 104 

of the scanner at a distance of ~83.5 cm. To match the stimuli to previous subjects’ scan 105 

sessions, we again confined the stimulus to a circular aperture with a diameter of 20°. The 106 

display was calibrated and gamma-corrected using a linearized lookup table. 107 

3.2.2 Stimulus display - MEG 108 

Images were presented using an InFocus LP850 projector (Texas Instruments, Warren, NJ) with 109 

a resolution of 1024 x 768 pixels and refresh rate of 60 Hz. Images were projected via a mirror 110 

onto a front-projection translucent screen at a distance of approximately 42 cm from the 111 

subject’s eyes. The display was calibrated with the use of a LS-100 luminance meter (Konica 112 

Minolta, Singapore) and gamma-corrected using a linearized lookup table. The stimuli were 113 

confined to a circular aperture with a diameter of 20°. 114 

3.3 Experimental design 115 

3.3.1 Experimental design - fMRI 116 

Subjects participated in one 1.5-hr MRI session containing 6 functional runs, where each run 117 

was 6.1 minutes. For a given run, the bar apertures show contrast-reversing checkerboard 118 

stimuli. The checkerboard contrast pattern oscillated with a 5 Hz square wave, meaning 10 119 

reversals per second. The bar aperture swept across the visual field in discrete steps (1.5s per 120 

bar position, 31.5s per bar sweep, see Figure 1A) in 8 different bar configurations (4 different 121 

orientations: 0°, 45°, 90°, 135°, with two step directions for each orientation). Two step 122 

directions are required for fMRI to avoid biased pRF parameter estimates due to the lag of the 123 

hemodynamic response function. After the first, third, fifth and seventh bar sweep, there was a 124 

22.5s mean luminance or ‘blank’ period. In addition, each run started and ended with a 12s 125 

blank period. A fixation dot was presented in the center of the screen throughout the run, 126 
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switching between red and green colors (32 switches per run, average of 7.2s). Subjects were 127 

instructed to fixate on the dot throughout the run and report a switch in color with a button press. 128 

 129 

 130 

Figure 1. Retinotopic mapping stimuli for fMRI and MEG experiments. (A) FMRI stimuli were used to 131 

map pRFs on the cortical surface. Contrast-reversing (100% contrast) checkerboard bars swept in 132 

discrete steps across the visual field (diameter = 20°, 1 bar step per TR, TR=1.5 s), interleaved with blank 133 

periods (mean luminance). One run consisted of 8 bar sweeps along cardinal and off-cardinal axes in 134 

both directions. Subjects were instructed to fixate in the center of the screen and press a button every 135 

time the fixation dot changed color. Fixation dot is enlarged in this figure for visibility purposes. (B) Stimuli 136 

presented in the MEG experiment are used in the forward model to create predictions (hence ‘test’ 137 

stimuli). Stimuli were similar to fMRI (identical contrast, size, and contrast-reversal rate), except for its 138 

sequence and duration. One run contained 5 bar sweeps (3 cardinal, 2 off-cardinal) with shorter bar step 139 

durations (1.3 s). Stimulus sweeps were interleaved with blank and blink periods. During blink periods, 140 

subjects were encouraged to make eye blinks to limit blinks during blank and stimulus periods. Blink 141 

periods were excluded in both data analysis and model predictions. 142 

3.3.2 Experimental design - MEG 143 

All subjects participated in one 2-hr MEG session containing 19 runs, where each run was 3 144 

minutes with short breaks of ~1 minute between runs. The breaks were terminated when the 145 

subject indicted by button press that they were ready for the next run. For a given run, the bar 146 

apertures showing the contrast-reversing checkerboard stimuli (10 Hz reversal rate) swept 147 

across the visual field in discrete steps (1.3s per bar position, 28.6 s per bar sweep) in 5 148 

different bar configurations for a given run (4 different orientations: 0°, 45°, 90°, 135° with two 149 

step directions for 0° and one step direction for 45°, 90° and 135°) (see Figure 1B). MEG runs 150 
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did not require bar sweeps in both directions for each orientation, because the measured 151 

magnetic flux does not contain a time-lag. For the same reason, a randomized sequence might 152 

be effective for MEG measurements. Nonetheless, we chose to preserve many stimulus 153 

properties matched to the fMRI experiment, while also shortening the experiment to allow for as 154 

many repeated runs per subject as possible. As a compromise between shortening and fidelity 155 

to the fMRI design, we reduced the number of sweeps from 8 to 5, keeping bidirectional sweeps 156 

for one orientation only. 157 

Before every bar sweep and after the last bar sweep, there was a 2.6-s ‘blink’ period 158 

indicated by a mean luminance display with a small black square in the center of the screen and 159 

then a 3.9-s mean luminance or ‘blank’ period. A fixation dot was presented in the center of the 160 

screen throughout the run, switching between red and green colors (32 switches per run, 161 

average of 5.6s). 162 

Subjects were instructed to fixate on the dot throughout the run and report a switch in 163 

color (every few seconds) with a button press. Subjects were encouraged to blink during the 164 

blink period and minimize their blinking during the rest of the run. Blink periods were excluded 165 

from analyses. 166 

3.4 Data acquisition 167 

3.4.1 Data acquisition - MRI 168 

Siemens Allegra 3T: Functional data were collected with a Nova Medical phased array, 8-169 

channel receive surface coil (NMSC072). BOLD fMRI data were acquired using a T2*-sensitive 170 

echo planar imaging (EPI) pulse sequence (1500 ms TR, 30 ms TE, and 72° flip angle; 2.5 mm3 171 

isotropic voxels, with 24 slices). The slice prescription was placed approximately perpendicular 172 

to the calcarine sulcus and covered most of the occipital lobe, and the posterior part of both the 173 

temporal and parietal lobes. An additional field map was collected in the middle of the MRI 174 

session to correct functional data for B0 field inhomogeneity during offline image reconstruction 175 

using an in-house Center for Brain Imaging algorithm. 176 

Structural data were collected in the same (subject S2) or separate MRI session (subject 177 

S1) with a Nova Medical head transmit/receive coil (NM011). Data consisted of T1 weighted 178 

whole brain anatomical images using a 3D rapid gradient echo sequence (MPRAGE, 1 mm3 179 

isotropic voxels). Additionally, a T1 weighted “inplane” image was collected with the same coil 180 

and slice prescription as the functional scans to aid alignment of the functional images to the 181 
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high-resolution T1 weighted anatomical images. This scan had a resolution of 1.25 ⨉ 1.25 mm 182 

and a slice thickness of 2.5 mm. 183 

Siemens Prisma 3T: Both structural and functional data were collected with a 64-184 

channel phased array receive coil. BOLD fMRI data were acquired using a T2*-sensitive echo 185 

planar imaging pulse sequence (1-s TR; 30 ms echo time; 75° flip angle; 2 mm3 isotropic voxels, 186 

multiband acceleration 6). Two additional scans were collected with reversed phase-encoded 187 

blips, resulting in spatial distortions in opposite directions. These scans were used to estimate 188 

the spatial distortions in the EPI runs and used to correct the EPI runs during preprocessing. 189 

Structural data were collected in the same session consisting of T1-weighted whole brain 190 

anatomical images (1 mm3 isotropic voxels) using a 3D rapid gradient echo sequence 191 

(MPRAGE). No additional inplane image was needed for alignment for sessions in the Prisma 192 

scanner, because the spatial resolution of the EPIs and the whole-brain coverage enabled direct 193 

alignment between the functional images the whole brain T1w anatomical image. 194 

3.4.2 Data acquisition - MEG 195 

MEG data were acquired continuously with a whole head Yokogawa MEG system (Kanazawa 196 

Institute of Technology, Japan) containing 157 axial gradiometer sensors to measure brain 197 

activity and 3 orthogonally oriented reference magnetometers located in the dewar but facing 198 

away from the brain, used to measure environmental noise. The magnetic fields were sampled 199 

at 1000 Hz and were actively filtered during acquisition between 1 Hz (high pass) and 500 Hz 200 

(low pass). 201 

Before recording, each subject’s head shape was digitized with a handheld FastSCAN 202 

laser scanner (Polhemus, VT, USA). Digital markers were placed on the forehead, nasion, left 203 

and right tragus and peri-auricular points. To calibrate the digital head shape with the MEG 204 

sensor space, five electrodes were placed on the identical location of five digital markers (3 205 

forehead and left/right peri-auricular points). Before and after the main MEG experiment, 206 

separate recordings were made of the marker locations within the MEG dewar. 207 

3.5 Data analyses 208 

3.5.1 Reproducible computation and code sharing 209 

Nearly all analyses were conducted in MATLAB (MathWorks, MA, USA), except for 210 

preprocessing steps converting and preprocessing functional scans from the Prisma MRI 211 

scanner using Python. The preprocessing analysis code, MEG forward model and data are 212 
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publicly available via the Open Science Framework upon publication (URL: https://osf.io/c3hxj/). 213 

The code will include scripts to reproduce all figures from the minimally pre-processed data. 214 

Each data figure has a single script named makeFigureX (where ‘X’ is the figure number). 215 

 216 

3.5.2 MRI Preprocessing 217 

Structural data (both MRI scanners): Structural T1-weighted scans were auto-segmented with 218 

FreeSurfer’s recon-all algorithm (Dale, Fischl, & Sereno, 1999; Fischl, Sereno, & Dale, 1999; 219 

Fischl & Dale, 2000; Fischl, Liu, & Dale, 2001), available at http://surfer.nmr.mgh.harvard.edu/. 220 

For three subjects, small errors in white/gray matter voxel segmentation around the occipital 221 

pole were manually corrected. Visually responsive regions of interest (ROIs) were defined on 222 

the inflated cortical surface of individual subjects using the probabilistic atlas of visual areas by 223 

Wang et al. (2015) resulting in boundaries for areas V1-V3, hV4, V3A/B, VO1/2, LO1/2, TO1/2, 224 

PHC1/2, IPS0-5, SPL1, and FEF. 225 

Siemens Allegra 3T functional data: Using the Vistasoft toolbox available at 226 

https://github.com/vistalab/Vistasoft, functional scans were re-oriented to a standardized NIfTI 227 

orientation (RIA to LAS), slice-time corrected by resampling the time series in each slice within 228 

the 1.5s-volume to the center slice, and motion corrected by aligning all volumes of all scans to 229 

the first volume of the first scan using 3D rigid body alignment (6 DOF). The first 8 volumes of 230 

each functional scan were removed to avoid unstable magnetization of the scanner. Functional 231 

scans were aligned to the T1-weighted anatomical scan using a coarse, followed by a fine, 3D 232 

rigid body alignment with the additional inplane scan (Vistasoft’s alignvolumedata_auto). 233 

Siemens Prisma 3T functional data: Functional scans were converted from dicom into 234 

BIDS format (Gorgolewski et al., 2016) using NYU Center for Brain Imaging in-house version of 235 

NIPY’s heudiconv, available at http://as.nyu.edu/cbi/resources/Software.html. The following in 236 

house preprocessing workflow was implemented with the nipype toolbox (Gorgolewski et al., 237 

2011), and is available via GitHub 238 

(https://github.com/WinawerLab/MRI_tools/blob/master/preprocessing/prisma_preproc.py). 239 

Using the FSL toolbox (Smith et al., 2004), all volumes from all EPIs were realigned to the 240 

single-band reference image of the first EPI scan. This single band reference image was then 241 

registered to the additional spatial distortion scan with the same phase encoding direction. The 242 

two additional spatial distortion scans with opposite phase-encoding direction were then used to 243 

estimate the susceptibility-induced warp field using a method similar to (Andersson, Skare, & 244 

Ashburner, 2003). Motion correction (3D rigid body, 6 DOF), registration to the spatial distortion 245 
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scan and unwarping were then applied in a single step to each volume of each EPI. The 246 

unwarped EPIs were aligned to the high-resolution whole-brain T1 using FreeSurfer’s bbregister 247 

(6 DOF, rigid). 248 

Siemens Allegra & Prisma 3T functional data: Time series from EPIs were resampled 249 

to 1 mm3 isotropic voxels, i.e., the resolution of T1-w anatomy, within the gray matter voxels 250 

using trilinear interpolation. This step allows for easy comparison of functional to anatomical 251 

data using FreeSurfer’s tools. Time series within the gray matter voxels were converted into 252 

percent signal change by dividing the signal by its mean. Baseline drifts were removed from 253 

each run with high-pass temporal filtering using 3 discrete cosine terms (0 cycles or ‘DC’; 0.5 254 

cycle and 1 cycle). At last, all 6 runs were averaged given that subjects saw the same stimuli 255 

within a dataset. 256 

3.5.3 MEG Preprocessing 257 

The FieldTrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011) was used to read the raw 258 

data files. For all subsequent MEG analyses, custom code was written in MATLAB. With use of 259 

the triggers from the stimulus presentation computer, MEG data were first divided into 1300 ms 260 

epochs (i.e., matching the duration of 1 bar step) for every MEG sensor. For all subjects, 261 

epoching resulted in an initial 2660 epochs per sensor: 22 consecutive epochs per bar sweep, 262 

with 2 consecutive epochs for blink and 3 consecutive epochs for blank periods before each 263 

sweep, and after the last bar sweep of every run, 5 bar sweep directions, for 19 runs. To avoid 264 

the transient response associated with a change in the stimulus (either a change in bar position 265 

or from a blank period to a stimulus period), we then shortened each epoch to 1100 ms, 266 

skipping the first 150 ms and last 50 ms of each 1300-ms epoch. We choose to remove the first 267 

150 ms to skip one full cycle of the 10 Hz response (100 ms) plus 50 ms to approximate the 268 

time for the neural response to reach the cortex. The last 50 ms were removed so that the total 269 

epoch length was an integer number of cycles at the steady-state frequency (10 Hz). 270 

Outlier epochs were removed in the following way. First, epoched data were high-pass 271 

filtered with a 1 Hz Butterworth filter (with a high-pass amplitude of 3 dB and a passband 272 

frequency of 0.1 Hz and amplitude of 60 dB). We then computed the variance within every 273 

1100-ms epochs (across time points), for each MEG sensor. We labeled an epoch as ‘bad’ if its 274 

variance was 20 times smaller or 20 times larger than the median variance across all epochs 275 

and sensors. If more than 20% of the epochs were labeled bad for a given sensor, then we 276 

removed the entire sensor from analysis. If more than 20% of sensors contained the same ‘bad’ 277 

epoch, we removed the entire epoch from analysis (i.e., for all sensors). These criteria succeed 278 
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in identifying known outliers (5 sensors that had long-term hardware problems as well as 279 

sensor/epoch combinations in which the responses became temporarily saturated due to 280 

external noise), while at the same time avoiding the removal of unnecessarily large amounts of 281 

data. If a given epoch was labeled ‘bad’ for some sensors, but was not removed for all sensors, 282 

the data of the removed sensors were replaced by the time series spatially interpolated across 283 

nearby sensors (weighting sensors inversely with the distance). We removed on average ~21% 284 

of each dataset, including all epochs from the 5 sensors with long-term hardware problems. We 285 

tested the effects of changing the variance thresholds for removing individual sensor/epoch 286 

combinations, and the effects of changing the criteria for removing entire epochs (all sensors) or 287 

entire sensors (all epochs) in an example subject with intermediate data quality (S5). Using the 288 

same settings as for all other subjects resulted in 13.9% of data being labeled as ‘bad’, including 289 

6 sensors. Adjusting the lower variance bound did not affect the percentage of data labeled as 290 

‘bad’. For the upper variance bound, a more liberal (10x) or more conservative (40x) threshold 291 

either increased by 7.6% or decreased by 1.6% percentage of ‘bad’ labeled data respectively. 292 

Increasing the percentage to mark entire sensors or epochs as ‘bad’ did not affect the number 293 

of ‘bad’ sensors and a less than 1% decrease in ‘bad’ epochs. Decreasing the percentage from 294 

20 to 10% (so more liberal) marked an additional 2 sensors and ~3% of epochs as ‘bad’. 295 

Importantly, none of these changes in outlier criteria caused a substantial change in model 296 

performance nor affected our results. 297 

  We used the Noisepool-PCA algorithm to increase the signal-to-noise ratio (SNR) of our 298 

MEG time-series (Kupers et al., 2018). This algorithm was adapted from an fMRI algorithm 299 

called GLMdenoise (Kay, Rokem, Winawer, Dougherty, & Wandell, 2013). In short, for each 300 

subject the algorithm defines a noise pool: a subset of sensors that contains little to no 10 Hz 301 

visually evoked steady-state response. Time series within each epoch and sensor of the 302 

noisepool were then filtered to remove all 10 Hz (and harmonics) components. Using principal 303 

components analysis (PCA), we defined global noise regressors from the filtered noise pool 304 

time series. For each subject, the first 10 PCs were used to create 10 new denoised datasets: 305 

the first denoised dataset had the PC 1 projected out of the data in each sensor, epoch by 306 

epoch. The second denoised dataset had PC1 and PC2 projected out, etc. For each denoised 307 

dataset, we calculated the median R2 across bootstrapped epochs. The optimal number of PCs 308 

to project out was the smallest number of PCs that resulted in a denoised data with a median R2 309 

within 5% of the maximum possible median R2 of 10 datasets. This resulted in removing 6 PCs 310 

on average across subjects, ranging between 2-8 PCs. At last, we reshaped the denoised MEG 311 

data into a 4D array: t (time points) ⨉ k (epochs) ⨉ m (sensors) ⨉ r (runs). 312 
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3.5.4 MEG data quality check 313 

We calculated two parameters to check the quality of the measured MEG data: 10 Hz 314 

coherence and split-half reliability of the 10 Hz steady-state visually evoked responses. The 315 

coherence of the 10 Hz steady-state visually evoked fields (SSVEFs) provides an estimate of 316 

the signal-to-noise ratio of the steady-state response within stimulus periods. The 10 Hz SSVEF 317 

coherence was defined by dividing the average 10 Hz amplitude across epochs of all runs by 318 

the average amplitudes of 10 Hz and neighboring frequencies (i.e., 9 to 11 Hz) across epochs of 319 

all runs. 320 

The second metric was the split-half reliability of the 10 Hz steady-state amplitudes, 321 

providing an estimate of how reliable the steady-state responses are across runs. We computed 322 

the split-half reliability by dividing the 19 repeated runs into two groups. After taking the sensor-323 

wise average time series across runs for each of the two data splits, we applied the FFT to the 324 

two run averages and extracted the 10 Hz amplitude per epoch. The 10 Hz amplitudes for the 325 

first data half were then pairwise correlated to the 10 Hz amplitudes for the other data half 326 

(Pearson’s ⍴). This split-half reliability procedure is repeated 1000 times and summarized as the 327 

mean correlation across repetitions, resulting in one split-half reliability sensor map per subject. 328 

3.5.5 MRI-MEG head model and alignment 329 

The head model, also referred to as the ‘lead field’ or ‘gain matrix’, describes the contribution of 330 

cortical locations (or ‘sources’) to the activity at each individual MEG sensor. To generate this 331 

head model, we align the individual’s anatomy and the MEG helmet in a common coordinate 332 

space using the Brainstorm toolbox (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011). 333 

Specifically, we defined the nasion and left/right peri-auricular points in the T1-weighted 334 

image of each individual subject. We used Brainstorm’s automated alignment algorithm to align 335 

the fiducials marked in the T1-weighted image, the recorded locations of electrodes attached to 336 

the subject's face while lying in the MEG scanner, and points in the 3D head shape. Small 337 

manual translational adjustments were applied to the rotation matrix if necessary. After 338 

alignment, we computed the individual subject’s head model using Brainstorm’s implementation 339 

of the overlapping spheres algorithm (Huang, Mosher, & Leahy, 1999) using the subject’s 340 

FreeSurfer pial surface (~300,000 vertices per hemisphere). The overlapping spheres algorithm 341 

fits a different sphere to the subject’s skull for each sensor. We choose the overlapping spheres 342 

algorithm for its low computational cost while having an accuracy comparable to the more 343 

biologically accurate but computationally demanding Boundary Element Model (BEM) (Kybic et 344 
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al., 2005; Gramfort, Papadopoulo, Olivi, & Clerc, 2010). We did not downsample the number of 345 

vertices as is often a standard implementation in MEG/EEG software packages, as we do not 346 

need to reduce computational cost for our forward model (in contrast to inverse modeling), 347 

enabling us to avoid interpolation errors introduced by downsampling of the pRF parameters 348 

from a high to a low-resolution cortical surface. We constrained our head model to one 349 

perpendicular dipole per vertex, resulting in a matrix of FreeSurfer vertices (~300,000, 350 

depending on the subject) by 157 sensors. 351 

3.6 A stimulus-to-sensor model for MEG responses 352 

We developed a modelling framework that learns cortical pRFs from fMRI data, and then uses a 353 

biophysics model (gain matrix) from anatomical MRI co-registered to MEG data. The model 354 

takes as input a visual stimulus and predicts as output the MEG SSVEF amplitude at each 355 

sensor and each stimulus position. The voxel-wise pRF parameters, fit to fMRI data, are 356 

projected to the cortical surface and used to predict neural population responses to the MEG 357 

stimuli. These predicted values are in the form of one number per voxel per bar position. 358 

Because both our stimulus and our pRFs are defined as non-negative, the predicted cortical 359 

responses are all also non-negative. These predictions are then projected to the MEG sensor 360 

space using the gain matrix from the overlapping-spheres head model (Huang et al., 1999). The 361 

values projected to the sensors are signed because the gain matrix is signed. These predicted 362 

MEG data are compared to the measured phase-referenced steady-state MEG response using 363 

a linear regression, fitting a reference phase 𝜃ref and a gain parameter 𝛽 per sensor to maximize 364 

the coefficient of determination (R2) (Figure 2, training model). The optimal reference phases 365 

were then cross-validated across data halves to recompute the phase-referenced 10 Hz steady-366 

state responses and averaged across halves. The corresponding gain factors were averaged 367 

across halves and used to scale the initial predicted sensor responses. A final goodness of fit of 368 

the average predicted MEG responses was computed on the average measured MEG 369 

responses (Figure 2, test model). We explain each of these steps in detail below.370 
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 371 

Figure 2. MEG forward modeling approach. The model starts with preprocessed fMRI and MEG data 372 
and their corresponding stimuli as inputs. Train model. Step 1: FMRI stimuli are binarized into apertures 373 
and used to solve pRFs within each cortical location and projected to the cortical surface. Step 2: 374 
Estimated pRFs are multiplied with MEG stimulus apertures to predict time series on the cortical surface. 375 
Step 3: Predicted cortical responses are multiplied with the gain matrix from the MEG forward model to 376 
get predicted MEG responses. The gain matrix describes the contribution of each source to magnetic 377 
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fields measured in MEG sensors and is computed by the overlapping spheres algorithm (1Huang et al., 378 
(1999)). Predicted responses are fitted to measured MEG responses, using a split-half cross-validation 379 
procedure. Step 4.1: MEG training runs are averaged and its time series are transformed to the Fourier 380 
domain. Step 4.2: 10 Hz amplitudes and phases are extracted per epoch and sensor. Step 4.3: 10 Hz 381 
phase and amplitudes are combined into phase-referenced 10 Hz SSVEF amplitudes by fitting the 382 
predicted MEG responses from pRFs to measured MEG responses. This model fit uses two free 383 
parameters (gain 𝛽 and reference phase 𝜃ref) and is optimized by finding the reference phase where the 384 
prediction explains most variance in the data. Test model. Both free parameters are cross-validated: the 385 
optimal reference phases from training are used to compute phase-referenced 10 Hz SSVEF responses 386 
of the test runs as in Step 4. The gain parameters are summarized by the weighted average across the 387 
two training iterations and used to scale the predicted MEG responses. At last, measured MEG 388 
responses are averaged across split-halves and compared to predicted MEG responses using the 389 
coefficient of determination (R2). 390 

3.6.1 Step 1.1: Solve pRFs with fMRI 391 

Using the Vistasoft toolbox (https://github.com/vistalab/Vistasoft), we solved linear, circularly 392 

symmetric 2D Gaussian pRF models on the functional MRI data, as previously described in 393 

Dumoulin and Wandell (2008). In brief, pRF models were solved by a two-stage coarse-to-fine 394 

optimization procedure on the gray matter voxels, using the binarized MRI stimulus apertures 395 

and Vistasoft’s built-in ‘difference between two gammas’ hemodynamic response function. The 396 

first stage of the optimization procedure started with a coarse grid-fit. The best fitting parameters 397 

for each voxel from the coarse grid-fit were used as the seed for the fine grid-fit. This fitting 398 

procedure resulted in an estimated preferred pRF size (σ, 1 SD of 2D Gaussian), center location 399 

(x, y), gain (or scaling factor), and variance explained for every voxel. The pRF parameters 400 

computed at gray matter voxels are interpolated to surface vertices. 401 

3.6.2 Step 1.2: Smooth pRF parameters across gray matter voxels 402 

The pRF parameters are interpolated from the gray matter voxels (i.e., voxels comprising the 403 

‘cortical ribbon’) to the surface vertices using a nearest neighbor interpolation algorithm. This 404 

choice was made because of technical constraints within the Vistasoft toolbox. One could 405 

alternatively change the order of operations and first interpolate the time series to the surface 406 

and then solve the pRF parameters. The results would likely be similar in that we used nearest 407 

neighbor interpolation to project pRF solutions from cortical voxels to surface nodes. To reduce 408 

sensitivity to noise, we smooth pRF parameters across the cortical surface by calculating a 409 

weighted average over a normalized truncated gaussian kernel (Andrade et al., 2001). This 410 

procedure applies surface-oriented smoothing using the geodesic rather than Euclidean 411 

distance, respecting the topology of the cortical surface. The Gaussian kernel (approximately, a 412 

FWHM of 3 mm at 1 cubic mm of voxel resolution) is created at every gray matter vertex. 413 

Neighboring vertices in which estimated pRF model fit did not explain any variance of the data 414 
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(i.e., a variance explained of 0%) were excluded. We smoothed the position (x, y) and size (σ) 415 

parameters as well as a proxy for the pRF gain (scale factor, or “beta weight” in the Vistasoft 416 

code). Although the pRF model is linear, it is not linear with respect to its parameters, and 417 

smoothing of the parameters can have unwanted effects, particularly in the amplitude of the 418 

response (controlled by the pRF gain). This is due in part to the fact that the software 419 

implementation defines the pRFs as Gaussians with unit height at the pRF center, such that the 420 

pRF volume within the stimulus aperture depends on the size of the pRF and the degree of 421 

overlap between the pRF and the stimulus aperture. To ensure that the smoothing procedure 422 

resulted in smoothing of the time series amplitudes, we used the pRF models to predict the 423 

time-course amplitude (using the fitted beta parameter), and then smoothed the maxima of 424 

these predicted time-course amplitudes over the surface. 425 

3.6.3 Step 2: Predict neural responses to MEG stimuli from pRF 426 

parameters 427 

To predict the steady-state responses in MEG sensors, we first created a predicted response 428 

from estimated pRF parameters on the cortical vertices. Vertices were constrained by those 429 

whose pRF parameters explained more than 10% of the variance in the MRI data. The 10% 430 

threshold was chosen to exclude vertices that are likely to reflect noise and are not visually 431 

responsive (or incoherent with the stimulus). Moreover, we restricted the vertices to only those 432 

whose pRF centers fell within our stimulus aperture (10° of visual angle), and those which fell 433 

inside the visual ROIs from Wang et al.’s probabilistic atlas (2015). For all other vertices, the 434 

predicted response was set to 0. For each vertex, a 2D Gaussian receptive field was 435 

constructed using its preferred center and size. The height of this receptive field was scaled by 436 

the vertex’s pRF gain. A dot product of these receptive fields and the binarized MEG stimulus 437 

resulted in the predicted surface response (one value per aperture position). As mentioned 438 

earlier, blink periods were excluded. Blank periods were predicted as zero responses, assuming 439 

that blank screen epochs elicit a negligible 10 Hz steady-state visually evoked response with a 440 

random phase. Vertices with a maximum predicted response larger than 10 times the median of 441 

all vertex maximum responses were considered outliers and excluded. This criterion was 442 

implemented ad hoc, after investigating the predicted time series of individual subjects and 443 

finding several pRF time series with unrealistically large amplitudes (>100% signal change). 444 

This threshold had no effect on two datasets and removed a very small amount of data for the 445 

other eight datasets (less than 0.3% of vertices with a predicted cortical response per subject). 446 
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3.6.4 Step 3: Predict MEG sensor responses from neural responses 447 

The matrix containing the predicted pRF responses on the cortical surface S was then multiplied 448 

with the gain matrix from the MEG head model G, resulting in predicted MEG sensor responses 449 

Ŷ (Equation 1). We compared these predicted MEG sensor responses to the measured MEG 450 

responses. 451 

 452 

Equation 1:     Ŷ = 𝐺 ⋅ 𝑆 453 

 454 

Where Ŷ (k epochs ⨉ m sensors) are the predicted pRF responses for MEG sensors, G 455 

(n vertices ⨉ m sensors) is the head model, and S (k epochs ⨉ n vertices) is the predicted pRF 456 

response on the cortical surface. 457 

3.6.5 Step 4: Fitting the model to MEG training data 458 

The observed MEG responses were computed as the phase-referenced 10 Hz steady-state 459 

visually evoked fields (SSVEFs), using cross-validation. Phase referencing the amplitude is 460 

done when the expected oscillations can be either positive or negative, which can occur 461 

because the gain matrix created by the head model is signed (i.e., contains both positive and 462 

negative numbers). Moreover, the reference phase itself may be of interest, as it can capture 463 

differences in timing between sensors driven by different regions of cortex, with different 464 

response properties. 465 

For each subject, epoched MEG data were split into two halves: a training half 466 

containing the 10 odd runs and a test half containing the 9 even runs. We then computed the 467 

sensor-wise average time series within each epoch across training runs and transformed the 468 

average to the Fourier domain by applying the FFT to the time series data (Figure 4, Step 4.1). 469 

We extracted both amplitude and phase information from the spectral MEG data at 10 Hz (i.e., 470 

the contrast-reversal rate of the stimulus) to compute a phase-referenced steady-state response 471 

(Figure 4, Step 4.2). To calculate this response, we describe the 10 Hz Fourier component of a 472 

given epoch as a vector with amplitude length and phase angle (i.e., cosine of the phase). We 473 

then scale the 10 Hz amplitude by the difference in angle between the measured phase and a 474 

reference phase 𝜃ref resulting in the phase-referenced steady-state responses Y, for every 475 

sensor m and epoch k (Figure 4, Step 4.3). The reference phase 𝜃ref was obtained separately 476 

for every sensor by choosing the phase leading to the highest variance explained in the MEG 477 

time series after iterating over all 100 possible reference phases. The variance explained was 478 
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computed by a linear regression of the model predictions to the phase referenced time series 479 

with one free parameter 𝛽 (i.e., a scale factor or gain). This scale factor brings the predicted 480 

time series into units of femto-Tesla. Fits were optimized by maximizing the coefficient of 481 

determination (R2) between model and data (i.e., the residuals sum of squares divided by the 482 

total sum of squares). After iterating over all possible reference phases, we choose the one 483 

whose MEG time series was best matched to the predicted MEG responses by linear regression 484 

constrained to positive scale factors (largest R2). (We constrain to positive scale factors for 485 

consistency, because for every reference phase, there is another phase 180º apart which 486 

makes the identical predictions up to a sign flip). 487 

3.6.6 Test model: Comparing predicted to measured MEG responses 488 

The model predictions were tested using a split-half cross-validation approach. Once the 489 

optimal reference phases were selected for every sensor for the training half, they were applied 490 

to compute the phase-referenced MEG 10 Hz steady-state response in the test half (see 491 

Equation 2). This was repeated for each of the two split halves. 492 

 493 

Equation 2:    𝑌𝑚,𝑘 = 𝐴𝑚,𝑘 (𝑡𝑒𝑠𝑡 𝑠𝑒𝑡)  ⋅ 𝑐𝑜𝑠(𝜃𝑚,𝑘 (𝑡𝑒𝑠𝑡 𝑠𝑒𝑡)  − 𝜃𝑟𝑒𝑓,𝑚 (𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡)) 494 

 495 

Where Ym,k is the phase-referenced MEG 10 Hz steady-state response of the test runs, 496 

for every epoch k and sensor m. Am,k is the average 10 Hz amplitude across test runs, for every 497 

epoch k and sensor m. θm,k is the average 10 Hz phase across all test runs, for every epoch k 498 

and sensor m. θref,m  is the reference phase for every sensor m, computed by fitting the training 499 

data to the predicted responses. 500 

Training both data halves resulted in two sets of 𝛽 parameters corresponding to the 501 

model fit with the optimal reference phase. Because the predicted cortical responses were 502 

identical for both data halves, we scaled the predicted MEG responses with the weighted 503 

average of the two 𝛽 parameters, resulting in one predicted time series per sensor. We used a 504 

weighted average because the two halves had an unequal number of runs. 505 

The entire cross-validated phase-referencing procedure resulted in two arrays: one with 506 

phase-referenced SSVEF responses (k epochs ⨉ 2 groups of runs ⨉ m sensors) and one with 507 

scaled predicted MEG responses (k epochs ⨉ m sensors). Measured MEG data were averaged 508 

across the two run groups, resulting in a matrix of k epochs ⨉ m sensors. To summarize the 509 
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goodness of fit across the entire data set, we computed the coefficient of determination (R2) for 510 

the average predicted MEG responses to the average measured MEG responses. 511 

3.6.7 Sensitivity of prediction to rotating pRF centers 512 

To evaluate how sensitive our model predictions are to pRF parameters estimated by fMRI, we 513 

systematically altered the fMRI pRF parameters. We estimate the sensitivity to pRF center 514 

position by systematically rotating the pRF centers around the fovea. We do so by first 515 

calculating the polar angle for a given vertex using the x and y pRF parameters, and then 516 

adding an angle rotation from –180° to 180° in one of 8 equal steps of 45°. For every rotation, 517 

we fit and test the model in the same way as we did for the data without rotation, including fitting 518 

the reference phase and scale factor per sensor and evaluating by cross-validation. 519 

3.6.8 Sensitivity of prediction to scaling pRF sizes 520 

We estimate the sensitivity of our model to pRF size by systematically scaling the originally 521 

estimated pRF size (σ). We scaled original pRF sizes from 5 times smaller to 10 times larger, in 522 

19 log-spaced steps, where a scale factor of 1 is the pRF size estimated with fMRI. Similar to 523 

the rotation manipulation, we re-computed the predicted MEG responses and optimal reference-524 

phases after applying a particular scale factor. 525 

3.6.9 Sensor selection for summarizing results pRF position or size 526 

manipulations 527 

To evaluate the effects of rotating pRF centers and scaling pRF size, we average the variance 528 

explained across a subset of sensors for each subject. We use two approaches for sensor 529 

selection to check for robustness of our results. One approach is to use model accuracy. To 530 

select the subset of sensors, we take the union of the 10 sensors with highest variance 531 

explained by the model in each of the rotation steps or each scaling step. This results in a 532 

minimum of 10 sensors per subject, but typically more because the top 10 sensors are not the 533 

same across the pRF manipulations. This selection method is unbiased toward any particular 534 

rotation angle or scale factor and is agnostic about the spatial location of the sensors. By 535 

selecting the top 10 sensors, we avoid including large amounts of noise from visually 536 

unresponsive sensors. We chose 10 out of consistency with prior work (Kupers et al., 2018) and 537 

because it approximately matched our visual inspection of the number of responsive sensors. 538 

We also checked the effects of selecting the top 5 or the top 15. 539 
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 The second approach is data-driven and does not use the pRF model. For this 540 

approach, we select the 10 sensors with the highest split-half reliability of the 10 Hz SSVEF 541 

signal. This results in exactly 10 sensors per subject. 542 

Data were summarized for individuals by selecting sensors using one of the two 543 

approaches described above. This resulted in a matrix of variance explained (number of rotation 544 

angles or scale factors by selected sensors). We then take the mean and standard error of the 545 

mean across selected sensors for each rotation angle or scale factor as our summary metric. 546 

3.7 Group average model fits 547 

A challenge in group analysis of MEG or EEG is that the same sensor in two subjects do not 548 

sample from the identical parts of the brain. An advantage of a forward model of the MEG signal 549 

is that group average data can be computed in the model space, fit separately for each subject. 550 

The sensor-wise average prediction across subjects accounts for the differences in cortical 551 

sampling between subjects, because each prediction is based on that subject’s fMRI data, head 552 

model, and MEG training data. The average prediction can then be compared to the average 553 

group data. We refer to this method as average-then-goodness-of-fit. This method provides a 554 

compact summary of the results in sensor space. However, the interpretation is not 555 

straightforward since the same sensors do not pool from the same brain regions across 556 

subjects. 557 

We computed the average-then-goodness-of-fit group result by taking each subject’s 558 

cross-validated predicted MEG responses (thus scaled by the individual subject’s gain factors, 559 

𝛽) and observed MEG responses (phase-referenced using a reference phase 𝜃ref optimized to 560 

the individual subject’s predicted MEG responses). We then average the predicted MEG 561 

responses across subjects and separately average the observed MEG responses across 562 

subjects, resulting in two matrices: both k epochs by m sensors. We compare the goodness of 563 

fit using the coefficient of determination. In the case where we altered the pRF parameters, for 564 

each rotation or scaling iteration, we bootstrapped the average measured and predicted MEG 565 

responses across subjects 10,000 times. We compute the coefficient of determination between 566 

the two averages for each bootstrap, resulting in a variance explained distribution for each 567 

sensor. From this distribution, we extracted the mean variance explained and the 14 th and 86th 568 

percentile for upper and lower bounds of the 68%-confidence intervals. 569 

We also implemented a second group average which reverses the order of operations. 570 

Rather than computing the model accuracy of the averaged data, we compute the average 571 

model accuracy across individual subjects. We refer to this method of computing the group 572 
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average as goodness-of-fit-then-average. In contrast to the first method, the sensors used to 573 

compute model accuracy for this method differ across subjects. Again, we bootstrapped across 574 

subjects 10,000 times and computed the average and 68%-confidence intervals across 575 

bootstraps. 576 

3.7.1 Model predictions from group average pRF parameter maps  577 

The forward model could also be implemented without collecting subject specific fMRI, for 578 

example with a retinotopy template or average group data from a different study. For 579 

comparison, we derived average pRF parameter maps from an aggregate 3T retinotopy dataset 580 

with 44 subjects (Himmelberg, Kurzawski, et al. (2021)). Data were collected at the same NYU 581 

scanner facility using the 3T Prisma MRI scanner with approximately the same field-of-view as 582 

the MEG experiment, but with different stimuli. Subjects in this aggregate dataset viewed 6 runs 583 

of colorful sweeping bar stimuli, similar to those used for the Human Connectome Project 7T 584 

retinotopy dataset (Benson et al., 2018). PRF models were solved within individual subjects 585 

using the same Vistasoft software. The x, y, and σ parameter maps of each individual subject 586 

were interpolated onto a template cortical surface (FreeSurfer’s fsaverage) and then averaged 587 

across subjects. These group-average parameter maps were then interpolated onto each of our 588 

10 original individual subject’s mid-gray cortical surface using Neuropythy’s interpolate with the 589 

default nearest-neighbor method (https://github.com/noahbenson/neuropythy) (Benson & 590 

Winawer, 2018). Both interpolation steps–the 44 individuals mapped onto fsaverage to create 591 

the template, and the application of the template to the individuals in the MEG experiment–used 592 

nearest-neighbor interpolation. 593 

While it is reasonable to assume that the x, y, and σ pRF parameters will be similar for the 594 

large retinotopy dataset and for the MEG experiments, the gain may differ substantially. For 595 

example, the fMRI retinotopy dataset was measured with colorful static stimuli containing 596 

objects and textures, whereas the stimuli for the MEG experiment were achromatic moving 597 

checkerboards. Different visual field maps may be more responsive to one of these stimulus 598 

types than the other. For this reason, we did not compute pRF scale factors from the NYU 599 

retinotopy database with 44 subjects. For simplicity, we assumed that the response gain was 600 

uniform within a map (each ROI in the Wang et al. (2015) atlas) but could differ between maps. 601 

To derive a gain for each map, we averaged the response gain across the 10 subjects with fMRI 602 

data collected for this paper with drifting checkerboards. We took the median response from 603 

voxels within a map for each subject, defining the response as the maximum predicted percent 604 

signal change in the predicted cortical time series. This resulted in a matrix of median values, 605 
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with a size of 10 subjects by 25 ROIs. Median values were then averaged across subjects per 606 

ROI. To apply the template in our forward model, all vertices within a given ROI were given the 607 

corresponding average gain value. This cortical map was used to scale the maximum predicted 608 

cortical pRF responses reconstructed from the average x, y, and σ pRF parameter maps from 609 

the aggregate NYU 3T retinotopy dataset. Once the average pRFs were reconstructed on an 610 

individual subject’s cortical surface, all following analysis steps of our forward model were 611 

identical. 612 

4 Results 613 

In separate MRI and MEG sessions, subjects viewed high contrast retinotopic bar stimuli 614 

traversing across the visual field, where the checkerboards inside the aperture reversed 615 

contrast 10 times per second. Data from the MRI session were used to reconstruct population 616 

receptive fields (pRFs) on the cortical surface for each individual subject, using the modeling 617 

approach described by Dumoulin and Wandell (2008). These pRFs on the cortical surface were 618 

the building blocks of our forward modeling approach, as they were used to predict the 619 

observed MEG response. Below we describe the observed steady-state components within the 620 

MEG data and report the MEG forward model performance using the pRFs estimated from the 621 

MRI session. Finally, we show the effect of artificially altering the initially estimated pRFs on our 622 

MEG model. 623 

4.1 Retinotopic stimuli produce reliable steady-state responses in posterior 624 

MEG sensors 625 

MEG data from individual subjects were divided into 1.1-s non-overlapping time bins (epochs), 626 

for every sensor and run. These epochs contained either a contrast-reversing bar at a particular 627 

location in the visual field (‘stimulus periods’), a zero-luminance screen (‘blank periods’), or a 628 

square stimulus prompting subjects to rest and make excessive eye blinks (‘blink periods’). The 629 

latter were removed from all following analyses. Both stimulus and blank periods were averaged 630 

across multiple runs, before transforming the MEG time series to the Fourier domain. 631 

We found a large steady-state response at 10 Hz (the contrast-reversal rate of the 632 

stimuli) and multiples of 10 Hz (i.e., harmonics) during stimulus periods compared to blank 633 

(Figure 3A). These 10 Hz steady-state visually evoked fields (SSVEFs) were largest in 634 

posterior MEG sensors. To estimate how robust 10 Hz steady-state responses were across 635 
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identical stimulus runs, we computed two data metrics of the 10 Hz amplitudes: its coherence 636 

and split-half reliability. 637 

 638 

Figure 3. Steady-state visually evoked amplitudes from the MEG experiment. (A) Example spectra 639 

from two posterior MEG sensors (location indicated by dot on schematic head) and two subjects (S1 and 640 

S9). Fourier transformed stimulus periods (black line) show a large peak at the contrast reversal rate (10 641 

Hz, i.e., the steady-state visually evoked field or ‘SSVEF’) and multiples of 10 Hz (harmonics) compared 642 

to blank periods (grey line). Note that these amplitudes contain only positive values and are not yet 643 

referenced by the corresponding phases. (B) MEG sensor topography of 10 Hz SSVEF coherence (10 Hz 644 

amplitude divided by mean of 9 to 11 Hz amplitude) for subjects S1 and S9 and sensor-wise average 645 

across all subjects (N=10). (C) Split-half reliability of the 10 Hz SSVEF amplitudes for subjects S1 and S9 646 

and sensor-wise average across all subjects (N=10). 647 

 648 

The coherence metric provides a signal-to-noise ratio of the steady-state response 649 

within stimulus periods for every MEG sensor, without regard to the particular stimuli giving rise 650 
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to the response. This metric is computed by dividing the average 10 Hz amplitude of all stimulus 651 

periods by the sum of the amplitudes from 9 to 11 Hz. We found that the coherence of the 652 

steady-state response is largest in posterior MEG sensors (Figure 3B), in line with the 653 

expectation that posterior sensors are located over the visual cortex and maximally driven by 654 

the stimulus contrast-reversals. 655 

The specific 10 Hz coherence sensor topography varied across subjects. For example, 656 

subject S1 (Figure 3B, left panel) showed extended regions of high 10 Hz coherence in lateral 657 

and anterior MEG sensors, whereas subject S9 did not (Figure 3B, middle panel). When 658 

sensor-wise averaging 10 Hz coherence topographies across subjects, the coherence values 659 

are highest in posterior sensors (Figure 3B, right panel). This indicates that across subjects 10 660 

Hz steady-state amplitudes are most robust in posterior MEG sensors, as expected due to 661 

proximity of these sensors to visual cortex. 662 

To estimate how reliable the 10 Hz steady-state amplitudes are across the 19 repeated 663 

runs in the MEG experiment, we computed the split-half reliability. Unlike the coherence metric, 664 

which average across epochs, the split-half reliability was sensitive to the specific pattern of 665 

responses as a function of bar position. We found that split-half reliability is largest in posterior 666 

MEG sensors (up to Pearson’s ⍴ = ~80%) in both individual maps and across-subjects maps 667 

(see Figure 3C). Many posterior sensors with high reliability overlap those sensors with the 668 

largest coherence within individual subjects (see Supplementary Figure S1). The sensors with 669 

high 10 Hz coherence tend to spread out more to lateral and frontal MEG sensors compared to 670 

those with high split-half reliability, which are confined to posterior MEG sensors. A possible 671 

explanation for this topography discrepancy is that some sensors in anterior locations are 672 

broadly sensitive to the stimulus (high coherence) but have little to no position sensitivity (low 673 

split-half reliability). 674 

4.2 Forward model predicts phase-referenced MEG responses in posterior 675 

sensors 676 

Thus far, we focused on the 10 Hz steady-state spectral amplitudes and ignored the 677 

corresponding 10 Hz phases. This phase component can vary across epochs and MEG sensors 678 

due to processing delays in the visual system and depend on stimulus features, such as 679 

contrast (Shapley & Victor, 1978) and eccentricity (Jeffreys, 1971; Burkitt, Silberstein, Cadusch, 680 

& Wood, 2000; Ales, Yates, & Norcia, 2013; Inverso, Goh, Henriksson, Vanni, & James, 2016). 681 

Because our stimulus was a bar sweeping in different directions across the visual field and likely 682 
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activated both early and later visual areas which differ in response timing, we expected 683 

variability in the 10 Hz phases across MEG sensors. Additionally, the gain matrix from the MEG 684 

head model is signed, causing predicted MEG responses to be signed. Therefore, to use all 685 

available information in the MEG data, we combined 10 Hz amplitudes and phases into 10 Hz 686 

phase-referenced steady-state responses. We did so by scaling the 10 Hz amplitudes by the 687 

cosine of the difference between the observed phase and a reference phase (see Methods). 688 

This way both predicted responses and measured MEG responses are signed. 689 

To predict the MEG responses to retinotopic stimuli for each individual subject, we 690 

developed a forward model (Figure 2). In short, our forward model predicted the MEG 691 

responses for every sensor by first multiplying pRF models estimated from fMRI at every cortical 692 

location with the MEG stimulus, for every time point. We then multiplied the resulting pRF time 693 

series at every cortical location with the gain matrix from the MEG head model based on 694 

subject’s anatomy and head position in the MEG. For the measured MEG responses, we 695 

combined amplitude and phase information into a phase-referenced amplitude for every sensor. 696 

We used split-half cross-validation to determine the optimal reference phase for every MEG 697 

sensor by fitting observed MEG responses to the predicted MEG responses, optimizing for 698 

variance explained by the model. By splitting the MEG runs into two groups, reference phases 699 

of the first half were used to compute the phase-referenced SSVEFs for the second half. Finally, 700 

to determine the overall goodness of fit of the model, we compared the predicted time series 701 

with the observed phase-referenced 10 Hz SSVEFs averaged across both split-halves for every 702 

MEG sensor. 703 

By combining local pRFs on the cortical surface with the biophysical head model, our 704 

forward model was able to capture ~60% of the variance in phase-referenced steady-state MEG 705 

data in posterior MEG sensors (Figure 4). The predicted MEG responses in sensors with high 706 

variance explained usually contained five peaks across the 154-s experiment, corresponding to 707 

the five orientated bar sweeps across the visual field. This result was found both at the group 708 

level (Figure 4B, left panel), as well as individual subject level (Supplementary Figure S2). 709 

Those MEG sensors with highest variance explained by the forward model approximately 710 

overlap with subset of posterior sensors that contain large 10 Hz coherence and split-half 711 

reliability values on an individual subject basis (see Figure 3 and Supplementary Figure S1-712 

S2). 713 
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 714 

Figure 4. MEG forward model captures variance in observed MEG responses across posterior 715 

sensors. (A) Left panels show two example time series of observed 10 Hz phase-referenced MEG 716 

responses (black dots with dashed line) and predicted MEG responses by the model (red line). The 717 

predicted MEG responses explain 60% and 58% of the variance in the observed MEG responses. Data 718 

are from two posterior sensors (indicated by the black dot on the head schematic) in two different 719 

subjects (top: S1, bottom: S9). Every dot in the observed MEG time series is the phase-referenced 10 Hz 720 

amplitude of a single stimulus bar position. Light and dark gray boxes indicate blink and blank periods 721 

respectively. Blink periods were excluded from the analysis, blank periods were modeled as zeros. (B) 722 

Topographic sensor maps of variance explained by forward model. Left side shows the same two 723 

subjects as in panel (A) (top: S1, bottom: S9). Right side shows average-then-goodness-of-fit group result 724 

(N=10). In this case, measured MEG data are averaged across subjects and compared to the average 725 

across subject’s model fits. 726 

 727 

One advantage of our forward model is that individual subject’s predicted MEG responses can 728 

be averaged to compare against the average observed data. We find that the average-then-729 

goodness-of-fit group result could explain up to ~70% of the variance in the average time series 730 

of several posterior sensors (Figure 4B, right panel). Because averaging across subjects’ data 731 

reduces measurement noise, the model fit is able to capture more variance in those sensors 732 

with high signal (posterior MEG sensors), compared to individual subjects. We also observe that 733 

the average-then-goodness-of-fit group result shows an asymmetry in captured variance 734 

explained, with higher variance explained on the left compared to right. However, it seems 735 

unlikely to reflect a general bias in the population, as individual subject maps do not support a 736 

systematic asymmetry in model accuracy between left and right sensors (Supplementary 737 

Figure S2). Rather, this more likely arises from better spatial alignment of sensors with good 738 

data on one side of the helmet than the other. 739 
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4.3 Forward model predictions are sensitive to changes in pRF 740 

parameters 741 

Because MEG sensors pool over large regions of the cortex, the measured steady-state 742 

responses are the sum of many cortical pRF responses sampling visual space. This large 743 

pooling function poses the question: To what extent do the parameters of cortical pRFs in our 744 

forward modeling approach affect the accuracy of the predicted MEG responses? In the most 745 

extreme scenario, a forward model that uses scrambled pRFs across the cortex might predict 746 

MEG responses as well as the initially estimated pRFs. This would occur if each sensor pooled 747 

signals about equally from all of visual cortex. In this case, the MEG responses only contain 748 

information about stimulus onset and offset, not the specific spatial positions. A more likely 749 

possibility is that MEG sensor responses carry some information about the visual field position 750 

of stimuli, but at a lower spatial resolution compared to pRFs estimated by fMRI. In this case, it 751 

is an empirical question how much MEG sensor responses are affected by slight changes in 752 

underlying pRF models. 753 

To quantify the extent to which our model accuracy depends on the measured pRF 754 

parameters, we artificially changed the pRF model parameters estimated from fMRI. First, we 755 

systematically alter pRF positions on the cortex, such that pRFs rotate around the fovea, leaving 756 

pRF sizes intact. Then, we systematically scale pRF sizes, leaving pRF positions intact. In both 757 

cases, we observe that the forward model predictions generally become less accurate. 758 

4.3.1 MEG data are best predicted by pRF positions estimated from fMRI 759 

When rotating pRFs away from their estimated positions, the variance explained by the forward 760 

model decreases. For example, in subject S1 variance explained by the model decreased by 761 

~23% when rotating the pRFs from 90° clockwise or counter-clockwise around the fovea and 762 

slightly recovers when rotating 180° (Figure 5A, top panel). In other subjects, such as S9, 763 

variance explained peaked at the estimated pRF position, but the fall off with rotation angle was 764 

less steep (Figure 5A, bottom panel). For 3 out of 10 subjects (S1, S5, S6), variance explained 765 

by the model had a clear peak at 0° (the initial pRF position) and for 3 out 10 subjects (S4, S7, 766 

S9) variance explained peaked near 0° (±45°) (Supplementary Figure S3A). For the other 4 767 

subjects, there was either a peak at an unexpected rotation (S3, S8), an asymmetric shape (S2) 768 

or a very small effect of pRF rotation (S10). On average, we observed the highest variance 769 

explained with 0° rotation, with a maximum drop of ~15% when pRF positions were rotated 770 

around the fovea (Figure 5B). 771 
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  772 

 773 

Figure 5. Systematic variation of pRF position decreases ability to explain variance in data by 774 

model predictions. (A) Variance explained by the forward model as a function of pRF center position for 775 

two subjects (top: S1, bottom: S9). The initial pRFs estimated using fMRI (0°, black vertical line) were 776 

systematically rotated around the fovea, by -180° to 180° from initial pRF position in steps of 45°. 777 

Predicted MEG responses were recomputed and fitted to observed MEG responses for each rotation 778 

condition. Data were summarized as the average across the union of 5 (purple line), 10 (red line), or 15 779 

sensors (blue line) with the highest variance explained for each rotation condition (i.e., including all 780 

sensors that are among the 5, 10, or 15 sensors with highest variance explained for at least 1 rotation 781 

direction; selected sensors are shown in schematic head plots on the right using the same color code). 782 

Shaded regions show ±1 standard error of the mean across the selected sensors. Highest variance 783 

explained is observed for the initial pRF position (0° rotation) for S1 for all 3 sensor selections and for S9 784 

at the initial pRF position for top 5 sensors and near the initial position (between 0-45°) for top 10 and top 785 

15 sensors. (B) Variance explained by average-then-goodness-of-fit group result and 68%-confidence 786 

interval (shaded region) obtained by bootstrapping 10,000 times the group average across 10 subjects for 787 

the sensor selection shown in schematic head plots on the left. Same color code is used as in panel A. A 788 

schematic of different rotation angles for an example pRF is shown below. On average, variance 789 

explained by the model fit decreases ~15% when using pRF positions rotated away from the initial pRF 790 

position. 791 

 792 
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Rotating pRFs away from their estimated positions also affected the spatial topography 793 

of the predicted responses. When pRF positions were rotated away from their initial position, the 794 

sensors with the highest variance explained were confined to a single posterior region. The 795 

change in topography indicates that sensors differ in their sensitivity to pRF position 796 

(Supplementary Figure S4). 797 

Importantly, the shape of the variance explained curve as a function of rotation angle 798 

does not depend on the exact number of sensors selected, although the overall variance 799 

explained decreases with the number of selected sensors. Averaging from only the top 5 800 

sensors (purple line in Figure 5) results in the largest variance explained, and averaging from 801 

the top 15 sensors results in the lowest variance explained (blue line). This is expected because 802 

the more sensors that are included, the lower the average variance explained will be. The 803 

similarity in pattern as well as the difference in the mean as a function of the number of sensors 804 

included is found for both individual subjects (Figure 5A and Supplementary Figure S3A) and 805 

the average-then-goodness-of-fit group summary (Figure 5B). These analyses indicate that 806 

model sensitivity to pRF rotation is robust. 807 

4.3.2 Artificially changing pRF sizes affects model accuracy 808 

When artificially altering pRF sizes 5x smaller or 10x larger, variance explained by the model 809 

gradually decreases up to 5-15%. We observed that our forward model explained on average 810 

most variance when using sizes close to, but slightly larger than, the pRF size estimated with 811 

fMRI (Figure 6). Some subjects showed a peak at slightly larger sizes (subject S1; Figure 6A, 812 

top panel), whereas other subjects had a local peak at slightly smaller pRF sizes (subject S9; 813 

Figure 6A, bottom panel). Overall, for 6 out of 10 subjects (S1, S3, S4, S5, S7, and S9) we 814 

observed a local peak in variance explained by the model at or near the initially estimated pRF 815 

(see Supplementary Figure S3B), most of them overlapping with those subjects showing a 816 

reliable effect of pRF position manipulation (see Supplementary Figure S3A). The other 4 817 

subjects showed either a very small effect of scaling (S6), or the unexpected result of no effect 818 

for scale factors up to 1x and a monotonic increase in variance explained for scale factors larger 819 

than 1x (S2, S8, S10). We did not analyze scale factors beyond 10x to see if variance explained 820 

peaked for even larger pRF sizes, as those scale factors would make many pRFs extend 821 

beyond the stimulus field-of-view. When a pRF size becomes very large relative to the stimulus 822 

field-of-view, our experiment basically becomes an “on-off” paradigm with a full-field stimulus. 823 

These very large pRFs will therefore still capture some variance in our experiment. Indeed, with 824 

fMRI pRF models, a simple “on-off” model (i.e., a non-spatially selective model which predicts a 825 
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uniform response to a stimulus anywhere in the visual field relative to a blank) explains 826 

substantial variance in brain regions with very large pRFs (supplementary figure 11A in (Benson 827 

et al., 2018)). Hence, we expect that with scale factors beyond 10x the variance explained will 828 

decrease slightly but eventually plateau (and not go back to zero percent variance explained). 829 

See section 5.3 for further discussion of this observation. 830 

Across subjects, we observed a similar drop in variance explained as a function pRF 831 

scale factor (around 15%), with a plateau between the initial pRF size and doubling the pRF 832 

size (Figure 6B). This indicates that MEG responses are less sensitive to changes in pRF size 833 

compared to pRF positions, or similarly, our forward model’s ability to capture pRF size 834 

changes. Changing the pRF size caused subtle changes in the spatial topography of the 835 

variance explained sensor map, but these changes were neither systematic nor large 836 

(Supplementary Figure S5). 837 

 838 
Figure 6. Systematic variation of pRF size decreases model accuracy. (A) Variance explained by the 839 

forward model as a function of scaled pRF sizes, i.e., larger or smaller than initial pRF size estimated with 840 

fMRI (black line at 1). Top and bottom panels represent subjects S1 and S9, respectively. PRF sizes are 841 

systematically scaled from 0.2x to 10x the initially estimated size. Similar to variations in pRF position, 842 

variance explained is averaged across the union of 5 (purple line), 10 (red line), or 15 sensors (blue line) 843 

with the highest variance explained from each of the 19 scaling conditions. Shaded regions show ±1 844 

standard error of the mean across the selected sensors. For S1, variance explained peaks at a pRF size 845 

that is close to, but slightly larger than initially estimated with fMRI for all 3 sensor selections. For S9, 846 
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there is a local peak at a smaller size than initially estimated with fMRI using top 5 and 10 sensors, and 847 

then variance explained continues to increase at larger sizes. (B) Variance explained by average-then-848 

goodness-of-fit group result for top 5, 10, and 15 sensor selection and 68%-confidence interval obtained 849 

by bootstrapping 10,000 times the group average across 10 subjects (shaded areas). Three schematic 850 

heads on the right show selected sensors for top 5, 10, 15 sensors using the same color scheme. 851 

Different scale factors for an example pRF are shown below the x-axis. On average, variance explained 852 

by the model fit decreases ~15% when using pRF sizes that are 5x smaller or 10x larger than the initial 853 

pRF position. 854 

 855 

The precise number of sensors used to summarize the model accuracy (5, 10, or 15) 856 

has little effect on the shape of the variance explained curves as a function of pRF scale factor 857 

(Figure 6, purple vs red vs blue line). However, as with the rotation analyses, the overall 858 

variance explained values decrease when adding more sensors to the selection. We find these 859 

patterns both for individual subjects (Supplementary Figure S3A) and for the group average 860 

(Figure 6B). This result is consistent with the pRF position variation results (Figure 5), showing 861 

that the results are robust to the exact number of sensors selected. 862 

4.3.3 Generalizability across methods of computing group average and 863 

selecting sensors 864 

The group average results shown in Figures 5 and 6 reflect model accuracy for the sensor-wise 865 

averaged data. However, the sensors most responsive to the stimuli may differ across subjects. 866 

Therefore, we also computed group-average model accuracy by first summarizing the response 867 

for each subject as a function of pRF rotation or scale, and then averaging these response 868 

functions across subjects (goodness-of-fit-then-average). This method uses the best sensors for 869 

each subject, either as defined previously (highest variance explained) or defined in a model-870 

independent manner (highest split half reliability of the 10 Hz SSVEF), and therefore respects 871 

individual differences in sensor topography. For individual subject data using the split-half 872 

reliability method for sensor selection, see Supplementary Figure S6. 873 

The results from these analyses are similar to those we observed previously from the 874 

average-and-then-fit results. For pRF position variations, the variance explained curves peak at 875 

0°, declining systematically when rotating away from the initial estimated pRF position (Figure 876 

7A). For systematic variations in pRF size, the variance explained curves show a rise from 877 

reduced pRF sizes (0.2x) to the initially estimated pRF size (1x) (Figure 7B), similar to the 878 

average-then-goodness-of-fit results. The curves differ slightly from the goodness-of-fit-then-879 

average results at higher scaling values, either plateauing or very slightly declining. These 880 
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results further support the finding that the model accuracy is sensitive to pRF size and position 881 

parameters. 882 

While the shape of these functions is similar to those in Figures 5 and 6, the overall 883 

height (i.e., mean variance explained values) is lower. This is because the average-then-884 

goodness-of-fit method reduces uncorrelated noise in the measurements, allowing for a higher 885 

variance explained by our model if its underlying assumptions are correct. In contrast, the 886 

goodness-of-fit-then-average method by definition preserves the average variance explained. 887 

 888 
Figure 7. Group average effect of fitting individual data first, before averaging across subjects, 889 

using a model-based and data-based sensor selection. (A) Effect of systematically varying pRF 890 

position. Group average is computed by taking each subject’s variance explained curve and averaging 891 

across subjects at each rotation angle or scale factor. Data were bootstrapped across subjects (10,000 892 

times), where lines represent the average across bootstraps and shaded areas 68%-confidence intervals. 893 

Red colors represent results using a model-based sensor selection (for each subject, the union of top 10 894 

sensors across all pRF position variations). Purple colors show results using a data-based sensor 895 

selection (for each subject, the 10 sensors with the highest SSVEF split-half reliability). Individual subject 896 

data and schematic head plots are shown in Supplementary Figure S6. (B) Effect of systematically 897 

varying pRF size. Same color code as in panel A, but now for bootstrapped goodness-of-fit-then-898 

average group result when systematically scaling pRF sizes.  899 
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5 Discussion 900 

Population receptive field modeling is an important tool that has made significant contributions 901 

to our understanding of the functional architecture and underlying computations of the human 902 

visual cortex. The successes of pRF models have been widespread and large in fMRI, with a 903 

few applications in intracranial data, and little applications for MEG forward models. Here, we 904 

developed a stimulus-to-sensor forward model that combines pRFs estimated from fMRI with a 905 

biophysical forward model to predict the steady-state visually evoked MEG responses when 906 

subjects viewed moving bar stimuli. Our results demonstrate that we can reliably measure and 907 

predict visually-evoked responses for these stimuli. The model was sensitive to cortical pRF 908 

model parameters, as we found a decrease in variance explained when artificially changing the 909 

underlying pRF model parameters estimated with fMRI. 910 

This combination of fMRI and MEG measurements allows future studies to investigate the 911 

time-resolved spatiotemporal dynamics of human visual field maps as well as the relationship 912 

between the fMRI BOLD response and electromagnetic field measurements. In principle, our 913 

forward model can be implemented without solving pRF models using fMRI data. This can be 914 

done by applying a retinotopic template to an anatomical MR image, for example (Benson et al., 915 

2012; Benson, Butt, Brainard, & Aguirre, 2014; Benson & Winawer, 2018), or by predicting 916 

retinotopic structure from the cortical curvature pattern via machine learning algorithms (e.g., 917 

deep neural networks (Agrawal, Stansbury, Malik, & Gallant, 2014; Khaligh-Razavi & 918 

Kriegeskorte, 2014; Güçlü & van Gerven, 2015; Eickenberg, Gramfort, Varoquaux, & Thirion, 919 

2017; Güçlü & van Gerven, 2017; Ribeiro, Bollmann, & Puckett, 2020)). Such applications 920 

would simplify and shorten the solution to the model parameters and reduce MRI scanning time 921 

which is useful when studying special populations like children or patients or individuals having 922 

difficulty holding fixation. 923 

As a proof of principle, we implemented a forward model that uses group average pRF 924 

parameter maps from an aggregate retinotopy dataset (Himmelberg, Kurzawski, et al. (2021)) 925 

and compared its model performance to our standard forward model using subject specific 926 

retinotopy data. These average pRF maps were collected with stimuli of approximately the 927 

same field-of-view but differing in pattern. The overall model accuracy was similar to that 928 

obtained from using pRFs measured in individual subjects (Supplementary Figure S7A). 929 

Moreover, the specific variance explained topographic sensor maps were broadly similar for the 930 

two methods (a correlation of about 0.6 between sensor maps from the same participant across 931 

the two methods, compared to about 0.2 for different participants; Supplementary Figure 932 
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S7B). This result shows that average pRF parameter maps from an aggregate retinotopy 933 

dataset can be used to make reasonable forward model predictions. 934 

In contrast, it may be more problematic to use an average anatomical template and head 935 

model to build cortical predictions with our forward model, rather than using the subject’s 936 

measured head anatomy and head position. This is because the cortical folding geometry of an 937 

average anatomical template is not realistic; it emphasizes large sulci and gyri and removes 938 

idiosyncratic folding patterns of individual subjects. Moreover there are large differences in the 939 

shape and size of visual areas, differing by as much as 3:1 across people (Dougherty et al., 940 

2003; Benson et al., 2021). These differences are likely why we found higher pairwise 941 

correlations comparing variance explained sensor maps of the two forward models within 942 

subjects compared to across subjects (Supplementary Figure S7B). 943 

5.1 Relationship to reconstructing cortical retinotopy from MEG sensor 944 

responses 945 

Several MEG studies have aimed at reconstructing retinotopy responses on the cortical surface 946 

from MEG sensor measurements (e.g. (Moradi et al., 2003; Poghosyan & Ioannides, 2007; 947 

Sharon, Hämäläinen, Tootell, Halgren, & Belliveau, 2007; Brookes et al., 2010; Perry et al., 948 

2011; Cicmil, Bridge, Parker, Woolrich, & Krug, 2014; Nasiotis, Clavagnier, Baillet, & Pack, 949 

2017)). In those studies, instead of a forward model from stimulus to sensors, the cortical 950 

sources are estimated by inverse modeling: going from sensors to cortical sources, that is, 951 

estimated sources are derived by multiplying the sensor responses by the pseudo-inverse of the 952 

gain matrix in the head model. These estimated source responses are then compared to visual 953 

field maps measured with fMRI, where the fMRI maps are assumed to be the ‘ground truth’, 954 

aiming to minimize localization error. 955 

This inverse modeling approach can localize the retinotopic responses within a 956 

centimeter on the cortex of the correct hemifield, but it is limited to early visual areas and fails to 957 

accurately capture known features of visual field maps. For example, stimuli in the upper visual 958 

field (i.e., the lower bank of the calcarine sulcus) cannot be captured due to low SNR or signal 959 

cancellation in MEG sensors (e.g., see (Nasiotis et al., 2017)). Additionally, changes in stimulus 960 

polar angle and eccentricity—a hallmark of visual field maps—can only be distinguished at a 961 

coarse scale (i.e. visual quadrants or fovea versus periphery) (Moradi et al., 2003; Brookes et 962 

al., 2010; Perry et al., 2011; Cicmil et al., 2014). One reason for these limitations is that the 963 

inverse problem is ill-posed: a measured magnetic flux from a single sensor can result from an 964 
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infinite number of cortical source combinations. The solution to this inverse problem is ill-defined 965 

and can only be achieved by making assumptions to limit the possible solutions (Cicmil et al., 966 

2014). Several research groups have used the known location of visual field maps as a prior to 967 

constrain the number of possible solutions, also known as ‘Retinotopy Constrained Source 968 

Estimation’ (Hagler et al., 2009; Ales, Carney, & Klein, 2010; Hagler & Dale, 2013; Hagler, 969 

2014; Cottereau, Ales, & Norcia, 2015; Inverso et al., 2016). These constraints resolved some 970 

of these reconstruction errors (e.g., cross-talk between sources in visual areas with close 971 

proximity, see (Hagler et al., 2009; Cottereau et al., 2011; Cottereau et al., 2015)), but the 972 

overall approach of source reconstruction still relies on regularizers coming with certain 973 

assumptions. 974 

Our forward model takes a different approach from previous MEG studies: we turn 975 

inverse modeling on its head. With our approach, model predictions are not limited to early 976 

visual areas, but only by the extent of reliably estimating local pRFs on the cortex. Also, our 977 

approach is not constrained by cancellation effects of opposite facing dipoles. On the contrary, 978 

our approach can be used to investigate the effect of source cancellation on sensor responses 979 

by simulating different temporal patterns in visual cortex (Kupers, Benson, & Winawer, 2020). 980 

We first predict neural time series at a millimeter-scale on the cortical surface using local pRF 981 

models estimated with fMRI, before predicting sensor responses with the MEG forward model. 982 

Because we use a purely forward modeling approach, our model is well-defined and avoids the 983 

need for additional constraints. By introducing an intermediate step, i.e., modeling responses on 984 

the cortical surface, between the stimulus and the MEG sensor responses, our model has the 985 

ability to implement a quantitative description of the stimulus representation at the cortical 986 

source level; information one usually does not have access to and aims to reconstruct. Because 987 

our model is informed by local pRFs, it can create predictions at the millimeter scale, hence 988 

incorporating stimulus-selectivity at a local scale, and thereby make meaningful and accurate 989 

predictions at the MEG sensor level. 990 

 In addition, having a computational encoding model that predicts sensor responses at 991 

an individual subject level introduces an alternative way of summarizing group data. Instead of 992 

computing sensor-wise average of the summary statistic (for example, variance explained), it is 993 

possible to average individual data and individual predictions separately and compare the 994 

average group prediction to the average group data (“average-then-goodness-of-fit”). Typically, 995 

MEG or EEG sensor data averaged across subjects can be difficult to interpret. Because of 996 

individual differences in cortical geometry and head position, a particular sensor will pool over 997 

different brain sources from each subject. For this reason, the sensor-wise averaged data are 998 
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not easily linked in a meaningful way to cortical sources or to the experimental paradigm. In our 999 

case, however, the forward model for each subject respects the variation in pRF parameters 1000 

across that subject’s cortex, as well the subject’s cortical folding pattern and head position in the 1001 

MEG helmet. Hence the averaged model predictions, though summarized in the sensor space, 1002 

reflect details of each of the individual subjects, and provides a compact summary of the result. 1003 

Unlike averaging over, say, repeated trials within an individual, averaging over subjects entails 1004 

some degree of uncorrelated signal (due to the differences in subject cortical geometry) in 1005 

addition to uncorrelated noise. Hence the SNR is not expected to increase in a simple way as 1006 

the number of subjects increases. Nonetheless, the SNR is higher for the average-then-1007 

goodness-of-fit method than for any individual subject. 1008 

Nonetheless, the average-then-goodness-of-fit method summary has some 1009 

interpretation limits. For example, it may result in a smoother topographic map than is found for 1010 

any individual and will tend to show more accurate predictions in locations where the 1011 

topographic maps are better aligned across subjects. For these reasons, we confirmed our 1012 

results with the goodness-of-fit-then-average method, which shows lower variance explained, 1013 

but respects differences between subjects in terms of which sensors show the best model fits. 1014 

5.2 The relationship between MEG and fMRI measurements 1015 

MEG and fMRI are two of the most widely used non-invasive measurement techniques in 1016 

human neuroscience capturing different types of aggregated responses across neural 1017 

populations. MEG captures the magnetic flux from local field potentials, whereas fMRI captures 1018 

the neurovascular response. The neural signals giving rise to each measurement are likely to 1019 

differ. For example, the MEG signal is most sensitive to pyramidal neurons whose dendrites are 1020 

perpendicular to the cortical surface (Hämäläinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1021 

1993), which may differ from sensitivity of the fMRI BOLD signal. Moreover, the neural signals 1022 

giving rise to the fMRI signal have been shown to be most similar to those giving rise to the 1023 

broadband component of the field potential, not the evoked signal which we used here 1024 

(Foucher, Otzenberger, & Gounot, 2003; Winawer et al., 2013; Hermes, Nguyen, & Winawer, 1025 

2017). These factors will put an upper limit on how well our model can perform. Nonetheless, 1026 

differences in tuning of the neural populations giving rise to different signals are likely to be 1027 

modest in the domain of position tuning, considering that position tuning is mapped at a 1028 

relatively large scale in cortex (millimeter), compared to other features such as orientation, eye 1029 

of origin preference, or spatial frequency preference, which may vary at a finer spatial scale. 1030 
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5.3 Sensitivity differences in predicting pRF position and size for fMRI vs 1031 

MEG 1032 

We showed that when artificially rotating pRF positions on the cortical surface, the model 1033 

explained most variance in the data for the pRF positions obtained by fMRI. This indicates that 1034 

the optimal pRF position explaining fMRI BOLD data also predicts the steady-state responses 1035 

best in MEG sensors. On the other hand, artificially scaling pRF sizes did not cause our model 1036 

performance to peak at the estimated pRF size. For several subjects, we observed a local peak 1037 

in variance explained for models using pRF sizes slightly larger, while others for slightly smaller, 1038 

than those estimated from fMRI. 1039 

Given that we observed 10 Hz steady-state amplitudes with high reliability and signal-to-1040 

noise ratio in posterior MEG sensors, it is unlikely that the differences between data and model 1041 

predictions are solely caused by measurement noise. In addition, our model is fairly 1042 

conservative and unlikely to overfit MEG data as it contains relatively few free parameters (one 1043 

gain factor and one reference phase per MEG sensor) which undergo a cross-validation 1044 

procedure. 1045 

In terms of modeling, the pRF size discrepancy can arise if the initial fMRI estimates 1046 

overpredict pRF size, our MEG forward model underpredicts pRF size, vice versa, or a 1047 

combination of both. Several neural and non-neural factors have been reported to bias 1048 

estimated pRF sizes with fMRI, whereas pRF position estimates appear to be more robust. 1049 

Non-neural factors. One non-neural factor that has a large effect on the estimated pRF 1050 

size (and less so for pRF position) is the mismatch between the assumed and actual underlying 1051 

hemodynamic response function (HRF). This mismatch can cause both over- and 1052 

underestimation of pRF sizes, depending on the experimental design or whether the spatial or 1053 

temporal component of the assumed HRF is inaccurate (Dumoulin & Wandell, 2008; Lerma-1054 

Usabiaga, Benson, Winawer, & Wandell, 2020). Since our fMRI session used stimuli that swept 1055 

across the visual field in both directions for a given orientation, we believe that our experimental 1056 

design minimized any bias in the estimated pRF size caused by the sluggish HRF. We did not 1057 

estimate HRF functions separately for individual subjects or visual areas. We also did not model 1058 

the spatial component of the HRF. However, our presentation time of sweeping bars was 1059 

relatively long (31s/bar sweep), which largely reduces the impact of pRF size biases caused by 1060 

the HRF mismatch (Lerma-Usabiaga et al., 2020). 1061 

Another possible non-neural factor that has been reported to bias pRF sizes are eye 1062 

movements. As shown by simulation (Levin, Dumoulin, Winawer, Dougherty, & Wandell, 2010; 1063 
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Klein, Harvey, & Dumoulin, 2014) and empirically (Hummer et al., 2016), gaze instability can 1064 

introduce overestimation of pRF sizes across eccentricity. It also increases the absolute mean 1065 

error for pRF position, but with no systematic bias within polar angle or eccentricity maps 1066 

compared to gaze-corrected fMRI data. In the present study, eye movements were monitored 1067 

during fMRI and MEG experiments for most subjects and did not show large eye movements. 1068 

However, we cannot rule out the presence of small fixational eye movements (i.e., 1069 

microsaccades and drift) in both MRI and MEG sessions. At least, if microsaccades were 1070 

present in the MEG data they would not cause an electromagnetic field response that overlaps 1071 

with the 10 Hz steady-state response, as microsaccades are reported as increased gamma-1072 

band power (> 60 Hz) (Yuval-Greenberg, Tomer, Keren, Nelken, & Deouell, 2008). 1073 

Neural factors. A neural factor that could affect pRF properties is visuo-spatial attention. 1074 

FMRI and MEG sessions contained the same stimuli and similar experimental design where 1075 

subjects were performing a fixation task. However, we cannot rule out fluctuations in covert 1076 

spatial attention shifts towards the moving bar stimulus (either voluntary or involuntary). Several 1077 

fMRI studies that explicitly manipulated voluntary visuo-spatial attention reported changes for 1078 

pRF positions, and no changes or much less so for pRF sizes (Klein et al., 2014; Kay, Weiner, & 1079 

Grill-Spector, 2015; Vo, Sprague, & Serences, 2017; van Es, Theeuwes, & Knapen, 2018). 1080 

While individual subjects could employ different amounts of visuo-spatial attention in one 1081 

session compared to the other, on average our initial estimates of pRF position seem more 1082 

robust compared to pRF size. This suggests that visuo-spatial attention is unlikely the main 1083 

factor causing a difference in optimal pRF size for MEG versus fMRI. 1084 

5.4 Choice of MEG data component 1085 

In this study, we compared the phase-referenced steady-state amplitudes against the predicted 1086 

retinotopy response. We chose SSVEFs because this signal contains stimulus-specific 1087 

information (i.e., the contrast-reversal rate) and has a high signal-to-noise ratio. However, we do 1088 

not exclude the possibility that other MEG data components are a better proxy for the predicted 1089 

retinotopy responses in MEG sensors. 1090 

Our model predictions are based on local pRFs estimated from fMRI BOLD responses, 1091 

but the measured SSVEFs originate from high coherence between neural sources—a signal 1092 

type fMRI is less sensitive compared to electric field measurements like ECoG (Foucher et al., 1093 

2003; Hermes et al., 2017). For example, the ECoG study by Winawer et al. (2013) used a 1094 

similar experimental design as the current study: presenting high contrast-reversing 1095 

checkerboard bars traversing across the visual field while recording local field potentials from 1096 
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early visual cortex. They found that when a bar crossed the estimated pRF of the ECoG 1097 

electrode, there was an increase in steady-state amplitude at the stimulus frequency and a 1098 

broad increase in power across many frequencies, i.e., a parallel shift of the 1/f spectrum 1099 

compared to baseline (“broadband response”). When comparing both data components to 1100 

BOLD responses of pRFs at the same cortical location in healthy controls, the broadband 1101 

response was a better predictor of spatial summation compared to the steady-state response. 1102 

This difference becomes clear when using test stimuli that vary in bar width or size. In this case, 1103 

both the fMRI and the broadband signal show sub-additive summation, whereas the evoked 1104 

response does not. Had we used stimuli with multiple bar widths and sizes in our MEG 1105 

experiment, model accuracy for the SSVEF would likely have been lower. 1106 

5.5 Choice of model parameters 1107 

Currently, our model predicts responses from stimulus to cortex without free parameters (after 1108 

the pRF models are solved for fMRI) and fits two free parameters per MEG sensor (a reference 1109 

phase and gain factor). Using a limited number of free parameters makes our model predictions 1110 

interpretable: the reference phase allows for a sign reversal of the MEG prediction and potential 1111 

delays in visual processing across the visual hierarchy, and the gain factor puts the model 1112 

predictions in units of femto-Tesla. Allowing additional free parameters (such as an offset or 1113 

scale factor for pRF estimates on the cortex) or refitting our gain factor to the average of all 1114 

MEG data runs is likely to improve model performance but can also cause overfitting or reduce 1115 

its interpretability. 1116 

Additionally, other encoding models predicting visual preferences of neural populations 1117 

could capture more complex dynamics compared to the current model. Examples of such 1118 

models are the difference of Gaussian (DoG) pRF model (Zuiderbaan, Harvey, & Dumoulin, 1119 

2012) or the compressive spatial summation (CSS) model (Kay, Winawer, et al., 2013). Since 1120 

our model implements the step from stimulus to predicted cortical responses in a separate 1121 

function, the model component can be interchangeable and allows the general modeling 1122 

approach to adapt to different experiments. 1123 

5.6 Individual differences 1124 

We observed that the amount of variance explained by our model was considerably different 1125 

across subjects, using both the originally estimated pRFs with fMRI and when artificially varying 1126 

pRF size or position. This inter-subject variability could be the result of methodological errors, 1127 

measurement noise, non-neural physiological noise (such as head and eye movements), or a 1128 
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true difference between subjects. Methodological errors include the possibility of improper 1129 

alignment of the MEG sensor positions to subject anatomy, and the type and resolution of the 1130 

head model. 1131 

MEG and EEG head models have become increasingly more complex (for an overview, 1132 

see (Vorwerk et al., 2014)). For example, we used the overlapping spheres method (Huang et 1133 

al., 1999), but there are more biologically accurate models like the boundary element method 1134 

(‘BEM’, (Kybic et al., 2005; Gramfort et al., 2010)). With the head model we used, we explained 1135 

up to about 60% of variance in the sensor data. This is relatively close to the about 80% split-1136 

half reliability of the 10 Hz steady-state response, a proxy for the noise ceiling. Nonetheless 1137 

there remains unexplained variance, indicating that there is some room for higher accuracy from 1138 

better methods. The current approach provides a clear proof of principle that a forward model 1139 

from stimulus top sensors can accurately predict responses to visual stimuli. 1140 

5.7 Future applications and extensions 1141 

Our forward model shows that MEG responses can be reliably predicted from stimulus to cortex 1142 

to sensors. One interesting potential application to use our model is to characterize the changes 1143 

in pRF properties over time. As mentioned previously, several fMRI studies have observed 1144 

changes pRF center of mass with visuospatial attention (Klein et al., 2014; Kay et al., 2015; Vo 1145 

et al., 2017; van Es et al., 2018). Our MEG forward model could be used to predict these 1146 

changes and capture the time-resolved effects of visuo-spatial attention. A second application of 1147 

our model would be the combination of spatial pRF models estimated with models that capture 1148 

pRF preferences in temporal processing (Stigliani, Jeska, & Grill-Spector, 2017; Zhou, Benson, 1149 

Kay, & Winawer, 2018) or replace the local pRF models on the cortex with topological maps 1150 

coding for other types of perception (such as audition (Saenz & Langers, 2014)), cognition (such 1151 

as numerosity (Harvey, Klein, Petridou, & Dumoulin, 2013)) or action (Mattay & Weinberger, 1152 

1999). 1153 

Future studies can extend our forward modeling approach and apply it to study a variety 1154 

of questions aiming at spatiotemporal dynamics of visual processing. For example, one 1155 

consideration is changing the experimental design of the MEG session. In the current study, 1156 

MEG stimuli were designed such that they were similar to the retinotopic stimuli used for fMRI 1157 

studies. However, because fMRI experiments sample BOLD responses at second time 1158 

resolution and need to take into account the sluggish hemodynamic response, it does not mean 1159 

that MEG measurements need to be sampled at the same time resolution with the same 1160 

temporally predictable stimulus sequence. Since our model predicts the MEG responses to 1161 
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arbitrary stimulus apertures in the visual field based on the cortical spatial tuning preferences, it 1162 

can predict other temporal sequences and give insight to a variety of spatiotemporal dynamics 1163 

at sub-second temporal resolution. 1164 

5.8 Conclusion 1165 

Neuroscientists use a number of techniques to measure neural activity, each providing different 1166 

information about brain activity. MEG measures the magnetic field induced by electric currents 1167 

present in neural activity, whereas fMRI measures the metabolic demands associated with 1168 

neural activity. In this paper, we demonstrate a forward model that can capture MEG sensor 1169 

responses to retinotopic mapping stimuli, by combining pRFs estimated from fMRI responses 1170 

with the biophysical MEG head model. Our results support a common underlying mechanism of 1171 

neural processing measured with the two modalities, and provide new opportunities to study 1172 

time-resolved spatiotemporal dynamics in visual processing.  1173 
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7 Supplementary figures 1405 

 1406 

Supplementary Figure S1. Coherence and split-half reliability of individual subjects of 10 Hz 1407 
SSVEF amplitudes. (A) Coherence metric is computed as the amplitude of 10 Hz divided by the sum of 9 1408 
to 11 Hz. All subjects are plotted with the same color bar limits shown on the right. (B) Split-half reliability 1409 
is calculated as the mean Pearson’s ⍴ correlation of 10 Hz amplitudes across 1000 iterations. Amplitudes 1410 
within a single iteration are averaged across runs within each split-half and not phase-referenced. All 1411 
subjects are plotted with the same color bar limits shown on the right. 1412 
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 1413 

Supplementary Figure S2. Topographic MEG sensor maps of variance explained by the model for 1414 
all 10 individual subjects. The model is able to predict the measured 10 Hz phase-referenced steady-1415 
state MEG responses up to 50% of the variance in the measured MEG responses in posterior sensors for 1416 
many subjects. 1417 
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 1418 
Supplementary Figure S3. Variance explained by the forward model as a function of systematic 1419 
pRF parameter changes for individual subjects. (A) Effect on pRF position rotation. The pRFs 1420 
estimated with fMRI were systematically rotated around the fovea, by -180° to 180° from their original 1421 
position in steps of 45°. Predicted MEG responses were then recomputed for each of the rotation 1422 
conditions. Per subject, highest variance explained values were averaged from the union across the top 5 1423 
(purple), top 10 (red), or top 15 sensors (blue) in each of the 9 rotation conditions (dots in schematic 1424 
head, same color scheme). Shaded regions show ±1 standard error of the mean across the selected 1425 
sensors. While there are large individual variations, 6 out of 10 subjects (S1, S4, S5, S6, S7 and S9) have 1426 
most variance explained in the MEG data when the initial pRF positions or near initial (±45 deg) were 1427 
used in the forward model. (B) Effect on pRF size scale factor. Same as (A) but now for size scale 1428 
factor variations. PRF sizes were systematically scaled from 5x smaller to 10x larger the initial size. 1429 
Although there are large variations between individual subjects, 6 out of 10 subjects (S1, S3, S4, S5, S7, 1430 
and S9) showing a local peak in variance explained for pRF sizes that are slightly smaller or larger than 1431 
the original pRF size (a scaling factor of 1). In some, but not all subjects this local peak is followed by an 1432 
increase in variance explained for very large-scale factors.  1433 
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 1434 
Supplementary Figure S4. Topographic maps of variance explained by the forward model for 1435 
different rotation angles of the initially estimated pRF position. Top and middle row show maps for 2 1436 
individual subjects (S1 and S9). Bottom row shows average-then-goodness-of-fit group result. Initial pRF 1437 
position estimated by fMRI is outlined (0°). All maps use the same color scale as shown on the right.  1438 
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 1439 
Supplementary Figure S5. Topographic maps of variance explained by the forward model for 1440 
different size scale factors of the initially estimated pRF size. Top and middle row show maps for 2 1441 
individual subjects (S1 and S9). Bottom row shows average-then-goodness-of-fit group results. Initial pRF 1442 
size estimated by fMRI is outlined (1x), note that only a subset of all scale factors (9 out of 19) is 1443 
displayed. All maps use the same color scale as shown on the right. 1444 
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 1445 
Supplementary Figure S6. Effect of systematically varying pRF parameters using a data-based or 1446 
model-based sensor selection in individual subjects. (A) Variance explained by model when 1447 
rotating pRF centers. Red lines and shaded areas show sensor-wise average and ±1 standard error of 1448 
the mean across the selected sensors using a model-based sensor selection (i.e., compute the average 1449 
in individual subjects from the union of top 10 sensors across all pRF position variations). Purple lines 1450 
and shaded area show average and ±1 standard error of the mean across using a data-based sensor 1451 
selection (i.e., compute average in individual subjects from top 10 sensors of 10 Hz SSVEF split-half 1452 
reliability map). (B) Variance explained by model when scaling pRF size. Same as (A) but now for 1453 
pRF size scale factor variations. Both panels A and B use the same color scheme as A and B. Two 1454 
schematic head plots show included sensors when using the union of top 10 sensors across all pRF 1455 
position/size variations (red) or top 10 sensors of 10 Hz SSVEF split-half reliability map (purple). 1456 
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 1457 
Supplementary Figure S7. Variance explained by forward model using average pRF parameter 1458 
maps from the aggregate NYU 3T retinotopy dataset (N=44). (A) Topographic sensor maps of 1459 
variance explained or all 10 individual subjects. Variance explained by a forward model that uses 1460 
average pRF maps from an aggregate retinotopy dataset collected at NYU’s 3T Prisma scanner 1461 
(Himmelberg, Kurzawski, et al. (2021)). This aggregate data set uses a different stimulus but has a similar 1462 
field-of-view and pRFs were analyzed with the same Vistasoft software (for more details on the aggregate 1463 
retinotopy data, see Methods). Instead of using subject specific pRF maps to compute predicted MEG 1464 
sensor responses, we used the average pRF maps projected onto individual subjects’ cortical surface. In 1465 
some subjects (S1, S9) using the average pRF parameters from the NYU 3T retinotopy dataset explains 1466 
up to a similar percent variance explained in individual sensor data as the subject specific pRF maps (see 1467 
Supplementary Figure S1), whereas for other subjects the average pRF parameters result in lower 1468 
variance explained by the model. (B) Pairwise correlation of variance explained maps comparing 1469 
forward model with subject-specific pRF maps to forward model with average pRF parameter 1470 
maps from aggregate NYU 3T retinotopy dataset. Probability of correlation coefficients is shown for 1471 
comparisons within subjects (white bars), across subjects (dark gray bars), and overlap (light gray bars). 1472 
Pairwise correlation coefficients within individual subjects are on average 0.6, which indicates that spatial 1473 
topography maps of variance explained by the NYU 3T average pRF model are not identical to variance 1474 
explained maps from the subject specific pRF model but overlap substantially. The within subject’s 1475 
correlation is on average higher than the across subject’s correlation and shows that individual cortical 1476 
curvature and head models play an important role in goodness of fit by our forward model. 1477 
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